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Abstract. Let G and G ~' be isomorphic groups. We introduce and study a quotient "9(G) 
of the free product G �9 G ~' which is a group extention of the non-abelian tensor square G | G. 
This seems to bring computational advantages to calculate this last group. Looking over "1) as 
an operator in the class of groups we prove that it preserves properties of the argument G such 
as finiteness, set of prime divisors, nilpotency and solvability. For a finite p-group G we find 
a good polynomial bound for the order of ad (G). 

1. Introduct ion  

The non-abelian tensor product G | H of the groups G and H, as in~oduced b~r 
tsr .E/ 

R. Brown and J.-L. Loday [2], generalises the usual tensor product ~-7 @~ H--7 

of the abelianized groups, on the assumption that each of G and H acts on the 

other. 

Specifically, given groups G, H each of which acts on the other (on the right) 

a • H ~ c ,  (g, h) ~ gh; H x a -~ H,  (h, g) ~ he 

in such a way that for all 9, gl C G and h, hi c H, 

(1) 9 hgl : g g-~lh91 and  h ghl  = h h [  1oh1 

where G and H acts on itself by conjugation, then the non-abelian tensor product 

G | H is defined to be the group generated by all symbols 9 | h, !7 E G, h C H, 

ffgl  @ h = (ggl @ h g l ) ( 9 1  | h )  

(3) g | hhl = (g | hl)(g hl | h h~) 
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subject to the relations 

(2) 
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for all g,91 E G,h,  hi E H, where the action of G on itself is the conjugation 

991 = 911991, and similarly for H. 

In particular, as the conjugation action of a group G on itself satisfies (1), the 

tensor square G | G of a group G may always be defined. This tensor square 

is the focus of attention of [1] and [3], and constructions related to the general 

non-abelian tensor product are focused in [4]. 

The purpose of this article is to study a group which is also related to the 

above construction, defined as follows: 

Let G and G ~' be isomorphic groups through ~o,g ~ 9~~ E G. We define 

the group 

V(G):---- < C , C ~ l  'p a~ = rgg~= [ g l , g 2 ]  t 1 ,(gg3)~o] = [g l ,g~]g~ ,  ' ( 9 1 , 9 2 , 9 3  E G )  

(here we keep in mind that for elements h,k  of any group, h k = k - l h k  and 

[h, k] = h-lhk). 

Our motivation to introduce l)(G) is that its subgroup [G, G ~] is actually 

isomorphic to the non-abelian tensor square G | G (Proposition 2.6). 

Another construction related to ])(G) is the one introduced by S. Sidki [10], 

x(C) = (c, a~'l [g,g ~'1 = 1, for all g E a) ,  

which has, among other attributes, the property of being a finite group when G is 

finite. Considering the subgroup A(G) of l)(G), generated by all [g,g~],g E G, 

we obtain A(G) _< 1)(G)' n Z(l)(G)). The finiteness of l)(G) then follows 
"VG 

the fact that ~ is isomorphic to a certain natural factor of x(G) from 
(Proposition 2.4). 

By using techniques similar to those used in [5] and [9] we describe the lower 

central series and the derived series of l) (G) in terms of the corresponding series 

of G. Our main results are the following: 

Theorem A. Let G be a nilpotent group of class c (resp. a solvable group 

of derived length D. Then "U (G) is a nilpotent group of class at most c + 1 

(resp. a solvable group of derived length at most e + 1). 

Theorem B. Let G be a finite p-group of order pn with G' of'order pro. Then 

l) (G) is a p-group of order dividing p ~2+2n-'n'~. 
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ON A CONSTRUCTION RELATED TO THE NON-ABELIAN TENSOR SQUARE 65 

In particular we obtain bounds for G | G similar to those of Jones [6] for the 

Schur Multiplier: 

pa~ < la  | a l  _ p,,C.-~) 

where d = d(G) denotes the minimal number of generators of G. 

