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Preface

Since its early beginnings in the nineteenth century the theory of finite
groups has grown to be an extensive and diverse part of algebra. In the
beginning of the 1980s, this development culminated in the classification of
the finite simple groups, an impressive and convincing demonstration of the
strength of its methods and results.

In our book we want to introduce the reader—as far as an introduction can
do this—to some of the developments in this area that contributed to this
success or may open new perspectives for the future.

The first eight chapters are intended to give a fast and direct approach to
those methods and results that everybody should know who is interested
in finite groups. Some parts, like nilpotent groups and solvable groups, are
only treated as far as they are necessary to understand and investigate finite
groups in general.

The notion of action, in all its facets, like action on sets and groups, coprime
action, and quadratic action, is at the center of our exposition.

In the last chapters we focus on the correspondence between the local and
global structure of finite groups. Our particular goal is to investigate non-
solvable groups all of whose 2-local subgroups are solvable. The reader will
realize that nearly all of the methods and results of this book are used in
this investigation.

At least two things have been excluded from this book: the representation
theory of finite groups and—with a few exceptions—the description of the
finite simple groups. In both cases we felt unable to treat these two themes
in an adequate way within the framework of this book.

For the more important results proved or mentioned in this book we tried
to give the original papers as references, and in a few cases also some with
alternative proofs. In the Appendix we state the classification theorem of

v



vi Preface

the finite simple groups and also some of the fundamental theorems that are
related to the subject of the last chapters.

The first eight chapters are accompanied by exercises. Usually they are not
ordered by increasing difficulty and some of them demand serious thinking
and persistence. They should allow the reader to get engaged with group
theory and to find out about his or her own abilities.

The reader may want to postpone and revisit later some of the apparently
more difficult exercises using the greater experience and insight gained from
following chapters.

It should be pointed out here that—with the exception of the first chapter—
all groups under consideration are meant to be finite.

Our special thanks go to our colleague H. Bender. Without him this book
would not have been written, and without his encouraging support it would
have taken a different shape.

We would like to thank J. Hall for reading the entire manuscript and
A. Chermak for reading parts of it. We are also grateful to B. Baumann,
D. Bundy, S. Heiss, and P. Flavell for their helpful comments and sugges-
tions.

A German version of this book has been published in 1998 as a Springer-
Lehrbuch.

Erlangen, Germany Hans Kurzweil
Kiel, Germany Bernd Stellmacher
February 2003
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Chapter 1

Basic Concepts

In this first chapter we introduce some of the basic concepts of finite group
theory. Most of these concepts apply to arbitrary groups, whether finite or
infinite. For that reason we will make no assumption (as we will in the later
chapters) that the objects under consideration are finite.

1.1 Groups and Subgroups

A nonempty set G is a group, if to every pair (x, y) ∈ G × G an element
xy ∈ G is assigned, the product of x and y, satisfying the following axioms:

Associativity: x(yz) = (xy)z for all x, y, z ∈ G .

Existence of an identity: There exists an element e ∈ G such that ex =
xe = x for all x ∈ G.1

Existence of inverses: For every x ∈ G there exists an element x−1 ∈ G
such that

xx−1 = e = x−1x.

A group G is Abelian2 if, in addition:

Commutativity: xy = yx for all x, y ∈ G .

1If also e′ is such an identity, then e′ = ee′ = e. Thus, the identity of G is uniquely
determined.

2Abelian groups are often written additively. In this case the element assigned to the
pair (x, y) is denoted by x + y and called the sum of x and y.

1



2 1. Basic Concepts

In the following, G is always a group. Associativity implies the gener-
alized associative law: Every (reasonable) bracketing of the expression
x1x2 · · ·xn of elements xi ∈ G gives the same element in G. This element
is then denoted simply by x1x2 · · ·xn.

The identity e of G may be denoted by 1 (or 1G). If G is Abelian, written
additively, then e may be denoted by by 0 (or 0G).

We write
G# := {x ∈ G | x �= e}.

Let x ∈ G and suppose that y1 and y2 are two inverses for x. Then

y2 = (y1x)y2 = y1(xy2) = y1.

Hence the inverse of x is uniquely determined. This shows that for a, b ∈ G
the equations

ya = b and ax = b

have unique solutions in G, namely

y = ba−1 and x = a−1b.

Thus, the right and left cancellation laws hold in groups.

For x, a ∈ G set
xa := a−1xa.

Such an element xa is said to be a conjugate of x. More precisely, xa is
the conjugate of x by a.

1.1.1 For a ∈ G the applications

x �→ xa, x �→ ax, x �→ x−1, x �→ xa

define bijective mappings from G to G. �

For x ∈ G we define the powers of x

x0 := 1, x1 := x, . . . , xn+1 := (xn)x for n ∈ N 3

and
x−n := (xn)−1.

3nx = x + · · · + x (n summands) for groups written additively.
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Then
x−n = x−1 · · ·x−1︸ ︷︷ ︸

n-times
,

and by induction on n one obtains the laws of exponents

xi+j = xixj and (xi)j = xi·j

for all i, j ∈ Z.

A group G is finite if G contains only finitely many elements. In this case
the number of elements is called the order of G, denoted by |G|. Every
finite group G = {x1, . . . , xn} of order n can be described by its group
table T = (tij); where tij = xixj ∈ G. Thus, T is an (n × n)-matrix with
entries in G. For example,

1 d d2 t td td2

1 1 d d2 t td td2

d d d2 1 td2 t td

d2 d2 1 d td td2 t

t t td td2 1 d d2

td td td2 t d2 1 d

td2 td2 t td d d2 1

is the group table of a non-Abelian group of order 6.4 We suggest the reader
use this example as a test ground for the coming notation and definitions.

The group G is cyclic if every element of G is a power of a fixed element g.
In this case we write

G = 〈g〉.
The multiplication in a cyclic group is determined by the laws of exponents;
in particular, cyclic groups are Abelian.

For i, j, k ∈ Z we write i|j, if i is a divisor of j, and

i ≡ j (mod k) if k|(i − j).

Note that every integer is a divisor of 0.
4Putting d :=

(1 2 3
2 3 1

)
and t :=

(1 2 3
2 1 3

)
one can show that G is the group of permutations

on {1, 2, 3}, the symmetric group S3 (see 4.3).



4 1. Basic Concepts

1.1.2 Let G = 〈g〉 be a cyclic group of order n. Then

G = {1, g, . . . , gn−1},

and the following hold:

(a) n = min{ m ∈ N | gm = 1 }.

(b) For z ∈ Z : gz = 1 ⇐⇒ n|z.

(c) For i, j, k ∈ {0, 1, . . . , n − 1} : gigj = gk ⇐⇒ i + j ≡ k (mod n).

Proof. Since |〈g〉| < ∞ there exist a, b ∈ N, a < b, such that ga = gb and
thus gb−a = 1. Hence, there exists

l := min{ m ∈ N | gm = 1 }.

If gi = gj for 0 ≤ i < j ≤ l − 1, then gj−i = 1 which contradicts the
minimality of l. Thus, all the elements 1, g, . . . , gl−1 are distinct. Since
every integer z ∈ Z can be written

z = lt + r with t ∈ Z, r ∈ {0, 1, . . . , l − 1}
we obtain

gz = gltgr = (gl)tgr = gr.

Therefore G = {1, g, . . . , gl−1} and l = n. Similarly we obtain (a) and (b)
and thus also (c). �

A nonempty subset U of G is a subgroup of G if U is a group with respect
to the multiplication in G. Clearly, this is equivalent to saying that for all
x, y ∈ U also xy and x−1 are in U ; and we then write U ≤ G. If, in
addition, U �= G, then U is a proper subgroup of G, and we write U < G.

Every group possesses the trivial subgroup U = {1}. We then abuse nota-
tion and write simply U = 1.

Evidently, the intersection of any collection of subgroups of G is itself a
subgroup.

A subgroup U �= 1 is a minimal subgroup of G if no other nontrivial
subgroup of G is contained in U , and a subgroup U �= G is a maximal
subgroup if U is not contained in any other proper subgroup of G.

Evidently, every nontrivial finite group possesses minimal and maximal sub-
groups.
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1.1.3 A nonempty finite subset U of G is a subgroup if for all x, y ∈ U
also xy is in U .

Proof. For x ∈ U the mapping ϕ : u �→ ux from U to U is injective and
thus also surjective since U is finite. It follows that 1 = xϕ−1 ∈ U and
x−1 = 1ϕ−1 ∈ U . �

For a nonempty subset X of G,

〈X〉 := {xz1
1 . . . x

zj

j | xi ∈ X, zi ∈ Z, j ∈ N}

is the subgroup generated by X. We set 〈∅〉 := 1 . We also write

〈X〉 = 〈x1, . . . , xn〉

in the special case that X is a finite set {x1, . . . , xn}. If X = {X1, . . . , Xn}
is a finite set of subsets of G, we set

〈X 〉 := 〈X1, . . . , Xn〉 := 〈
n⋃

i=1

Xi〉.

1.1.4 Let X be a subset of G. Then 〈X〉 is a subgroup of G. More
precisely, 〈X〉 is the smallest subgroup of G containing X.

Proof. With a, b ∈ 〈X〉 also ab and a−1 are in 〈X〉. Thus 〈X〉 is a
subgroup. Every subgroup of G containing X also contains 〈X〉. �

Sometimes properties of the generating set X already determine the struc-
ture of 〈X〉. For example, if xy = yx for all x, y ∈ X ⊆ G, then 〈X〉 is an
Abelian group.

Let g ∈ G. The cyclic subgroup 〈g〉 is the smallest subgroup of G that
contains g. If 〈g〉 is finite, then

o(g) := |〈g〉|

is the order of g. According to 1.1.2 o(g) is the smallest positive integer n
such that gn = 1 .
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For two nonempty subsets A, B of G let

AB := {ab | a ∈ A, b ∈ B} and A−1 := {a−1 | a ∈ A}.

AB is the complex product (or simply the product) of A and B. This
product defines an associative multiplication on the set of nonempty subsets
of G. In addition, we have

(AB)−1 = B−1A−1.

In the cases A = {a} resp. B = {b}, we write aB resp. Ab instead of
AB . Moreover, for g ∈ G we set

Bg := g−1Bg,

and say that Bg is a conjugate of B in G (more precisely, the conjugate
of B by g). For any A ⊆ G set

BA := {Ba | a ∈ A}.

Note that for a nonempty subset U of G:

U ≤ G ⇐⇒ UU = U = U−1.

1.1.5 Let A and B be subgroups of G. Then AB is a subgroup of G if
and only if AB = BA .

Proof. FromAB ≤ G we get

(AB) = (AB)−1 = B−1A−1 = BA.

If AB = BA, then

(AB)(AB) = A(BA)B = A(AB)B = AABB = AB

and
(AB)−1 = B−1A−1 = BA = AB.

Thus AB ≤ G. �
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1.1.6 Let A and B be finite subgroups of G. Then

|AB| =
|A| |B|
|A ∩ B| .

Proof. We define an equivalence relation on the Cartesian product A × B:

(a1, b1) ∼ (a2, b2) ⇐⇒ a1b1 = a2b2.

Then |AB| is the number of equivalence classes in A × B. Let ( a1, b1) ∈
A × B. The equivalence class

{ (a2, b2) | a1b1 = a2b2 }.

contains exactly |A ∩ B| elements since

a2b2 = a1b1 ⇐⇒ a−1
1 a2 = b1b

−1
2 (∈ A ∩ B)

⇐⇒ a2 = a1d and b1 = db2 for some d ∈ A ∩ B.

This gives the assertion. �

Let U be a subgroup of G and x ∈ G. The complex product

Ux = {ux | u ∈ U} resp. xU = {xu | u ∈ U}

is a right coset, resp. a left coset, of U in G. The application

Ux �→ (Ux)−1 = x−1U

defines a bijective mapping from the set of right cosets of U to the set of left
cosets of U . If the set of right cosets of U in G is finite then the number of
right cosets of U in G is the index of U in G, denoted by |G : U |.5

Since u �→ ux is a bijective mapping from U to Ux (1.1.1) we get in addition

|U | = |Ux| = |xU |

for all x ∈ G. As
x = 1G x ∈ Ux

the right cosets of U cover the set G. Moreover, for y, x ∈ G

Ux = Uy ⇐⇒ yx−1 ∈ U ⇐⇒ y ∈ Ux.

5The following statements hold for left cosets as well as for right cosets.
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Hence any two right cosets of U are either equal or disjoint.6

This yields:

1.1.7 Lagrange’s Theorem.7 Let U be a subgroup of the finite group
G. Then

|G| = |U | |G : U |.
In particular, the integers |U | and |G : U | are divisors of |G| . �

Because 〈g〉 is a subgroup of G for all g ∈ G we get from 1.1.7:

1.1.8 For every finite group G and every g ∈ G, the order of g divides
|G|.

Let U ≤ G and S ⊆ G. Then S is a transversal of U in G 8 if S con-
tains exactly one element of every right coset Ux, x ∈ G; and S is a left
transversal of U in G if S contains exactly one element of every left coset
of U in G.

1.1.9 Let S ⊆ G. Then S is a transversal of the subgroup U in G if and
only if G = US and st−1 �∈ U for all s �= t in S.

If S is a transversal of U in G, then the mapping

U × S → G with (u, s) �→ us

is bijective.

Proof. Us = Ut ⇐⇒ st−1 ∈ U . �

An important special case is:

1.1.10 Let U and S be subgroups of G such that G = US and U ∩ S = 1,
then S is a transversal of U in G. �

6 And the right cosets of U are the equivalence classes of the equivalence relation

y ∼ x ⇐⇒ yx−1 ∈ U.

7Compare with [75] and [42], p. 504.
8Or set of right coset representatives for U in G.
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Such a subgroup S is called a complement of U in G.

The following observation is sometimes useful:

1.1.11 Dedekind Identity. Let G = UV , where U and V are sub-
groups of G. Then every subgroup H satisfying U ≤ H ≤ G admits the
factorization H = U(V ∩ H).

Proof. Every coset of U in G and thus every coset of U in H contains an
element of V . �

According to Lagrange’s Theorem the divisors of the order of a finite group
are important invariants of G.

Let P be the set of all positive prime integers, and for n ∈ N set

π(n) := {p ∈ P | p divides n}.

For a finite group G set
π(G) := π(|G|).

An element x ∈ G is a p-element (p ∈ P) if o(x) is a power of p, and
G is a p-group if π(G) = {p}, i.e., |G| is a power of p. Observe that the
identity element (resp. the trivial group) is a p-element (resp. p-group) for
every p ∈ P. A p-subgroup is a subgroup which is a p-group.

It follows from 1.1.8 that in a p-group every element is a p-element. The
converse is also true; this is a consequence of Cauchy’s Theorem (3.2.1 on
page 62).

Exercises

Let A, B, and C be subgroups of the finite group G.

1. If B ≤ A , then |A : B| ≥ |C ∩ A : C ∩ B|.
2. Let B ≤ A. If x1, . . . , xn is a transversal of A in G and y1, . . . , ym a

transversal of B in A, then {yjxi} i=1,...,n
j=1,...,m

is a transversal of B in G.

3. |G : A ∩ B| ≤ |G : A| |G : B|.
4. A ∪ B is a subgroup of G, if and only if A ⊆ B or B ⊆ A.

5. Let G = AAg for some g ∈ G. Then G = A.
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6. Let |G| be a prime. Then 1 and G are the only subgroups of G.

7. G has even order if and only if the number of involutions9 in G is odd.

8. If y2 = 1 for all y ∈ G, then G is Abelian.

9. Let |G| = 4. Then G is Abelian and contains a subgroup of order 2.

10. If G contains exactly one maximal subgroup, then G is cyclic.

11. Suppose that A �= 1 and A ∩ Ag = 1 for all g ∈ G \ A. Then

| ⋃
g∈G

Ag| ≥ |G|
2

+ 1.

12. If A �= G, then G �= ⋃
g∈G

Ag.

13. Let AG = {A1, . . . , An}. Then 〈A1, . . . , An〉 = A1 · · ·An.

1.2 Homomorphisms and Normal Subgroups

Let G and H be groups. A mapping

ϕ : G → H,

(which may be written “exponentially,” as x �→ xϕ) is a homomorphism
from G to H, if

(xy)ϕ = xϕyϕ for all x, y ∈ G.

1.2.1 If the homomorphism ϕ : G → H is bijective, then also the inverse
mapping ϕ−1 is a homomorphism.

Proof. The equality

xϕ−1
yϕ−1

= (xy)ϕ−1
(x, y ∈ H)

follows from
(xϕ−1

yϕ−1
)
ϕ

= (xϕ−1
)
ϕ
(yϕ−1

)
ϕ

= xy. �

9Involutions are elements of order 2; see p. 34.
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Let ϕ be a homomorphism from G to H, and let X ⊆ G and Y ⊆ H. We
set

Xϕ := {xϕ | x ∈ X}, Y ϕ−1
:= {g ∈ G | gϕ ∈ Y }, and

Ker ϕ := {x ∈ G | xϕ = 1H}, Im ϕ := Gϕ.

