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COMMUNICATIONS IN ALGEBRA, 22(6), 1975-1998 (1994) 

A Presentation for a Crossed Embedding of Finite 
Solvable Groups 

by N.K. Rocco 

D e p a r t a ~ ~ i e n t o  d e  M a t e l n i t ~ c a  
L 'n~vera idade  d r  Brasfiia 
70 910 - BrasJia - D F , Brazil 

1. Introduct ion 

We introduced in [ l l]  a group construction as an operator in the class of groups, which 
involves intrinsically invariants of the argument such as the Nan-abelian Tensor Square and 
the Schur Multiplier, among others. More specifically, given groups G and G", isomorphic 
through an ison~orphism 9 : G - G g ,  y ++ gw for all y in G,  then we defined the grouy, 

v (G)  = ( G', G+ 1 [y,  h4j" [[g" ( h k ) ~ j  = [g, h$IkY, v g ,  h ,  I; E G ) .  

tha t  is, V(G) is the quotient of the free product G t G v  by its normal subgroup generated 
by all the words [g, h v J k .  [ g k ,  (hkjv]- '  and [y ,  hv]" . [gA,(hkjv]- l  for y ,  h ,  k E C: ( w e  use 
standard notation for commutators and conjugation in a group; see below). 

In this paper we give a presentation for V(G) when G is a finite solvable group given by 
one of its AG-systems (see section 2 for details). This main result can be stated as 

Theorem. Let G and G" be distinct isonlorphic finite solvable groups given by AG-systerr~s 
{ a l ,  ..., a,} and {bl, ..., 6,) respectively. where p : G + G +  is an iso~norphism such that 
a, - b,, 1 < i < n. Then the gmup 

6 jG)  := (a,, ..., a,,, bl. ..., 6,  I G - relatzons, Gq - relatzons. 

[a,, b,]"~ = [a:'. b t k ]  = [a, ,  b,lbA, 1 < 2.1, k 5 7 ~ )  

is a presentation of V(G). 

Such a presentation is obtained (Theorem 2.1) by mean of a convenient set of generators 
for the subgroup [G, G"], so that the computation of those invariants of G mentioued above 
seems to be much easier to perform inside V(G) in this case. once [G, GP] is iso~uorphic 
to the non-abelian tensor square G E G (cf. (111). The  relationship between V ( G )  and 
covering questions in groups is also explored in section 2, for arbitrary G .  This section ends 
with an isomorphism (Theorem 2.11) between V(G) /A(G)  and a certain natural factor of 
a group introduced by Sidki ([12]), where A(G)  is the (central) subgroup generated by all 
commutators [g,g"], g E G. 

Copyright 0 1994 by Marcel Dekker, Inc 
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1976 ROCCO 

In Section 3 we study in some detail the subgroup A(G1 as it plays an important role in 
the context. ;\ section p(G) /  1(G) is isomorphic to ?f2(G') and thus, as an application, we 
USF our approach to coli~pute the Sclrnr XIultiplier of an arbitrary finite ~ l ,~ tacyc l ic  group. 

Section 1 is ~riainly concellieti \\it11 some co~riputatiorial asprcts of orlr results, including 
some tables for V ( C )  co~istructi.d \ ~ i t h  help of the G A P  system 141. A couple of open 
problems is l ~ f t  in Section 5 .  

XIost uf the work presented hew cvas cm.riet1 out during a visit of t l ~ ~  author to  the 
L~lirstulrl D fiir hlatheinatik, R\\'TM - Aache~i, supported by a s t i p e ~ ~ d  from the German- 
Braziliaii scientific agrcenient hetaern GhID and C S P q .  I \?ant to express my gratitude 

to Profeasor J.Seuhiiser. mcl to all members of this Departrne~it for their help. the warm 
hospitality and for providing me with all nwessary corrrputing facilitirs. 1 am also especially 
grateful tu Profesiol Lnr1.y ( .  Grove \tho \vas a visitor a t  this Depart~lient during  he same 
occasion. and shared \\it11 me his experience and frirndship. 

Notation. hlost of !he notatioti t~tilized i n  lhese notes is stalidard. For elenients X,y, t 
i u  a group C; the conjugate of .r by y is .c" := y-'xy and t h r  c o ~ n n ~ u t a t o r  of .r and y is 
[s, y] := s-'xY, Our conln~iitators are left normed, [x, y. z] := [[s, y], t]. and the expression 
con~niutotor cu1cuIu.s used in rilari) places is niainly concerned with the use of the following 
identilies (see e.g. [9]): 

An e x p ~ e s i o n  of the typr I t 2 . t . .  .+r''-l for some natural number 12 is frequently denoted 
by I '(in) when it appears in t l lc,  lorn~al  co~nputa t io~ i  of a co~nmuta to r  [x", y]. A similar 
expression involvi~ig also sollre po\vev of y is sometimes denokd  by lI'(x. y) in the same 
context. 

2 .  T h e  Presentation 

\Ye recall tha t  a fi~iile jol~ii1)Ie ~ I O I I P  (: # { I }  has a suhnor.rrlal series I: = Go > C 1  > . . . > 
G ,  = {1} w l i ~ r e  G,  a C , _ ,  and (;,-l/G, is cyclic of order r , .  1 < i 5 n .  This means that 
G , _ l  =< (1,. ..., a ,  > arid (1:' E C ,  =< .... u,, >. Thr  sequence ( a l .  .... a,,) is called an 
..I G- .~ys t em of generators Eos i; ( [ i i ] ) ,  rvitll the f o l l o ~ i n g  defining relations 

s l~ ic l i  a1.e called rt.spectivclj putcr7~-vtlutiol~s and corquyute-1-?/cltio11s. For our purposes we 
shall rewrite the power-conjugates relations by collectjng the generators a , .  1 5 z < I L ,  in 
decreasing order from left to right, so that for the given AG-system the relations are 
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 

We see that  ever) element g E G has a normal expression 

and,  by the conjugate-relations. the speczal r~latzons 

a a ~  - - %J(%,  . . . , c~ j+ l )  . a? ,  1 5 3 < 15 71 ( * I  
follow. 

Now let G and G W  be distinct isovnorphic finite solvable groups given by AG-systems 
{a l ,  ..., a,) and {bl, .... 6,) respectively, where 3 : G + G W  is an isomorphism such tha t  
a, +- b,. 1 5 i ( n. The corresponding power-conjugates relations satisfied by these systems 
we call G- relations and Gq- relations. 

2.1. Theorem. Let G and G" be as above and define the group 

6(G) := (UI ,  ..., a,,, bl, ..., 6, ( G - relations, GP - rtlatiolrs, 
[a,,  b,lak = [upk. bb,bk] = [a,,  bJlbk. 1 5 i, j ,  k 5 n ) .  