2. Basic Results 

In this section we derive some properties of the group ]) (G) and identify G| as 

a subgroup of it. We use some standard commutator identities without reference 

(see, for instance, D. Robinson [8]): r 

For elements x, y, z in a group G, the conjugate of x by y is xU: = y- lxy;  the 

commutator of x and y is [x, y]: = x-Zx u and our commutators are left normed, 

[x, y, z] = [[x, y], z]. The following identities hold: 

[~,u] = [~ ,y-~] -"  = [x -~ ,y ] - ' ;  

[z, uz] = [x , z ] [x ,y ]  ~ = [~, z ] [~ ,y ] [ :~ ,u , z ] ;  

[x,y-l,z]U[y,z-Z,x]Z[z,x-l,y]'= 1. 

We simplify tile definition of ] ) (G) as 

] ) ( G ) =  (G,G~[ [g,h~] ~e = [gk,(hk)~], for all g,h ,k  e G,e ~ {1,g~}}, 

where ~o: G --+ G ~ , g H  g~O is a group isomorphism. 

2.1 L e m m a .  The following relations hold in ])(G): 

(i) t:,,-,u2j = , Ygl,g2,gz, g4 E G," 

(ii) ~o [gi, g~,  g~] = [g~, g~, g~'] ~ ~ : [gl, 92 , g3 ] and 
[ g L g 2 , g 3 ]  ~ 2 = b l  ,g ,g3] = [g~',9~',g3], Vgx,g2,g3 e v ;  

(iii) [g,g~] is central in ])(G), Vg c G;  

(iv) [gl, ~ g2 ][g2,gl ] is central in "P(G), Vgl,g 2 e G; 

(v) [g,g~] = 1, vg ~ a ' .  
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Proof .  (i) The defining relations of V (G) yield: 

g l  n~l[g3,g~] [,,_ ,,,~]g;lg-4~g3g~ 4 ~Y2 J : LNI)Y2 J 
g-1 g-1 _~p 

__-- [gl a , (g2 ~ )~]g4 gag4 

--1 --1 
--[Yl--[,~g3 94 gag4,(gg~Zg-~lg3g 4)~] 

= [g,g~][g3,g4]; 

(ii) From Ix, y] = x - i x  v and commutator calculus we get 

[g l ,g2 ,g~]  -1 ~2 = [gl gl ,g~ ] 

-1  rg92,g;] : [gl ,g~] d2"  , 1 

__ [ g l l  ,~]g~lglg2[,~" g-1 
- ~ ~ , ,  ( g ? ) ~ 1 ~  

(by defining relations of~) (G)) 

r_ _~]-g[ 'g; lg lg2[ . .  (g2g3g~l)~]g2 

-~- [gl,ar -[gl'g2]" [gl ,  (g21)~lg2[g1 ,  (g2a3) ~] 

: [g l , g~ ' ] - Ig"~J[g l ,  g ~ ] - l [ g l , g ~  ][g 1 ,g~ ~' ] g~ 

_ [ g l , g ~ ] - t g , , r  ~, _~ ~, . .  -- g2 ] [gl,g3 ][gl,g2 ] (by (i)) 
: [ g ~ , g ~ ] - l [ g l , g ~ ] - l [ g ~ , g ; ] [ g l , r  

~o - 1  
= [gl,  g~ ] [gl,  g ; ' ] "  

= [ g l , g ~ , g ~ ] ;  

Now we observe that 
- ~ ~o ~o -1 ~ g ~  

[g l ,g2 ,g3]  = [glg2] [gl,g2] 

: [gl, g21 [gl, g2]  (by defining relations) 

3 = [gi ,g~ ,g  ] 

The last two relations in (ii) follow by a symmetric argument. 