We refer to Xϕ as the image of X and Y ϕ−1
as the inverse image of Y

(with respect to ϕ). Further, Ker ϕ ( = 1ϕ−1

H ) is the kernel of ϕ and we
write Im ϕ for the image of ϕ.

The homomorphism ϕ is an epimorphism if Im ϕ = H, an endomor-
phism if H = G, a monomorphism if ϕ injective, an isomorphism if ϕ
bijective, and an automorphism if ϕ is a bijective endomorphism.

If ϕ is an isomorphism, then G is said to be isomorphic to H; in which
case we may write G ∼= H.

The following points are immediate consequences of the group axioms:

• (1G)ϕ = 1H .

• (x−1)ϕ = (xϕ)−1 for all x ∈ G.10

• If U is a subgroup of G, then Uϕ is a subgroup of H.

• If V is a subgroup of H, then V ϕ−1
is a subgroup of G.

• 〈X〉ϕ = 〈Xϕ〉 for X ⊆ G.

1.2.2 Let N = Ker ϕ. Then for all x ∈ G

Nx = {y ∈ G | yϕ = xϕ} = xN.

Proof. yϕ = xϕ ⇐⇒ yϕ(xϕ)−1 = 1 ⇐⇒ yϕ(x−1)ϕ = 1
⇐⇒ (yx−1)ϕ = 1 ⇐⇒ yx−1 ∈ N

⇐⇒ y ∈ Nx,

and similarly yϕ = xϕ ⇐⇒ (xϕ)−1yϕ = 1 ⇐⇒ · · · ⇐⇒ y ∈ xN. �

A subgroup N of G that satisfies

Nx = xN for all x ∈ G

10Instead of (xϕ)−1 we often write x−ϕ .
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is a normal subgroup of G (or is normal in G). We write N � G if N
is normal in G. If N is normal in G, then any right coset of N is also a left
coset of N , and one may speak simply of the cosets of N in G.

Since
Nx = xN ⇐⇒ N = x−1Nx (= Nx)

one obtains:

1.2.3 A subgroup N is normal in G if and only if yx ∈ N for all y ∈ N
and x ∈ G. �

The group G is itself a normal subgroup of G, and G always possesses the
trivial normal subgroup 1. If G �= 1, and 1 and G are the only normal
subgroups of G, then G is simple. For example, a group of prime order is
a simple group (1.1.7 on page 8).

The statements below, which follow directly from the definition of a normal
subgroup, will be used frequently.

• For every homomorphism ϕ of G, the image (resp. inverse image) of
any normal subgroup of G (resp. Gϕ) is normal in Gϕ (resp. G).

• The product and intersection of two normal subgroups of G is normal
in G.

• If U is a subgroup of G and N is normal in G, then U ∩ N is normal
in U .

• If U is a subgroup of G, then

UG :=
⋂

g∈G

Ug

is the largest normal subgroup of G that is contained in U .

• If X ⊆ G, then 〈XG〉 is the smallest normal subgroup of G that
contains X.

Let N be a normal subgroup of G and G/N the set of all cosets of N in G.
For Nx,Ny ∈ G/N

(Nx)(Ny) = N(xN)y = N(Nx)y = Nxy
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and thus

(∗) (Nx)(Ny) = Nxy for all x, y ∈ G.

Hence, this complex product defines an associative multiplication on the set
G/N . Evidently, N = N1G is the identity of G/N (with respect to this
multiplication), and Nx−1 is the inverse of Nx . Thus:

1.2.4 Let N be a normal subgroup of G. Then G/N is a group with
respect to the complex product. The mapping

ψ : G → G/N with x �→ Nx

is an epimorphism. �

Here the second part of 1.2.4 follows from (∗).

The group G/N (one reads G modulo N) described in 1.2.4 is the factor
group of N in G, and the corresponding ϕ is the natural homomorphism
from G to G/N .

By 1.2.2 the normal subgroups of G are exactly the kernels of the homomor-
phisms of G. From 1.2.2 and 1.2.4 we derive the following:

1.2.5 Homomorphism Theorem. Let ϕ be a homomorphism from G
to H. Then

G/ Ker ϕ → H with (Ker ϕ)x �→ xϕ

is a monomorphism. In particular

G/ Ker ϕ ∼= Im ϕ. �

Let U be a subgroup and N a normal subgroup of G. Then by 1.1.5 UN is
a subgroup of G, and thus N is a normal subgroup of UN .

Two direct consequences of 1.2.5 are the Isomorphism Theorems:

1.2.6 Let U be a subgroup and N a normal subgroup of G. Then

ϕ : U → UN/N with u �→ uN

is an epimorphism with Ker ϕ = U ∩ N , and

U/U ∩ N ∼= UN/N. �
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1.2.7 Let N and M be normal subgroups of G such that N ≤ M . Then

ϕ : G/N → G/M with Nx �→ Mx

is an epimorphism with Ker ϕ = M/N , and

(G/N)/(M/N) ∼= G/M. �

It is important also to observe that the homomorphism theorem gives a
bijection (U �→ Uϕ) from the set of all subgroups U ≤ G containing Ker ϕ
to the set of all subgroups of Im ϕ .

Often it is convenient to use the bar convention for subgroups and elements
of G/N :

U := UN/N for U ≤ G and x := xN für x ∈ G;

in particular G = G/N .

In general, A � N � G does not imply A � G. A subgroup A is a sub-
normal subgroup of G (or is subnormal in G), if there exist subgroups
A1, . . . , Ad such that

S A = A1 � A2 � · · · � Ad−1 � Ad = G.

We then write A �� G and call S a subnormal series from A to G.
Evidently, one gets

A �� B �� G ⇒ A �� G.

Because of this transitivity property the notion of subnormality plays an
important role in the investigation of finite groups. We will use this notion
later, from Chapter 5 on. Here we only give some elementary properties of
subnormal subgroups which follow directly from the definition.

1.2.8 Let A and B be subnormal subgroups of G.

(a) U ∩ A �� U for U ≤ G.

(b) A ∩ B �� G.

(c) Let ϕ be a homomorphism of G. Then the image (resp. inverse image)
of any subnormal subgroup of G (resp. Gϕ) is subnormal in Gϕ (resp.
G).
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Proof. (a) Let S be a subnormal series from A to G. Then

U ∩ A = U ∩ A1 � · · · � U ∩ Ad−1 � U ∩ Ad = U

is a subnormal series from U ∩ A to U .

(b) From (a) it follows that A ∩ B �� B �� G.

(c) This follows from the corresponding statements about normal subgroups.
�

Let B � A ≤ G. Then A/B is a section of G.

Exercises

Let G be a group.

1. Every subgroup of index 2 is normal in G.

2. Show that there are exactly two nonisomorphic groups of order 4 and com-
pute their group tables.

3. Let N be a normal subgroup of G and |G : N | = 4.

(a) G contains a normal subgroup of index 2.

(b) If G/N is not cyclic, then there exist three proper normal subgroups
A, B, and C of G such that G = A ∪ B ∪ C.

4. Let G be simple, |G| �= 2, and ϕ a homomorphism from G to H. If H
contains a normal subgroup A of index 2, then Gϕ ≤ A .

5. Let x ∈ G, D := {xg | g ∈ G}, and Ui ≤ G for i = 1, 2. Suppose that

〈D〉 = G and D ⊆ U1 ∪ U2.

Then U1 = G or U2 = G.

6. Let G �= 1 be a finite group. Suppose that every proper subgroup of G is
Abelian. Then G contains a nontrivial Abelian normal subgroup.

1.3 Automorphisms

In the following, G is a group. The set Aut G of all automorphisms of G,
with multiplication given by

αβ : x �→ (xα)β (x ∈ G, α, β ∈ AutG)
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is a group, the automorphism group of G. The identity mapping is the
identity of AutG , and the inverse mapping α−1 the inverse of α (see 1.2.1).

Automorphisms map finite subgroups (resp. elements) to subgroups (resp.
elements) of the same order. For a ∈ G, the mapping

ϕa : G → G with x �→ xa (= a−1xa)

is bijective by 1.1.1. Since

(xy)a = a−1xaa−1ya = (a−1xa)(a−1ya) = xaya,

ϕa is an automorphism of G, the inner automorphism induced by a.

The mapping
ϕ : G → AutG

given by a �→ ϕa is a homomorphism from G to AutG, since

xab = b−1a−1xab = (xa)b.

Hence, the set of inner automorphisms of G,

InnG := { ϕa | a ∈ G },

is a subgroup of Aut G. Moreover, the equality

β−1ϕaβ = ϕaβ (β ∈ AutG, a ∈ G)

shows that InnG is a normal subgroup of Aut G.

We set
Ker ϕ = {x ∈ G | xa = x for all a ∈ G} =: Z(G).

The homomorphism theorem then yields

G/Z(G) ∼= InnG.

The group Z(G) is called the center of G.

For later use we note:

1.3.1 Suppose that G/Z(G) is cyclic. Then G is Abelian.
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Proof. There exists g ∈ G such that G/Z(G) = 〈gZ(G)〉 and thus

G = Z(G)〈g〉.

Since 〈g〉 is Abelian all pairs of elements of G commute. �

By definition a subgroup N of G is normal if and only if

Na = N for all a ∈ G.

Thus, a subgroup of G is normal if and only if it is mapped to itself by every
inner automorphism of G.

A subgroup U of G is a characteristic subgroup of G (or is characteristic
in G), if

Uα = U for all α ∈ AutG.

We write U char G in this case.

Evidently, characteristic subgroups are normal in G. Moreover, 1 and G are
characteristic subgroups of G. Another example of a characteristic subgroup
is Z(G). Indeed, for x ∈ Z(G), g ∈ G, α ∈ AutG,

xαgα = (xg)α = (gx)α = gαxα,

and since G = {gα | g ∈ G} we have xα ∈ Z(G) .

We note two properties of characteristic subgroups, which we will use fre-
quently.

1.3.2 Let N be a normal subgroup of G and A be a characteristic subgroup
of N .

(a) A is normal in G.

(b) If N is characteristic in G, then also A is characteristic in G.

Proof. (a) Let a ∈ G and ϕa be the inner automorphism of G induced
by a. Then the restriction of ϕa to N is an automorphism of N since N is
normal in G. Hence, A is invariant under ϕa for all a ∈ G , i.e., A is normal
in G.
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(b) Since N is now characteristic in G one can replace ϕa in the above
argument by an arbitrary automorphism of G. �

The above property (b) shows that being characteristic (as being subnormal,
see page 14) is a transitive property.

We will now introduce a notion, which will prove to be greatly convenient.
Let X be a group and

ϕ : X → AutG

be a homomorphism from X to AutG . Then we say that X acts on G
(with respect to ϕ). We set

gx := gxϕ

and get
(gh)x = gxhx and (gx)y = gxy

for all g, h ∈ G and x, y ∈ X.

A subgroup U of G is X-invariant if for all x ∈ X:

Ux := { ux | u ∈ U } = U.

If U is an X-invariant subgroup of G, then X acts on U with respect to the
homomorphism X → Aut(U) induced by ϕ. If N is an X-invariant normal
subgroup of G, then X acts on the factor group G/N by

(Ng)x := Ngx.

It is evident that every subgroup X of AutG acts on G (with respect
to ϕ = id). In the cases X = AutG resp. X = InnG the X-invariant
subgroups are the characteristic resp. normal subgroups of G.

Every subgroup X of G acts on G with respect to ϕ|X , where ϕ is the
homomorphism from G to InnG defined on page 16 (conjugation). When
we speak of X-invariant subgroups—where X is a subgroup of G—without
mentioning ϕ, then we always mean the action by conjugation.

Let η be a homomorphism from G to the group H, and let X be a group
that acts on both G and H. Then η is an X-homomorphism, if

(gx)η = (gη)x for all g ∈ G, x ∈ X.
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(In the same way we define X-isomorphism and X-automorphism). Such
an X-homomorphism maps X-invariant subgroups of G to X-invariant sub-
groups of H, and the inverse images of X-invariant subgroups of H are X-
invariant subgroups of G. In particular, Ker η and Im η are X-invariant
subgroups.

For example, X := G acts by conjugation on G, but also on H by

hx := hxη
(h ∈ H, x ∈ G).

This implies
(gx)η = (x−1gx)η = (gη)xη

= (gη)x,

and thus η is a G-homomorphism. If η is surjective, then the G-invariant
subgroups of H are precisely the normal subgroups of H.

If η : G → H is an X-isomorphism, we write G ∼=X H.

The mappings introduced in the Homomorphism Theorem 1.2.5 and its two
corollaries, 1.2.6, 1.2.7, yield the following results:

• Let η be an X-homomorphism of G. Then

G/ Ker η ∼=X Im η.

• Let U and N be X-invariant subgroups of G. Then

U/U ∩ N ∼=X UN/N.

• Let N ≤ M be X-invariant normal subgroups of G. Then

(G/N) / (M/N) ∼=X G/M.

Exercises

Let G be a group.

1. Let N be characteristic in G. The automorphisms α of G satisfying α|N = 1
form a normal subgroup of Aut G.

2. The automorphisms α of G satisfying Uα = U for all subgroups U of G form
a normal subgroup of Aut G.

3. Let α ∈ AutG and |{x ∈ G | xα = x}| > |G|
2 . Then α = 1.
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4. The group G is Abelian if and only if the mapping

G → G with x �→ x−1 (x ∈ G)

is an automorphism of G.

5. Let G be finite and α ∈ AutG such that xα �= x = xα2
for all x ∈ G#.

Then the following hold:

(a) For every x ∈ G there exists y ∈ G such that x = y−1yα.

(b) G is Abelian of odd order.

6. Let N � G and U ≤ G such that G = NU . Then there exists a bijection,
preserving inclusion, from the set of subgroups X satisfying U ≤ X ≤ G to
the set of U -invariant subgroups Y satisfying U ∩ N ≤ Y ≤ N .

7. Let G be finite with Z(G) = 1, and set A := AutG and I := InnG.

(a) CA(I) = 1.11

(b) Suppose that I is characteristic in A, i.e., I = Iα for all α ∈ AutA.
Then AutA = InnA.

(c) Suppose that G is simple. Then Aut A = InnA.

8. Let GL2(C) be the group of all invertible 2 × 2-matrices over the field of
complex numbers C, and let

G :=
〈(

i 0
0 −i

)
,

(
0 1

−1 0

)〉
≤ GL2(C).

The group G is called a quaternion group (of order 8).

(a) |G| = 8.

(b) |Z(G)| = 2.

(c) Every element of G \ Z(G) has order 4.

(d) G contains exactly one element of order 2.

(e) Every subgroup of G is normal in G.

(f) G possesses an automorphism of order 3.

11CA(I) := {α ∈ Aut G | αβ = βα for all β ∈ I}.
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1.4 Cyclic Groups

Every finite cyclic group is already completely described by 1.1.2. But since
there exists a “universal object” for the class of cyclic groups, namely the
additive group Z of the integers, we may look at cyclic groups from a slightly
more general point of view.

The group Z is an infinite cyclic group with identity 0 ∈ Z and generating
element 1 ∈ Z.

1.4.1 Let U be a subgroup of Z. Then

U = { nz | z ∈ Z } =: nZ

for some n ∈ N ∪ { 0 }. Moreover

nZ ≤ mZ ⇐⇒ m|n.

Proof. If U = 0 then U = 0Z; so we may assume that U �= 0. Let k ∈ U .
Then also −k ∈ U , and the minimum

n := min{ i ∈ Z | 0 < i ∈ U }

exists. As the reader will know, there exist integers z, r ∈ Z such that

k = zn + r and r ∈ {0, 1, . . . , n − 1}.

Then r = k−zn ∈ U and thus r = 0 by the minimality of n, so k = zn ∈ U
and U = nZ.

The additional statement is clear. �

Let n ∈ N. The factor group

Cn := Z/nZ 12

is a cyclic group of order n consisting of the cosets modulo n

nZ, 1 + nZ, . . . , (n − 1) + nZ.

The integers 0, 1, . . . , n − 1 form a transversal of nZ in Z.
12In future we will often use multiplicative notation for the group operation on Cn.
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Let G = 〈g〉 be any cyclic group—now written multiplicatively. The laws
of exponents show that

ϕ : Z → G with z �→ gz

is an epimorphism. By 1.4.1 there exists n ≥ 0 such that

Ker ϕ = nZ.

If n = 0 , then G is isomorphic to Z ; if n ≥ 1 , then G is isomorphic to Cn

(Homomorphism Theorem 1.2.5 on page 13). We obtain:

1.4.2 A cyclic group of order n is isomorphic to Cn. �

Using ϕ and the second remark in 1.4.1 we also obtain:

1.4.3 Theorem. Let G = 〈g〉 be a cyclic group of order n and l1, . . . , lk
∈ N the divisors of n, and set

Ui := 〈gli〉.
Then U1, . . . , Uk are the only subgroups G. Moreover

(a) If n = nili, then Ui is a subgroup of order ni (i = 1, . . . , k).

(b) Let 0 �= z ∈ Z. If i ∈ {1, . . . , k} such that li = (z, n),13 then
〈gz〉 = Ui.