Then 

( I )  the subgroup [G, G9] of 6(G) zs generated by the set 

Proof. We proceed by induction on the polycyclic length n of the AG-system. For n = 1, 
G =< a]  > is a cyrlic group of order T I ,  and by definition of 6(G), with i = j = k = 1. 
we have [a l ,  bl]*l = [a], 611 = [a , ,  bl]''. These equalities imply that  in this case 6 ( G )  is a 
2-generator nilpotent group of class a t  most 2, so that  [G,  Gq] is generated by [ a l ,  b,], which 
is central in 6(G). Therefore (i) and (ii) are proved for n = 1. 

Suppose n 2 2 and let N be the (normal) subgroup of G generated by { a z , .  . . ,a , , ) .  By 
induction we can assume that 

r (i') The  subgroup H I  := [,V. Nv] of < AT, .VW > is generated by the set .Y := 

{ [a,,b,l I 2 5 i , 3  l n 1, and 

(ii') [u, up]" = [uw, ( v " ) ~ ]  = [u, V u,v, w E N. 

Claim 1.The subgroup H I  is normal in 6(G'). In fact, we already know H I  is normal in 
(N,IY"). NOW by (i') any commutator [u, uq] in H I  is a product of elements of .Y U X - ' ,  
and from our relations a conjugate by a1 (or bl) of any such element is again in H I ,  for 
N a G. Thus n l ,  and hence bl, also normalizes H I .  

Part( i ) .  To compute [ G , C q ]  we write a generic elen~ent of G in t he  for111 g . u f ' ,  wlre~c 
9 E N and 0 5 rr < TI .  The11 by cornrnutator calculus we have : 

[g , a:', h" , b f ' ]  = [g, h'+. bf']"?' . [a:', hw . by1] 
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111 expression ( 1 )  we separate ti1r.e~ t y p ~ s  of corn~nutators  : 

{al. 6;).  By t he  defining ~ . r l a t ~ o n s  this suhgroup is nilpoterit of class _< 2, so  that [a:], b?] = 
[a1, bl]"!"'. 

Type  1. T h e  ronrniutalol. [ ,q,As] is in I l l .  Thus  by t he  iriductive assurnpiions and t h e  
no r~na l i t y  of H I  i r ~  d(C), [y. hv] is a p~ .oduc t  of e l e m e ~ ~ t s  of X U X-' C T u T - I .  

Type 2. T h e  last type of cornmutator to consider in ( 1 ) .  taking into account t he  syinrnetric 

behavior of our  relations. is [y,  bf ']"yl.  Now y E .*I' and t hus  y = r . a;2. where r E< 
(13 . .  . . , a ,  >. Hence 

[y ,  6f1]"P' = [.rci;>. b;']'Y1 

- - b l ] ( '+" l f  + h ~ : ' - ' ) a ~ l  ( b y  commutator  calculus) 

= [ai. u ' ~ ~ ( b , . .  . . . , b 2 )  , b , ]  (by relations (" ) )  

= [ak.bl] .  [nk .  q l ; ( b n . .  . . , bz)lbl 
- = [nk ,  611 (by normality of HI j 

" k - l  
This  proves (4), and keeping in mind that [ a k 3  bl]r (ark)  = [ak.  blIak . . . [ a n ,  b,]"). . [ n k .  bl], 
we obtain j.1'). 
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 1979 

The arguments used so far also show that if 2 5 k < n and if yk = a;," . . . o p  is the normal 
expression of an elerne~lt of G;-] (=< U L , .  . .,an >), then 

For 2 < k 5 TI let ua set HI := ([a,. bl]. . . . . [ a z ,  bl]..Y), so tha t  H I  5 H, 5 . . . _< Hi; .  
Our goal is to show that [ g ,  b:']"Y1 E Hn and to this end we first need t o  control each factor 
[ ( l k ,  b l l e A a l f y .  . ~ Y ~ w ( b f l  ,<,P1) appearing i n  (51, for 2 5 k 5 n. 

" k - l  

Claim 3 .  For 1 5 J < I; < 1~ m c h  element of the Jorm [ a i .  blInb-1 .'"Pi can be reduc~d ,  mod 
a > - 1 ,  , a " , + l  

H I ,  to a product where each factor has the f o ~ m  [a,.  bl]""~-1 with j + 1 5 z 5 71. 

To see this we first collect a;' on the left uslng the normal form of the elements of 
G, (= (a ,+, ,  . . , a , , ) )  and the fact that a,  norrnallzes 12, Thus, 

",-I 

= ( [ ( L k ,  b l p ) a ,  
a * ~ " ~ - a m i t '  1 + I  

Now conjugation of [a;. bl] by a,  gives 

[ai,, bl]"l = [a?, b?] (by defining relations) 

= [yl+l, w,l(b,,, . . . , bz)  . bl] (by G-relations) 

where y,+l E G,. If y,+, = a? . . .a:;' is the normal expression of yJt1 then by ( 5 )  we get 

It should be observed tha t  this last expression only involves "basic" corrlmutatoss [up, bl] 
with j $ 1 < ! < 11 and the exponents conjugating such coin~uutators  only involve integer 
multiples of elements of G,. Hence. by successive applications of the above procedure 
we will certainly remove the factor a:' from the conjugating exponent of [ a t ,  bl] ,  that  is, 

[ah, bl]";' is congruent, mod H I ,  to a product where eacll factor haa the desired form. Since 
"k-1 .,,rial 

a$ . .a ;bl  E G, we finally obtain the claimed form of [a;, bl ja~-1 1 by mean of the 
normal expression of elements of G,. 

The  reduction criterion provided by Claim 3 may be considered the crucial step for the 
proof of our theorem. In fact, upon successive applications of this criterior~ to  the factors on 
the right side of ( 5 )  we can write each such factor as a product of elements, each of which 
belonging to a left coset of H, determined by a representative of the form 

?,.a7"-' .. a? .W' (b f '  ,op') 
[an, 611 ( 7 )  

Our final step is then to show that these representatives are themse lv~\  ele~nents  of II , .  To 
this end we can now apply a reverse induction argument. In effect, by using the reduction 

provided by claim 3 and then (4 )  and (4') we see that [ar t ,  bl]n:l;' is an element of the 
subgroup of H, generated by X U {[a,, bl]). Thus we are done in case G has polycyclic 
length n = 2. 