(iii) It follows from (ii) that for all g, h E G, 

[g,g~~ = [g,g,h ~] = 1; 

But 

= [ g , g ~ ] - l [ g , g ~ l  h 

= [g, g~O, hi ,  
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so that (iii) is proved: 

(iv) For 91, g2 E G we get 

[glg2, (gigs) ~] - [gl, (glg2)~]g2[g2, (gig2) ~1 

: [gl, g~]g2 [gl, g~] g~~ [g2, g~] [g2, g~]g~ 
~o g2 ~o 2 ~ ~o g~  = [gl, g2 ] [gl, gl t[g , g2 Jig2, gl  ] (by (iii)) 

Therefore, again by (iii), we can write 

[glg~, (glg~)~~ -1 = [gl, g2~~ ] g2 JR2, gl~ ] 9~ 

As the first member is central in ])(G), on conjugating by g~-~ and using the 

definition of 3)(G) we obtain 

[gl,g~ ][g~,gl ] = [gig2, (9,g~)*][gi ,g~]-~[g~, g;] -~, 

which belongs to the center of 3)(G); 

As for (v), we first observe that when g E G' is a simple commutator, say 

g = Ix, 91, then by (i) and (ii), 

[ [x , y ] , [x , y ]  ~1 = [ X , y , ( x - l x Y )  p] 

= [~, u~, ~ - l ~ ]  

= [x ,y~] - l [x , y  ~] = 1. 

Now for a general element g E G', say g ---- [xl, y l ] . . .  [xr, Yr], we use (i), (ii) 

and make induction on r _> 1 to get 

[g,9P] -~- [[2;1, y l ] . .  o [~r, Yr], [xx, Yl]~~ [xr, Yr~]] 

- -  o . . . . . . . . . . . . . . . . . . . .  

~-- [[Xl ' y~O] , , ,  [Zr,  Y~],  IX1, Yl~'] . . -  [Xr, Yr~]]j = 1, 

proving (v). [] 

2.2 L e m m a .  Let a, b, x be elements in G such that Ix, a] = I = [x, b]. Then 

[ a , b , ~ ]  = 1 = [[a, bF,~] .  
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Proof. By Lemma 2.1 (ii) we obtain 

[a,b,x ~~ = [a, bP, x] 
= [ a , b ~ ] - ' .  [a, b~] = 

= [a,b~~ ~] 

= [a,b~]-l[a,b ~'] = 1. 

The other identity follows by the symmetry in part (ii) of Lermna 2.1. [] 

2.3 Lemma.  Let z, y be elements of G such that [z, y] = 1. Then 

(i) [z" ,y  ~] = [x,y~]'~ = [x, (y~)n], for all n e 7/; 

(ii) If  x and y are torsion elements of orders o(x) and o(y), then o([x, y~O]) 

divides the g.c.d.(o(x), o(y) ). 

Proof. (i) is proved by induction for n > 0, while 

[X,y~~ -1 = [X-I, yp] z = [~T-l,(yz) oR] = [x-l,y~~ 

(ii) is a consequence of (i). [] 

Remark  1. By the symmetry between the defining relations of ])(G) we note 

that the isomorphism p extends uniquely to an automorphism ~ of ]) (G) sending 

g ~ g ~ , g ~  - g ~ d  [g~,g~] ~ [g~,g~]-~, for all g,g~,g~ ~ a.  

Remark  '2. For a finite group G, we can get the finiteness of q)(G) making use 

of the finiteness of the following group x(G) (cf. S. Sidki [10]): 

For the given isomorphic pair G, G ~, consider the group 

x(C) :=  <G,C~ I [g,g~'] = 1, Vg ~ C). 