Proof. The subgroups of G correspond (with respect to ϕ) to the subgroups
of Z that contain nZ , and thus by 1.4.1 to the divisors of n. Hence U1 =
(l1Z)ϕ, . . . , Uk = (lkZ)ϕ are the only subgroups of G.

(a) ni is the smallest of the integers m ∈ N such that (gli)m = 1. Hence
(a) follows from 1.1.2 on page 4.

(b) Since li|z we get gz ∈ Ui, i.e., 〈gz〉 ≤ Ui. Note that there exist integers
z1, z2 ∈ Z such that li = nz1 + zz2. It follows that

gli = gli(g−n)z1 = (gz)z2

and thus also Ui ≤ 〈gz〉. �

As a consequence, in every finite cyclic group G there exists exactly one
subgroup of order m for every divisor m of |G|. Since automorphisms of G
map subgroups to subgroups of the same order we have:

13(z, n) is the greatest common divisor of z and n.
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1.4.4 Subgroups of cyclic groups are characteristic.14 �

It is evident that in the situation of 1.4.3

Ui ≤ Uj ⇐⇒ lj | li.

For cyclic p-groups this implies:

1.4.5 Let G = 〈g〉 be a nontrivial cyclic group of order pn, p a prime.
Then

1 < 〈gpn−1〉 < 〈gpn−2〉 < · · · < 〈gp〉 < G

are the only subgroups of G. In particular, G contains exactly one minimal
and one maximal subgroup. �

Note that the converse of 1.4.5 is also true: A finite group that contains
exactly one maximal subgroup is cyclic of prime power order.15 In contrast
to this, a finite group with exactly one minimal subgroup is not necessarily
cyclic; compare with 2.1.7 on page 46 and 5.3.7 on page 114.

In an Abelian group G every subgroup is normal. If in addition G is simple,
then G is cyclic of prime order.

1.4.6 The cyclic groups of prime order are the only Abelian simple groups.
�

Exercises

Let G be a group.

1. Suppose that U ≤ N � G and N is cyclic. Then U � G.

2. Let p, q be primes and G be cyclic of order pq. Then G contains more than
three subgroups if and only if p �= q .

3. Let G be finite. Suppose that |{x ∈ G | xn = 1}| ≤ n for all n ∈ N. Then
G is cyclic.

4. Let G be finite. Suppose that all maximal subgroups of G are conjugate.
Then G is cyclic.

14Indeed, this is also true for Z since here z �→ −z is the only nontrivial automorphism.
15See Exercise 10 on p. 10.
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1.5 Commutators

For any two elements x, y of the group G we define

[x, y] := x−1y−1xy ( = y−xy = x−1xy ). 16

Since
xy = yx [x, y]

the element [x, y] is the commutator of x and y. One has

[x, y]−1 = [y, x].

The subgroup generated by all commutators

〈 [x, y] | x, y ∈ G 〉 =: G′

is the commutator subgroup of G.

1.5.1 Let ϕ be a homomorphism of G. Then

[x, y]ϕ = [xϕ, yϕ]

for all x, y ∈ G, and so (G′)ϕ = (Gϕ)′. In particular, G′ is a characteristic
subgroup of G. �

Also the commutator subgroup G′′ of G′ 17 is characteristic in G (1.3.2).

1.5.2 Let N be a normal subgroup of G. Then

G/N is Abelian ⇐⇒ G′ ≤ N.

Accordingly, G′ is the smallest normal subgroup of G with Abelian factor
group.

Proof. For x, y ∈ G

(xN)(yN) = (yN)(xN) ⇐⇒ xyN = yxN ⇐⇒ [x, y] ∈ N. �

The group G is perfect if G = G′ . In Section 6.5 we need:
16y−x := (y−1)x.
17That is, (G′)′ =: G′′.
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1.5.3 Let N be an Abelian normal subgroup of G. If G/N is perfect,
then also G′ is perfect.

Proof. From 1.5.1, applied to the natural epimorphism, we obtain

G/N = (G/N)′ = G′N/N

and thus G = G′N . Since also G′/N ∩ G′ (∼= G/N) is perfect, the same
argument gives G′ = G′′(N ∩ G′). It follows that G = G′′N and G/G′′ ∼=
N/N ∩ G′′. Now 1.5.2 implies G′ = G′′ since N is Abelian. �

For x, y, z ∈ G we define

[x, y, z] := [[x, y], z],

and for subsets X,Y, Z ⊆ G

[X,Y ] := 〈 [x, y] | x ∈ X, y ∈ Y 〉,
[X,Y, Z] := [[X,Y ], Z].

The following elementary properties are often expressed using commutators.

• For subsets X,Y of G:

[X,Y ] = 1 ⇐⇒ xy = yx for all x ∈ X, y ∈ Y.

• For subgroups X,Y of G:

[X,Y ] ≤ Y ⇐⇒ Y is X-invariant.

Thus, for normal subgroups N and M of G we have:

• [N, M ] ≤ N ∩ M .

We shall frequently use the following commutator relations, which can be
verified easily.

1.5.4 For x, y, z ∈ G :

[x, yz] = [x, z] [x, y]z and [xz, y] = [x, y]z [z, y]. �
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1.5.5 For subgroups X and Y of G the subgroup [X,Y ] is normal in
〈X,Y 〉.

Proof. For x, z ∈ X and y ∈ Y 1.5.4 implies

[x, y]z = [xz, y] [z, y]−1 ∈ [X,Y ];

and with a similar argument [x, y]z ∈ [X,Y ] for z ∈ Y . �

The next slightly more complicated relation can also be verified easily:

[x, y−1, z]y [y, z−1, x]z [z, x−1, y]x = 1 (x, y, z ∈ G).18

We will use this relation in the following form:

1.5.6 Three-Subgroups Lemma. Let X,Y, Z be subgroups of G. Sup-
pose that [X,Y, Z] = [Y, Z, X] = 1. Then also [Z,X, Y ] = 1. �

Exercises

Let G be a group, x ∈ G, and set CG(x) := {y ∈ G | yx = xy}. Obviously, CG(x)
is a subgroup of G.

1. Let A be an Abelian normal subgroup of G and x ∈ G.

(a) The mapping A → A given by a �→ [a, x] is a homomorphism.

(b) [A, 〈x〉] = {[a, x] | a ∈ A}.

2. Let A and x be as in 1. Suppose that G = ACG(ax) for all a ∈ A. Then
[A, G] = [A, 〈x〉].

3. Let |G| = pn, p a prime, and let |G : CG(x)| ≤ p for all x ∈ G.

(a) CG(x) � G for all x ∈ G.

(b) G′ ≤ Z(G).

(c) (Knoche, [74]) |G′| ≤ p.

4. Let α ∈ AutG. Suppose that x−1xα ∈ Z(G) for all x ∈ G. Then xα = x
for all x ∈ G′.

18See [100] and [64].
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5. (Ito, [70]) Let G = AB, where A and B are Abelian subgroups of G. Then
G′ is Abelian.

6. (Burnside, [4], p. 90) Let A be a normal subgroup of G. Suppose that every
element in G \ A has order 3. Then [B, Bx] = 1 for all Abelian subgroups
B ≤ A and x ∈ G \ A.

1.6 Products of Groups

Products of groups are of twofold interest. On the one hand, they can be
used to construct new groups from given ones (external products); on the
other hand, they can be used to describe the structure of groups (internal
products). One internal product we have already met: the complex product
of two subgroups A and B . Indeed, AB is also a group if AB = BA (1.1.5
on page 6).

Let G1, . . . , Gn be groups. The Cartesian product of the sets Gi

n×
i=1

Gi := G1 × · · · × Gn := { (g1, . . . , gn) | gi ∈ Gi}

is a group with respect to componentwise multiplication

(g1, . . . , gn)(h1, . . . , hn) := (g1h1, . . . , gnhn).

This group is the (external) direct product of the groups G1, . . . , Gn.
Obviously, for j = 1, . . . , n the embedding

εj : Gj → ×
i=1,...,n

Gi with g �→ (1, . . . , 1, g, 1, . . . , 1)
j

is an isomorphism from Gj to

Gj
∗ := {(g1, . . . , gn) | gi = 1 for i �= j}.

For the subgroups G1
∗, . . . , Gn

∗ of G := ×
i=1,...,n

Gi one has:

D1 G = G1
∗ · · ·Gn

∗,

D2 Gi
∗ � G, i = 1, . . . , n,
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D3 Gi
∗ ∩ ∏

j �=i

Gj
∗ = 1, i = 1, . . . , n.

Conversely:

1.6.1 Let G be a group with subgroups G1
∗, . . . , Gn

∗ such that D1, D2
and D3 hold. Then the mapping

α :
n×

i=1

Gi
∗ → G with (g1, . . . , gn) �→ g1 · · · gn

is an isomorphism.

Proof. D1 shows that α is surjective. D2 gives

[Gi
∗, Gk

∗] ≤ Gi
∗ ∩ ∏

j �=i

G∗
j for i �= k,

and thus [Gi
∗, Gk

∗] = 1 because of D3. For hi, gi ∈ Gi
∗, i = 1, . . . , n, this

implies
(g1 · · · gn)(h1 · · ·hn) = (g1h1) · · · (gnhn);

hence α is a homomorphism. Let (g1, . . . , gn) ∈ Ker α, i.e., g1 · · · gn = 1.
Then

gi =
∏
j �=i

g−1
j ∈ Gi

∗ ∩ ∏
j �=i

G∗
j = 1,

again by D3, so Ker α = 1. Thus, α is a isomorphism. �

If D1, D2 and D3 hold for the group G and subgroups G∗
1, . . . , G

∗
n, then G is

called the (internal) direct product of the subgroups G1
∗, . . . , Gn

∗ (this
notation is justified by 1.6.1); in this case we write as above

G = G1
∗ × · · · × Gn

∗ =
n×

i=1

Gi
∗.

In particular, we have [Gi
∗, Gj

∗] = 1 for i �= j, and every element g ∈ G
can be written in a unique way as a product

g =
n∏

i=1
gi with gi ∈ Gi

∗.
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We have met two versions of the direct product, the external and internal.
The first is a product of (not necessarily distinct) groups, the other a product
of (distinct) subgroups. Very often the factors G1, . . . , Gn of the external
direct product will be pairwise distinct. In these cases one usually identifies
Gj with Gj

∗ according to the embedding εj and no longer distinguishes
between the external and internal direct products.

1.6.2 Let G = G1 × · · · × Gn.

(a) Z(G) = Z(G1) × · · · × Z(Gn).

(b) G′ = G′
1 × · · · × G′

n.

(c) Let N be a normal subgroup of G and Ni = N ∩ Gi (i = 1, . . . , n).
Suppose that N = N1 × · · · × Nn. Then the mapping

α : G = G1 × · · · × Gn → G1/N1 × · · · × Gn/Nn

given by
g = (g1, . . . , gn) �→ (g1N1, . . . , gnNn)

is an epimorphism, with Ker α = N . In particular

G/N ∼= G1/N1 × · · · × Gn/Nn.

(d) If the factors G1, . . . , Gn are characteristic subgroups of G, then

AutG ∼= AutG1 × · · · × AutGn.

Proof. (a) Componentwise multiplication in G gives (a).

(b) An easy induction using 1.5.4 gives (b). For example, for n = 2

G′ = [ G1G2 , G1G2 ] =
∏
i,j

[ Gi , Gj ] = G′
1 × G′

2.

(c) Apply 1.2.4 and 1.2.5.

(d) If αi is an automorphism of Gi (for i = 1, . . . , n), then

(g1, . . . , gn)α := (gα1
1 , . . . , gαn

n )
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defines an automorphism of G = G1 × · · · × Gn , and

ϕ : AutG1 × · · · × AutGn → AutG with (α1, . . . , αn) �→ α

is a monomorphism. Moreover, ϕ is surjective if the factors G1, . . ., Gn are
characteristic subgroups of G. �

1.6.3 Let G = G1 × · · · × Gn and N be a normal subgroup of G.

(a) If N is perfect, then N = (N ∩ G1) × · · · × (N ∩ Gn).

(b) If G1, . . . , Gn are non-Abelian simple groups, then there exists a subset
J ⊆ {1, . . . , n} such that

N = ×
j∈J

Gj and Gk ∩ N = 1 for k �∈ J.

Proof. (a) Since Gi and N are normal in G we get [N, Gi] ≤ N ∩ Gi, and
then 1.5.4 yields

[N, G] =
∏
i
[N, Gi] ≤ ∏

i
(N ∩ Gi) =: N0.

In particular [N, N ] ≤ N0, and N ′ = N gives N = N0.

(b) The simplicity of the normal subgroups Gi yields Gi ≤ N or Gi∩N = 1,
so (b) follows from (a) if N is perfect. Thus, it suffices to prove by induction
on |G| that N is perfect.

According to 1.6.2 (b) we may assume that G �= N . Hence, there exists
k ∈ {1, . . . , n} such that Gk �≤ N , so N ∩Gk = 1 and thus NGk = N ×Gk.
Let G = G/Gk. By 1.6.2 (c) G = ×

i�=k

Gi, and induction shows that N = N
′.

Now 1.5.1 on page 24 yields N ×Gk = N ′ ×Gk, so |N | = |N ′| and N = N ′.
�

For Abelian simple groups G1, . . . , Gn the statement in 1.6.3 (b) is wrong.
For example, C2 × C2 contains three minimal (normal) subgroups.

The following result, which is a consequence of the Homomorphism Theorem
1.2.5, shows that the external direct product can be used to get results about
the internal structure of a group.
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1.6.4 Let N1, . . . , Nn be normal subgroups of G. Then the mapping

α : G → G/N1 × · · · × G/Nn

given by
g �→ (gN1, . . . , gNn)

is a homomorphism with Ker α =
⋂
i

Ni. In particular, G/
⋂
i

Ni is isomor-

phic to a subgroup of G/N1 × · · · × G/Nn. �

Frequently one has the following situation:

1.6.5 Let G be a product of the normal subgroups G1, . . . , Gn. Suppose
that

( |Gi| , |Gj | ) = 1 for i �= j ∈ {1, 2, . . . , n}.

Then G = G1 × · · · × Gn.

Proof. We have to show that

D :=
(∏

j �=i

Gj

)
∩ Gi = 1.

By Lagrange’s theorem |D| is a divisor of |Gi| and of

k :=
∣∣∣∏
j �=i

Gj

∣∣∣.
Repeated application of 1.1.6 shows that k and thus also |D| is a divisor of∏
j �=i

|Gj | . Hence, k and |Gi| are coprime, and |D| = 1. �

This implies the fundamental observation:

1.6.6 Let a, b be elements of the finite group G such that ab = ba and
(o(a), o(b)) = 1. Then

〈ab〉 = 〈a〉 × 〈b〉
and o(ab) = o(a)o(b).
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Proof. Let k := o(a) and m := o(b). Note that 〈a, b〉 is an Abelian group,
where the subgroups 〈a〉 and 〈b〉 are of coprime order. Hence

H := 〈a, b〉 = 〈a〉 × 〈b〉

is a group of order mk. Let g := ab (∈ H). The homomorphism

ϕ : 〈g〉 → H/〈a〉 with gi �→ 〈a〉gi = 〈a〉bi

is surjective. Hence, | Im ϕ| = m is a divisor of |〈g〉| (Homomorphism
Theorem). In the same way k is a divisor of |〈g〉|. Now (m, k) = 1 implies
o(g) = mk = |H|, i.e., H = 〈g〉. �

Let G be a product of the subgroups G1, . . . , Gn, which satisfy

Z [Gi , Gj ] = 1 for i �= j in {1, . . . , n}.

Then G is the central product of the subgroups G1, . . . , Gn. Because of
Z the subgroups Gi are normal in G; moreover we have for i = 1, . . . , n

GiZ(G) ∩
∏
j �=i

GjZ(G) = Z(G).

With the Homomorphism Theorem we obtain

1.6.7 Let G be the central product of G1, . . . , Gn and G := G/Z(G).
Then G is a direct product of the groups G1, . . . , Gn, with

Gi
∼= Gi/Z(Gi), i = 1, . . . , n.

�

We will now introduce the semidirect product. In contrast to our treatment
of the direct product we first give the internal version.

Let G be group with subgroups X and H. Then G is called the (internal)
semidirect product of X with H, if

SD1 G = XH,

SD2 H � G,

SD3 X ∩ H = 1.
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Hence, in the semidirect product G = XH, the subgroup X is a complement
of the normal subgroup H. If X is also normal in G , then G is the direct
product X × H.

1.6.8 Let X and H be subgroups of G, which satisfy SD1, SD2, and SD3.

(a) Every g ∈ G is in a unique way a product g = xh with x ∈ X and
h ∈ H.

(b) For x1, x2 ∈ X and h1, h2 ∈ H

(x1 h1)(x2 h2) = (x1 x2)(hx2
1 h2).

Proof. Part (a) follows from 1.1.9 since X is a transversal of H in G. Part
(b) is obvious. �

Now let X and H be groups, and let ϕ : X → AutH be a homomorphism.
Then X acts on H (with respect to ϕ). As in Section 1.3 we set

hx := hxϕ
(x ∈ X, h ∈ H)

and thus
(hx)y = hxy (h ∈ H, x, y ∈ X).

