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COMMUNICATIONS IN ALGEBRA, 22(6), 1975-1998 (1994)

A Presentation for a Crossed Embedding of Finite
Solvable Groups

by N.R. Rocco

Departamento de Matemadtica
Universidade de Brasilia
70.910 - Brastlia - D.F., Brazil

1. Introduction

We introduced in [11] a group construction as an operator in the class of groups, which
involves intrinsically invariants of the argument such as the Non-abelian Tensor Square and
the Schur Multiplier, among others. More specifically, given groups ¢ and G, isomorphic
through an isomorphism ¢ : G — G¥, g = g* for all g in G, then we defined the group

V(G) = (G,G% |9, k1" = [¢% (B*)7] = [g.0%)%", Vg, b, k €G),

that is, V(G) is the quotient of the free product G * G¥ by its normal subgroup generated
by all the words [g, %)% - [g*, (2*)¢]1 and [g,h*]** - [¢%, (h5)2)7Y for g, h, k € G (we use
standard notation for commutators and conjugation in a group; see below).

In this paper we give a presentation for V(G) when G is a finite solvable graup given by
one of its AG-systems (see section 2 for details). This main result can be stated as

Theorem. Let G and G¥ be distinct isomorphic finite solvable groups given by AG-systems
{a1,...,a,} and {by,...,b,} respectively, where ¢ : G — G¥ is an isomorphism such that
a; — b;,1 <t < n. Then the group

§(G) = (ay, ..., @n, by, . by | G = relations, G¥ — relations,
o b1% = af* 60 = [0, 0,15, 1 < 4, j,k < n)

is a presentation of V().

Such a presentation is obtained (Theorem 2.1) by mean of a convenient set of generators
for the subgroup [G, G¥], so that the computation of those invariants of G mentioned above
seems to be much easier to perform inside V(G) in this case, once |G, G¥) is isomorphic
to the non-abelian tensor square G @ G (cf. [11]). The relationship between V(G and
covering questions in groups is also explored in section 2, for arbitrary (7. This section ends
with an isomorphism (Theorem 2.11) between V(G)/A(G) and a certain natural factor of
a group introduced by Sidki ([12]), where A(G) is the (central) subgroup generated by all
commutators [g,g%], g € G.
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In Section 3 we study in some detail the subgroup A(G) as it plays an important role in
the context. A section u(G)/ A(G) is isomorphic to Hp(G) and thus, as an application, we
use our approach to compute the Schur Multiplier of an arbitrary finite metacyclic group.

Section 4 is mainly concerned with some computational aspects of our results, including
some tables for V(G) constructed with help of the GAP system [4]. A couple of open
problems is left in Section 3.

Most of the work presented here was carried out during a visit of the author to the
Lehrstuhl D fir Mathematik, RWTH - Aachen, supported by a stipend from the German-
Brazilian scientific agreement between GMD and CNPq. I want to express my gratitude
to Professor J.Neubiiser, and to all members of this Department for their help, the warm
hospitality and for providing me with all necessary computing facilities. I am also especially
grateful to Professor Larry C. Grove who was a visitor at this Department during the same
occasion, and shared with nie his experience and friendship.

Notation. Most of the notation utilized in these notes is standard. For clements z,y,2
in a group G the conjugate of & by yis «¥ := y~'zy and the commutator of & and y is
[2,y]:= z71z¥. Our commutators are left normed, {z,y, 2} := {[z, ¥}, 2], and the expression
commutator caleulus used in many places is mainly concerned with the use of the following
identities (see e.g. [9]):

An expression of the type 142+ -4 2" for some natural number n is frequently denoted
by T'(z™) when it appears in the formal computation of a commutator [z, y]. A similar
expression involving also some power of y is sometimes denoted by W{z,y) in the same
context.

2. The Presentation

We recall that a finite solvable group G # {1} has a subnormal series (i = Gy > G > ... >
G, = {1} where G; <4 Gy and G;_1 /G is cyclic of order r;, I <1 < n. This means that
Gio1 =< a;y...,a, > and &' € Gy =< ai4,..., ¢, >. The sequence (ay,....a,) is called an

AG-systern of generators for G ([6]), with the following defining relations
al’ = wh{dipy.o0y), 1SS
2y

0, = w1, nan), 17 <1<

which are called respectively power-relations and conjugate-relations. For our purposes we
shall rewrite the power-conjugates relations by collecting the generators a;,1 < i < n, in
decreasing order from left to right, so that for the given AG-system the relations are

T ; .
a;’ = 1L'“'<l.'l71. -~-,(l1+1)» I<edm

G ~ relations :
‘21] = wz](an~"~vaj+l)v 1<ji<i<n.
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We see that every element ¢ € G has a normal expression

Yn—1

g=a -« a7 e, 0< <, 1<i<n,
and, by the conjugate-relations, the special relations
a;l' :“ig(ans~~->“)+l)'ayv lgj<isn *)

follow.

Now let G and G¥ be distinct isomorphic finite solvable groups given by AG-systems
{ai,...,an} and {by,...,b,} respectively, where ¢ : G — G¥ is an isomorphism such that
a; — by, 1 < ¢ < n. The corresponding power-conjugates relations satisfied by these systems
we call G—relations and G¥ —relations.

2.1. Theorem. Let G and (¥ be as above and define the group

8(G) = {ay, .., an, by, o 00 | G — relations, G¥ — relations,
[0, ;)% = [al*,6%] = [a;, b,]%, 1 < i, 5,k < n).

Then
(i) the subgroup [G,G¥] of 6(G) is generated by the set

T:={[ai,b;] | 1<4,7 < n};
(ii) [g,h¥) = {g7, (W)?) = (g, 02", ¥ [gheC.
Proof. We proceed by induction on the polycyclic length n of the AG—system. For n = 1,
G =< a) > is a cyclic group of order ry, and by definition of §(G), with i = j = k = 1,
we have {a1,51]* = [a3,51] = [a),b0)}*. These equalities imply that in this case 8(G)isa

2-generator nilpotent group of class at most 2, so that [G, G¥] is generated by [ay, b1], which
is central in 6(G). Therefore (i} and (ii) are proved for n = 1.

Suppose n > 2 and let N be the (normal) subgroup of G generated by {as,...,a,}. By
induction we can assume that

o (i') The subgroup H; := [N,N¥] of < N,N¥ > is generated by the set X :=
{{ai, b5} | 2<4,5<n), and
o (i") [u,v?]” = [u¥, (v¥)¥] = [u,v¥]*", Vu,v,we N.

Claim 1. The subgroup Hy is normal in §(G). In fact, we already know H, is normal in
(N, N¥¢). Now by (i’) any commutator {u, v¥] in Hy is a product of elements of X U X!,
and from our relations a conjugate by a; (or by) of any such element is again in H,, for
N < G. Thus a;, and hence b1, also normalizes H;.

Part(i). To compute {G,G*] we write a generic element of & in the form g - af', where
g € N and 0 < a < ry. Then by commutator calculus we have :

lo- et b0 = g ke P at b 81

= o B0 [ R e (b o el (1)
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In expression (1) we separate three types of commutators :

]

Type 0. The commutator [(1}",1)}3‘1 is an element of the subgroup of §(G) generated by
{ay,b1}. By the defining relations this subgroup is nilpotent of class < 2, so that [aft, bf‘} =
[ay, by)o

Type 1. The commutator {g,h?] is in ff;. Thus by the inductive assumptions and the
normality of Hy in §((), [g.~%] is a product of elements of X U X1 CTUT™.