Then we quote file following results [10] on x(G) (see also [5,9]): "Let G be 

a finite 7r-group (~r a set of primes), finite nilpotent or solvable of finite de- 

gree. Then x(G) is also a finite ~r-group, finite nilpotent or solvable of finite 

degree". It should be noted that x(G) has a subgroup R(G) such that the re- 

x(G) for all 91,92,93 E G ([10], lations [gl,g~]a~ = [g~3, (g~3)~] hold in R - - ~  

Lemma 4.11 (iii)). Here R(G) = [G,L(G),G~], where L(G) is given by 

L (G)  = [G,~ ] :=  (g-lg~p, 'v'g E G). 
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ON A CONSTRUCTION RELATED TO THE NON-ABELIAN TENSOR SQUARE 69 

Returning to our group "I)(G) we note that on introducing the relations 

[g, g~'] = 1 for all g c G it renders an epimorphism p: q)(G) -* x(G) de- 

fined by g ~ gR(G),g ~~ ~ g~'R(G), Vg E G, Vg ~~ E G ~, whose Kernel 

A(G)  is contained in Z(1J(G)) rq ad(G)', by Lemma 2.1 (iii). This implies that 
x(a) 

A(G) is a homomorphic image of the Schur Multiplier of ~ which, together 

with the above quoted results, gives 

2.4 Proposition. Let G be a finite r-group (r a set of primes), finite nilpotent 

or solvable of  finite degree. Then 1)(G) is also a finite r-group, finite nilpotent 

or solvable of finite degree. 

G 
Let N be a normal subgroup of G. We set G for the quotient group -~ and 

note that the canonical epimorphism ~- = G --~ G gives raise to an epimorphism 
G ~, 

~-: 3)(G) ~ 3)(G) such that g H .~, g~O ~ g---~, where G~ -= N----~ is identified 

with G~. 

2.5 Proposition. With the above notation we have 

(i) [N, G~'J~_'V(G), [G,N~']<_'P(G); 
(ii) Ker 5 = <  N,  N ~ > [N, G~] �9 [G, N~].  

Proof.  (i) For elements x E N and g, h E G, it follows that 

[x,g~']h= [x,g~][x,g~~ 

= [x,g~'][x,g,h ~] (by Lemma 2.1). 

This implies that G normalizes [N, G~], and similarly G ~ normalizes [N, G~], 

from what we get [N,a~']__v(a). An analogous argument shows that 

[a,N~']~_~(a). 

To prove (ii) we set M = <  N, N ~ > .[N, G~].[G, N~'], so that M _< Ker ~. 

Furthermore M is a normal subgroup of ~ (G); thus we can define a function 

0: ~ u ~ '~  --, "V (a) by setting (~)0 = MS and (~')0 = My% which is 
M 

well defined since N, N ~ C_ M. The restrictions of 0 to G and G~' are both 

homomorphisms, so that there is a unique homorphism 0* which extends 0 to the 

free product G * G~. We see that the relations 

- - 2  - ~ o  [glg ,g3] [(g1% ~ v '  - -~  = ( g 3 )  ] [ ~ , g 3  ] 
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and 

*] = g3 
g~ l[(gx ), ( g ~ ]  

are preserved by 0". Consequently, 0 induces a homomorphism O: ])(G) --+ 

~' (a----2 V(O) ~(G)  Since M < Ker(~-) this yields an epimorphism ~: M 
M 

Ker (~ )  M 

M 

@ @ 

T 

v(v) 

such that (Mg)~ = ~ and (Mg~)Tr = ~ .  By composition of 0 and ~ we get 

(~)0~ = ~ and ( ~ ) 0 #  = ~ ,  Vg E G. Thus O~ = lv(~),  and this i n m r n  

shows that 0 is an isomorphism. [] 

Now we want to consider the subgroup 

T(a)=[a,a*] 

which is normal in ~)(G). 