The multiplication (compare with 1.6.8 (b))

(x1, h1)(x2, h2) := (x1x2, h
x2
1 h2) (xi ∈ X, hi ∈ H),

turns the Cartesian product

G := {(x, h) | x ∈ X, h ∈ H}

into a group: The identity of G is (1X , 1G), and the inverse of (x, h) is

(x−1, (h−1)x−1
).

Associativity is verified as follows:

((x1, h1)(x2, h2)) (x3, h3) = (x1x2, h
x2
1 h2)(x3, h3) = (x1x2x3, (hx2

1 h2)x3h3)
= (x1x2x3, h

x2x3
1 hx3

2 h3) = (x1, h1)(x2x3, h
x3
2 h3)

= (x1, h1) ((x2, h2)(x3, h3)).
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This group G is called the (external) semidirect product of X with H
(with respect to ϕ); we write G = X�ϕH or more simply G = X � H,
or even G = XH, if there is no danger of confusion about which action is
meant.

If ϕ is the trivial homomorphism; i.e., X acts trivially on H, then X � H
is the direct product X × H.

As for the direct product, the embeddings

εX : X → X � H with x �→ (x, 1)
εH : H → X � H with h �→ (1, h)

are monomorphisms, and X � H is the semidirect product of the subgroup
XεX with the subgroup HεH . Usually one identifies X and XεX (resp. H
and HεH ) via εX (resp. εH). Then the action of X on H is conjugation in
X � H.

Elements of order 2 are involutions, and a group generated by two involu-
tions is a dihedral group. The following result shows that dihedral groups
are semidirect products.

1.6.9 Let G be a finite group of order 2n. The following statements are
equivalent:

(i) G is a dihedral group.

(ii) G is the semidirect product X � H of two cyclic subgroups X = 〈x〉
and H = 〈h〉 such that

(D) o(x) = 2, o(h) = n, and hx = h−1.

Proof. (i) ⇒ (ii): Let x, y be involutions of G such that G = 〈x, y〉, and let

X := 〈x〉, h := xy and H := 〈h〉.

One has
hx = xxyx = yx = h−1 = yxyy = hy,

and so H is normal in G and G = XH. If X ∩ H �= 1 , then x and thus
also y is in H. Then x = y since H is cyclic. Now h = xy = 1, and H = 1.
But this contradicts x ∈ H.
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(ii) ⇒ (i): The element y := xh is an involution since

y2 = (xhx)h = h−1h = 1.

Hence G = 〈x, y〉 is a dihedral group. �

If G is as in 1.6.9 (ii), then the group table of G is uniquely determined by
the relations in (D). Hence, there is only one dihedral group of order 2n (up
to isomorphism). Such a group is denoted by D2n. Clearly D2 ∼= C2 and
D4 ∼= C2 × C2.

D2n is the symmetry group of a regular n-gon. The reader is asked to verify
this for n = 3 and n = 4.

It should be mentioned that in section 4.4 we will introduce a third type
of product, the wreath product, which will be constructed by means of
direct and semidirect products.

Exercises

Let A, B, and G be groups.

1. (a) Every normal subgroup of A is a normal subgroup of A × B.

(b) U ≤ A × B does not imply U = (A ∩ U) × (B ∩ U).

(c) If A and B are finite and (|A|, |B|) = 1, then A and B are characteristic
subgroups of A × B.

(d) Aut(A × B) contains a subgroup isomorphic to Aut A × AutB .

2. Let G = A × B. Then A ∼= B, if and only if there exists a subgroup D in G
such that G = AD = BD and 1 = A ∩ D = B ∩ D .

3. Let G be finite. Suppose that every maximal subgroup of G is simple and
normal in G. Then G is an Abelian group and |G| ∈ {1, p, p2, pq}, where
p, q are primes.

4. A group X is semisimple if X is a direct product of non-Abelian simple
groups. Let G be a group and M,N normal subgroups of G. If G/M and
G/N are semisimple, then also G/(M ∩ N) is semisimple.

5. Show that the non-Abelian group of order 6 on page 3 is the group D6.

6. Let n ≥ 2. Then

Z(D2n) �= 1 ⇐⇒ n ≡ 0 (mod 2).
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7. Let G1 and G2 be finite perfect groups such that G1/Z(G1) ∼= G2/Z(G2).
Then there exists a finite perfect group G and subgroups Z1, Z2 ≤ Z(G)
with

G/Z(G) ∼= Gi/Z(Gi) and G/Zi
∼= Gi, i = 1, 2.

In the following G is a dihedral group and 4 < |G| < ∞.

8. Describe all subgroups of G.

9. (a) |Z(G)| ≤ 2.

(b) 〈a〉Z(G) = {g ∈ G | ga = g} for every involution a ∈ G \ Z(G).

(c) |G : G′| = 2|Z(G)|.
(d) For every involution a ∈ G \ Z(G) there exists an involution b such

that G = 〈a, b〉.
10. Let Z(G) �= 1 and a be an involution of G \ Z(G). The elements in aZ(G)

are conjugate in G, if and only if 8 is a divisor of |G| .
11. The following statements are equivalent:

(a) All involutions are conjugate in G.

(b) Z(G) = 1.

(c) There exists an involution a ∈ G such that |CG(a)| = 2.

(d) 4 � |G|.
(e) G contains a maximal subgroup of odd order.

1.7 Minimal Normal Subgroups

Let G be a group. A normal subgroup N �= 1 of G is a minimal normal
subgroup of G if 1 and N are the only normal subgroups of G that are
contained in N . It is evident that every nontrivial finite group possesses
minimal normal subgroups. Moreover, any nontrivial finite group is either
simple or contains a proper minimal normal subgroup. In many proofs by
induction on the group order, minimal normal subgroups play an important
role.

In this section we collect some elementary properties of minimal normal
subgroups. More information about the embedding of minimal normal sub-
groups can be found in Sections 6.5 and 6.6.

1.7.1 Let N be a minimal normal subgroup of G.
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(a) For all normal subgroups M of G either N ≤ M or N ∩ M = 1. In
the second case [N, M ] = 1.

(b) If N is Abelian, then N ≤ H or N ∩ H = 1 for all subgroups H of
G with G = NH.

(c) If ϕ is an epimorphism from G to a group H, then Nϕ = 1 or Nϕ

is a minimal normal subgroup of H.

Proof. (a) follows directly from the minimality of N , noting that

[N, M ] ≤ M ∩ N � G.

(b) Here M := H ∩ N is normal in H but also normal in N since N is
Abelian. Now since G = HN it follows that M � G and thus M ∈ {1, N}.

(c) Let A �= 1 be a normal subgroup of H that is contained in Nϕ. Then
Aϕ−1 ∩ N is a normal subgroup of G, and Aϕ−1 ∩ N �= 1 since A �= 1 .
Hence Aϕ−1 ∩ N = N and Nϕ = A. �

1.7.2 Let M be a finite set of minimal normal subgroups of G, and let
M =

∏
N∈M

N .

(a) Let U be a normal subgroup of G. Then there exist N1, . . . , Nn ∈ M
such that

UM = U × N1 × · · · × Nn.

(b) There exist N1, . . . , Nn ∈ M such that

M = N1 × · · · × Nn.

Proof. (a) By 1.7.1 (a) U ∩ N = 1 for every N ∈ M with N �≤ U and
thus UN = U × N . Let {N1, . . . , Nn} be a subset of M that is maximal
with respect to the following property:

U
( n∏

i=1
Ni

)
= U × N1 × · · · × Nn =: X.
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Assume that X �= UM . Then there exists N ∈ M such that N �≤ X. By
1.7.1 (a)

XN = X × N = U × N1 × · · · × Nn × N,

which contradicts the maximal choice of {N1, . . . , Nn}. Hence X = UM .

Now (b) follows from (a), with U = 1. �

1.7.3 Let N be a minimal normal subgroup of G and E a minimal normal
subgroup of N , and assume that the set M = {Eg | g ∈ G} is finite. Then
E is simple, and there exist E1, . . . , En in M such that

N = E1 × · · · × En.

Proof. The subgroup
∏

g∈G

Eg is normal in G and thus equal to N . Hence

N = E1 × · · · × En follows from 1.7.2 (a). Every normal subgroup of E1
also is a normal subgroup of N . This shows that E1 is simple, and then E
is simple as E ∼= E1. �

If E in 1.7.3 is Abelian and thus isomorphic to Cp (p ∈ P), one gets:

1.7.4 Let N be an Abelian minimal normal subgroup of the finite group
G. Then there exists p ∈ P such that N is a direct product of subgroups that
are isomorphic to Cp. �

In the situation of 1.7.4 one knows the structure of the factors Ei. On the
other hand, in general there are many different choices for these factors in
N ; compare with the remark after 1.6.3.

If the minimal normal subgroup N is not Abelian, then one has the opposite
situation. Elementary methods do not yield any further properties of the
structure of the factors Ei, but according to 1.6.3 (b) these factors are
uniquely determined.

Together with 1.6.3 (b) we obtain:

1.7.5 Let N be a non-Abelian minimal normal subgroup of the finite group
G, and let K be the set of minimal normal subgroups of N .
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(a) The elements of K are non-Abelian simple groups, which are conjugate
in G.

(b) For every M � N there exist K(M) ⊆ K such that

M = ×
E∈K(M)

E and K(M) = {E ∈ K | E ≤ M}.

(c) N = ×
E∈K

E. �

Exercises

Let G be a finite group and L a maximal subgroup of G.

1. All minimal normal subgroups N of G that satisfy N ∩L = 1 are isomorphic.

2. Let L be non-Abelian and simple. Then there exist at most two minimal
normal subgroups in G.

3. Let L and G be as in 2. Give an example where G possesses two minimal
normal subgroups.

4. Suppose that G contains two minimal normal subgroups, neither of which is
contained in L. Then every minimal normal subgroup of L is contained in
the product of all minimal normal subgroups of G.

5. Let (∗) be the property:

(∗) Every minimal normal subgroup is contained in the center.

(a) Let N and M be normal subgroups of G, which satisfy (∗). Then also
NM satisfies (∗).

(b) If G satisfies (∗), then also every normal subgroup of G satisfies (∗).

1.8 Composition Series

In this section let G be a nontrivial finite group. By (Ai)i=0,...,a we denote
a subgroup series

1 = A0 < A1 < · · · < Ai−1 < Ai < · · · < Aa−1 < Aa = G

of length a of G. A series (Ai)i=0,1,...,a is a normal series, if Ai � G ,
and a subnormal series, if Ai−1 � Ai for all i = 1, . . . , a.
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A normal series (Ai)i=0,...,a is a chief series, if each Ai−1 is maximal
among the normal subgroups of G that are properly contained in Ai.

A subnormal series (Ai)i=0,...,a is a composition series, if each Ai−1 is
maximal among the proper normal subgroups of Ai.

The composition factors Ai/Ai−1 of a composition series are simple
groups. A composition series can be found by going downward—starting
with G—and choosing Ai−1 as a maximal normal subgroup of Ai . Simi-
larly one can refine a normal series (resp. subnormal series) to obtain a chief
series (resp. composition series).

Let (Ai)i=0,...,a be a composition series for G. If all composition factors
are Abelian19 and thus cyclic of prime order (1.4.6 on page 23), then the
structure of this composition series is determined by the order of G: The
prime factor decomposition

|G| = pe1
1 · · · pen

n

corresponds to

|G| =
a∏

i=1
|Ai/Ai−1|,

where a = e1 + · · · + en , and ej is the number of factors Ai/Ai−1 that are
isomorphic to Cpj .

The set of composition factors, for a given composition series of a finite
group, forms an invariant of the group. This is the Jordan-Hölder Theorem.
We will prove a version of this theorem that also gives nontrivial information
in the above-mentioned special case, in particular for the case of Abelian
groups. To do this, we use the notation introduced at the end of Section
1.3.

Let X be a group that acts on G, and let A and B be X-invariant subgroups
of G such that B � A. Then X also acts on A/B; we call A/B an X-
section of G.

A subnormal series (Ai)i=0,...,a is an X-composition series of G if all
of the subgroups Ai are X-invariant and there are no X-invariant normal
subgroups of Ai strictly between Ai−1 and Ai . Then the factors Ai/Ai−1
(i = 1, . . . , a) are X-simple.

An X-composition series of G is a composition series if X = 1, and a chief
series if X = G.

19Such a group is said to be solvable; see 6.1 on p. 121.
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1.8.1 Jordan-Hölder Theorem.20 Let X be a group that acts on G,
and let (Ai)i=0,...,a and (Bi)i=0,...,b be two X-composition series of G. Then
a = b and there exists a permutation π on the set {Ai/Ai−1 | i = 1, . . . , a}
such that

(Ai/Ai−1)π ∼=X Bi/Bi−1.

Proof. Let N := Bb−1. Then N is a maximal X-invariant normal subgroup
of G, and G/N is X-simple. Hence, we may assume that N �= 1 since in
the other case the conclusion is obvious.

For i ∈ {1, . . . , a} and Ai �≤ N , we get

N � AiN � Ai+1N � · · · � Aa−1N � G

and thus G = NAi because of the maximality of N . Hence

(1) Ai ≤ N or G = NAi.

for i = 0, . . . , a.

We set
A∗

i := Ai ∩ N

and choose j ∈ {0, . . . , a} maximal such that Aj ≤ N . Then

Aj � A∗
j+1 < Aj+1

and thus Aj = A∗
j+1 since Aj+1 �≤ N and Aj+1/Aj is X-simple. Hence,

we have

(2) Aj = A∗
j = A∗

j+1 and

(3) Aj+1/Aj
∼=X G/N,

the last statement because of

G/N
(1)
= Aj+1N/N

1.2.6∼=X Aj+1/A
∗
j+1.

It follows for k ≥ j + 2 that

A∗
k ∩ Ak−1 = Ak ∩ N ∩ Ak−1 = A∗

k−1,

20Compare with [15], p. 42, and [68].
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and by 1.2.6
A∗

k/A
∗
k−1

∼=X A∗
kAk−1/Ak−1 � Ak/Ak−1.

Now the X-simplicity of Ak/Ak−1 implies either

(4) A∗
k/A

∗
k−1

∼=X Ak/Ak−1, k ≥ j + 2,

or
A∗

k/A
∗
k−1 = 1 and A∗

k = A∗
k−1.

In the second case NAk = G = NAk−1 yields

Ak/A
∗
k

∼=X G/N ∼=X Ak−1/A
∗
k−1

and the contradiction Ak = Ak−1.

Hence
1 = A∗

0 < · · · < A∗
j < A∗

j+2 < · · · < A∗
a = N

and
1 = B0 < · · · < Bb−1 = N

are two X-composition series of N . By induction on |G| we may assume
that for these X-composition series there exists a permutation π with the
desired property. In particular a − 1 = b − 1 and thus a = b.

We now extend π to a permutation on {Ai/Ai−1 | i = 1, . . . , a} by setting

(Aj+1 / Aj)π := Bb/Bb−1.

Then (3) and (4) imply the assertion. �



Chapter 2

Abelian Groups

In this chapter we determine the structure of the finite Abelian groups. As a
starting point we use the structure of the cyclic groups described in Section
1.4. It will turn out that every finite Abelian group is the direct product of
cyclic groups. In the second section of this chapter we will show that the
automorphism groups of cyclic groups are examples of Abelian groups.

Compared with groups in general the structure of Abelian groups is much
easier to investigate since commutativity implies many structural properties
that almost never hold in non-Abelian groups. For example, in an Abelian
group every subgroup is normal and the product of subgroups is again a
subgroup (1.1.5 on page 6).

From this chapter on all groups considered are finite.

2.1 The Structure of Abelian Groups

If G = 〈x〉 is a cyclic group, then |G| = o(x), and Lagrange’s theorem
implies

o(y) divides o(x) for all y ∈ G.

A more general property is true for Abelian groups, as one can show using
1.6.6 on page 31:

2.1.1 Let G be an Abelian group and U a cyclic subgroup of maximal
order in G. Then

o(y) divides |U | for all y ∈ G.

43
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Proof. Let y ∈ G. We show that every prime power pr that divides o(y)
also divides |U |. Let |U | = pem with (p, m) = 1. By 1.4.3 on page 22 there
exist elements a ∈ 〈y〉 and b ∈ U such that

o(a) = pr and o(b) = m,

and 1.6.6 on page 31 implies o(ab) = prm. Now the maximality of |U | gives
pr | pem. �

2.1.2 Let G and U be as in 2.1.1. Then there exists a complement V of
U in G; in particular G = U × V and |G| = |U | |V |.

Proof. If G = U , then V = 1 is the desired complement. Let G �= U .
Among all elements in G \ U we choose y such that o(y) is minimal. Then
y �= 1 and 〈yp〉 < 〈y〉 for every prime divisor p of o(y) (1.4.3 on page 22),
i.e., 〈yp〉 ≤ U .