Type 2. The last type of commutator to consider in (1), taking into account the symmetric
. . . { 21 T 2
behavior of our relations, is [(/‘bf‘]“l . Now g € N and thus g = z - a5?, where 2 €<
az,...,d, >. Hence
P . g
[g.6712" = feag? b))

a
21

. Ay -1
= [zad?, by TFet+0 T 0e hy commutator calculus)

-
= {I(L;z.blpu’l Jay

51)

ag tT{by

ay c By,
= f{z,b] G fag?, by

@ 3 @ az—1 B @
— [I‘blluzzr(ﬁxx)ull '[fl‘zybl](“?z +otaz+ (] !

agpg, 1y a a 8\ a (2
- {I‘b]yl:‘r(&fwall ,[{lz_bllr(%?)r(bfl)al‘ (2)

A simple induction now shows that if g = a3 - -a3? then

2 a Ny oany Sn— A2 & a Qg gy 3 a
(g BT = [y by T O a0 g T fag e et (3)

Claim 2. For2 <k <nand0 < ay < ry, we have

[as by)*" = [a.b1]  (mod H)) (4)
Consequently,
[ak,bl}r(“:k) = [ak, )™ (mod Hy) (4"
For.
lak, b1]"* = [ak.f/ﬁk]
= fag, wiglbn, .. b2) by (by relations {*))
= [ar, 1] {0k win(bn, . b2)]"
= [aw, b1] (by normality of Hy}.

T ag, by ek, by),

This proves (4}, and keeping in mind that [ay, bljr(“:k) = [ax, bl]“:'c
we obtain (47).
By (47) we can rewrite (3) as
B0 _
[g,‘b]‘] =

Gn—t ey 531 ay . an—2 asy, 8wy
[a,, by]0m% 5y ™ (6,1 .ay )'[(ln‘],b]]’?“-la"“z a?We ety

~<-[a2.61j“7”'(b!jl ) (mod Hy) (5)
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The arguments used so far also show that if 2 < k < nand if y = a)" - ak’“ is the normal

expression of an element of Gy-1 (=< ag, -, a, >), then
Tk

e 1) = L 75 ] (od 1) (6)

For 2 < k < n let us set Ay 1= ({ak, by],....laz by), X}, so that Hy < Hy < ... < Hy.
Qur goal is to show that [¢,57]¢"" € H, and to this end we first need to control each factor

8

Shol %2 % L, ;
Jag, by)**2emr 0 W) g hnearing in (5), for 2 < & < n.

o) L«
Claim 3. For 1 < j < k < n each element of the form [ay, b ]“ 197 can be reduced, mod
“llgSht .
Hy, to a product where each factor has the form [a;, by ™"~ i with j+1<i<n,

To see this we first collect a?’ on the left using the normal form of the elements of

G; (= (aj41,...,a,)) and the fact that a; normalizes ;. Thus,
[ak,b ] ‘\All ”a;‘J = [(lk,b } jjaﬁ“ ]i‘r‘
ay=1 o ol
= ([ak, by]™ )a]J @, 1]
Now conjugation of [a;\..bll by a; gives
(ae,b1]» = [af, ] {by defining relations)
= [+, wyrlhn, ..., ba) - by) (by G-relations)
= {yj+1,01]) (mod Hy) (since j+ 12> 2and H; € 6(G)),

where y;41 € Gy If y;41 = 0 'a;fx! is the normal expression of y,4; then by (5) we get

- Yi41
[ak, by]% = [an, by ]"‘a" R <o lajp, b)Y (mod Hy).

It should be observed that this last expression only involves “basic” commutators [ag, b
with 7 + 1 < € < n and the exponents conjugating such commutators only involve integer

multiples of elements of G;. Hence, by successive applications of the above procedure
we will certainly remove the factor aa’ from the conjugating exponent of [a,b;], that is,

[ak,b 1 27 s congluent mod Hy, to a product where each factor hab Lhe desned form. Since

an ~a]ﬁ' € G; we finally obtain the claimed form of [ay, b1]° Jay "'“ by mean of the

normal expression of elements of 6.

The reduction criterion provided by Claim 3 may be considered the crucial step for the
proof of our theorem. In fact, upon successive applications of this criterion to the factors on
the right side of (5) we can write each such factor as a product of clements, each of which
belonging to a left coset of H,, determined by a representative of the form

L B R T T
[an,bl]“" a,y et W e )

(7
Our final step is then to show that these representatives are themselves elements of H,. To
this end we can now apply a reverse induction argument. In effect, by using the reduction

provided by claim 3 and then (4) and (4°) we see that [a,,b;]° 27 s an element of the
subgroup of H, generated by X U {[a,,5]}. Thus we are done in case G has polycyclic
length n = 2.

Tne1 ok
Suppose n > 2 and, by induction, that {a,, b;]" =1 "k is an element of the subgroup

of H, generated by X U{[a,,b],. v [k, 0]}, with 1<k <n—2. Butforn—k+1<
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T . . g =k
€ < nowe can apply Claim 3 again to reduce, mod Hy, each conjugate [ap. b]*n=¢-1 to a
Aoy Ak
. . Ane .
product where the factors have the form [a,. bl}\‘ Fie1 Tnok »[anikk, by), forn—k+1 < i < n,
Aot Ak

e T using

Successive applications of this procedure to the left side factors [a;, 6]
arguments similar to those used to reach the representatives (7), and taking into account
(6). show that each such factor is writable as a product each of its factors being in a left

A P N
. . Snoa N7 g
coset, determined by a representatives of the form [a,, b} *n=t "@n=s"of the subgroup of
H,, generated by X U {la.,0i]... . {an—t41.01]}. Hence by our present inductive assump-
1 Anek

n 3
)\l
tion we conclude that for n = & + 1 < ¢ < n. [a;, b)) ™=t "=k belongs to the above

subgroup. On the other hand, by (47, [ai:".b]} = [ty g 0y (inod H;). Conse-
ekl

quently. [a,, b;]™ Tli NI s an element of the subgroup { X, [an,bi), .. {an k. b1] ),
proving our present induction. Therefore part (i) is finally proved.

Part (i) To prove this second part we first observe that we can use the result in part (i) to
write [g,n¥] = 1, fac b, 1", where ¢(4,j) € {0,1. =1}, ¥ i,5. It then follows from our
relations that

lg 7] = [g,h’"]b* (8)

for all g € G h? € G¥,1 <k < n. Now by definition of §(G) we have [a;,b;]% = [a]*, b?“]
for all i, j, k. If a (resp. b;) is any generator of G (resp. G¥), then:

lajae, b]™ = {la;, b;]7¢ -z, by])
_ [(11. bj]aua‘:k ) [a}lky bi]w]
ag

. up phi?e Qg by
= T ()

= [af*ag* D))
= [lagae)™* b))
and
lacbyb" = Tan b b ( by (8))
= (b fa by

= [ag b [ar by

. bg
= [a™, b?kj al*, bﬁk}l:lk

[alk, b?kb;k]
= e (b,b0)%). (10)

Taking into account the normal form of the elements in G (resp. G¥), identities (9) and
(10) provide us with a recursive criterion to prove that

[g.h?)%F = [g™ (R9)] Yge G P eG¥, 1<k <,

which in turn proves (ii). [ ]
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We recall that for arbitrary isomorphic groups G, G¥, where o 1 G — G¥,9— g Vg € G
is an isomorphism, a group V(G) has been defined as (see [11]):

V(G) = (G, G¥ | g1, 951 = [0, (98°)°] = (91,951 . ¥ 91,92.93 € G)

The given isomorphism ¢ extends uniquely to an automorphism (also denoted by ¢ ) of
V(G) such that g — g%, 9% — g and (g1, 93] — [g2,97)

2.2 Corollary. Let G and G¥ be distinct isomorphic finite solvable groups given by AG-
systems {ay,...,a,} and {by,..., by} respectively, as in Theorem 2.1, Then 6(G) is a pre-
sentation of V(G).