By the early definition of the non-abelian tensor square G | G we see that 

the map r:G @ G ~ T(G) defined on the generators by (gl @ g2) ~ = [gl,g~] 

extends to an epimorphism from G | G to T(G).  In fact we have 

2.6 Proposition. r is an isomorphism. 

Proof. Firstly we look at the free product G * G ~. Its subgroup [G, G ~] is free, 

freely generated by the commutators [gl, g~] where I r gl E G, 1 ~: g~ E G ~. 
(See for instance [7], chap. 4). As a normal subgroup of G * G ~, [G, G ~] admits 
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the actions of G and G ~ by conjugation and the following identities hold 
~o g ~ ~ - 1  

[91,92] = [919,92][9,92] 
([) [gl,g~]g ~ = [gl,g~] -1 �9 [gl,(g:g)~], 

for all g,gl,g2 E G. 

Now the map #: [G, G ~] --+ G | G defined on the free generator [91,9~] by 

[gl, g~'] u = 91 | ge extends to an epimorphism from the (free) group [G, G ~] 

(_~G * G ~') onto G | G. Consequently, the introduction in G * G ~' of the defining 

relations of 3)(G) takes us to describe T(G) as the quotient of [G, G ~'] (still a 

subgroup of G * G ~) by the relations 

[91, (g~)  ][9~,g~ l (~• [919~,9~'] = ~ ~ ~ 
= [91,93 ]" [91,  (92 )  ], [91,(929~) ~] ~ ~ ~ ~ 

for all 91,92,93 E G. But relations (II) are mapped by # in the defining relations 

of G | G, from what we get that # induces an epimorphism from T(G)  onto 

G | G. We have p.r = l:r(a) and r,u = 1G| thus proving our assertion. [] 

Remark  3. An argument similar to that used in Proposition 2.5 fii~ .may be 

used to show if N is a normal subgroup of G and ~: 3) (G) ~ 3) / ~ ) i s  the 

G 
epimorphism induced by the projection r :  G --~ -~, then Ker(g-) rq T(G) = 

[U, G~] �9 [G, N~]. 

We close this section by proving 

2.7 Proposition. Let 

G = GI~G2(= G')~_. . .~_Gyt>.. . ,  

1 = ~ o ( G ) _ ~ I ( G ) ( =  Z(G))~_... ~j(G)~_..., 

and 

c = ~1(c)~_~2(c)~_...  ~ z r  

be respectively the derived series, the upper central series and the lower 

central series of  G. Then 

(i) [ { j ( G ) , G ; + I ]  = 1,for all j >_ O; 

(ii) [{j+I(G),Tj(G~~ �9 [7~'(G), (j+I(G~~ is central in T(G)  for  all j > 1; 

(iii) [{j(G),,-/j(GW)] is central in 32(G),for all j >_ 1. 
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Proof. (i) is trivial for j = 0 while the general case follows directly from Lemma 

2.2, since G i < 7/(G) and [~y(G),fi(G)] = 1 for all j _> 1. 

(ii) for j > 1,z E ~j+I(G),g C 7y(G) and gl,gz E G we have 

= 

= [z,g~]-l[z,g~~ [gz'g2] (Lemma 2.1 (i)) 

= 

= [z,g, [g1,92] ~~ (Lemma 2.1 (ii)) 

= 1 (by Lemma 2.2, since[~i+l(G),Ty(G)] <_ ~I(G)). 

This implies that T(G) centralizes [~y+l(G), 7/(G~~ and by symmetry T(G) 

also centralizes [',5.(G), r176 

(iii) This part follows directly from Lemma 2.1 (ii) since [~j (G), 7i (G)] --= 1, for 

all j _> 1. [] 

3. The  Main  Results  

The description of 3)(C) as the product ])(C) = T ( C ) .  C .  G ~, which comes 

from the fact that T(G)___ ~ (G), gives an elegant description for the lower central 

series and the derived series of ])(G). 

3.1 Theorem. For i >_ 2 the i-th term of the lower central series of  3) (G) is 
given by 

Proof. For i = 2, .72(])(G)) = [q)(a), ])(G)] = [T(G) .G.G ~, T(G) .G.G~].  
By using the defining relations of ]) (G) together with Lemma 2.1 and Proposition 

2.5 (i) we get 

[T(G).  a . a  ~ , T ( G ) . G - G  *] < T ( G ) .  7~ (a ) .  7~(a~).  