Suppose n > 2 and,  by induction, that [a,, b l ] ~ n ' n ~ ~ l " ~ " ' " - k  is an element of the subgroup 
of H, generated by X U {[a,,, bl]. . . . , [a,-k+l, bl]}, with 1 < k 5 n - 2. But for n - k t 1 5 
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T- ' aklrlg i ~ r t o  account tlir r i o r ~ ~ l a l  for111 of t h r  elements in G ( resp.  G") .  idcrltitirs ( 9 )  and 
( 1 0 )  provide us u . i t l~  a recursivr cc~ite~ion t o  1)roL.e that 

\vhich in t u rn  proves ( i i )  
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 1981 

We recall t ha t  for arbi t rary  isomorphic groups G ,  G9, where p : G  - G G , g  - g*.Vg E G  
is an  isomorphism, a group V ( G )  has been defined as  (see [ll]): 

T h e  given i somorph~sm p extends un~quely  to an d l i t o ~ n o ~ p h ~ s r r ~  (also denoted by p ) of 
V ( G )  such tha t  g  ++ gq.g* +- g arid [g,.g:] C )  [ g 2 , g P ] .  

2.2 Corollary. Let G and G q  hc dzstitict isomorphic finite solrublr groups given b y  AG- 
systems { a l , .  . . , a , }  and { b l ,  . . . ,b ,}  rtspcctivehy, as in Theorem 2.1. Then 6 ( G )  zs a pre- 
sentation of V ( G ) .  

Proof. Immediate  by Theorern 2.1, since the  set { a l . .  . .,a,. b l , .  . . , b,,} actually generates 
t h e  group V ( G ) .  I 

For easy of reference we reproduce in the next lemma some of the  relations satisfied by 
V ( G ) ,  for a general group argument G ( t h e  reader is referred t o  [ I l l ,  Lemma 2.1 for a 
proof) .  

2.3  Lemma. V ( G )  satzsJies the Jollowlng relatzons: 

(iii) [ g , g ' P ]  is centml in V ( G ) ,  Q g € G ;  

( v )  b , g q 1  = 1, V g  E G'.  

As we observed in t h e  introduction, t he  subgroup T ( G )  := [ G ,  GP] of V ( G )  is isomorphic 
t o  t he  non-abelian tensor square G @ G. such an  isomorphism being defined by : [h.  gv] H 
h 8 g ,  Q g ,  h E G. (see [ l l ]  and (31 for references). I t s  subgroup A ( G )  := < [g ,  gv] / g E 
G  >, wliich by Lemma 2.3 is ceutral in V ( G ) ,  is such tha t  t h e  quotient T ( G ) / A ( G )  is 
isomorphic t o  the  ezterior square G  A G  (cf. Miller [ 7 ] ;  see also [ 2 ] ) .  

Remark 1. It is appropr ia te  t o  note t ha t ,  modulo A(G) ,  we have 

Therefore [h ,  gV] E [hv .g]  (mod  A ( G ) )  or, which is t o  say, the extended aulomorphzam 
y of V ( G )  centralztes T ( G )  modulo A ( G ) .  

Let O(G) denote the  subgroup of V ( G )  generated by all t h e  elements g-'g*, V g E 
G. (This  subgroup is also usually written [G,p]  :=< [g,vJ / g E G  >, where [ g , y ]  
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Proof.  ( i )  Denoting fig; by !lip; thrrl the identity [ I L ~ , ~ ]  = [ / I , ; ] ~ .  [ y . ~ ]  shows tha t  
[ I l ,  ,-;-' E @I(;). v /2 . g € Cl'. Also 

SO\V thii rilap y - 9. 9 ;  C- 9. Vy E C ~ x l e n t l s  ~ ~ n t u r a l l y  t o  an epi~norphism p : V ( G )  - G 
(since tlic d i - f in i~~g  rcI<?tion. of I:{G) ;>re t h ~  coi~imutator  relatio~ls on G'), whose restriction 
to G is thr id t=~i t i ty  111<111. .-\\ (-I((;) 5 l < f i . ( p ) .  O(C;) n G = { I )  and O(G) = I i ' e r ( p ) .  

2.5 Proposition. Lct C bi  ii j i l i i t t  w r r r b i r  y ro l~p  g i w r i  b y  i l l 1  .A(;-syslem { a l . .  . . .i~..). 

l ' h ~ n  t h r  ( i i r ~ ~ i ~ t ~ c i  gr.oz~p G' 1 5  g t n c ~ ~ c ~ l ~ c l  b y  t h e  s e t  



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f F
lo

re
nc

e]
 A

t: 
10

:3
0 

5 
D

ec
em

be
r 2

00
7 

CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 

Proof. For (i) we have: 

As for ( i i ) ,  use of ( i )  and Lemma 2.3 ( i i )  give 

[p, g, h ,  k G ]  = [[h .  yq] . [ g .  h], k"] 

2.7 Proposition. ( i )  p ( G )  consists ofall elements o f T ( G )  of the form [ h l ,  gP]<l . . . [h,, yf]" 
such that [ h l ,  gl]" . . . [h,,g,]Lu = 1 ,  where s is a  natural number. h , ,  y, E G. 6 ,  E { i ,  - 1). 1 5 
i _< s ;  

( i i )  p ( G )  is central in  V ( C )  

Proof. (i): Let y = [h l ,  gP]'l . . , [h , ,  g:JLs be a generic element of T ( G )  with h, ,  g, E 
G, E ,  E { I .  - I ) ,  1 5 i < s .  B y  Lemma 2 .6 .  

where u E O(G) = A'er(p) .  Therefore yp' = [hl ,gl] ' I  . . . [ h 8 , g S ] " ,  SO that  y E p ( G )  if 
and only if [hl ,gl j f1  . . . [hs. gsILs = 1. 

(ii) Let 3 = [ h l ,  g;lc1 . . . [h,, g:]'. E p ( G )  and h  E G .  Commutator calculus yields : 

The  above shows that  G centralizes / L ( G ) .  Since by definition of V ( G )  the action of an 
element hv E Gw on T ( G )  is the same as that  of the corresponding h E G, part ( i i )  is also 
proved. I 
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T h e  diagrani below b u ~ ~ ~ ~ i ~ a s i z e s  iollle of those informatiolis concerning t h ~  s t ructule  of V ( G )  
ivc obtained in I 'ropobitio~~, 2 .1  - 2.5. The top section G I G '  is not but t he  image of t h r  
coniposite triap p ~ .  where r : G - G/Gt  is the  canonical epirnorphisnl. 

Herncirk 3. \I'ith t he  i~omiirphjs~i i  betueeri T (G)  and the  non-abeliau tensor square G 5: G', 
tve obsrrve  that  our  s111rgr.oup pjC) c o n e s p o r ~ d s t o  the  subgroup J2(G)  of (31. Par t  (ii) of 
Proposition 2.7 agreci wit11 j;3]. I'roposition 2.5).  