Proof. Immediate by Theorem 2.1, since the set {ay,...,an,b1,...,b,} actually generates
the group V(G). ]

For easy of reference we reproduce in the next lemma some of the relations satisfied by
V(G), for a general group argument G (the reader is referred to [11], Lemma 2.1 for a
proof).

2.3 Lemma. V(G) satisfies the following relations:
(i) lg1, 95100290 = [g1,gf 294, ¥ gy, 0,95, 04 € G
(i) (91,05, 93] = [g1.92.9%) = [o1, 05, 97] and
(97,92,95] = (9, 92,081 = {97 .03, 93], V 91,92,95 € G:
(iti) [g,9%] 15 central in V(G), Vg€ G;
(v) |
v} lg.9%1=1, Ygeg"

As we observed in the introduction, the subgroup T(G) := [G,G¥] of V(G) is isomorphic
to the non-abelian tensor square G ® G, such an isomorphism being defined by : [k, g¥] —
h®g, V g, h€G. (see[11] and (3] for references). Its subgroup A(G) := < [g,¢%] | g €
G >, which by Lemma 2.3 is central in V(G), is such that the quotient T(G)/A(G) is
isomorphic to the ezterior square G A G (cf. Miller (7]; see also [2]).

91,9592, 97] is central in V(G), Y g1,9; € G;

Remark {. It is appropriate to note that, modulo A(G), we have

1 (hg, (hg)*]

(2, h%0g, g71[R, g%](g, h¥] (A(G) is central)

(h g%1lg, h*].

Therefore [h,¢%) = [h¥,9] (mod A(G)) or, which is to say, the eztended automorphism
@ of V(G) centralizes T(G) modulo A(G).

e

n

Let O(G) denote the subgroup of V(G) generated by all the elements g='g¥, ¥ g €
G. (This subgroup is also usually written [G, 9] =< [g,¢] | g € G >, where lg,¢]
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means g~'g¢¥). It follows from the relations [h,g?}¥ = [h,g*)"" that [hogs¥ '8 =
[h,g7]. ¥ h.g,k € G. Therefore we have

Remark 2. O(G) centralizes TG,

The role of ©(G) is shown in the

2.4 Proposition. (1) O(G) <4 V(G
(ii) VIG) = Q(G)- G, a semidirect product;

(i)' There is an epimorphism p = VIG) = G, g — g. ¢¥ w— g, ¥ g € G, such that
Kerip) = O(G).

Proof. (i) Denoting ¢~'¢% by [g.] then the identity (g, ©] = [h, ¢} - [g.) shows that
h,e? € O(G). YV h.ge . Also

1

(hoal = (R = by )T, gh¥ € O(G). Yh,g € G.
These prove that Q7)< V(G
(i), (i) From g% = g-g~' g7 = g [g.¢] we obtain by part (i) that
<GGT > = WG = [Goe] G [ =0(6)-G),
Now the map g — g, g% = g, Yy € (7 extends naturally to an epimorphism p : V(G) — G
(since the defining refations of V{(7') are the commutator relations on &), whose restriction
to G is the identity map. As O(G) < Ker(p), O(G)NG = {1} and ©(G) = Ker(p). N

The restriction of the epimorphisii p to Y(G) gives the derived map
o TG =G [l g?) - [h.g)l. YV hog e G

As a consequence of Theorem 2.1 and its Corollary 2.2 we then obtain the following well
known result for finite solvable groups :

2.5 Proposition. Let (G be a finite solvable group given by an AG-system {ay.....a.}.
Then the derived group G’ is generated by the set

T = {laa)l 1 <i<j<n}

Proof. We just apply p’ to the set T of Theorem 2.1 (i) which, by Corollary 2.2, generates
the subgroup Y(G). 1

Let us denote by u( (/) the kernel of p'. Hence A(G) < () and (&) = Y(GE) 1 O(6).
The following relations will be useful in the study of p(G).

2.6 Lemma. For clements g, h, k € G the following identities hold

(1) [hog7] = [p.g bl Th.gh

(i) Lo g i k?] = L
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Proof. For (i) we have:

i
@

[h,9%]

On conjugating the above identity by [g,¢]', and using the fact that ©((G) centralizes
T(G), we get

(hg*] =

As for (ii}, use of (i) and Lemma 2.3 (ii) give
[#: 9.~ k7] = [[h, %] - [g, ], k€]
= [h, g*, kw][gyh] g h,k?)
= [h,g, k%)l (g, b k%) = 1. [ |

2.7 Proposition. (i) u(G) consists of all elements of T(G) of the form [hy, g7] - - [hs, 7]
such that [hy, ¢1]" -« [hs, gs]% = 1, where s is a natural number, h;, g; € G. ¢; € {1 -1}, 1
1< s

<

(i) u(G) is central in V(G).
Proof. (i): Let v = [h1, g7 - [hs,gf)% be a generic element of T(G) with Ay, g, €
G, €{1,-1}, 1<i<s. B} Lemma 2.6,
Y= ([997.917}1]} : [hlvglj)q - '({997gsvhs] : [hs,ys]){“
= u- [h'hgl]Cl e '[hs»gs}f"w
where w € O(G) = Ker(p). Therefore v/ = [h;, 1] - [h, g,]%, so that v € w(G) if
and only if (A, g¢]9 -+ [hy,g5] = L

(if) Let v = [hy, ] - [hs, g7)* € u(G) and h € G. Commutator calculus vields :

{7wh} = “hlvgr](l : "[hsvg:/,]“v}@
- [[hl,gf]“,h][hz'g;]q”'[h"gf]” Alh2, g1 -« - [hy, g2, B
[[hn, o), p)(Re 0 AhesfI i geges, ]
[[ha, go]et, Yo ol osel® (1, g, hT] (Lemma 2.3 (1) (ii))
= [[hlvgl] ‘”[hsvganh ]
= 1 ( by part (i)).
The above shows that (7 centralizes #(G). Since by definition of V(G) the action of an

element 2* € G¥ on T(G) is the same as that of the corresponding h € G, part (ii) is also
proved. [ ]
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The diagram below summarizes some of those informations concerning the structure of V(G)
we obtained in Propositions 2.4 - 2.8. The top section G/G' is not but the image of the
composite map pr. where # : G — G/G" is the canonical epimorphism,

V(G)

Gle

Gx G
TG

o 01G)

{1}

Remark 3. With the isomorphism between T(G) and the non-abelian tensor square G % G,
we observe that our subgroup u{() corresponds to the subgroup Jo(G) of [3]. Part (ii) of
Proposition 2.7 agrees with {[3]. Proposition 2.5).

The following result is a consequence of our previous remarks and C. Miller’s description
of the second homology group ([7]):

2.8 Proposition. The section (G )/A(G) of V(G) is isomorphic to the second homology
group HL ().

Remark 4. Some of the results concerning the subgroups T(G), ©(G). and p{G) are
appropriate adaptations of simiar results of {12]. where S.Sidki studies the group

MG = (GG [g.¢%] = L.V geG).

As we pointed out in [11], v((7) contains a subgroup R(G)such that the relations [gl.gﬂ??’ =
(97°, (93°)%] = (g1, ¢5)%* hold in \(C)/ R(G) for all 1. g2, g3 € G. That subgroup is defined by
R(G) =[G, L{G),G¥]. where L{(7) is the subgroup of x((G) generated by all g™1¢%, g € G.