This shows that 72('P(G)) = 72(G)q'2(G~') �9 T(G). Suppose, by induction 

on i _> 2, that 

"Ti(V(C)) <_ "Ti(G)'Ti(C~)['Ti_l(C),C~] �9 [G,'7i_I(G~)]. 

Then by Proposition 2.5 (i), 

["~i('~(C)), C] ~ " / i+l(a) .  [7i(G~),C] �9 [Ti_I(G),G~,G] �9 [G, Ti_x(G~), G], 
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and once more invoking Lemma 2.1 (i) we obtain 

[.~i_l(a),a~',a] = [-ri(a),G ~'] = [a, ~,_l(a~'),  a]. 

Therefore ['7/(3) (G)), G] < 7i+1 (G).  ["/i(a), G~~ �9 [C, "/i(C~)]. By symmetry 

it follows that 

["[i(V(G)) ,  G ~~ ~ "~i+I(G~)["[i(G), GP][G,"[ i (GP)] ,  

and these last two inclusions show that 

"ri+x(~)(V)) _< "ri+l(a) �9 -~i+l(a~')[-r~(a),a~'][a,-r~(a~)], 

so that our theorem is proved by induction. [] 

3.2 Corollary. Let G be a nilpotent group of class c. Then q)(G) is a nilpotent 

group of class at most c + 1. 

The next theorem is proved using, step by step, similar arguments as in the 

proof of Theorem 3.2. We will omit its proof. 

3.3 Theorem. For i >_ 2 the i-th term of the derived series of 3)(G) is given 

by 

v (a), = a,a~[a,_l ,  a~_~], 

where Gi, denotes the i-th term of the derived ~eries of G. 

3.4 Corollary. Let G be a solvable group of derived length L Then ])(G) is 

solvable of derived length at most s + 1. 

3.5 Proposition. Let G = N .  H be a semidirect product of  its subgroups 

N <_G and H < G. Then 

(i) 3) (G) = (N, N ~) [N, H*'] [H, N~'] �9 (H, H~'}; 

(ii) (H, H*)  -- "~(H). 

Proof. (i), (ii). It follows easily from Proposition 2.5 that IN, H ~'] and [H, N ~'] 

are both normal subgroups of ])(G); also, (N, N ~'} IN, H~'][H, N ~'] is actually 

the Kernel of ~r: q)(G) --~ "P ( G ' )  (_~ q)(H)). On writting q)(G) = q)(NH) = 

[NH, N ~ H  ~] �9 N H .  N ~ H  ~ we see that 

[NH, N ~ H  ~] < [ N , N ~ ] [ N , H ~ ] [ H , N  ~] 
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and thus "P(G) has the desired expression. As for (ii), (H,H~)~ = "P ( G  ) ( N- 

q)(H)), while on the other hand 3)(H) is mapped onto (H,H~'). Therefore 

Ker(ff) n ( H , H  ~) = {1} and < H , H  ~ >-~ "P(H). [] 

3.6 Proposition. Let G = N x H be the direct product of its normal sut~groups 

N and It. Then 

(i) V (G) = (N, N~) �9 [N, H~] �9 [H, N~] �9 < H, H ~ > 

(ii) ( N , N  ~) -~ ~(N);  ( H , H  ~) ~ ~(H)  

(iii) T(G) = T(N) x T(H). 

Proof. Parts (i) and (ii) follows from double application of Proposition 3.5. As for 

(iii), we get from Proposition 2.7 (i) that the four subgroups [g, H~], [N, g~] ,  

[H, g ~] and [H, H ~] are mutually centralized in T(G), since [N, H] = 1. Also, 

normality of [N,H ~] and [ g , g  ~] in ~d(e) give 

T(G) = [N,N~] �9 [N,H~][H,N~][H,H~]. 