T h e  folloiving reiuit  is a convquencr  of our previous renlarks and C ,  hlillrr's ticscription 
of t he  sccorrd homology group : 

2.8  Proposition. 7iir s r c t z o i ~  p(G)/A(C) of V j G )  is isomorphic to the reconti honmlogy 
group N 2 ( f ; ) .  

Hrrnnrk 4. Some of t . 1 1 ~  ~rc,ult. ( ~ I I C P I I I ~ I I ~  the iubgroups T(G), C ) ( G ) .  anti /I((;) arc, 
appropr ia te  a d a p t a t , i o ~ ~ ,  of i i t ~ l i l ~ ~ r  r c ~ u l t s  of [12]. ~ v l r ~ s e  S.Sitlki studies ill(. grciup 

.Is we p o i ~ ~ t ~ t l  out i l l  [ I  I ] ,  \((;) C U I I T ~ ~ I I S  a subgroup  K ( G )  such  tha t  illp relations y;]?: = 
(gp. ( g : ' ) " ]  = [ g , ,  g i ] g ~  hold i r i  C: ) /R (G)  for a l l f i .  g2. g3 E G.  T h a t  subgroup is defined by 
K ( G )  := [G. L!G).I:']. ivhere L ( i ; )  is the  subgroup of I((;) generated by ail g - l g d .  g E G. 

I t  results t ha t  on introdr~cirig in V ( G )  the relations [g, gL"] = 1, V g E G ,  we get 
an cpirnorphism C : L'(C:)/.l(G') - \ ( G ) / R ( G )  such tha t  g A ( G )  H gR(G), g41(G) ++ 

g i R [ C ) .  Y g E G', gi ; G;.  It i -  opportiirie to r n e ~ ~ t i o ~ i  that  for a finite group G ,  the  order 
of \(C)/R(C:) is given t y  J \ ! ( ; r / l i [G);  = lGi2 . IG!/ . ( .Zl(G)( .  where . \ I ( ( ; )  denotes the  
Scliur 13ultipher of (; (j10].  Leiil~r~dc 2 .2 .  2 . 3  autl [12]. Lc~tntria i . 1 .11) .  C o n s q u r n t l y .  by a 

q u i c k  look over thi. t1idg1a111 aboir. v.(' ( I C ~ I I W .  as a rnattel ofortier.  that < i h  nrl izonror.phiin~ 
in c a w  )C; i, firiitr. 
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 1985 

On the other hand it is clear that  V(G)/A(G) is a ho~nornorphic image of x (G) .  where 
y c gA(G) ,  g'+ ++ g"A(G),  Vg E G defines an epinlorphisrn 6 : x ( G )  - V(G) /A(G) .  For 
the remainclel. of this section we evolve to show that [ induces an isorrlorphisn~ inverse of (. 
for any group G. 

2.9 Lemma.  Let g ,  h. u ,  k he arhztrary elements of a y ~ o u p  G. T h e n  

!kg",  b , h ] l  = [ h , g .  [g.hI9] (by Lemma 2.3 (ii)) 

= [[g. hl-', [ g ,  hY1 

= [g, h. [g, hjP]-' (by  L e ~ n m a  2.3 (iii)) 
= 1 (by Lemma 2 3 ( v ) ) ;  

(11) Since by Lernma 2 6 [q, g, h]  = [h,g+][g, h], we h a ~ e  

But ( 9 . 9 ,  h ]  E O(G) ,  which 1s centralized by T ( G ) .  Hence [[p.g,  h] ,  [g, h]] = 1. 

(iii) We refer to Lemmas 2.3 and 2.6 for the following identities : 

Now [h.gP,uP] E T(G) 4 V(G) and for y E T(G)  it holds y["<yl = y[Z,y'], V x, y E G. 
Thus, by Lemma 2.3 (ii) again, 

(iv) is a direct consequence of (iii) and Lemma 2.6 (ii). 
As a consequence we obtain the following interesting identity 

( 9 ,  y ,  h ,  u 1 v ~ . . . u , , v ~ ,  k 9 ]  = 1. 

Proof. For n = 1 this follows from 
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( i )  [O(G'), G. Gq] = 1 .  

Proof. (i): From O(G) = ( [v^.y] 1 g E G )  we see that  [O(G). GI is the normal closure : 

and thus [O(G'),G',G*] = 1 by Lelrirnas 2.0: (ii) and  2.9 (i\ .).  

(ii): .is in the discussion preceding Lern~ria 2.9, let [ : x(G) -+ V(G) /A(G)  be the epi- 
~ n o r p h i s ~ n  given by y * g l ( G ) ,  gI- c y+A(G) ,  V g  E G. By composing ( and c it is 
then obvious tha t  l i e r j t )  _< I1(G')  ( =  [G. L(G).G"D]). On the other hand,  f maps R(G) to  
[G',O(G),Gq] (mod 1(G)). which is trivial by part ( i ) .  Hence ker ( f )  = R ( G )  and conse- 
quently [ induces on y ( G ) / R ( G )  an inverse of <. I 

3. The  Subgroup A((;) 

In this section we set sorise more lesults concerning the  subgroup A ( G )  for an arbitrary 
group C'. X convenient set of generators for it is found in Proposition 3.3. T h e  following 
Lem~lra and its Corollary a1.e easy consequences of Lemma 2.3 and commutator calculus. 

3 .1  Lemma. Lel G br ci7iy g7oup u i i d  g ,  h ymevzc rltrnents of G .  Then 
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 

(iii) If h E G' then [ g ,  h+'][h,gv] = 1; 

(iv) if g G' = h G' then [g ,  g'C] = [h.  hq]:  

( v )  Denote b y  o i ( z )  the order oJ u coset zG', z E G .  I ~ O ' ( ~ )  01. o l ( h )  is 

finzte, then [g ,  /r9][h, g*] has order diuidlng gcd(o'(g). o l ( h ) )  

(by abuse of notation we set g c d ( n ,  m) := n for a natural number 1 2 ) ;  

( v i )  If o l ( / l )  z s  Jrizt?, then [ / I .  h"] has order dzzlndzr~g g c d ( ~ ' ( h ) ~ .  201(h))  

3.2  Corollary. LetG be afirlzte group of odd order and y E G bc an element ti'zth o l j g )  = s .  
Then [g ,gG]  has order dzvzdmg s. 

3.3 Proposition. Let A' = { x , ) , ~ ,  be a set of generators of a group G .   here we assurne 
that I zs a totally ordered set. Then AiG) zs generated b y  the set 

Proof. Let g = h,x:' and h = u, xi' be elements of G with z, , z, E X ,  c, , c, E (1, - 1 )  
and w a word on X U X-I .  Cornputatrons l ~ k e  those performed In the proof of part ( i )  of 
Lemma 3.1 show that 

and 

Using these identities we can easily complete the proof by induction on the length of g and 
h in the elements of X U X - I ,  once A(G)  is generated by all [g,gq] . y E G .  T h e  choice 
j < k in A is guaranteed by Lemnla 3.1. I 

3.4 An Application. We shall now use our approach to  compute the Schur Multiplier 
of an arbitrary finite metacyclic group ([I31 and [I]) .  