It results that on introducing in V(&) the relations [g,9¥] = 1, V g € G, we get
an epimorphism ¢ : V(G)/A(G) — \(G)/R(G) such that gA(G) — gR(G), g¥*AG) =
9?R(G). ¥ ge G, g% € G7. Tt is opportune to mention that for a finite group G, the order
of x{G)/R(G) is given by N(GI/R(GY = [P |G - [ MG, where M((7) denotes the
Schur Multiplier of (7 ([10], Lemmas 2.2, 2.3 and {12]. Lemma 4.1.11). Conscqueuntly, by a
quick look over the diagram above we deduce, as a matter of order, that ¢ is an isomorphism

in case (7] is finite.
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On the other hand it is clear that V(G)/A(G) is a homomorphic image of x(G), where
g — gA(G), g¢ — g*A(G), Vg € G defines an epimorphism & : x(G) — V(G)/A(G). For
the remainder of this section we evolve to show that £ induces an isomorphisim inverse of ¢,

for any group G.

2.9 Lemma. Let g,h,u,k be arbitrary elements of a group G. Then

() [hg% g} = 15
(i) Hsc 9.0 lg. W =1
(i) [w, g,k u, k%] = [,
(iv) [e,g.h,u, k%) = 1,
Proof. (i) follows from

{h, g% g, b1}

gy hu? ke
= [h,g9.(9.h}¥) (by Lemma 2.3 (i)
= [l9. A7}, (g, 1))
= [g,h]g,n")" {(by Lemma 2.3 (iii))
=1 {by Lemma 2.3 (v));

(it} Since by Lemma 2.6 (¢, g,4] =

1

U

I

[

[hvg"][97 h], we have

,g,h,[h,g“’] ! [gvh]]

[ 0.k [g. h] - [, g, b [y g T,
But [p,g,h} € ©(G), which is centralized by T(G). Hence [[¢,g, 4], [g,h]] = 1.

(ili) We refer to Lemmas 2.3 and 2.6 for the following identities :

[, 9,k u, k¥)

Now [h,¢%,u¥] € T(G) < V(

G)

Thus, by Lemma 2.3 (ii) again,

(w9, 0,0,k

il

]

(h, 9] - g, ]uk}

[hg Ll (g ), k)
[h, g%, u?)0 M (g by, k9]
[

[
[
[
[ih, g%, ufVo k7] (g, by, k),

and for ¥ € T(G) it holds v/*¥ = 4lEv”l vV 2 ¢ € G.

1l

W} - [[h, 7%, uw][g,h]7 kw][g,h,u*?] . [g, h,u?, }c“’].

([h, g® u? )9 (g, by u®), k9)
{[h. g%] 1o, b}, u®, k).

(iv) is a direct consequence of (iii) and Lemma 2.6 (ii). ]

As a consequence we obtajn the following interesting identity

2.10 Proposition. Let g, h, k, uy, v1, ..., Uy, vy, n 2> 1, be elements of a group G.

Then

o, g, hy v - upo?, k%) = 1.

Proof. For n = 1 this follows from

lv, g, wvf, k9]

It

(le, g, 8,9) [o, g, by un )T, k9]
({2, g, by ur) k“’] (by Lemma 2.6 (ii))
0,9, b, (K7 )¢)F

1

(by Lemma 2.9 (iv)).
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Suppose the assertion is true for some n > 1 and let z := u;lvf sy, Then
lpog bz - wpgrvl k7] =
(NN SISEANE R EN) h,x]“"ﬂ"fu ,k¥]
= e g ungvl ] v g by 1:]“"“”:;1 N3]
= [[\;.g.h,ﬂ“”“”:w‘l N3d (by commutator calculus and case n = 1)
= oo halere (R
= {lpagihoa) [oeg b g, (R R
N SR PN NN ST
= [g,g. 0, u:H.k“:il]”fH {this by case n = 1 and Lemma 2.9 (iii})
= 1 { by Lemma 2.9 (iv})).
The proof is thus concluded. B
Finally we have
2.11 Theorem. I/ is any group, then
1) 0G),G.G =1,
(1) Y(GV/RIG) = V(G)] A(G).
Proof. (i}: From ©(G) = {[2,9]| g € G) we see that [©(G), G] is the normal closure :

[0(G).G] = ([p.g.h]lg.h € g)"'P

[og.h] [p g hullgh € Gou €< G,GY > ).

—

Hence

1B(G). G, 6% = (v g, b k9L [ go how 2] [ g bk € G w €< GG 5 )9
and thus [0(G), G, G¥] = 1 by Lemmas 2.6 (i) and 2.9 (iv).
(ii): As in the discussion preceding Lemma 2.9, let £ : x{G) — V(G)/A(G) be the epi-
morphism given by ¢ — gA(G), g% — ¢*A(G), Vg € G. By composing & and ( it is
then obvious that Ker{€) < R(G) (= (G, L(G),G¥]}. On the other hand, £ maps R(G) to

[G,0(G),G*} (mod A(G)), which is trivial by part (i). Hence ker(€) = R(G) and conse-
quently £ induces on x()/R{G) an inverse of . |

3. The Subgroup A(G)

In this section we set some more results concerning the subgroup A(G) for an arbitrary
group G'. A convenient set of generators for it is found in Proposition 3.3. The following
Lemma and its Corollary are easy consequences of Lemma 2.3 and commutator calculus.

3.1 Lemma. Lel G be any group and g, h generic elements of G. Then
() lo.pA)hog?] = {gh (gh)?] (R, R2)71 (g, 9] (€ A(G)):

iy (g rellh, %] = {ho g, 17
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(iii) Ifh € G' then[g, h¥)[h,g¥] = I;

(V) g6 = hG thenlg,g9] = [hh¥;

(v)  Denote by o'{2) the order of a coset a', = € G. If o'(g) or o'(h) is
finite, then [g, h¥][h, g*] has order dividing ged(0'(g), o'(R))
{by abuse of notation we set ged(n,o0) := n for a natural number n);

(viy Ifo'(h) is finite, then [h k¥ has order dividing ged(o'(h)?, 20'(h)).

3.2 Corollary. Let G be a finite group of odd order and g € G be an element with o'(g) = s.
Then [g, g°] has order dividing s.

3.3 Proposition. Let X = {z:}ics be a set of generators of a group G, where we assume
that I is a totally ordered set. Then A(G) is generated by the set

&= sii=[enal], = 2y, af[zr2f] |4 50k €1, 5 < k).

Proof. Letg = h-zl*andh = u'~z;’ be elements of G withz;, z; € X, ¢, , ¢; € {1,~1}
and w a word on X U X~'. Computations like those performed in the proof of part (i) of
Lemma 3.1 show that

l9.9%) = [ha{, (haf)?]
= [hR] (e 2] - (b, o) - (o, b))
and
ol (e h?] = ) saf] frow(y)]

<

= Lol [y o) [ ()] [ w07

= (v 2llzn gD (w202, w?)).

Using these identities we can easily complete the proof by induction on the length of g and
h'in the elements of X U X}, once A(G) is generated by all (9,9”] , ¢ € G. The choice
J < kin Ais guaranteed by Lemma 3.1. |

3.4 An Application.  We shall now use our approach to compute the Schur Multiplier
of an arbitrary finite metacyclic group ({13] and [1]).

It is well known that such a group G has an AG-presentation
G = (a, ap|af =1, a} =ab, a}' = a}),

where m, s, ¢, r are integers such that m, s > 0, r* = | (mod m) and m divides
{{r — 1), so that G has order ms. Using the notation previously established, let G¥ =
< b1,by; > be the other copy of G, with the corresponding G¥-relations. Hence Y(G) is
generated by {[ar,b1], [ay,bs], [a1, bs], {2, 8]}, by Corollary 2.2, while A{G) is generated
by {la1, b1), [az,b;], {a1,b2)[az, b1]}, by the last proposition. From this information we see
that the factor group T(G)/A(G) is cyclic, generated by the coset {a1,b2) A(G). The Schur
Multiplier M(G) is by Proposition 2.8 the quotient #(G)/A(G). Given that u(G) is the
kernel of the derived map p’, we then get T(G)/w(G) = G'. But from the presentation of
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G it is readily seen that (¢’ is generated by [z, a1] = a}7'. so that G’ has order H%TI’

where (m,r — 1) denotes the g.c.d.(m,r — 1). On the other hand ¢’ = < la1.by)? >,
from which it follows that ;{)/A((7) is generated by the coset [al,bg]ﬁj.k(({). So far
we have got the information that M(G) is cyclic, having order a divisor of the order of
[a].bg]m% modulo A{G).