Lastly we observe that part (ii) implies [N ,N  ~] -~ T(N) and 

[ g , g  ~] -~ T(H).  [] 

Remark 4. The result in Part (iii) is Proposition 11 of [1]. 

In fact, by arguments similar to those used in Proposition 2.6 we can prove that 

when H and K are groups which act trivially on each other (but by conjugation 

on themselves) then the subgroup [H, K ~] of ~)(H x K) is isomorphic to H |  K 

which in turn is the usual tensor product H | K (this follows from Lemma 2.1; 

see also Remark 2 of [1]). 

Remark 5. In case of abelian groups A and B we have therefore the known 

decomposition of the ordinary tensor product: (Ax B)| (Ax B) -~ T(Ax B) 

(A| A) x (A@~ B) x (B | A) x (Z | B). 

3.7 Corollary. Let G = P1 x . . .  x Pn be a finite nilpotent group where 
{Pz,""  , Pn} is the set of distinct Sylow p-subgroups of G. Then, 

(i) q)(G) ~ ]J(P1) x .-. x "P(Pn) 

(ii) T(G) --~ T(P1) x . . .  x T(Pn) 
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Proof .  For any prime p dividing [G[, let P be a Sylow p-subgroup of G and N 

be a normal p-complement in G. We have by Lemma 2.3 (ii) that IN, P~'] = 

[P, N ~] = 1. 

The previous proposition then yields ])(G) ~ 3)(N) • ] ) (P)  and T ( G )  

T ( N )  x T ( P ) .  Parts (i), (ii) now follow by induction on n _> 2. [] 

From now on we restrict ourselves to the case of a finite p-group G. 

3.8 L e m m a .  Let G be a finite p-group and e E N(G) n G' be an element of 
order p. I f  r denotes the Frattini subgroup of G, then 

I~(G)I divides G 3) 

Proof .  By Proposition 2.7 (i) we get [c, g~'] = 1 for all g E G'. On the other 

hand, if x E G then, by Lemma 2.3 (i), [c,(xP) ~] = [c,x~] p = [cP, x ~] = 1, so 

that [c,g ~'] = 1 for all g E GP:= <xP[x E G>. It follows that [c , r  ~] = 1 

since r  = G'aP. If we set ,~:G --~ [c,G~],g H [c,g~'] then ,k is an 

epimorphism, as [c,G ~] is central in ~ (G) .  Also, r  _< Ker(,~). Let ~r:G 
G 

- -  be the canonical projection and ~ its induced in 3)(G), whose kernel is 
< C >  

G 
K e r ( ~ )  = <  c > <  c~' > [c,a~][a,c% Let ~ be a generator of ~ - ~ .  If c is a 

sinaple commutator, say c = Ix, y], then we get 

[a, c~]  = [a, [x,  ~]~'] 

_-[[x,y]~, a ] - i  

= [x, y~', a] -1 (by Lemma 2.1 (ii)) 

-- [a, [x, U~']]. 

In general, if c is a product of commutators, say c = [Xl, Yl] [x2, Y2] - . .  [xr, Yr], 

then by induction we get [a, c ~] = [a, [Xl, y~]. . .  [Xr, yr~]]. 

Analogously, [c,a ~] = [ [x l ,YI ' I . . . [~ ,YFI , a ] .  Since c C Z(G) A G', it 

follows from the above identities that, in [c, G ~] [G, c~'], the elements of the form 

[ ~ , a ~ ] [ a , ~ ' l  are all trivial. 