It is well known tha t  such a group G has an AG-presentation 

G = ( a , ,  a2 /a: = 1, a; = a: ,  a;' = a; ), 

where m, s, t ,  r are integers such that nz, s > 0, rS r 1 (mod  n,) and 111 dit)zdc.c 
t ( r  - l ) ,  so that  G has order m s .  Using the notation previoualy established, let C;4 = 
< bl, bz > be the other copy of G ,  with the corresponding GV-relations. Hence T(G)  is 
generated by { [a ] ,  bl], [a?, 621, [a, ,  621, [a?, bl]}, by Corollary 2.2, while A(G)  is generated 
by { [ a l ,  611, [az, bz], j a ~ ,  b?][az, b~]} ,  by the last proposition. From this information we see 
tha t  the factor group T(G) /A(G)  is cyclic, generated by the coset [ a l ,  621 A ( G ) .  T h e  Schur 
Multiplier M ( G )  is by Proposition 2.8 the quotient p (G) /A(G) .  Given tha t  p ( G )  is the 
kernel of the derived map p', we then get T ( G ) / p ( G )  2 GI. Rut from the presentation of 
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G' i t  is readily Yeeu that il' ih 

where ( m .  - 1) d e n o t ~ s  the  

from whicl i  i t  folloas t h a t  j i ( (  

tvc have got t he  inforil~ation 

[ a l .  b 2 ] m  motluio A((;). 

gener;itcd by [ ( I > .  a l ]  = a ; - ' .  so tha t  G' has order *, 
p.c . t i . ( rn . r  - 1) .  On the  other hand G' = < [ n ~ . b ~ ] ~ '  >, 

m 

7) /L(G)  j q  generated by the  coset [ a l .  b2]-l(G). So far 
that .\f(C) is cyclic. having order a divisor of t he  order of 

Consequeritly. o ( [a l ,  b 2 j m L ( G ) j  ( = l.\I(G)l) divides 
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 1989 

To see that k is the precise order of M(G)-we can use the classical argument of constructing 
a cowrzng group G of G ,  in the sense that  C: contains a subgroup Z such that Z G"n ~ ( c )  
and G / Z  Z G. Uy a well known property of the Multiplier, such a subgroup Z is then a 
hoinomorphic image of M ( G ) .  

But ,  doing cornput~~tions similar to those performed above, it is not hard to  check that .  
with the foregoing integers m,  s, t ,  T and k ,  the group preser~ted by 

satisfies the desired property, with Z =< c > of order k (see [ 5 ] ,  page 301) 

We conclude that M ( G )  is in fact a cyclic group of o ~ d c r  k ,  which agrees ~ . g .  with [I] .  

(131. 

Remark 5. In order to analyse the  subgroup A(G)  more closely, let us digress for a moment. 
When G is a direct product, G = n' x M ,  the subgroup T(G) of V ( G )  is given by 

T(G) = T ( N )  x T(M) x [ N ,  M"] . [M, A'"], 

with [iV,Mq] (resp. [M, !V"]) being isomorphic to the usual tensor product !V &;z M 
(resp. .+I N).  We make evident here that the above decomposition of T ( G )  is found 
in ( [ I l l ,  Proposition 3.6 (iii)) where by a misprint it appeared with the missing factor 
[A', M " ]  . [M, A'+'] (see also [2], Remark 2 ) .  In this case 

where I! is the subgroup of [ X ,  M v ] [ M ,  hrv] generated by all [x, y'P][y,x+'] with x E N and 
y E M. By the isomorphism between .h' @Z M and M N i t  results that  CT is isonioryhic 
to  N @z  M. In fact, let V denote the subgroup of ( N  @Z M) x (M @z N )  generated by 

all (x  8 y)(y x )  with x E N ,  y E M. It is clear that  there is an epimorphism 

On the other side the isomorphism / : M @a IV -. N @a M given by y @ x ++ x @ y yields 
the isomorphism : 

(1  x j )  : ( . ~ ' @ a M ) x ( M @ z N ) - ( N @ z M ) x  ( N @ a M ) ,  

("1 @ Y I , Y ? € ~ X Z ) ~ ( ~ ~  @ Y I , X ~ @ Y Z ) .  

Restriction of (1 x j )  to  the "diagonal" composed with the projection on the  first coordinate 
gives an inverse of 4. Since C V we get the assertion and thus : 

A ( X  x M) P A ( N )  x A ( M )  x ( N  @z M). 

Taking into account that for an abelian group A ,  T(A)  is isomorphic to A @ a  A (see [ l l ] ,  
Remark 5), we can describe A ( A )  for all finitely generated abelian groups A,  once A(A)  
corresponds to the dzagonal subgroup D of A @ z  A ,  generated by all a @ a with a E A .  

Let then G be a finitely generated group, n : G i GIG' the canonical epimorphism and 
denote by G this last factor group. Then i~ extends to  an epimorphism 7i : V(G) I V ( G ) ,  
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such that h k A.  /L+ - h4 .  V h  E G .  By [ I  I .  Propositiori 2.51, t he  kernel of f is given by : 

l i r 6  = < G', G'" > [G'. G4][G.  G''] 

I r i  pdrticular /<cr(fr)  n T(C) = [ ( Y .  c?~][G.C:' ']. 

Denoting by K, tlie restriction of i; to 1 ( C )  then a, is an  epirnorphisnr fl-on1 A ( G )  t o  
1 (G/C ' ) .  such t,hal [ g .  g4] - [ J ,  jql. V g E G. 

S o w  suppose tha t  GIG' I B x L where B denotes t he  torsion subgroup and  L the 
free par! of GIG'. Assume tha t  4 = n;=, < u, >, a direct product of tlie cyclic 
subgroups < u ,  >e C.,, of order n,, 1 < 7 < r ,  and let L = n:=, < >. each 
< 7b3 >2 CX. 1 --< j 5 t .  By the  above observations we then have : 

A(G,IG') r A(/?)  x A ( L )  x jH &z L ) ;  

For each z E { l , .  . . ,  i.] and J E (1. .  . . . f ]  we choose a pre-image x, and  y, in G of the  
corresponding u, (resp. I ) , )  in C/G1.  'Tli~,s .?, = 11,. y, = L',. o l ( x , )  = 7 1 ,  and o l ( y , )  = x. 
for 1 5 I < i. and 1 5 j < 1 .  Set .Y := { .r ,  1 1 < i 5 r ]  and Y := {y, / I 5 3 < I}.  Since (3 
is generated by X u 1' u G', hy forw of Proposition 3 . 3  and  Le~nrnas  2.3 and 3.1. 1(G) is 
geuerated hy 1 := Ax u 1). U A n y .  where 

3.5 Proposition. It ! t i t  i h c  ribout notatzon. I ie l (n , )  zs generated b y  the sr t  {[z,, s:]" '  I 1 5 
25i.I 