Now using G-relations and Lemma 2.3 we get by commutator calculus (note that ay = b
and a3 = by)

[y, ba)? = [ay, b

= Juy. bollay by.oas)

= |ay.0)lar. @z, by) {(by Lemma 2.3 (ii))

= [u].b.)][zz?'(“”‘f)z] (by G-relations)

= ay. b)lag, byjmim=1 (by Lemma 2.3 (v))

= la; by (mod A{G)) (12}

and
by
lar, 05

f

@y by

= [ay. b3

1

[ag. by)" (mod A(G)). (13)
Since af = af) we have

(@), byl = [a5. o] = [ay, bo]' = 1 (mod A{G)).

On the other hand, by expression [13)

s
s 1 1 I+a;++ua;
lag, bl = a1, 0y '

= {an b TTTT (mod A(G)).
This shows that {ay. by}t T T =1 (mod A(G)).

Therefore o([ay, b1 () divides L+ 7+ -+ + rl (14)

Also, [y, b8] = [ag,bj] = [a;. 6,7 = 1 (mod A(G)), while by (12),
lay. ] = fay, o] 2+ 7 = fuy, )t (mod A(G))
Thus o [ay . bo]A(G)) divides ¢ (15}
and, since b7 = 1, clearly we have by (12)

o[y, 07]A(G)) divides m. (186)
Consequently, 0([(11,1)2}577:‘71—?‘_3((1)) (= [M(G)]) divides

-1
ko= M—)~(77z, 147+ -4l

m
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To see that & is the precise order of M (G) we can use the classical argument of constructing
a covering group G of G, in the sense that G contains a subgroup Z such that Z < G'n Z(G)
and G/Z = G. By a well known property of the Multiplier, such a subgroup Z is then a
homomorphic image of M(G).

But, doing computations similar to those performed above, it is not hard to check that,
with the foregoing integers m, s, t,7 and &, the group presented by

5 b b
G = {a, b, cla™ =1, b =ad, f=1,ab=a" ¢, ®=¢ ¢ = ¢},

satisfies the desired property, with Z =< ¢ > of order k (see [5], page 301).
We conclude that M(G) is in fact a cyclic group of order k, which agrees e.g. with [1],
{13].

Remark 5. In order to analyse the subgroup A{G) more closely, let us digress for a moment.
When G is a direct product, G = N x M, the subgroup Y(G) of V(G) is given by

T(G) = TNy xT(M)x[N,M?]-[M,N¥)],

with [N, M¥] (resp. [M,N¥]) being isomorphic to the usual tensor product N gz M
(resp. M ®z N). We make evident here that the above decompasition of Y(G) is found
in ([11] Proposition 3.6 (iii)) where by a misprint it appeared with the missing factor
[N, M?] - [M,N¥] (see also [2], Remark 2). In this case

A(G) = A(N)x A(M) x U

where U is the subgroup of [N, M¥][M, N¥] generated by all [z, y*][y, 2] with z € N and
y € M. By the isomorphism between N @z M and M ®z N it results that U is isomorphic
to N @z M. In fact, let V' denote the subgroup of (N ®z M) x (M @z N) generated by
all (z ® y)(y ® 2) with ¢ € N, y € M. It is clear that there is an epimorphism

6 N®zM -V, 20y~ (2@y)y®z),VaeN, ye M.
On the other side the isomorphism [ : M @z N — N ®z M given by y@ z — z @ y yields
the isomorphism :
(Ax[):(N@zM)x (MozN)—(Noz M) (N gz M),
(189,328 72) = (21 @ 11,22 D y2).

Restriction of (1x [) to the “diagonal” composed with the projection on the first coordinate
gives an inverse of ¢. Since U ¥ V we get the assertion and thus :

AN X M) = AN)x AM)x (N®g M).
Taking into account that for an abelian group 4, T{4) is isomorphic to A®z A (see [11],

Remark 5), we can describe A(A) for all finitely generated abelian groups A, once A(A)
corresponds to the diagonal subgroup D of A®yz A, generated by all a ® a with ¢ ¢ A.

Let then G be a finitely generated group, 7 : G — G/G’ the canonical epimorphism and
denote by G this last factor group. Then 7 extends to an epimorphism 7 : V(G) — V(G),
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such that ki — h, A% — h¥, YA € G. By [11, Proposition 2.5], the kernel of # is given by :
[&’(:7‘}7.‘ =< Gv/y ’rw s {G/GQMGGW]

In particular Ker(7)0 Y(G) =[G GGG

Denoting by 7, the rvestriction of % to A(() then 7, is an epimorphism from A(G) to
A(G/G7, such that {g.¢°] — [7,5°1, Vg€ G.

Now suppose that G/G’ = B x L where B denotes the torsion subgroup and L the
free part of G/G’. Assume that B = J[i.; < u; >, a direct product of the cyclic
subgroups < u; >= €, of order n;, | £ 1 < r,and let L = H;=] < w; >, each
< vy >= Coe, 1 <7 <t By the above observations we then have :

AG/G) = A(B) x A(L) X (Bz LY;

A(B)

i1

.
H <l > x [ <l ufue, w?) >
=1 i<k

.

He

H (v'n, X ll C(nJ,nk);
=1

1<k

¢
AlL) = H < ] x H < ep v v 0] >
=1 p<y
{529

(Coe) 72 (this is the free part of A(G/G"));

i

{r.t)
Bzyl = [ <lwefllveul]>
(.k)=(1,1)
= ([Te.
J=1

For each i € {1,...,7} and j € {L,...,t} we choose a pre-image z; and y; in & of the
cortesponding u; (resp. v;) in G/G'. Thus B, = u,, §; = v;, o'(2;) = n, and o{y,) = o,
forl<i<randl<j<t SetX:={e|l<i<rjandy = {y;[1<j <t} Since G
is generated by X UY UG, by force of Proposition 3.3 and Lemmas 2.3 and 3.1, A(G) is
generated by A 1= Ax U Ay UAyy, where

Ax = {lzeef] L <igryu{leg,aflon ]l 1S <k S ),

Ay =yt < <oy u{ly ey LS i<k <t

1<i<r, 1<5<t)

Axy = {{zn g lwy, 27

Set nje 1= {ny,nk) (= ged(n,ny)). Lemma 3.1 gives again ({z;, 2f){ze. 27 = Tand
([r,,yf][y],xf])"' =1, while [z, 277" € Ker(n), Vi=1,...,r.¥i=1,..., .