Let U = 〈u〉. By 2.1.1 and 1.4.3 on page 22 o(y) is a divisor of |U |, and U
contains exactly one subgroup for every such divisor. Hence, there exists a
subgroup of order o(y)

p in 〈up〉, namely 〈yp〉. Let i ∈ N such that upi = yp.
Then (yu−i)p = 1, but yu−i �∈ U since y �∈ U . The minimality of o(y)
gives

o(y) = p.

Thus, N := 〈y〉 is a nontrivial subgroup of G such that

U ∩ N = 1.

Let G := G/N .1 For 〈x〉 ≤ G we obtain

o(x) = |〈x̄〉| = min{n ∈ N | xn ∈ N} ≤ |〈x〉| = o(x),

and since
UN/N ∼= U/U ∩ N ∼= U

we also have |U | = |U |. Hence, U is a cyclic subgroup of maximal order in
G. By induction on |G| we may assume that there exists a complement V
of U in G.

1For the “bar” convention, see p. 14.
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Let N ≤ V ≤ G such that V = V/N . Then V is a complement of U in G
since U ∩ V ≤ U ∩ N = 1. �

The complement V in 2.1.2 can again by decomposed into a cyclic subgroup
of maximal order and its complement. Hence, a repeated application of 2.1.2
gives:

2.1.3 Theorem. Every Abelian group is the direct product of cyclic
groups. �

Thus, for every Abelian group G:

G ∼= Cn1 × · · · × Cnr and |G| = n1 · · ·nr.
2

If m is a divisor of |G|, then there exist divisors mi of ni (i = 1, . . . , r) such
that m = m1 · · ·mr. Hence Cm1 × · · · × Cmr is isomorphic to a subgroup
of order m of G. This implies:

2.1.4 Let G be an Abelian group and m a divisor of |G|. Then G contains
a subgroup of order m. �

Let p be a prime. We set

Gp := {x ∈ G | x is a p-element}.

2.1.5 Let G be an Abelian group. Then Gp is a characteristic p-subgroup
of order |G|p.3

Proof. For x, y ∈ Gp also xy is a p-element; use xy = yx and 1.1.2 on
page 4. Thus Gp is a subgroup. Since automorphisms map p-elements to
p-elements this subgroup is characteristic.

By 2.1.4 G contains a subgroup P of order |G|p. Hence, P is a p-group,
and thus every element of P is a p-element; in particular P ≤ Gp.

If P �= Gp, then
k := |Gp : P | �= 1

and (k, p) = 1 (Lagrange’s theorem). But now 2.1.4 gives a subgroup K of
order k in Gp, which contradicts 1.1.8 on page 8 since every element of K
is a p-element. �

2Cni is the cyclic group of order ni; see 1.4.
3For n ∈ N let np be the largest p-power dividing n.
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2.1.6 Theorem. Let G be an Abelian group. Then

G = ×
p∈π(G)

Gp.

Proof. By 1.6.5 on page 31 the product G1 of the subgroups Gp, p ∈ π(G),
is a direct product; and 2.1.5 yields

|G1| =
∏

p∈π(G)
|Gp| =

∏
p∈π(G)

|G|p = |G|,

so G1 = G. �

In an Abelian group the product of two cyclic groups of coprime order is
again cyclic (1.6.6 on page 31). Hence, the question whether an Abelian
group is cyclic or not can already be decided in the subgroups Gp, p ∈ π(G).

2.1.7 For an Abelian group G the following statements are equivalent:

(i) G is cyclic.

(ii) For all p ∈ π(G) there exists exactly one subgroup of order p in G.

(iii) Gp is cyclic for all p ∈ π(G).

Proof. (i) ⇒ (ii) follows from 1.4.3 on page 22 and (ii) ⇒ (iii) from 2.1.3,
both applied to Gp. Finally a repeated application of 1.6.6 on page 31 gives
the implication (iii) ⇒ (i). �

Of course, in 2.1.3 more can be said about the factors of the decomposition.
Because of the unique decomposition 2.1.6 it suffices to investigate Abelian
p-groups.

An Abelian p-group is elementary Abelian if xp = 1 for all x ∈ G.

2.1.8 Let G be an elementary Abelian p-group of order pn > 1.

(a) G is the direct product of n cyclic groups of order p.
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(b) If G is written additively, the scalar multiplication

kx := x + · · · + x︸ ︷︷ ︸
k-times

for k := k + pZ ∈ Z/pZ and x ∈ G, makes G into an n-dimensional
vector space V over the prime field Z/pZ. The subgroups of G cor-
respond to the subspaces of V and the automorphisms of G to the
automorphisms of V .

Proof. (a) Since every nontrivial cyclic subgroup of G has order p, G is the
direct product of such subgroups (2.1.3), and since |G| = pn, n factors are
required.

(b) There is nothing to prove. Clearly, the existence of a basis of V with n
elements is equivalent to (a). �

In a (not necessarily Abelian) p-group G, the group

Ωi(G) := 〈x ∈ G | xpi
= 1 〉, i = 0, 1, 2, . . .

is a characteristic subgroup. Evidently

Ωi−1(G) ≤ Ωi(G), i = 1, 2, . . . .

We set
Ω(G) := Ω1(G).

If G is Abelian, then

Ωi(G) = { x ∈ G | xpi
= 1 }

and
G elementary Abelian ⇐⇒ G = Ω(G).

2.1.9 Let G be an Abelian p-group such that

(∗) G = A1 × · · · × An

is the direct product of n cyclic groups Ai �= 1. Then

|Ω(G)| = pn.

More precisely: If ni ∈ N for i = 1, 2, . . . is defined by

|Ωi(G)/Ωi−1(G)| = pni ,

then ni − ni+1 is the number of the factors of order pi in (∗).
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Proof. From
Ωi(G) = Ωi(A1) × · · · × Ωi(An)

follows |Ω(G)| = pn = pn1 . Since

Ω2(G)/Ω(G) = Ω(G/Ω(G))
1.6.2(c)∼= Ω

(×
i

(Ai/Ω(Ai)
)

=×
i

Ω(Ai/Ω(Ai))

= ×
i

Ω2(Ai)/Ω(Ai),

n2 is the number of factors in (∗) of order at least p2. Thus, n1 − n2 is the
number of factors of order p. In the same way one calculates ni − ni+1 for
i ≥ 2. �

The minimal number of generators of a group G is the rank r(G) of G. If
G is an Abelian p-group, then r(G) = n, where n is as in 2.1.9.

The results 2.1.3, 2.1.6, and 2.1.9 allow a complete survey over all finite
Abelian groups: Such a group is a direct product of cyclic groups of prime
power order, and the isomorphism type is determined by the number and
the order of these factors. For example, there are exactly 9 Abelian groups
of order 1000 = 23 · 53, namely

C2 × C2 × C2 × C5 × C5 × C5
C2 × C2 × C2 × C5 × C52

C2 × C2 × C2 × C53

C2 × C22 × C5 × C5 × C5
C2 × C22 × C5 × C52

C2 × C22 × C53

C23 × C5 × C5 × C5
C23 × C5 × C52

C23 × C53

Only the last of these groups is cyclic.

It should be mentioned that finitely generated Abelian groups have a struc-
ture similar to that of finite Abelian groups. They are direct products of
finite Abelian groups and groups isomorphic to Z (e.g., see [19], p. 82).

Exercises

Let G be a finite Abelian group.
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1. Let e ∈ N be minimal such that ae = 1 for all a ∈ G (expG := e is the
exponent of G). There exists an element b ∈ G such that o(b) = e.

2. Let exp G = e. Then G is cyclic, if and only if |G| = e.

3. Let p be a prime, C = Cp3 ×Cp3 , B = Cp ×Cp ×Cp, and G = C ×B. Then
no subgroup of G has a complement isomorphic to Cp2 in G.

4. Every Abelian group of order 546 is cyclic.

5. Give an example of a non-Abelian group that satisfies the statement of 2.1.4.

6. Determine
∏

g∈G

g.

7. For every subgroup U ≤ G there exists an endomorphism ϕ of G such that
Im ϕ = U .

8. If Aut G is Abelian, then G is cyclic.

9. With the help of 6 show:

(p − 1)! ≡ −1 mod p (p prime).4

10. Let a, p ∈ N, p a prime and (a, p) = 1. Then

ap−1 ≡ 1 mod p.5

2.2 Automorphisms of Cyclic Groups

As examples of Abelian groups we determine in this section the automor-
phism groups of cyclic groups.

For an Abelian group G and every k ∈ Z the mapping

αk : G → G such that x �→ xk

is an endomorphism with

Ker αk = { x ∈ G | xk = 1 },

Thus, Ker αk contains all elements of G, whose orders divide k.

2.2.1 αk is an automorphism of the Abelian group G, if and only if
(k, |G|) = 1.

4Wilson’s Theorem.
5Fermat’s Little Theorem.
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Proof. If (k, |G|) = 1, then Ker αk = 1 because of 1.1.8 on page 8. Con-
versely, if (k, |G|) �= 1, then there exists a common prime divisor p of k
and |G|. Now by 2.1.6 the p-subgroup Gp is nontrivial, and there exists a
subgroup of order p in G. This subgroup is contained in Ker αk . �

Together with 1.4.3 on page 22 this gives for cyclic groups:

2.2.2 The automorphisms of a cyclic group of order n are of the form
αk with k ∈ {1, . . . , n − 1} and (k, n) = 1. �

From αkαk′ = αk·k′ = αk′·k = αk′αk for k, k′ ∈ Z we obtain:

2.2.3 The automorphism group of a cyclic group is Abelian.6 �

Because of the decomposition G = ×
p∈π(G)

Gp in 2.1.6 one has

AutG ∼= ×
p∈π(G)

AutGp

(1.6.2 on page 29). Hence, it suffices to determine the automorphism group
of cyclic p-groups.

If G is a cyclic p-group of order pe > 1, then |AutG| is the number of
integers k such that 1 ≤ k < pe and (k, p) = 1. Thus

|AutG| = pe−1(p − 1).

In particular |AutG| = p − 1 if |G| = p. In this case:

2.2.4 The automorphism group of a group of order p is cyclic.7

Proof.8. Let G be a (cyclic) group of prime order p. Then for g ∈ G and
α ∈ AutG

(1) gα = g ⇐⇒ g = 1 or α = 1.

6One can easily extend 2.2.2 and 2.2.3 to: The endomorphism ring of a cyclic group
Cn is isomorphic to the ring Z/nZ.

7This also follows from the well-known result that the multiplicative group of a finite
field is cyclic.

8The argument in this proof will be used again in 8.3.1 on p. 191 in a more general
context.
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We assume that AutG is noncyclic and show that this leads to a contradic-
tion. By 2.1.7 there exists r ∈ π(AutG) and a subgroup A ≤ AutG such
that

A ∼= Cr × Cr.

Let B be the set of all subgroups of order r of A. Then

(2) |B| = r + 1 and B1 ∩ B2 = 1 for B1 �= B2 in B.

For 1 �= B ≤ A and g ∈ G# let

gB :=
∏

β∈B

gβ.

Then
(gB)α =

∏
β∈B

gβα = gB,

for α ∈ B# and thus gB = 1 because of (1). Now (2) gives

1 = gA = g−r
∏

B∈B
gB = g−r,

and o(g) = r. This implies p = r (1.1.8). On the other hand by 2.2.2

r divides |AutG| = p − 1,

a contradiction. �

2.2.5 Let G be a cyclic p-group of order pe > 1 and A := AutG. Then

A = S × T,

where S is a group of order pe−1 and T is a cyclic group of order p − 1.

Proof. As we have already seen |A| = pe−1(p − 1). Moreover, A is Abelian
(2.2.3). The direct decomposition 2.1.6 gives

A = S × T with |S| = pe−1 and |T | = p − 1.

Let H be the (characteristic) subgroup of order p in G (1.4.3 on page 22)
and

ϕ : A → AutH with α �→ α := α|H .
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Then ϕ is an epimorphism since

AutH = {αk | 1 ≤ k ≤ p − 1}.

Moreover, since |AutH| = p−1 and (|S|, p−1) = 1 we get that S ≤ Ker ϕ
(1.1.8 on page 8). In fact S = Ker ϕ since |A| = | Im ϕ| |Ker ϕ|. Now the
Homomorphism Theorem gives

T ∼= A/ Ker ϕ ∼= AutH,

and T is cyclic by 2.2.4. �

2.2.6 Let G = 〈x〉, e ≥ 2, and A and S be as in 2.2.5.

(a) The case p �= 2 or p = 2 = e :

S = 〈α〉 with xα = x1+p.

In particular 〈αpe−2〉 is the unique subgroup of order p in A, and for
β := αpe−2

:
xβ = x1+pe−1

.

(b) The case p = 2 < e :

S = A = 〈γ〉 × 〈δ〉 with xγ = x−1, xδ = x5.

In particular γ, ξ := δ2e−3
, and η := γξ are the only automorphisms

of order 2, and

xξ = x1+2e−1
and xη = x2e−1−1.

Proof. (a) Since (p, 1 + p) = 1 the mapping α is an automorphism of G
(2.2.1). If p = 2 = e, then xα = x1+p = x3 = x−1 is the only nontrivial
automorphism of G. Hence, in the following we may assume that p �= 2.
The order of α is the smallest integer m ∈ N such that

(1 + p)m ≡ 1 (mod pe).

The binomial formula applied to (1 + p)m shows that

(1 + p)pe−1 ≡ 1 (mod pe)
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and
(1 + p)pe−2 �≡ 1 (mod pe)

since p �= 2. This gives m = pe−1. Thus 〈α〉 has the same order as S, i.e.,
S = 〈α〉. The binomial formula also shows the statement for β = αpe−2

.

(b) As in (a) the binomial formula applied to (1 + 22)2
k
, k ∈ N, shows that

(1 + 22)2
e−2 ≡ 1 (mod 2e)

and
(1 + 22)2

e−3 �≡ 1 (mod 2e).

This implies, much as in (a), that the automorphism δ defined by

xδ = x5 = x1+22

has order 2e−2. From

(1 + 2)k �≡ −1 (mod 2e) (e ≥ 3),

for all k ∈ N, we finally conclude that no power of δ is equal to the automor-
phism γ defined by xγ = x−1. Hence 〈γ〉 and 〈δ〉 generate a subgroup of
order 2e−2 · 2 = 2e−1 in S(= A). This implies A = 〈γ〉 × 〈δ〉. The equation
xξ = x1+2e−1

follows from

(1 + 22)2
e−3 ≡ 1 + 2e−1 (mod 2e).

Finally xη = x2e−1−1 holds since

xη = xγξ = (x−1)1+2e−1
= x−1−2e−1

and x−2e−1
= x2e−1

. �

It should be emphasized that in case 2.2.6 (b) the automorphism group A
is not cyclic but contains a subgroup isomorphic to Z2 × Z2.

Exercises

Let p be a prime and G a finite group.

1. Let q �= 1 be a divisor of p − 1. Use a semidirect product to construct a
non-Abelian group of order pq that contains a normal subgroup of order p.
Also construct a non-Abelian group of order p(e−1)e, e ≥ 2, that contains a
cyclic normal subgroup of order pe.
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2. Let p be the smallest prime divisor of |G| and N be a normal subgroup of
order p. Then N ≤ Z(G).

3. Let p �= 2 and G a cyclic p-group. Then Aut G is cyclic.

4. With the idea used in the proof of 2.2.4 show: Let K be a field and U a finite
subgroup of the multiplicative group of K. Then U is cyclic.

In the following let G, γ, η, ε be as in 2.2.6 (b). Set

D := 〈γ〉 � G, H := 〈η〉 � G, 9 M := 〈ε〉 � G.

5. D is a dihedral group.

6. All the involutions of M are contained in 〈ε, x2e−1〉.
7. Let H1 and H2 be subgroups of H defined by

H1 := 〈x2, η〉 and H2 := 〈x2, ηx〉.

Then

(a) H1 ∩ H2 = 〈x2〉 and |H : Hi| = 2, i = 1, 2.

(b) H1 is a dihedral group and contains all of the involutions of H.

(c) H2 contains exactly one involution.10

9H is a semidihedral group; see 5.3.
10H2 is called a (generalized) quaternion group; see 5.3.



Chapter 3

Action and Conjugation

The notion of an action plays an important role in the theory of finite
groups. The first section of this chapter introduces the basic ideas and
results concerning group actions. In the other two sections the action on
cosets is used to prove important theorems of Sylow, Schur-Zassenhaus and
Gaschütz.

3.1 Action

Let Ω = {α, β, . . .} be a nonempty finite set. The set SΩ of all permuta-
tions of Ω is a group with respect to the product

αxy := (αx)y, α ∈ Ω and x, y ∈ SΩ,

is the symmetric group on Ω. We denote by Sn the symmetric group
on {1, . . . , n}, which is the symmetric group of degree n. Evidently
Sn

∼= SΩ if and only if |Ω| = n.

A group G acts on Ω, if to every pair (α, g) ∈ Ω × G an element αg ∈ Ω
is assigned1 such that

O1 α1 = α for 1 = 1G and all α ∈ Ω,

O2 (αx)y = αxy for all x, y ∈ G and all α ∈ Ω.

1As in the definition of a group we are forming a product, but we write αg instead of
α g.