Proof. Let .Y denote ti!" subgroup < [ s , . . c ~ ] " ~  I 1 < i 5 r >. Siuce ,V .C Iitr.(n,) we 

have an  epimorphism n; : A((;)' - l(G/G1) given by [FL. hW]* t. [&. h"]. V h E G, where 
AiC)' = l(G')/,Y and [h,h4]' = [h ,  h4] .Y. 
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On the other side,we can make use of the direct deco~~iposition of A(G/G1) to  define an 
inverse dr : A(G/G1)  -+  A(G)* .  Obviously we set 

Tha t  y is well defined on the generators of A(G/G1) follows from Lemma 3.1 (iii),(iv). Thus 
we only need to check for orders. But our previous analysis yields that  [y,, yy] hasorder  
n, and [ ~ , , z y ] " ~  E A', while ( [ r , , z ~ ] [ z a . ~ ~ ] ) ~ ~ k  = 1, ((z,,y~][y,,rP])"'  = 1 and the 
rest correspond to  the free generators of A ( L ) .  Therefore v defines a homomorphism. It is 
straightforward to  check that ?r'd = so that n* is an ison~orphism. I 

Let r z ( A )  denote the &-rank of an ahelian group A, that  is, the cardinality of a maximal 
independent set of elements of 2-power order. In view of Corollary 3.2 we can resume the 
foregoing analysis as 

3.6 Coro l la ry .  Let G be afiriittly grncrated yroup. Then Iier(?r,) is on eltrrlrnlary nbelian 
2-group of rank at most r2 (G/G1) .  In particular, i f C  is a free group of rank n then A ( G )  
is u free abelian group of rank n ( n  f 1) /2 .  

Runark 6. We observe that the results established above are also associated with the rela- 
tionship betweell A(G)  and the Whitehead yroup T(G/G1) (1151). For an ahelian group A ,  
T(A) is defined to  be the (abelian) group generated by all symbols y (a ) ,  a E A ,  suhject to  
the relations 

?(a-I)  = y(a) ,  Va E A:  

On setting w(a,  b) := y(clb)y(a)-'y(b)-' then for all a l ,  . . .,a,, in A we have (see [15]): 

and from these relations one gets that  l ' (Cn) is isoniorphic to C, or ClrL according to 11 odd 
or even, r(C,) E C,, and T(A x B )  2 r ( A )  x T(B) x A @z B (cf. [15]). 

Making use of Lemma 3.1 we see that there is a well-defined epimorphisrn T : r ( G / G 1 )  + 

A ( G )  such that  Y(h) H [h ,  hv], V h 6 G (consequently, w(fi,g) ++ [h,yq][g, hv]) where h 
denotes h" (see also [3]). 

The composite map r, := m, thus gives an epimorphism r, : T(G/G1) + A(G/G1)  
and we can show by similar arguments that in the above situation, where G is a finitely 
generated group, Iier(r,,) is an elementary abelian 2-group of rank precisely r2(G/G1). 
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1. cyclic groups 

2 ,  direct  products  

I.et G' = H x /< be a direct p ~ . o d ~ i r t  of arbitrary gmups I1 arid A'. 111 [ I l l .  Proposition 
3.6. ivr prove: 

( I )  V ( G )  = ( H .  H-j . ( I < .  I < + )  . [ H ,  I i " ]  . [ I < ,  H P ] ,  (a direct p roduc t ) ;  

(ii) ( [ I ,  H+') Z V ( H ) ;  ( l i ~  I < + )  2 V ( I i ) ;  
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In particular,  for abelian groups H and  Ii we have also T ( H )  1 ( H  @;z H )  and  T ( l i )  2 

( I i  @a A') (see also Remark 5). 

I t  should be interesting to  look more closely a t  the  very particular rase of V(C2  x GZ). 
For, let C z  x C 2  =< a,  b  1 u2 = 1, b2 = 1 [u .  b] = 1 >. Then  by the  above we have 
V ( <  a >) =< a , a V  >2 D4 2 < 6, bq > = V(< b >) and  < [ a ,  bp] >2 Cz E< [ b , a V ]  >. 
Hence V(C2 x C 2 )  % ( D 4  x C Z ) X 2 ,  of order 2'. Here, the  subgroup < a,  bv > is isomorphic 
t o  a covering group of C 2  x C 2 ,  namely D 4 .  In the  last section we leave a n  open question 
concerning this point.  

Next one  may b e  faced for instance with the  computation of V ( C )  for finite nilpotent 
groups G, which by item 2 above is then reduced to  the  case of finite p-groups, p: prime 
(see also section 3 of [ l l ]  for some concerning results).  4 s  observed in t he  seco~id paragraph 
of t he  present section, our results give rise t o  performe computer  assisted calculations with 
large groups in this case as  well. To exemplify we inserted in Table 1 those inCo~unations 
obtained following this procedure, having for groups arguments G t he  non-abelian p-groups 
of order 5 p4 : p = 2, 3. Each such group is given in t he  list below by a PAG-system, t ha t  
is, an  AG- system where r ,  is a prime number, 1 5 z 5 n (cf. section 2) .  

Non-abel ian p -Groups  of O r d e r  5 p4 ,  p = 2,3 

(i)  D 4  = ( a ,  b,  c / a 2 ,  b2 = c ,  c 2 ,  [b,  a ]  = c ,  [c, a ] ,  [ c ,  b] ); 

( i ~ )  Q,  = ( a ,  b,  c  1 a2  = c ,  b2 = C ,  c 2 ,  [b,  a ]  = c ,  [ c ,  a ] ,  [ c ,  61 ), 
(iii) H I  (= D S )  = ( a ,  b, c ,  d  1 a 2 ,  b2 = c d ,  c2 = d ,  d 2 ,  [b,  a ]  = c ,  [ c ,  a ]  = d ,  [ c ,  bl,  [ d ,  GI ,  [ d ,  bl ,  [ d ,  cl ); 

( iv)  H 2  = ( a ,  b,  c ,  d  1 a 2 ,  b2 = c ,  c2 = d ,  d 2 ,  [ b , a ]  = c ,  [ c ,  a ]  = d ,  [ a , b l .  [ d ,  a ] ,  [ d ,  bl ,  [ d ,  cl ); 
( v )  H~ (= Q16) = ( a ,  b,  c ,  d  1 a2 = c ,  b2 = d ,  c2 = d ,  d 2 ,  [b,  a ]  = c ,  [ c ,  a ] ,  [ c ,  61 = d ,  [ d ,  a ] ,  [ d ,  b l ,  [ d ,  cl ); 