G 
On the other hand if ~ is generated by { e l , . - .  ,ad}, we have 

Ic,(a   = rc �9 . , , ~ . . . [ ~ , ~ ] ' ~  
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and 

[(a~' . . .add),c ~'] : [al, c~] ~'1 . . .  [ad, c~] yd, 

by Lemma 2.3 (i). This means that [c, G ~] [G, c~] ' is generated by the 2d elements 

But since [ai,c~][c,a~] ---- 1 for i = 1, . . .  ,d, it results that [c, G~][G,c ~] = 
[c,G~], which is generated by [c,a~],.. .  ,[c,a~]. This together -with the fact 
that .k is an epimorphism gives 

IKer(~)l < P~" l[c'G~']l -< Pe" r " 

Therefore I1)(G)[ divides p2 r :P ( ~ c  > )  "[:] 

3.9 Proposition. Let G be a finite p-group of class 2. Then IT(G)I divides 

(c) Proof. Let ~-: l)(G) --~ l) ~-~ be the epimorphism induced by the canonical 

G G' map ~-:a ByRemark 3 wehave Ker(~-)AT(G) = [ ,a~ ' l [a ,(a ' )~ ' ] ,  

while T(G)~" = T (~-S). Thus itremains to evaluate IKer(~)A T(G)I. Since 

a '  <_ Z(G),  Proposition 2.7 (i) gives [a' ,  a '~] = 1. Hence, for e E a '  and 

g = dh E G, where h E G',[c,(dh) ~] -: [c,h~][c,d~] h~ = [c,d~]. 

As [G',G ~] is central in 1)(G) (Proposition 2.7 (iii)), this implies that 
G 

[G', G ~] is a homomorphic image of G' | ~7 through the map c | 3 H [c, d~], 

where c E G' e d = d ~r. 

G' Therefore [[G',G~][ divides | Suppose = <ct,.. Cm) and 

_GG = <dl,. .-  dn). Then [G', G r is generated by the set {[ci, d~?], 1 < i < 
G t  

m, 1 < j < n} and similarly [G,(G') ~] is generated by {[di,c~],l < y ___ 
n, 1 < i <_ m}. But each ci is a product of commutators so that we get, as 
in the proof of Lemma 3.8, [ci,d~][dy,c~] ----- 1, for all pairs ( i , j ) .  This in 
turn gives [G',G~][G, (G') ~] = [G',G~], and consequently IKer(~)fq T(G)I 

divides G' | ~ . [] 
G' 
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3.10 Corollary. Let G be a p-group of class < 2 with IGJ = p" aM IG'I = pm. 

Then IT(G)I divides p"("-'~). 

Proof. We observe that G' | .G divides p,~(,,-m) and 

divides p(n-m) 2. [] 

3.11 Theorem. Let G be a finite p-group with lal = p" and la ' l  = p'~. Then 

I1) (G)[ divides p~+z,-mn.  

Proof. Since IV(a)I = rT(a) l -  lal 2, all we need is to evaluate IT(C)I. If a 
has nilpotence class < 2 then we are done with Corollary 3.8. 

Suppose G has class at least 3 and let c E 73(G) N Z(G) be an element of 

order p. We argument by induction on IGI. Since 

G pn-1 and ~ , 

our hypothesis give that T ~ divides p(n-1)(,~-,~). 

Ontheotherhand ~-~G) divides G ) l = p n - m ,  s o t h a t b y L e m m a 3 . 8 w e  

finally obtain JT(a)l  divides p,~(n-,~). [] 

3.12 Corollary. Let lal = p", la ' l  = p" and d = d(a) be the minimal 

number of generators of G. Then 

p a~ <_ fG | G[ <_ p.(.-m) 

Proof. We observe that on making N = r and 

�9 in Proposition 2.5, then by Remark 3 it results that 

Ker(~-) V/T(G) = [r  a~l[a,  r 

so that the restriction of ~ to T(G) renders 

> 
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G 
But ~ is elementary abelian of order pd and (as observed in Remarks 4 and 

5.) 

is precisely the usual tensor product 

G G 

r 
of order p 42. 

On the other hand the last theorem gives the upper bound 

IT(a)I = IV(G)____[ < 
la l  2 

Our proof is now finished by the isomorphism of Proposition 2.6. [] 
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