3.5 Proposition. With the above notation, Ker(n,) is generated by the set {{lz; zf™ 11 <
i<}

Proof. Let N denote the subgroup < [zq,z7]" |1 < i< > Since N < Ker(m,) we
have an epimorphism 7 : A(G)" — A{G/G') given by [k, k?]" = [, h¥], ¥ h € G, where
A(GY = A(G)/N aud [ 2% = [hA¥} N,
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On the other side,we can make use of the direct decomposition of A(G/G’) to define an
inverse ¥ : A(G/G') — A(G). Obviously we set

Yo fuguf) e (2l 1<K
¥ o gy ugllen uf) = (e, afllze 2] 1S5 <k S

L [UJ!'U;;] — [?/le’/f]*ﬁ 1€7<

v [ wlve o) = Qyys ofllues g D7 1S G <k <8

¥ [ o, wf) = (oo lly, el 1Si<k < 1< <t

That v is well defined on the generators of A(G/G’) follows from Lemma 3.1 (iii),(iv). Thus
we only need to check for orders. But our previous analysis yields that [y, y”] has order

ni and [zq,2f]% € N, while ([zj,efllzp, 2f]) = 1, ([oy]lly;, o™ = 1 and the
rest correspond to the free generators of A(L). Therefore ¥ defines a homomorphism. It is
straightforward to check that 74 = I(¢)-, so that 7% is an isomorphism. [ ]

Let ro(A) denote the 2-rank of an abelian group A, that is, the cardinality of a maximal
independent set of elements of 2-power order. In view of Corollary 3.2 we can resume the
foregoing analysis as

3.6 Corollary. Let G be a finitely generated group. Then Ker(r,) is an elementary abelian
2-group of rank at most r2(G/G’). In particular, if G is a free group of rank n then A(G)
18 a free abelian group of rank n(n + 1)/2.

Remark 6. We observe that the results established above are also associated with the rela-
tionship between A(G) and the Whitehead group T(G/G') ([15]). For an abelian group A,
['(A) is defined to be the (abelian) group generated by all symbols v(a), a € 4, subject to
the relations

e ') = y(a), Ya € A;

y(abc)y(a)y(b)y(e) = v(ab)y(be)y(ca), V a,b,c € A.
On setting w(a,b) := y(ab)y(a)~'y(b)™" then for all ay,...,a, in A we have (see [15]):

w(ay, az) = w(az, a1),

w(ay, azas) = w(ahth)'w(al»aa),
’w(ﬂhal) = 7(‘11)zy
(a1 -an) = H?:l’?(aa)'nja w{a;, ag),

and from these relations one gets that ['(Cy,) is isomorphic to (' or Can according to n odd
or even, ['(Coo) ® Coe, and T(A4 x B) 2 T(A) x [{B) x A®z B (cf. [15]).
Making use of Lemma 3.1 we see that there is a well-defined epimorphism 7 : I(G/G') —
A(G) such that y(h) — [h,R?], ¥ h € G (consequently, w(h,7) — {h, g%)lg, h?)) where h
denotes h”™ (see also [3]).

The composite map 7, := 77, thus gives an epimorphism 7, : T(G/G') — A(G/G")
and we can show by similar arguments that in the above situation, where G is a finitely
generated group, Ker(r,) is an elementary abelian 2-group of rank precisely ro(G/G").




1992 ROCCO

4. Some Computational Aspects

Our results provide a procedure to compute V(G), G & G and, in certain cases, M((G)
for finite solvable groups (7 given by an AG-system, The presentation of V(G') in Theorem
2.1 (Corollary 2.2) gives a small set of generators for T((/) and thus, since this subgroup
is isomorphic to the non-abelian tensor square (¢ % G, we can for instance make use of a
Reidemeister-Schreier process to write down a presentation for the last group or even for
the exterior square (A (7, as we know a set of (central) generators for A(G) (Proposition
3.3).

The most confortable way to compute V((7) and its relevant subgroups in the present
case yet, should be using an implementation of a solvable quotient alyorithm (cf. Plesken
[81) to first compute an AG presentation of V() and then make use for instance of the
AgGroup Functions in the GAP system [4] to manipulate inside V(G). An implementation
of such an algorithm following 8] has been carried out by A. Wegner [14] in Aachen, We
acknowledge his cfforts to send us his programm; however, we haven't heen able to make use
of it during the preparation of these notes. Nevertheless, making use of an implementation
of the nilpotent guotient algorithm we followed the above suggestion using GAP to compute
the tables at the end of this section for some finite non-abelian p-groups.

Computation of V() far finitely generated abelian groups G can be easely dealt with:
1. cyclic groups
a. Let G =< ale™ = (= () be the cyclic group of order . Then we have (refer
to the picture on page 10 as well) T(G) = A(G) =< [a,a%] =. Now [a,a?] being

central in V((7), it satisfies {a, a¥]" = 1. To certify that V(&) is in fact a 2-generator
nilpotent of class-2 group of order n® we can construct it as follows:

starting with an abelian group V oof type O x Oy, say Vo= < w,v|u™ = [0 =
1.Ju.v] = 1 =, we extend V' by an automorphism o of order n which maps u —
we, v v, This extension, of order n”, has the presentation

Einy = (uyvyain = Lo =1,0" = [ {u,of = e Ju, ] = [a,v] = 1),

On mappiug ¢ — u, ¢® — a one sees that &(n) is a homomorphic image of V()
and thus they arc isomorphic, by comparing orders.
[u particular, for n = 2, V(('y) & Dy, the dihedral group of order 8 and for n = 3,

V() = B(2.3), the 2-gencrator exponent-3 group of order 27.

b. Let & =< a| » (= () be the infinite cyclic group. Then removing the orders
of the clements, a similar argument shows that in this case V(Cy) = Fy(2), the
2-generator free nilpotent group of class 2,

2. direct products

Let G = H x I be a direct product of arbitrary groups #/ and K. In [11]. Proposition
3.6, we prove:

) V(GYy=(H, H*)y - (K, K°) - [H K] [K, H?], (a direct product);
() (U, H?) 2 V(H); (N.RK?) = V(K);
(i) YY) = T(H)-T(K)-[H K¢ [N, 107

= (HeHyx(KeK)yx(liog Nyx(Kaz H).
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~

In particular, for abelian groups H and K we have also T(H) = (H @z H) and T(K) =
(K ®z K) (see also Remark 5).

It should be interesting to look more closely at the very particular case of V(Cy x C3).
For, let €y x C3 =< a,bla® = 1,b% = 1{a,b] = 1 >. Then by the above we have
V(< a>)=<a,a? >= Dy Z<b,b¥ >= V(< b>)and < [a,6%] > Oy =< [b,a%] >.
Hence V(Cq x C3) & (Dg x C3)*?, of order 28. Here, the subgroup < a, b® > is isomorphic
to a covering group of C'; x Ca, namely D4. In the last section we leave an open question
concerning this point.

Next one may be faced for instance with the computation of V{(G) for finite nilpotent
groups G, which by item 2 above is then reduced to the case of finite p-groups, p: prime
(see also section 3 of [11] for some concerning results). As observed in the second paragraph
of the present section, our results give rise to performe computer assisted calculations with
large groups in this case as well. To exemplify we inserted in Table 1 those informations
obtained following this procedure, having for groups arguments G the non-abelian p-groups
of order < p*: p = 2, 3. Each such group is given in the list below by a PAG-system, that
is, an AG- system where 7; is a prime number, 1 < ¢ < n (cf. section 2).