(v i )  H 4  = ( a ,  b,  c ,  d  1 a' = c ,  b 2 ,  c2 = d ,  d 2 ,  [b,  a ]  = d ,  [ c ,  a ] ,  [ c ,  bl ,  Id,  a ] ,  [ d ,  bl ,  [ d ,  c] ); 
(vii)  H s  ( a , b , c , d  1 a2  = c ,  b2 = d ,  c 2 ,  d 2 ,  [ b , a ]  = c ,  [ c , a l ,  [ c , b l ,  [ & a ] ,  [ d , b I ,  [ d , c l  ); 
(viii) Ha (= C2 x DI) = ( a , b , c , d  I a2 = d ,  b 2 ,  c 2 ,  d 2 ,  [ b , a ]  = d ,  [ c , a l ,  [ c , b l ,  [ d , a ] ,  [ d , b l ,  [ d , ~ ] ) ;  

(ix) H7 = ( a ,  b,  c ,  d  1 a2  = d ,  b 2 ,  c 2 ,  d Z ,  [b. a ] ,  [c ,  a ] ,  [ c ,  b] = d l  [ d ,  a ] ,  [ d ,  bl ,  [ d ,  cl ) ;  
( x )  Ha = ( a ,  b,  c ,  d  1 a2  = d ,  b2 ,  c 2 ,  d 2 ,  [b,  a ]  = c ,  [ c ,  a ] ,  [c ,  bl, [ d ,  a ] ,  [ d ,  bl ,  [ d ,  cl ) ;  
(xi) Hg (= C2 x Q g )  = ( a ,  b, c ,  d  I a 2 ,  b2 = d ,  c2 = d ,  d 2 .  [b, a ] ,  [ c ,  a ] ,  [ c ,  b] = d ,  [ d ,  a ] ,  [ d l  bl ,  [d .  cl ); 

( x i )  B ( 2 ,  3 )  = ( a ,  b,  c  / a 3 ,  b3 ,  c 3 ,  [b,  a ]  = c ,  [ c ,  a ] ,  [ c ,  b] ) ;  

(xiii) h' = ( a ,  b, c  1 a 3 ,  b3 = C ,  c 3 ,  [b ,  a ]  = c ,  [ c ,  a ] ,  [ c ,  b] ) ,  
(x iv)  G I  = ( a ,  b, c ,  d  1 a 3 ,  b3 = C ,  c3 = d ,  d 3 ,  [b,  a ]  = d ,  [ c ,  a ] ,  [ c ,  bl, [ d ,  a ] ,  [ d ,  bl ,  [ d ,  c] ) ;  

( x v )  G 2  = ( a ,  b, c ,  d  1 a3  = b, b 3 ,  c3 = d ,  d 3 ,  [b,  a ] ,  [ c ,  a ]  = d ,  [ c ,  bl ,  [ d ,  a ] ,  [ d ,  bl ,  [ d ,  c] ); 
(xvi )  G 3  = ( a ,  b,  c ,  d  1 a 3 ,  b 3 .  c3 = d ,  d 3 ,  [b ,  a ] ,  [ c ,  a ]  = b ,  [ c ,  b ] ,  [ d ,  a ] ,  [d,  bl, [ d ,  c ]  ); 
(xvii)  G4 = ( a ,  b,  c ,  d 1 a 3 ,  b 3 ,  c3 = d ,  d 3 ,  [b,  a ]  = d ,  [ c ,  a ] ,  [ c ,  b] .  [ d ,  a ] ,  [ d ,  b] ,  [ d ,  c ]  ) ,  
(xviii)  G5 = ( a ,  b,  c ,  d  1 a 3 ,  b3 = e ,  c 3 ,  d 3 ,  [b,  a ]  = e ,  [ L ,  a ] ,  [ c ,  b] ,  [ d ,  a ] ,  [ d ,  b] ,  [ d ,  c ]  ); 

(x ix)  Ga = ( a ,  b ,  c ,  d  1 a ' ,  b3.  c3 = d ,  d 3 ,  [b,  a ] ,  [ c ,  a ]  = b, [ c ,  b] = d ,  [ d ,  a ] ,  [ d ,  bl ,  [ d ,  c ]  ) ;  
( x x )  G r  = ( a ,  b,  c ,  d ( a3  = d ,  b3 ,  c3 = d ,  d 3 ,  [b,  a ]  = d ,  [c ,  a ]  = b, [c ,  b ] ,  [ d ,  a ] ,  [ d ,  b ] ,  [ d ,  c ]  ) :  

(xxi )  G g  = ( a, b, c ,  d  1 a3  = d ,  b3 ,  c3 = d 2  , d3  , [b,  a ]  = d ,  [ c ,  a ]  = b, [ c ,  bl ,  [ d ,  a ] ,  [ d ,  bl ,  [ d ,  c ]  ), 

( x . c )  G s  = ( a ,  b, c ,  d  l a 3 ,  b3 ,  c 3 ,  d 3 ,  [b,  a ]  = C ,  [ c , a ] ,  [ c , b l ,  [ d ,  a ] ,  [ d ,  bl, [ d ,  cl ); 
(xxiii)  G l o  = ( a ,  b,  c ,  d  la3 ,  b3 ,  c3 = d ,  d 3 ,  [b, a ]  = d 2 ,  [ c ,  a ]  = b, [ c ,  b],  [ d ,  a ] ,  [ d ,  b ] ,  [ d ,  c] ). 

Reading the table. Each entry in Table 1 gives informations on V(G) corresponding t o  
t h e  group argument  G numbered according to the list above. Since these groups  a re  given 
by a PAG-system of length a t  most four, we have 

generators for G: a subset of {a, b ,  c ,  d); 
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conven t ions :  

a 0" = z .  b+ = y .  C+ = z anti d*^ = u s ,  with the corresponding Gp- relations: 

a In order to  save space we piit X ( L  := [ z ,  a ] ,  z b  := [ x ,  b ] ,  . . . . u ~ d  := [ub, d l :  here the 
opposite order gives tlie inverse. u s  = [ a ,  z ] ,  etc. 

a In each colu~nu:  

1. "no" gives the entry nlmlber according to the list above; for example entry (i) 
corresponds to the dihedral group Dq.  

2. "Cl" g i \ m  the nilpotc~~icy class of V(G) ;  thus e.g.,  V(D4)  has nilpotel~cy class 3. 
one more then D4.  

3.  " 1  V(G) i" is just the ordcr of V(G'). 

4. "T(C;).rel" gives the power- relations satisfied by those generators of T ( G )  ex- 
tracted from the set ?' oi 'Theorern 2.1 (ii), which afford a PAG-system for T ( G ) ;  
here a sinlple po\\.er, e.g. - a 2 ,  means as usual that  such power is the identity. 
while tlie absence of con~rnutators means commutativity. A11 groups T found in 
Table I are abelialr Jlcncc, reading for instance on entry (i) \be get an cxponent- 
2 power-coninlutator presentation for T(D4) :  

T ( D 4 )  = ( s a . s i i . y c i . y b . c y  rci2 = I ,  [ x b . x a ]  = 1, s b 2  = cy, [ I J U , . C U ]  = I ,  

; y u , s b ]  = 1 .  ya2 = c y ,  [ y b , x a ]  = 1 ,  [ y b , x b ]  = I .  [ y b .  y n ]  = 1. 