55
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The mapping
gπ : Ω → Ω with α �→ αg

describes the action of g ∈ G on Ω. Because of

(αg)g−1 O2= αgg−1
= α1 O1= α,

(g−1)π is the inverse of gπ . In particular gπ is a bijection and thus a
permutation on Ω. Now O2 implies that

π : G → SΩ with g �→ gπ

is a homomorphism. The homomorphism theorem shows that G/ Ker π is
isomorphic to a subgroup of SΩ and thus also to one of Sn, n := |Ω|.
Conversely, every homomorphism π : G → SΩ gives rise to an action of G
on Ω, if one defines αg := αgπ

. A homomorphism π : G → SΩ is said to be
an action of G on Ω.

If Ker π = 1, then G acts faithfully on Ω; and if Ker π = G, then G acts
trivially on Ω.

Every action π of G on Ω gives rise to a faithful action of G/ Ker ϕ on Ω,
if we set

α(Ker ϕ)g := αg.

Next we introduce some important actions, which we will frequently meet
in the following chapters.

3.1.1 The group G acts on

(a) the set of all nonempty subsets A of G by conjugation:

A
x�→ x−1Ax = Ax,

(b) the set of all elements g of G by conjugation:

g
x�→ x−1gx = gx,

(c) the set of right cosets Ug of a fixed subgroup U of G by right multi-
plication:

Ug
x�→ Ugx.
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Proof. In all cases 1 = 1G acts trivially; this is O1. Associativity gives O2.
�

In (a) and (b) the permutation xπ is the inner automorphism induced by x
(see 1.3 on page 15).

Also left multiplication on the set Ω of all left cosets of a fixed subgroup U
leads to an action π : G → SΩ. But here one has to define

xπ : G → SΩ with gU �→ x−1gU

since gU �→ xgU is not a homomorphism (but an anti-homomorphism).2

Using (c) we obtain:

3.1.2 Let U be a subgroup of index n of the group G. Then G/UG is
isomorphic to a subgroup of Sn.3

Proof. As in 3.1.1 (c) let Ω be the set of all right cosets of U in G and
π : G → SΩ the action by right multiplication. Then for x, g ∈ G

Ugx = Ug ⇐⇒ gxg−1 ∈ U ⇐⇒ x ∈ Ug,

and thus
xπ = 1SΩ ⇐⇒ x ∈ UG,

i.e., UG = Ker π. �

In order to work with the actions given in 3.1.1 we first set some notation
and collect some elementary properties of actions which follow more or less
directly from the definition.

In the following, G is a group that acts on the set Ω. For α ∈ Ω

Gα := {x ∈ G | αx = α}.

The set Gα is the stabilizer of α in G; and x ∈ G stabilizes (fixes) α if
x ∈ Gα.

Notice that Gα is a subgroup of G because of O2.
2We will use the action by left multiplication only in 3.3.
3UG =

⋂

g∈G

Ug
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3.1.3 Gα
g = Gαg for g ∈ G, α ∈ Ω.

Proof. (αg)x = αg ⇐⇒ αgxg−1
= α ⇐⇒ gxg−1 ∈ Gα ⇐⇒ x ∈ (Gα)g . �

Two elements α, β ∈ Ω are said to be equivalent, if there exists x ∈ G such
that αx = β. Then O1 and O2 show that this notion of equivalence does
indeed define an equivalence relation on Ω. The corresponding equivalence
classes are called the orbits of G (or G-orbits) on Ω. For α ∈ Ω

αG := {αx | x ∈ G}

is the orbit that contains α. G acts transitively on Ω, if Ω itself is an orbit
of G, i.e., for all α, β ∈ Ω there exists x ∈ G such that αx = β.

3.1.4 Frattini Argument. Suppose that G contains a normal subgroup,
which acts transitively on Ω.4 Then G = GαN for every α ∈ Ω. In
particular, Gα is a complement of N in G if Nα = 1.

Proof. Let α ∈ Ω and y ∈ G. The transitivity of N on Ω gives an element
x ∈ N such that αy = αx. Hence αyx−1

= α and thus yx−1 ∈ Gα . This
shows that y ∈ Gαx ⊆ GαN . �

The following elementary result is similar to Lagrange’s theorem:

3.1.5 |αG| = |G : Gα| for α ∈ Ω. In particular, the length |αG| of the
orbit αG is a divisor of |G|.

Proof. For y, x ∈ G

αy = αx ⇐⇒ αyx−1
= α ⇐⇒ yx−1 ∈ Gα ⇐⇒ y ∈ Gαx. �

Since Ω is the disjoint union of orbits of G we obtain:

3.1.6 If n is an integer that divides |G : Gα| for all α ∈ Ω, then n also
divides |Ω| . �

4Of course, here we mean the action of N as a subgroup of G.
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For U ⊆ G

CΩ(U) := {α ∈ Ω | U ⊆ Gα}
is the set of fixed points of U in Ω. Obviously, Ω \ CΩ(G) is the union of
all G-orbits of length > 1.

3.1.7 Let G be a p-group. Then

|Ω| ≡ |CΩ(G)| (mod p).

Proof. For α ∈ Ω′ := Ω \ CΩ(G) the stabilizer Gα is a proper subgroup
of G. Hence, p is a divisor of |G : Gα| (Lagrange’s Theorem), and 3.1.6
implies

|Ω′| ≡ 0 (mod p). �

We now apply 3.1.3 and 3.1.5 using the actions given in 3.1.1.

Let Ω be the set of all nonempty subsets of G and H ≤ G. Then H acts by
conjugation on Ω. For A ∈ Ω the set consisting of the subsets

Ax = x−1Ax (x ∈ H)

is an orbit of H. The stabilizer

NH(A) := {x ∈ H | Ax = A}

of A in H is the normalizer of A in H.

By 3.1.5 |H : NH(A)| is the number of H-conjugates of A.

Let B ∈ Ω. Then B normalizes A if B ⊆ NG(A).

By 3.1.1 (b) H acts by conjugation on the elements of G. For this action
the stabilizer

CH(g) := {x ∈ H | gx = g}
of g ∈ G is the centralizer of g in H. It is evident that this subgroup
consists of those elements x ∈ H that satisfy xg = gx.

Because of 3.1.5 |H : CH(g)| is the number of H-conjugates of g.

For a nonempty subset A of G

CH(A) :=
⋂

g∈A

CH(g)
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is the centralizer of A in H. Thus, CH(A) contains exactly those elements
of H that commute with every element of A. For example, CG(A) = G if
and only if A is a subset of Z(G). A subset B ⊆ G centralizes A, if
B ⊆ CG(A) (or equivalently [A, B] = 1; see page 25).

3.1.3 implies for x ∈ G

NG(A)x = NG(Ax) and CG(A)x = CG(Ax);

and more generally

NH(A)x = NHx(Ax) and CH(A)x = CHx(Ax).

In the case H = G the G-orbit gG of the elements conjugate to g is the
conjugacy class of g in G, and

|gG| = |G : CG(g)|.

The center Z(G) contains exactly those elements of G whose conjugacy class
has length 1, i.e., those elements that are only conjugate to themselves.

G is the disjoint union of its conjugacy classes since these classes are the
G-orbits with respect to the action by conjugation. This gives:

3.1.8 Class Equation. Let K1, . . . , Kh be the conjugacy classes of G
that have length larger than 1, and let ai ∈ Ki for i = 1, . . . , h. Then

|G| = |Z(G)| +
h∑

i=1
|G : CG(ai)|. �

We note:

3.1.9 Let U be a subgroup of G. Then NG(U) is the largest subgroup of
G in which U is normal. The mapping

ϕ : NG(U) → AutU with x �→ (u �→ ux)

is a homomorphism with Ker ϕ = CG(U) . In particular, NG(U)/CG(U) is
isomorphic5 to a subgroup of AutU . �

We close this section with two fundamental properties of p-groups and p-
subgroups, which follow from 3.1.7.

5Homomorphism Theorem 1.2.5 on p. 13.
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3.1.10 Let P be a p-subgroup of G and p be a divisor of |G : P |. Then
P < NG(P ).

Proof. By 3.1.1 (c) P acts on the set Ω of right cosets Pg, g ∈ G, by right
multiplication, and

|Ω| = |G : P | ≡ 0 (mod p).

From 3.1.7 we get (with P in place of G):

|CΩ(P )| ≡ |Ω| ≡ 0 (mod p).

Moreover CΩ(P ) �= ∅ since P ∈ CΩ(P ) . Hence there exists Pg ∈ CΩ(P )
such that P �= Pg. This implies g �∈ P and PgP = Pg. Thus gPg−1 = P
and g ∈ NG(P ) \ P . �

3.1.11 Let P be a p-group and N �= 1 a normal subgroup of P . Then
Z(P ) ∩ N �= 1. In particular Z(P ) �= 1.

Proof. P acts on Ω := N by conjugation, and

CΩ(P ) = Z(P ) ∩ N.

Since N is a p-group we get from 3.1.7

|CΩ(P )| ≡ |Ω| ≡ 0 (mod p).

Now 1 ∈ CΩ(P ) gives |CΩ(P )| ≥ p. �

Exercises

Let G be a group.

1. Let G be the semidirect product of a subgroup K with the normal subgroup
N , and let Ω := N . Then

ωkn := ωkn (ω ∈ Ω, k ∈ K, n ∈ N)

defines an action of G on Ω.
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2. If G acts transitively on Ω, then NG(Gα) acts transitively on CΩ(Gα) (α ∈
Ω).

3. Let p be the smallest prime divisor of |G|. Every subgroup of index p is
normal in G.

4. Let U ≤ G and 1 �= |G : U | ≤ 4. Then |G| ≤ 3, or G is not simple.

5. Suppose that the class equation of G is

60 = 1 + 15 + 20 + 12 + 12.

Then G is simple.

6. Suppose that G acts faithfully on the set Ω. Let A be a subgroup of G that
is transitive on Ω. Then |CG(A)| is a divisor of |Ω|. If in addition A is
Abelian, then CG(A) = A.

7. Let ∅ �= A ⊆ G . Then A ⊆ CG(CG(A)) and CG(CG(CG(A))) ≤ CG(A).

8. Let A be a normal subgroup of G and U ≤ CG(A). Then [U, G] ≤ CG(A).

9. (a) A � G, U ≤ G ⇒ CU (A) � U ;

(b) A char G ⇒ CG(A) charG and NG(A) charG.

10. Let K be a field and V a vector space of dimension |G| over K. Then G is
isomorphic to a subgroup of GL(V ).6

3.2 Sylow’s Theorem

In this section Sylow’s Theorem is proved. For every prime power divisor
pi of |G| this theorem establishes the existence of a subgroup of order pi in
G.7 This serves as the basis for a method, which turned out to be extremely
successful in the theory of finite groups: The analysis of finite groups by
means of the normalizers of nontrivial p-subgroups.

First a classical theorem from the first half of the nineteenth century.

3.2.1 Cauchy’s Theorem.8 Let G be a group and p a prime dividing
|G|. Then G contains an element of order p; in particular there exists a
subgroup of order p in G.

6GL(V ) is the group of bijective linear mappings of V ; see 8.6.
7If G is Abelian, then G possesses a subgroup of order n for every divisor n of |G|, and

this is also true for nilpotent groups; see 2.1.4 on page 45 and 5.1 on page 99 .
8Compare with [37], p. 291.
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Proof.9 Let

Ω := { x := (x1, . . . , xp) | x1, . . . , xp ∈ G and x1x2 · · ·xp = 1 }.

Since the components x1, . . . , xp−1 of x ∈ Ω can be chosen independently
(after which xp uniquely determined) we get

|Ω| = |G|p−1 ≡ 0 (mod p).

Notice that

x1x2 · · ·xp = 1 ⇔ x2 · · ·xp = x−1
1 ⇔ x2 · · ·xpx1 = 1,

so the cyclic group Cp = 〈a〉 acts on Ω by

(x1, x2, . . . , xp)
a�→ (x2, . . . , xp, x1).

Hence 3.1.7 implies

|CΩ(〈a〉)| ≡ |Ω| ≡ 0 (mod p).

Since 1 = (1, . . . , 1) ∈ CΩ(〈a〉) there exists x = (x1, . . . , xp) �= 1 ∈ CΩ(〈a〉).
This shows that x1 = . . . = xp �= 1 and x1

p = 1. �

In the following let p be a prime and G a group. A p-subgroup P is called
a Sylow p-subgroup of G if no p-subgroup of G contains P properly.
Thus, the Sylow p-subgroups of G are the maximal elements of the set of
p-subgroups of G (ordered by inclusion). We denote the set of Sylow p-
subgroups of G by Sylp G.

For example, Sylp G = {1} if p is not a divisor of G (Lagrange’s Theorem);
and Sylp G = {G} if G is a p-group. Since automorphisms of G map Sylow
p-subgroups to Sylow p-subgroups the subgroup

Op(G) :=
⋂

P∈Sylp G

P

is a characteristic p-subgroup of G. More precisely:

3.2.2 Let N be a normal p-subgroup of G.10 Then N ≤ Op(G).

9Following J.H. McKay.
10That is, a normal subgroup that is a p-group.
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Proof. Let P ∈ Sylp G. Then NP is a p-subgroup (1.1.6). The maximality
of P and P ≤ PN gives N ≤ P . �

In particular, if a Sylow p-subgroup P of G is normal in G, then Sylp G =
{P} and P is the set of all p-elements of G. Such a group is said to be p-
closed. Moreover, if G is p-closed and xP , x ∈ G, is a p-element of G/P ,
then 〈x〉P is a p-group and thus x ∈ P . Now Cauchy’s Theorem shows that
p does not divide |G/P | .
If P is a p-subgroup of G and p does not divide |G : P |, then Lagrange’s
Theorem shows that |P | the largest p-power dividing |G|, and P ∈ Sylp G.
In general:

3.2.3 Sylow’s Theorem [89]. Let pe be the largest p-power dividing
the order of G.

(a) The Sylow p-subgroups of G are exactly the subgroups of order pe .

(b) The Sylow p-subgroups of G are conjugate in G. In particular

|Sylp G| = |G : NG(P )| for P ∈ Sylp G.

(c) |Sylp G| ≡ 1 (mod p).

Proof.11 Let P be a Sylow p-subgroup of G. Then P is also a Sylow p-
subgroup of

U := NG(P ).

Hence as mentioned above

(1) U is p-closed and |U : P | �≡ 0 (mod p),

We claim

(2) |G : U | ≡ 1 (mod p).

To prove this we investigate the action of P on the set Ω of all cosets Ug,
g ∈ G. Then |Ω| = |G : U | and by 3.1.7

|CΩ(P )| ≡ |Ω| (mod p).
11Other proofs can be found in [97], [40], and [41], for example.
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U is in CΩ(P ) since P ≤ U . Let Ug ∈ CΩ(P ). Then UgP = Ug, and
this implies gPg−1 ≤ U . As U is p-closed, we get gPg−1 = P and thus
g ∈ NG(P ) = U . It follows that CΩ(P ) = {U}. This shows (2).

Let S be another Sylow p-subgroup. Then also S acts on Ω by right mul-
tiplication. Thus (2) and 3.1.7 give a coset Ug such that UgS = Ug. It
follows that gSg−1 ≤ U and thus gSg−1 = P by (1). This implies (b).
Now (c) follows from (2) and

|Sylp G| = |G : NG(P )| = |G : U |.

In addition (a) holds since

|G| = |P ||U : P ||G : U |,

where the second and third factors are not divisible by p ((1) and (2)). �

We note some consequences.

3.2.4 Let pi be a divisor of the order of G. Then G possesses a subgroup
of order pi.

Proof. We proceed by induction on |G|. Because of Sylow’s Theorem we
may assume that G is a nontrivial p-group. By 3.1.11 Z(G) �= 1. Let N
be a subgroup of order p in Z(G). Then induction, applied to G/N , gives a
subgroup U/N , N ≤ U ≤ G, such that |U/N | = pi−1. Hence |U | = pi. �

3.2.5 Let N be a normal subgroup of G and P ∈ Sylp G. Then

PN/N ∈ Sylp G/N and P ∩ N ∈ Sylp N.

Proof. Both claims follow from 3.2.3 (a): In the chain of subgroups

1 ≤ P ∩ N ≤ N ≤ PN ≤ G

we get |P ∩ N | |PN/N | = |P | since PN/N ∼= P/P ∩ N (1.2.6 on page 13).
Hence |N : P ∩ N | and |G : PN | are not divisible by p. �
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3.2.6 Let U be a p-subgroup but not a Sylow p-subgroup of G. Then
U < R for every Sylow p-subgroup R of NG(U).

Proof. If P ∈ Sylp G with U < P , then U < NP (U) by 3.1.10. Hence U is
not a maximal p-subgroup of NG(U). On the other hand, U is contained in
every Sylow p-subgroup of NG(U) since U � NG(U) (3.2.2). �

A variant of 3.1.4 yields an important factorization:

3.2.7 Frattini Argument. Let N be a normal subgroup of G and P ∈
Sylp N . Then G = NG(P )N .

Proof. G acts on the set Ω = Sylp N by conjugation, and the stabilizer of
P is NG(P ). Moreover, by Sylow’s Theorem N is transitive on Ω. Hence,
the claim follows from 3.1.4. �

The following result is an application of the Frattini argument:

3.2.8 Let N be a normal subgroup of G with factor group12 G := G/N ,
and let P be a p-subgroup of G. Assume that (|N |, p) = 1. Then

NG(P ) = NG(P ) and CG(P ) = CG(P ).