Non-abelian p-Groups of Order < p*, p=2,3

(1) Ds={a,bc|a® b*=c¢ % {ba]_—c fe,a], [c,B] );

(1)Q5—(abc|a =¢ b =c [ba]—c, [c.a), [¢,8] );

(it} H1 (= Ds) = {a,b,c,d|a? ¥ _cd, & =d, &% [bd =c, [c,d] =d, [¢,b], [d,a), [d,8], [d,c] };
(iv) H, =(abcd|a2, b? =¢,f =d, &% [ba]—c [e,a]l =4, [a,8], [d,a], [d,8], [d,c]);

(v) Hs (= Que) = {a,bcd|a’ =¢, b =d, * =d, &%, [ba] =¢, [c,d], [c,b] =d, [d,a], [d, 8], [d,c]};
(vi) H.:(abcd|a =c b, F=d, d% [ba =4, [c,a) [c,b], [da] [d8] [dc]);

(vil) Hs (a,b,¢,d |a* =¢, * =d, 2, &2, [bal =c, [c,a), [c,b], [d,a), [d,8), [d,¢])

(vill} He (= Ca x Da) ={a,b,c,d|a® =d, ¥, &, d°, (b,e} = d, [c.a), ¢, 8], {d,a), [.8), [d,c});
(ix) H7 ={a,b,c,d|a® =d, ¥*, ¢, &% [b,d), [c.d], [c,b] = d, [d,da], [ 8], (d, <] );

(x) Hs = {a,b,c,d | a® = d, b, &, d?, [b a]_c [e,a), [e,b), [d,a], [d,8), [d,¢]);

(xi) Ho (= C2 x Qs) = {a,b,c,d|d’, ¥ =d, ¢* =d, d?, [ba], [c, a], {c,b] =d, [d,a), [d,b], [d.c]);
(xil) B(2,3) = (a,b,c|a’, b°, &, [b,a] =c¢, [¢,a), [c,8]);

(xili) K = (a,b,c|a® 6> =c¢, &, [b,a} =c¢, (8], [¢,b]);

(xiv) G1 =(a,bc,d|a’, ¥ =¢, I =d d° [ba) =d, [¢, 2], [c, ], [d a), [d,8], [d,c]);

(xv) G2 = (a,b,c,d|a® =b, b°, & =d, &°, [b,a], [c,a] =d, [c,b), [d,a), [d,1], {d,c]);

(xvi} Gs = (a,b,c,d | a® §*, ¢ =d, &, [b,a], [c,a] = b, {c, b], [d, 4], [ Jb, Id, e} )

(xvii) Gy = (a,b,c,d|a’, 8°, & =d, & [ba] =4d, [c,a), [c.8], [d,a], [d,B], [d,c]);

(xviii) Gy = {a,bc,d|a® b =¢, & & [ba] =c, [¢,a), [c,b), [d,a], [d,8], [d,c]);

(xix) Gs ={ a,b,c,d|a® ¥*, & =d, &° [b,al, [c,a] =b, [c,b] =4d, [d, a] {d,b], [d,c]);

(xx) Gr = {(a,bc,d|a® =d, 6°, * =4, & [ba]=4d, [c,a] = b, [¢,b], [d,a], [d.}], [d. ] }:

(xxi) Gs = {a,b,c,d}a® =d, b°, c3=d2,d3,[b,a]—d[ca]—b[cb][ a], {d.b], [d.c]);
(xxil) Gs = (a,b,¢,d | a® b, ¢, &° [ba]=c, [c,a], [c,b], [d.a], [4,8], [d,c] };

(xxifi) Gio = (a,b,¢,d [a%, B°, ¢® =d, &) [b,a] = &7, [c,a] = b, [c,b), [d, ], (d.8), [d,c] ).

Reading the table. Each entry in Table 1 gives informations on V(G) corresponding to
the group argument G numbered according to the list above. Since these groups are given
by a PAG-system of length at most four, we have

generators for G: a subset of {a,b,¢,d};
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generators for G¥: a subset {2, y.z.w}:

conventions:

o a¥ =1z, b¥ =y, ¢¥ = z and d¥ = w, with the corresponding G¥- relations;

¢ In order to save space we put za := [z,a}, zb = [z,b],...,wd := [w,d]; here the
opposite order gives the inverse, az = [a, z], ete.

¢ In each column:

1.

(4

“n2” gives the entry number according to the list above; for example entry (i)
corresponds to the dihedral group Dy.

. “CJ” gives the nilpotency class of V(G); thus e.g., V(D4) has nilpotency class 3,

one more then Dy.

- HV(G) 1T s just the order of V(G).

. “T(G).rel” gives the power- relations satisfied by those generators of T(G) ex-

tracted from the set T of Theorem 2.1 (ii), which afford a PAG-system for Y(G');
here a siniple power, e.g. za?, means as usual that such power is the identity,
while the absence of commutators means commutativity. All groups T found in
Table | are abelian. Hence, reading for instance on entry (i) we get an exponent-

2 power-commutator presentation for Y(Dy):

T(Dy) = {(za,abya,yb,cy|za® =1, [zb,za] = 1, 2b? = ¢y, [ye,za] = |,
lya,ab] = 1, ya* = cy, [yb.zal = 1, [yb, zb] = 1, [yb.ya] = 1.
yb? = 1, [ey,za] = 1, [ey,ab] = 1, [ey,ya) = 1, [cy, yb) = 1, cy? = 1),

. “T(G)” displays just the isomorphism type of T(G), as they are in case abelian

groups. Hence, from the first entry (i), T(Dg) = Cy x C3.

. “G.action onY(G)” describes the action of each relevant generator of G on the

generators of the (normal) subgroup Y(G). The generators which are being
acted here are those related in the above mentioned Y(G).rel column. It should
be noted that they are here ordered in a list, according to their appearance as the
p-powered left hand side of the relations in column T(G).rel. Then their images
under conjugation by a generator g € G is the corresponding list displayed {ol-
lowing the symbol Ag. Thus for example, the actions of the relevant generators
a and b of D4 on the generators za, zb, ya, yb, cy of Y(D4) read of entry (i) are:

Ta —— Ta Ta — za

rbh —— zb zb — ab - cy
Aa ya —— ya Ab: Yo — ya- oy

yb — yb yb — yb

cy — CY cy — ¢y

It seems appropriate to mention that the knowledge of a presentation of T(G)
and the compatible action of G on it suffice to construct V(G), once V(G) =
T(G)- G- G¥ and G¥, due to our relations, acts on T(G) in the same way as G
does.

“A(G).rel” describes the power-relations for a PAG-system of A(G) where the
generators are extracted from the set A of Proposition 3.3. These relations can be
read of those in column T(G).rel. Reading on entry (i) we then see that A(Dy)
is the elementary abelian 2-group of order 8, with generators za. yb, xb- ya.
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8. The last column,“M(G)”, displays the generators of u(G)/ A(G), obtained as
cosets of the kernel of the derived map p’ (cf. Proposition 2.8). The orders
of these generators can be read from their power-relations in column T(G).rel,
modulo A(G). Therefore from entry (i) we get M(D,) = (cg|cy® = 1), the
cyclic group of order 2, as it should be.