I J ~ '  = I .  [ c y , r a ]  = 1, [ c y , x b ]  = 1 ,  [ c y ,  ya] = 1 ,  [ c y ,  yb] = 1 ,  c y 2  = 1 ) .  
5. "T(C;)" displays just the isomorphism type of T ( G ) ,  as they are in case abelian 

groups. Hence, from the first entry ( i ) ,  Y(D4) 1 Cd x C;, 

6. ' ,G.act ion o n T ( G ) "  describes the action of each relevant generator of C: on the 
generators of tlie (normal)  suhgroup T ( G ) .  The generators which are being 
acted here ale those related in the above ~ncntioned T(G).rcl colurnu. It should 
be noted that they are here ordered in a list. according to their appearance as the 
p-powered left hand sidr of thp relations in column T(G) . re l .  Then their inrages 
under conjugation 1)y a generator g E (3 is tlir corresponding list displayed fol- 
lowing tlrr syn~bol  Ag.  Tlir~s for example, the actions of the relevant generators 
u  and 6  of D4 on the generators x a , x b ,  y a , y b , c y  of T ( D 4 )  read of entry (i) are: 

It zceins apprnpri,itc to n~e~i t ion  that the knowledge of a  resentat at ion of T ( G )  
ant1 tlie co~npatible action of G on it suffice to construct V(G), once V ( G )  = 
T ( ( ; j .  C . G J  and G". due to our relations, acts on T ( G )  in the same uay  as G 
does. 

7 .  "L(G) . re l "  describes the power-relations for a PAG-system of 3 ( G )  where the 
generators are extracted froin the set A of Proposition 3.3. These relations can be 
read of those in colurnn T ( G ) . r e l .  Reading on entry ( i )  we then see that  A(D4)  
is the elementary abeiiari 2-group of order 8, with generators l a ,  yb. .z6. ya.  
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TABLE 1 - C a n t  

S action on  Y ( G )  I A ( G )  re1 I M ( G )  ' 
I 12. 

( r b  y a i 2 .  

AC : t r iu ta l  z c 2 ,  
/ ( y c .  ~ b ) ~  / 

A a :  l a ,  r b . c z ,  I 
ya c z .  yb,  r a 2  = d z ,  

c z ,  cy,  d z  
A a  : t rzulal  

~ b  . r a ,  z b ,  r c .  

y a ,  yb, Y C  d y ,  
z a ,  z b .  d y ,  z c ,  

d y ,  d l ;  
AC : r a ,  z b ,  r c ,  

y a ,  yb, y c .  d z ,  
z u ,  z b .  d z ,  z c ,  

= a 2 ,  
yb2 = d y ,  
zc2 = d l ,  

( z b  y a j 2 ,  
(2.. z a ) ' ,  
( y c .  ~ b ) ~ .  
d y 2 ,  d z 2  

d y ,  d z ;  
AU z a ,  z b .  c z ' ,  I 

y a .  c r .  yb,  

y a  v.  yb. 

A n .  l a ,  r b  . d r  . 
y o .  d r ,  yb. 

d x ,  a z ;  
~ b  . z a ,  z b ,  ya.  ( z b  yaI3  

Aa . za, z c .  bz  , 
z a .  b z ,  z c ,  
b z ,  b z ,  d z ;  

1 z a .  bz .  z c ,  
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CROSSED EMBEDDING OF FINITE SOLVABLE GROUPS 

n" C1 / V ( C ) /  

( x i x )  4 3" 

( x x i )  I 4 / 314 

TABLE 1 - Cont 

z a 3 ,  zb3,  z d 3 ,  
ya3, yb3, yd3, 
wa3 ,  wb3, 
wd3 ,  
c z 3 ,  cy3 

r a 3 ,  zc3 = d z ,  
za3 = d z 2 ,  zc3, 
b z3 ,  bz3,  dz3 

G.action on Y(G) 
Aa : z a ,  

z c  b z2 ,  z a ,  b z ,  
r c ,  b z ,  bz:  

Ac : z a ,  
z c .  bz2,  za . bz, 

zc ,  b z ,  bz 
h a  : z a ,  

z c .  b z2 ,  z a .  bz ,  
zc ,  b z ,  bz, 

AC : z a ,  
r c .  b z 2 ,  za . br,  

zc ,  b z ,  bz 
Aa : z a ,  

z c .  b z 2 ,  ra - bz ,  
zc ,  b z ,  bz; 

Ac : z a ,  
z c .  bz2,  z a .  bz, 

zc ,  b z ,  bz 
Aa : z a ,  z b .  c z 2 ,  

z d ,  ya . c z ,  

yb, yd, wa.  
wb, w d ,  c z ,  cy ,  

Ab : r a ,  z b .  cy ' ,  
z d ,  y a .  C Y ,  

yb, yd, wa ,  
wb, w d ,  c z ,  cy;  

Ad : trivtal 
Aa : z a ,  

z c .  b z 2 ,  z a .  b z ,  
zc ,  br, bz,  d z ;  

Ac : z a ,  
z c .  bz2,  za . bz,  

zc ,  b z ,  
bz . d z ,  d z :  

z a 3 ,  
z c3 ,  

( z c  za)" 

5. Further Remarks and Open Problems 

- 
bz 

xu3 ,  

yb3, 
wd3, 

( z b  ~ a ) ~ .  
( z d .  ~ a ) ~ ,  
( yd  ~ b ) ~  

Remark 7. We can see by Table 1 above that e.g., r (G/G1)  and A(G) are isomorphic for 
G = Qs and non-isomorphic for G = Q8 x Cz.  Also, in [ l l]  (Theorem 3.11) we found an 
upper bound for the order of V(G) when G is a finite p-group: 

- 
cz - 
CY - 
zd 

3 

If JGI = pn and IG'J = pm then IV(G)J dizlide~~"~+~~-"'" 

This bound is attained for instance for G = Qs. 

Problem 1. To characterize those indecomposable finite 2-groups G for which the above 
bound is attained. 

Remark 8. In section 4 we found a subgroup of O(C2 x Cz) which is a covering group of 
Cz x C2, namely Dq. In general, for any abelian group G ,  O(G)/A(G) is a covering group 
of G; this follows from our results in section 2. On the other hand, by ([2], Corollary I) ,  
when G is perfect then T(G) is the (unique) covering group of G .  
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Problem 2. Given an  arbitrary group G ,  is there a section of T ( G ) .  O ( G )  containing a 
covering group of G ? 
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