Proof. The definition of a factor group gives

NG(P ) = NG(NP ).

P is a Sylow p-subgroup of NP since (|N |, p) = 1, and NP is a normal
subgroup of NG(NP ). Hence, the Frattini argument gives

NG(NP ) = NP NNG(NP )(P ) = NP NG(P ) = N NG(P )

and thus the claim NG(P ) = NG(P ).

It is evident that CG(P ) ≤ CG(P ). Let c ∈ CG(P ). Since CG(P ) ≤ NG(P )
there exists n ∈ N and y ∈ NG(P ) such that c = ny. Hence c = y and

Nx = (Nx)y = Nxy for all x ∈ P.

12Bar convention, see p. 14.
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The commutator y−1xyx−1 is in N ∩ P = 1. It follows that y ∈ CG(P )
and thus CG(P ) = CG(P ). �

This yields a result that we will need later in Chapter 11:

3.2.9 Let G = NH be a factorization of G with H ≤ G, N � G and
(p, |N |) = 1 . Then for every p-subgroup P of H

NG(P ) = (N ∩ NG(P ))(H ∩ NG(P )).

Proof. Let G := G/N and N1 := N ∩ H. By 3.2.8

NH/N1(PN1/N1) = NH(P )N1/N1.

The isomorphism (1.2.6 on page 13)

H/N1 ∼= HN/N (= G)

shows that
NG(P ) = NG(P ) = NH(P ).

This implies
NH(P ) ≤ NG(P ) ≤ N NH(P ),

and the claim follows from the Dedekind identity 1.1.11. �

The alternating group A5 is a simple group of order

60 = 22 · 3 · 5

(for the definition, order and simplicity see Section 4.3). On the other hand,
using Sylow’s Theorem one can show that there are no non-Abelian simple
groups of order less than < 60.

We will now use Sylow’s Theorem—in particular 3.2.3 (c)—to determine the
structure of a group of order 60, which is not 5-closed. First two remarks:

3.2.10 Let G be not 3-closed and |G| = 12. Then G is 2-closed.
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Proof. Let S ∈Syl3 G. Then

n := |Syl3 G| 3.2.3(b)
= |G : NG(S)|

is a divisor of |G|
|S| = 4. Now 3.2.3 (c) implies n = 4. Since different Sylow

3-subgroups (∼= C3) of G intersect trivially there are exactly

4 · (3 − 1) = 8

elements of order 3 in G. Hence, the number of 2-elements in G is at most
4, and G contains a unique Sylow 2-subgroup. �

3.2.11 Let |G| ∈ {5, 10, 15, 20, 30}. Then G is 5-closed.

Proof. We show |Syl5G| = 1. For |G| �= 30 this follows directly from 3.2.3
(b), (c). In the case |G| = 30 we show that the assumption n := |Syl5G| > 1
leads to a contradiction: Again 3.2.3 (c) gives n = |Syl5G| = 6. As different
subgroups of order 5 intersect trivially there are 6 · 4 = 24 elements of
order 5 in G. Let t be an involution of G (3.2.1) and S ∈ Syl5G. Then
|tS | = 5 since NG(S) = S . Hence there is no element of order 3 in G, which
contradicts 3.2.1. �

3.2.12 Let G be a group of order 60, which is not 5-closed.

(a) G is simple.

(b) Let M be the set of maximal subgroups of of G. Then

M = {NG(Gp) | Gp ∈ Sylp G, p ∈ {2, 3, 5}},

and

|NG(Gp)| =


12, p = 2
6, if p = 3
10, p = 5

.
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Proof. In the following Gp, p ∈ π(G), always denotes a Sylow p-subgroup
of G. By our hypothesis |G : NG(G5)| �= 1. Hence 3.2.3 implies

(1) |NG(G5)| = 10.

(a) Assume that G is not simple. Then G contains a a proper nontrivial
normal subgroup N . If 5 ∈ π(N) , then N contains a Sylow 5-subgroup G5
of G, which by 3.2.11 is normal in N . But then G5 is characteristic in N and
thus normal in G (1.3.2). This contradicts the hypothesis. Hence 5 �∈ π(N)
and thus 5 ∈ π(G/N). By 3.2.11

1 �= G5N/N � G/N,

and NG5 � G. As seen above, NG5 = G since 5 ∈ π(NG5). Thus every
proper nontrivial normal subgroup N of G has order 12. But then 3.2.10
shows that N contains a normal and thus characteristic Sylow subgroup,
which has to be normal in G but is not of order 12. This final contradiction
shows that G is simple.

(b) By (a) |G : NG(Gp)| �= 1 for p ∈ {2, 3}, and 3.2.3 and (1) imply

(2) |NG(G3)| = 6

and |NG(G2)| ∈ {4, 12}. Together with (2) and 3.2.10 we obtain:

(3) Every subgroup of order 12 in G is 2-closed.

Next we show:

(4) |NG(G2)| = 12.

More precisely, we show that |NG(G2)| = 4 leads to a contradiction: Then
|Syl2G| = 15, and G2 is Abelian since it has order 4. Let S1, S2 ∈ Syl2G
such that

1 �= S1 ∩ S2 < S1.

Then
〈S1, S2〉 ≤ NG(S1 ∩ S2) =: L

and L �= G by (a). If 5 ∈ π(L), then L is 5-closed (3.2.11) and L ≤
NG(G5) , which contradicts (1). It follows that |L| = 12. Since |Syl2 L| ≥ 2
this contradicts (3).
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Hence S1 ∩ S2 = 1 for any two different S1, S2 ∈Syl2 G . It follows that
there are 3 · 15 = 45 2-elements in G. On the other hand, by (1) there are
also 4 · 6 = 24 elements of order 5 in G. This contradiction proves (4).

Let M be a maximal subgroup of G. By (1), (2), and (4) M is not a
Sylow subgroup of G. If 5 ∈ π(M) , then M is 5-closed by 3.2.10. Hence
M ≤ NG(G5) for G5 ≤ M and thus M = NG(G5).

We now may assume that 5 �∈ π(M) and |M | ∈ {6, 12}. If |M | = 6 , then
M is 3-closed and M = NG(G3) for G3 ≤ M . If |M | = 12 , then by (3) M
is 2-closed and M = NG(G2) for G2 ≤ M . �

Let G be as in 3.2.12 and U := NG(G2). Then |G : U | = 5, and 3.1.2
yields a monomorphism from G into the symmetric group S5. Hence G is
isomorphic to a subgroup A of index 2 in S5. Let A5 be the alternating group
of degree 5 (see Section 4.3). Then also |S5 : A5| = 2, so A and A5 or both
normal subgroups of order 60 in S5. In particular by the Homomorphism
Theorem |A : A ∩ A5| ≤ 2, and the simplicity of A yields A = A5. This
shows that every group of order 60 that is not 5-closed is isomorphic to A5.

Exercises

Let G be a group, p a prime and S ∈ Sylp G.

1. Let NG(S) ≤ U ≤ G. Then |G : U | ≡ 1 mod p.

2. |{g ∈ G | gp = 1}| ≡ 0 mod p for all prime divisors p of |G|.
3. Let |G| = 168. How many elements of order 7 are in G?

4. Every group of order 15 is cyclic.

5. Let p, q, r be different primes.

(a) A group of order pq contains a normal Sylow p-subgroup, if p > q.

(b) A group of order pqr contains at least one nontrivial normal Sylow
subgroup.

6. Let H ≤ G and |G : H| = pn. Then the following hold:

(a) Op(H) ≤ Op(G).

(b) If H ∩ Hx = 1 for all x ∈ G \ H, then G is p-closed.

7. Every non-Abelian group of order less than 60 is not simple.

8. Every simple group of order 168 contains a subgroup of index 7.
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9. Let S ∩ Sg = 1 for all g ∈ G \ NG(S). Then |Sylp G| ≡ 1 mod |S|.
10. Let S �= 1 and |G : S| = p + 1. Then Op(G) �= 1, or p + 1 = qr, q ∈ P, and

there exists an elementary Abelian normal subgroup of order p + 1 in G.

11. (Brodkey, [33]) Let S be Abelian and Op(G) = 1. Then there exists g ∈ G
such that S ∩ Sg = 1.

12. Suppose that G �= 1 and |G : M | ∈ P for every maximal subgroup M of G.
Then G contains a normal maximal subgroup or G = 1.

3.3 Complements of Normal Subgroups

To find complements of normal subgroups is one of the basic problems of
group theory. In general such complements do not exist. For example, the
center of a quaternion group Q does not have a complement since there is
only one involution in Q (see Exercise 8 on page 20); also, proper subgroups
of cyclic groups do not have complements.

This leaves the problem of finding suitable conditions that allow us to es-
tablish the existence of such complements. For example, let G be a group
and K a normal subgroup of G such that G/K is a p-group and p does not
divide |K|. Then Sylow’s Theorem shows that the Sylow p-subgroups of G
are the complements of K; in particular, all complements of K are conjugate
in G.

In this section we use a method of Wielandt to prove similar results in a
more general situation.13

In the following let K be an Abelian subgroup of the group G and S the set
of all transversals of K in G (1.1.9 on page 8).

For R,S ∈ S define

R|S :=
∏

(r,s)∈R×S
Kr=Ks

(rs−1) (∈ K);

note that
Kr = Ks ⇐⇒ rs−1 ∈ K.

The ordering of the factors in this product is unimportant since K is Abelian.

13The idea for the proof of Gaschütz’s Theorem was communicated to us by G. Glauber-
man.
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For R,S, T ∈ S we get

(1) (R|S)−1 = S|R,

(2) (R|S) (S|T ) = R|T.

We now assume in addition that K is a normal subgroup of G. Then every
S ∈ S is also a left transversal of K in G, i.e.,

G =
.⋃

s∈S

sK.

G acts by left multiplication on S (see page 57):

(S, x) �→ xS (x ∈ G, S ∈ S).

In particular

(3) kR|S = k|G:K| (R|S) for k ∈ K.

Now
xR |xS =

∏
Kxr=Kxs
(r,s)∈R×S

x(rs−1)x−1 = x(R|S)x−1

implies

(4) R|S = 1 ⇒ xR |xS = 1.

We now assume in addition that |K| and |G/K| are coprime. Then the
mapping

α : K → K with k �→ k|G/K|

is an automorphism of K since K is Abelian (see 2.2.1 on page 49). Thus
(3) implies

(5) kR|S = 1 for k := (R|S)−α−1

(i.e. k|G/K| = (R|S)−1), and

(6) R|S = 1 = kR|S ⇒ k = 1.

The statements (1)–(6) are the crucial steps in the proof of our main result:
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3.3.1 Theorem of Schur-Zassenhaus.14 Let K be an Abelian normal
subgroup of G such that (|K|, |G : K|) = 1 . Then K has a complement in
G, and all the complements of K are conjugate in G.

Proof. Because of (1) and (2) the relation

R ∼ S ⇐⇒ R|S = 1

is an equivalence relation on S. Let R̃ be the equivalence class, which
contains R. By (4)

S̃x := x̃−1S, (x ∈ G)

defines an action of G on S/ ∼ . If R,S ∈ S and k is as in (5), then R̃k = S̃;
i.e., K acts transitively on S/ ∼. On the other hand, by (6) the stabilizer
of R̃ in K is trivial. Hence, the Frattini argument shows that the stabilizer

G
R̃

= { x ∈ G | xR |R = 1 }

is a complement of K in G. Conversely, if X is a complement of K in G,
then xX = X and xX|X = 1 for all x ∈ X. Thus X = G

R̃
for X = R,

and all complements of K are conjugate by 3.1.3 since K acts transitively
on S/ ∼. �

In chapter 6 we will generalize this Theorem of Schur-Zassenhaus allowing
K to be non-Abelian (see 6.2 on page 125).

We now investigate a more general situation. Let

K ≤ U ≤ G and K � G.

If H is a complement of K in G, then H ∩ U is a complement of K in
U (Dedekind identity). The opposite implication is treated in Gaschütz’s
Theorem. For K = U this theorem coincides with the Theorem of Schur-
Zassenhaus, but in contrast to that result, Gaschütz’s Theorem does not
generalize to non-Abelian K.

3.3.2 Gaschütz’s Theorem [48]. let K be an Abelian normal subgroup
of G and U a subgroup of G such that

K ≤ U and (|K|, |G : U |) = 1.

14Compare with [82] and [19], p. 126.
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(a) Suppose that K has a complement in U . Then K has a complement
in G.

(b) Suppose that H0 and H1 are two complements of K in G such that

H0 ∩ U = H1 ∩ U.

Then H0 and H1 are conjugate in G.

Proof. It should be mentioned that the following proof coincides with that
of 3.3.1 if U = K . Let A be a complement of K in U , i.e.,

(i) U = KA, K ∩ A = 1.

Let L be the set of left transversals of U in G, and let S0 be a fixed element
of L. Then for every left transversal L ∈ L and � ∈ L:

(ii) � = s�k�a� with s� ∈ S0, k� ∈ K, a� ∈ A and s�U = �U .

Moreover, because of (i) the factorization of � in (ii) is unique. In particular,
for every � ∈ L there exists exactly one �0 ∈ S0K such that �U = �0U ,
namely �0 := s�k�.

Hence, every L ∈ L is associated with an element L0 := {�0 | � ∈ L} in

S := {L ∈ L | L ⊆ S0K}

such that LA = L0A. The uniqueness of the factorization in (ii) also gives:

(iii) L0 is the unique element of S such that LA = L0A.

For x ∈ G and the left transversal xL ∈ L one gets

(xL)0A = xLA = xL0A = (xL0)0A,

and thus by (iii)

(iv) (xL)0 = (xL0)0 for all L ∈ L.

We now define
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(v) Sx := (x−1S)0 for S ∈ S and x ∈ G.

Since

(Sx)y = (y−1(x−1S)0)0
(iv)
= (y−1(x−1S))0 = ((xy)−1S)0 = S(xy)

(v) defines an action of G on S. In the following we always write (xS)0
instead of Sx−1

since we want to use the notion

R|S :=
∏

(r,s)∈R×S
Kr=Ks

(rs−1) (R,S ∈ S)

which is slightly more general than that introduced at the beginning of this
section. First we discuss the statements (1)–(6) given there for our more
general set-up: (1) and (2) follow as there. For the proof of (3) observe that
for k−1 ∈ K and S ∈ S

kS ⊆ kS0K = S0K,

and thus by (iii) kS = (kS)0 ∈ S . This implies statement (3):

(kS)0|R = k|G:K|(S|R) for k ∈ K and S, R ∈ S.

For the proof of (4) let x ∈ G and (r, s) ∈ R × S such that Kr = Ks,
where as above R,S ∈ S . We apply (ii) using the notation given there.
Then

xr = sxrkxraxr and xs = sxskxsaxs,

and xrK = xsK yields

sxrKaxr = sxsKaxs.

This implies sxr = sxs and also axr = axs since K ∩ A = 1. We get

(xr)0(xs)−1
0 = xra−1

xr (xsa−1
xs )−1 = xrs−1x−1

and thus

(xR)0|(xS)0 = x(R|S)x−1 for all x ∈ G and R,S ∈ S.

Now the statements (4)–(6) follow as in the beginning of this section. As in
the proof of the Theorem of Schur-Zassenhaus

R ∼ S ⇐⇒ R|S = 1
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defines an equivalence relation on S, and the existence of a complement
follows as there, using the action of G and K on S/ ∼.

Let H0, H1 be as in (b). Then

A := U ∩ H0 = U ∩ H1

is a complement of K in U ; and a left transversal of A in Hi (i = 0, 1) is
also a left transversal of U in G. Let S0 be a fixed left transversal of A in
H0 and S be defined with respect to S0 as before. For every s ∈ S0 there
exists a ks ∈ K such that sks ∈ H1 (ks = 1 if s ∈ H0 ∩ H1). Now

S1 := {sks | s ∈ S0}

is a left transversal of A in H1 with S1 ⊆ S0K, i.e. S1 ∈ S.

By (ii) we have (Li)0 = Si for every left transversal Li of U in G that is
contained in Hi. In particular (xSi)0 = Si for all x ∈ Hi. Hence, Hi fixes
the equivalence class of S/ ∼ that contains Si (i = 0, 1).

Now as in the proof of 3.3.1 the transitive action of G on S/ ∼ implies that
H0 and H1 are conjugate in G. �

Exercises

Let G be a group and Φ(G) the intersection of all maximal subgroups of G.15

1. Let N be an Abelian minimal normal subgroup of G. Then N has a comple-
ment in G, if and only if N �≤ Φ(G).

2. Let N be an Abelian normal subgroup of G such that N ∩ Φ(G) = 1. Then
N has a complement in G.

3. Let N1, N2 be normal subgroups of G. If N1 has a complement Li in G
(i = 1, 2) such that N2 ≤ L1, then also N1N2 has a complement in G.