TABLE 1
n2 | CI' [ [V(G)] T(G).rel T(G) G.action on Y(G) A(G).rel M(G)
Aa :
za?, 38 =y, sa zb ya, v ey | Lo
(i) 3 2! ya® = cy, yb?, CixC3 Ab: 4 2 Y
2 (zb - ya)
cy za, zb-cy, ya - cy,
yb, cy
2 _ Aa:
za2 :cz'. za, zb - cz, ya - cz, 2 _
zb* = cz - cy, b ez cu: za® = czx,
G | 3| 22 | y?=czocy |CIxCE S yb* = cy, T
b’ =cy, : (zb- ya)?
cz?, cy? za, b cy, ya - cy,
' yb, ez, cy
Aa:
sa, 2b? = cz, za, zb-cz - dz, s
va? =cz-dr ya - cz, yb, za’, _
(i) | 4 21 o ’ Cs x C; czr - dz, dz; yb?, dz
cz2‘= dz, dz? Ab: (eb - ya)?
! za, b, ya,
yb, cz, dz
Aa:
za? = dy za, zb - dy,
- i
zb% = ¢y, yac d!:;' l'lb’ za® = dy,
(iv) | 4 21 ya® =cy - dy, Cy x C3 + yb?, dy? T
yb?, o zb- ey - d (b - ya)?
cy? = dy, dyz y TO - ¢y - ay,
ya - cy, yb,
cy-dy, dy
Aa :
za?, zb? = cy, I:’ =b, 30’ za®
2 yb, cy, dy; 2 _
=cy-d _— e = -
vy | 4| 2 :;‘2 - ;Z Yol aexc Ab: v dy;‘iy‘ 1
2 T za, b cy - dy, 2
=dy, d .
cy Y, ay va-cy, b, (zb - ya)
cy-dy, dy
za? = cz - dx Aa: za, zb-dz, za? =
b2 ’ ya - dz, yb, cz - dz,
(vi) 3 oM yaz’ b2 Cs x C3 cz, dz; cz? = dz, 1
c12,= d:; dz? Ab: za, zb, ya, yb?, d2?
! yb, cx, dz (zb - ya)?
Aa: , zh-cx,
za? = c, a: za zbcz .
b = ez - oy, ya - cz, yb, za2 = cz,
(vii) 3 21® ya® =cz-cy, C} x G, Ty dy ub = dy, T ¢y
o = dy Ab: za, zb-cy, cx?, dy?
c2?, cy"',’dyz ya - cy, yb, (zb- 3/‘1)2
cz, cy, dy
Aa : trivial, xa’,
za?, zb? = dy, Ab: (zb - ya)?, —
(Viii) 3 918 102) ?ICZ, dy’ Ci x 1o za, zb- dy, zc, ybz, %'
yaz = '12?/, yb?, 2 va - dy, yb, yc, (zc - za)?, fd—’
za?, 2b°, z¢? za, zb, zc, dy; zc?, y
Ac : trivial (yc - zb)?
(continued)
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n? | Cl| V(G] Y(G).rel [ Y(G) ] Gactionon Y(G) A(G)rel [ M(G)
l ra®,
b a2
ra?, 2%zt Aa : trivial; (zb - ya)®, —
- ; _— yb? b
(ix) 2 217 \ ya®, yb?, ye?, 3 Ab : trivial (z¢ 221)7 _
za?, zb?, 20t Ac : trivial ) ! e
‘ (yc - 2b)*
r \ | B Aa: za, ob-cx,
ra’ =dr, 2
‘ 2 ya - cz, yb, za® = dz,
| b =y 5 2 a cz, ¢y, dz; yb? T
; 918 oy, yb?. 3 \ CY, AT , T,
{x) ‘ 3 3;(:_ ”f;y’ 4 Cix G Ab:za, zb-cy, (zb-ya)?, cy
o de’ ya - cy, yb, dr?
| o cr, cy, dz
ra?, oh?, Ab: za, b, TC, ra?,
e, ya®, ya, yb, yc - dy, yb* = dy,
yb2:dy\ za, zb-dy, zc, zc* =dz, =
(x1) 3 219 yc? =dy - dz. C?x (] dy, dz; (zb- ya)2, i’
za®, dz?, Ac: za, zb, zc, (zc- za)Q, e
b’ =dy-dz, ya, yb, ye - dz, (ye- 2b)%,
2¢? = dz, dy? za, zb-dz, zc, dy?, d2?
dy, dz;
Ag :za, zh- ez,
. . b,
ra®, b%, ya® yaczcrcyl'/ za’, T,
. 312 , ) ! 6 » S 3 )
(xii) 3 W et o s AV Tra zh o, (zby-b Ya)3 -
ya - cy, yb. v
cz, cy
T
30 ra®,
b Aa : trivial -
2 310 ra®, zb”, ct _Na: triviat 3
{xii) ya®, yb* 3 Ab : trivial ub 3 1
(zb ya)
T
Ta”,
549 03 . 5
. 0, b, ya”, Aa : trivial yb -
xiv 2 33 T I C3 x C —_— !
fxiv) yb* = cy. ey’ 3 ? Ab : trivial (zb-ya)*, !
cy’
rad = a2’ Aa:za, zb-dz®,
b’ :d,t2y ya-dz, yb, za’, —_
(xv) 3 3t i = dz 'yba C? xC? dz, az; yb®, dr
10 3 ! Ab: za, zb, ya, (zb - ya)®
dz’, az
yb, dz, az
Aa: za, C:* br?,
b
za®, o, za®, Zz b:’;j zd®, v
{xvi) 3 3t st =da?, b®, | I xCo | ——————T T 2c%, z
3 s Ac: za, e bzt 3 bz
bz°, dz (zc za)
za - bz, zc,
bz, bz, dz;
za®, ybg,
ra®. b®, . Aa : trivial; 2c®, =
(xvil) 2 317 ya®, yb®, yc’. cs Ab: trivial, (zb ya)®, _Z
za®, 2b°, 2 Ac: trivial (zc-za)®, v
(ye - 2b)°
ra®, yb°,
ra®, zb°, zc : trivial zc3, _
(xviil) | 3 347 yal, yb®. ye cs rivial (zb-ya)®, e
za®, 2b) 2¢” Ac : trivial (ze- za)s, ye
(ye-=b)°
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TABLE 1 - Cont.
[ nE Cl ] V(G) | Y(G).rel T(G)Tr G.action on Y(G) A(G)rel [ M(G)
Aa:za,
zc-be?, za b, 2d°
3 3 3 br, bz ’ —
. 14 za’, zc®, za”, " zc, bz, bz, 3
(xix) 4 3 2% bz b2t Cs Ac: ra, 2, b
zc-b2?, za bz, (zc - za)
zc, bz, bz
Aa: za,
rc-bz2, za - bz, ra®
3 .3 3 . )
14 za’, zc”, za”, 6 ze, bz, bz; 3 —
(xx) 4 3 zc?, bz, b2® & Ac: za, 2 4 b
rcbz?, za - bz, (ze - za)
zc, bz, bz
Aa : za,
z¢-bz°, za- bz, .
3 .3 3 )
. 14 za”, zc°, za”, 6 ze, bz, bz, —
(xxi} 4 3 26%, b2, b2? Cs3 Ac:za, (ICZ.CZ,U)3 bz
zc- bz"’, za- bz,
zc, bz, bz
Aa:za, Th-cz”,
zd, ya - cz, ra®
za®, ob®, zd°, yb, yd, wa, 1b31 =
ya’, yb°, yd®, wh, wd, ez, cy; o o
. — o T )
(xxii) | 3 319 wa®, wb®, C', Ab:za, Tb-cy®, (zb- ya)? T4
wd®, zd, ya - cy, v 3 =
3 3 (zd - wa)®, yd
cz”, cy yb, yd, wa, 3
wb, wd, ez, cy; {yd - wb)
Ad : trivial
Aa:za,
zc-bz?, za- bz,
za®, zc® = dz, zc, bz, bz, dz; za®, W
(xxiii) | 4 318 za® =d2?, 2P | G X G Ac: za, zc%, =
bz®, b2, dz° zc-b%, za - bz, (zc - za)® z
z¢, bz,
bz dz, dz;

5. Further Remarks and Open Problems

Remark 7. We can see by Table 1 above that e.g., T(G/G’) and A(G) are isomorphic for
G = Qs and non-isomorphic for G = Qg x C3. Also, in [11] (Theorem 3.11) we found an
upper bound for the order of V(G) when G is a finite p-group:

If|G| = p™ and |G = p™ then |V(G)| divides p** +n—mn,

This bound is attained for instance for G = Qs.

Problem 1. To characterize those indecomposable finite 2-groups G for which the above
bound is attained.

Remark 8. In section 4 we found a subgroup of ©(C, x C3) which is a covering group of
C2 x Cy, namely Dy. In general, for any abelian group G, ©(G)/A(G) is a covering group
of Gj this follows from our results in section 2. On the other hand, by ([2], Corollary 1),
when G is perfect then Y{(G) is the {unique} covering group of G.
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Problem 2. Given an arbitrary group G, is there a section of T(G) - O(G) containing a
covering group of G 7
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