4. Let p ∈ π(G) and K be an elementary Abelian normal p-subgroup of G such
that

K = 〈K ∩ Z(S) | S ∈ Sylp G〉.
Then K = [K, G] CK(G).

15Φ(G) is the Frattini subgroup of G; see 5.2.3 on p. 105.



Chapter 4

Permutation Groups

Let Ω be a set. A group G that acts faithfully on Ω is a permutation
group on Ω. Every permutation group is isomorphic to a subgroup of SΩ,
and every subgroup of SΩ is a permutation group on Ω.

The concept of a permutation group is not only interesting in its own right
but also can be used to investigate and describe groups in general.

4.1 Transitive Groups and Frobenius Groups

In the following let G be a group that acts on the set Ω. Suppose that G
also acts on another set Ω′. These two actions are equivalent if there exists
a bijection ρ : Ω → Ω′ such that

(βx)ρ = (βρ)x for all β ∈ Ω, x ∈ G.

From now on we assume that G acts transitively on Ω. Let α ∈ Ω be fixed.
Set

U := Gα and Ω′ := {Ug | g ∈ G}.

Then G acts by right multiplication on Ω′ (3.1.1 (c) on page 56). As in the
proof of 3.1.5 we obtain for g ∈ G

Ug = { x ∈ G | αx = αg }.

Hence the mapping

ρ : Ω → Ω′ with αg �→ Ug

77
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is a bijection satisfying

((αg)x)ρ = (αgx)ρ = Ugx.

Thus:

4.1.1 Let G act transitively on Ω and α ∈ Ω. Then this action is equiva-
lent to the action of G on the set of right cosets of Gα by right multiplication.

�

In this sense every transitive action of G can be understood as an action on
the right cosets of a subgroup.1 Hence, every statement about the transitive
action of G on Ω can be reformulated as a statement about the internal
structure of G.

The action of G on Ω is regular if, for every pair (α, β) ∈ Ω × Ω, there
exists exactly one g ∈ G such that αg = β. If N is a normal subgroup of G
that acts regularly on Ω, then N is called a regular normal subgroup of
G.

4.1.2 The following statements are equivalent:

(i) G acts regularly on Ω.

(ii) G acts transitively on Ω and Gγ = 1 for some γ ∈ Ω.

Proof. The implication (i) ⇒ (ii) holds by definition.

(ii) ⇒ (i): Let α, β ∈ Ω and x, y ∈ G such that αx = αy = β; i.e.,
xy−1 ∈ Gα. By 3.1.3 Gα is conjugate to Gγ and thus x = y. �

4.1.3 Let G be a transitive Abelian permutation group on Ω. Then G
acts regularly on Ω.

Proof. (Gα)g = Gα for all g ∈ G and α ∈ Ω since G is Abelian. Hence
Gα fixes every element in αG = Ω. This gives Gα = 1 and together with
4.1.2 the regularity of G. �

1Conversely, every such action is transitive.
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4.1.4 Let α ∈ Ω and N be a regular normal subgroup of G. For β ∈ Ω
let xβ ∈ N be the unique element of N such that αxβ = β. Then for all
β ∈ Ω and g ∈ Gα

(xβ)g = xβg .

In particular, the action of Gα on Ω \ {α} is equivalent to the action of Gα

on N# by conjugation.

Proof. We have βg = (αxβ )g = (αg)g−1xβg = α(xβ)g
. �

We now introduce a class of permutation groups that will play an important
role in later chapters, and whose internal structure is well understood.

Let G be a permutation group on Ω and |Ω| > 1. Then G is a Frobenius
group on Ω if

• G acts transitively on Ω;

• Gα �= 1 for any α ∈ Ω;

• Gα ∩ Gβ = 1 for all α, β ∈ Ω, α �= β.

Let G be a Frobenius group on Ω, α ∈ Ω, and

H := Gα.

The transitive action of G on Ω gives

{Hg | g ∈ G} = {Gβ | β ∈ Ω},

and F := G \ ⋃
g∈G

Hg is the set of elements of G that do not have any fixed

point in Ω. Let
K := F ∪ {1G}.

Then

F G# = K# .∪
.⋃

g∈G

(Hg)# 2

is a partition of G#.3

2K# := F .
3This partition is a Frobenius partition of G.
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4.1.5 |Ω| = |K| = |G : H| ≡ 1 (mod |H|).

Proof. F implies

|K| = |G| − |G : H|(|H| − 1) = |G : H| = |Ω|.

By our hypothesis H ∩ Gβ = 1 for all β ∈ Ω \ {α} . Hence, all orbits of H
on Ω \ {α} have length |H| (3.1.5). This yields |Ω| ≡ 1 (mod |H|). �

The subgroup H is a Frobenius complement of G. Clearly all subgroups
conjugate to H are also Frobenius complements of G. The set K is the
corresponding Frobenius kernel of G.

The fundamental result about Frobenius groups is Frobenius’s Theorem be-
low, which we will not prove, apart from a special case.

4.1.6 Frobenius’s Theorem. The Frobenius kernel of a Frobenius
group is a normal subgroup.

By this theorem a Frobenius group G is the semidirect product of a Frobe-
nius complement H with the Frobenius kernel K. In particular, K acts
transitively on Ω, so K is a regular normal subgroup of G.

For the proof of 4.1.6 it suffices to show that K is a subgroup of G since
K is invariant under conjugation by elements of G. This can be done using
character theory.4 Up to now no purely group-theoretic proof is known for
this result. But in the case |H| ≡ 0 (mod 2) an elementary calculation
with involutions gives the desired conclusion. We will do this on page 83,
below.

Next we give an internal description of Frobenius groups, in the sense of the
remark made at the beginning of this section:

4.1.7 Let G be a group, H a nontrivial proper subgroup of G and Ω =
{Hg | g ∈ G}. Then the following statements are equivalent:

(i) G is a Frobenius group on Ω with Frobenius complement H.

(ii) H ∩ Hg = 1 for all g ∈ G \ H.
4See [46] and more recently [9], for example.
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Proof. (i) ⇒ (ii): For g ∈ G\H and α := H ∈ Ω the element β := αg ∈ Ω
is different from α, and Gβ = Hg (3.1.3). This gives H ∩ Hg = 1.

(ii) ⇒ (i): G acts transitively on Ω by right multiplication. Let α = Hg1
and β = Hg2 be two different elements of Ω. Then g := g2g

−1
1 ∈ G\H and

Gα ∩ Gβ = Hg1 ∩ Hg2 = (H ∩ Hg)g1 = 1. �

We use 4.1.7 to give a second definition of Frobenius groups. A nontrivial
proper subgroup of the group G is a Frobenius complement of G if

H ∩ Hg = 1 for all g ∈ G \ H,

and G is a Frobenius group (with respect to H), if G possesses such a
Frobenius complement H. As before,

K :=
(
G \ ⋃

g∈G

Hg
)

∪ {1}

is said to be the Frobenius kernel of G (with respect to H). By 4.1.7 such
a group G is a Frobenius group on the set Ω := {Hg | g ∈ G}.

This second definition seems to be more general than the version for per-
mutation groups. But we will see in 8.3.7 on page 195 (using 4.1.6) that
in a Frobenius group (in the above sense) all Frobenius complements are
conjugate.

First two remarks, which do not need 4.1.6.

4.1.8 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K.

(a) Let U be a subgroup of G such that U �⊆ K, and let x ∈ G such that
Hx ∩ U �= 1. Then either U ≤ Hx or U is a Frobenius group with
Frobenius complement Hx ∩ U and Frobenius kernel U ∩ K.

(b) Let H0 be another Frobenius complement of G such that |H0| ≤ |H|.
Then H0 is conjugate to a subgroup of H.

Proof. Since H is a Frobenius complement of G we get∣∣∣ ⋃
g∈G

Hg
∣∣∣ = |G : H|(|H| − 1) + 1 = |G| − |G : H| + 1,
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and thus

(′)
∣∣∣ ⋃
g∈G

Hg
∣∣∣ > |G|

2 .

(a) We may assume that H = Hx and U ∩ H �= U . Now H �= Hu for
u ∈ U \ (H ∩ U) and

(H ∩ U) ∩ (H ∩ U)u ≤ H ∩ Hu = 1.

Hence, H ∩ U is a Frobenius complement for U .

Let g ∈ G such that Hg ∩ U �= 1. If U ≤ Hg , then H ∩ Hg �= 1 and thus
H = Hg , which contradicts U ∩ H �= U . Hence 1 �= Hg ∩ U �= U , and
Hg ∩ U is also a Frobenius complement of U . From (′), applied to U and
the two Frobenius complements H ∩ U and Hg ∩ U , there exists u1 ∈ U
such that

(H ∩ U) ∩ (Hg ∩ U)u1 �= 1.

It follows that H ∩Hgu1 �= 1 and thus Hgu1 = H and (Hg ∩U)u1 = H ∩U .
We have shown that ⋃

u∈U

(H ∩ U)u =
⋃

g∈G

(Hg ∩ U).

Hence K ∩ U is the Frobenius kernel of U (with respect to H ∩ U).

(b) Assume that H0 �≤ Hx for all x ∈ G . Then (a) implies for U := H0

m := |H#
0 ∩ K| ≥ 1.

Because H0 is a Frobenius complement of G and K is invariant under con-
jugation, we get

|G : H| 4.1.5= |K| ≥
∣∣∣ ⋃
x∈G

(H#
0 ∩ K)x

∣∣∣ + 1 = m|G : H0| + 1.

On the other hand, by our hypothesis |H0| ≤ |H|, and thus

|G : H0| ≥ |G : H|,

a contradiction. �

Examples of Frobenius groups are:
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• The dihedral groups D2n of order 2n, n > 1, n odd. Here the
Frobenius complements are the subgroups of order 2.

• Let K be a finite field. Then the multiplicative group K∗ acts by
right multiplication on the additive group K(+). The corresponding
semidirect product K∗ � K(+) is a Frobenius group with Frobenius
complement K∗.

The proof of 4.1.6 for the case |H| ≡ 0 (mod 2) (Bender):

Let t be an involution in H and g ∈ G \ H. Then either

a := ttg = [t, g]

is in K, or there exists x ∈ G such that 1 �= a ∈ Hx. In the second case

a ∈ Hx ∩ Hxt ∩ Hxtg

since at = a−1 = atg , and we get Hx = Hxt = Hxtg and t, tg ∈ Hx. But
now Hx = H, which contradicts t ∈ H and tg �∈ H. We have shown:

(∗) ttg ∈ K, if g ∈ G \ H.

Let {g1, . . . , gn} be a transversal of H in G, n := |G : H|. Since

ttgi = ttgj ⇐⇒ tgi = tgj ⇐⇒ tgig
−1
j = t ⇐⇒ gig

−1
j ∈ H

the elements ttg1 , . . . , ttgn are pairwise distinct. We get that

K = {ttg1 , . . . , ttgn}

since |K| = n. Conjugation with t gives

K = {tg1t, . . . , tgnt}.

As mentioned above it suffices to show that K is a subgroup, i.e., to show
that KK ⊆ K. For every tgit there exists gs such that tgit = ttgs . Hence

(ttgi)(ttgj ) = t(tgit)tgj = t(ttgs)tgj = tgstgj = (ttgjg−1
s )gs

(∗)
∈ Kgs = K.

�
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4.2 Primitive Action

As before G is a group acting on the set Ω. A nonempty subset ∆ ⊆ Ω is a
set of imprimitivity, if for every g ∈ G:

∆g �= ∆ ⇒ ∆g ∩ ∆ = ∅.5

It is evident that also ∆g is a set of imprimitivity.

For α ∈ Ω and H ≤ G with Gα ≤ H we set

∆ := αH .

For all g ∈ G \ H
∆g = αHg

has an empty intersection with ∆, i.e., ∆ is a set of imprimitivity.

We now assume that G acts transitively on Ω. Let α ∈ Ω and ∆ be a set of
imprimitivity with α ∈ ∆. Then

∆ = αH

where
H := G∆ := {x ∈ G | ∆x = ∆}.

Thus, the sets of imprimitivity containing α correspond to the subgroups
of G containing Gα.

Let ∆ be a set of imprimitivity and Σ := {∆g | g ∈ G}. The transitive
action of G on Ω gives

Ω =
.⋃

∆g∈Σ
∆g.

Hence, the action of G on Ω can be understood as composition of the tran-
sitive action of G on Σ and the transitive action of G∆ on ∆.

The action of G on Ω is imprimitive if there exists a set of imprimitivity
∆ such that

1 �= |∆| �= |Ω|; 6

otherwise the action is primitive.

In this section we discuss the primitive case, later in Section 4.4 the impri-
mitive case. As we have seen above:

5∆g := {αg | α ∈ ∆}.
6Then also 1 �= |Σ| �= |Ω|.
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4.2.1 Let G act transitively on Ω. Then G is primitive on Ω if and only
if Gα is a maximal subgroup of G ( α ∈ Ω). �

4.2.2 Let G be a primitive permutation group on Ω and 1 �= N � G.
Then N acts transitively on G. If in addition N is regular on Ω, then N is
a minimal normal subgroup of G.

Proof. Let α ∈ Ω. By 4.2.1 Gα is a maximal subgroup of G. If N ≤ Gα,
then N acts trivially on Ω = αG (3.1.3 on page 58), which contradicts
N �= 1. Thus we have Gα < GαN = G, and Ω = αG = αN follows.

Assume that N acts regularly on Ω. Then every normal subgroup 1 �= M �
G with M ≤ N is also regular on Ω. It follows that

|N | = |αN | = |N | = |Ω| = |αM | = |M |

and thus N = M . �

For n ∈ N and n ≤ |Ω| we set

Ω(n) := {(α1, . . . , αn) ∈ Ωn | αi �= αj for i �= j}.

We say that G is n-fold transitive on Ω if, for any two (α1, . . . , αn),
(β1, . . . , βn) ∈ Ω(n), there exists g ∈ G such that

αi
g = βi for i = 1, . . . , n,

i.e., the componentwise action of G on Ω(n) defined by

(α1, . . . , αn)g := (α1
g, . . . , αn

g) (g ∈ G)

is transitive. Clearly n-fold transitivity implies m-fold transitivity for all
1 ≤ m ≤ n. Suppose that G is (n − 1)-fold transitive on Ω. Then G is
n-transitive on Ω if and only if for (α1, . . . , αn−1) ∈ Ω(n−1) the stabilizer

Gα1,...,αn−1 :=
n−1⋂
i=1

Gαi

is transitive on Ω \ {α1, . . . , αn−1} .
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4.2.3 Let α ∈ Ω. Suppose that G acts transitively on Ω. Then G is
2-fold transitive on Ω if and only if

G = Gα ∪ Gαg Gα

for g ∈ G \ Gα .

Proof. By 4.1.1 Ω can be identified with the set of cosets Gαg, g ∈ G. The
transitivity of Gα on Ω \ {α} implies, for Gαg �= Gα,

Gαg Gα = G \ Gα. �

From 4.2.3 together with 4.2.1 we obtain:

4.2.4 Every 2-fold transitive permutation group is primitive. �

Examples of n-fold transitive groups, resp. (n − 2)-fold transitive groups,
are the symmetric group Sn and the alternating group An. These groups
will be introduced in the next section. It should be mentioned that apart
from these two classes there are no n-transitive groups for n ≥ 6.7

Here we only note:

4.2.5 Let G be an n-fold transitive permutation group on Ω, |Ω| ≥ 3.
Suppose that G contains a regular normal subgroup N . Then n ≤ 4; more
precisely:

(a) For n = 2: N is an elementary Abelian p-group.

(b) For n = 3: N is an elementary Abelian 2-group, or N ∼= C3 and
G ∼= S3.

(c) For n = 4: N ∼= C2 × C2 and G ∼= S4.

Proof. Let n ≥ 2 and α ∈ Ω. Then Gα is (n− 1)-fold transitive on Ω \ {α}
and thus also (n − 1)-transitive on N# (4.1.4). This shows that for all
x, y ∈ N# there exists g ∈ Gα such that xg = y. Hence, every element of
N# has the same order, and this order is a prime p (1.4.3). Now Cauchy’s

7This follows from the classification of the finite simple groups.
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Theorem implies that N is a p-group, and N is elementary Abelian since
Z(N) �= 1 (see 3.1.11 on page 61).

Let n ≥ 3 and thus 3 ≤ |N | = |Ω|. If |N | = 3 then G ∼= S3. Assume that
|N | ≥ 4, and let x1, x2, x3 be three different elements of N#. Since Gα is
2-fold transitive on N# there exists g ∈ Gα such that

xg
1 = x1 and xg

2 = x3.

If p ≥ 3 then x1 �= x−1
1 ; and for x2 := x−1

1 we get x2
g = x2, a contradiction.

Thus, N is an elementary Abelian 2-group.

Let n ≥ 4. Then |Ω| ≥ 4 and as seen above N is an elementary Abelian
2-group of order at least 4. Let U = 〈x1〉 × 〈x2〉 be a subgroup of order 4
of N . Assume that U �= N . Choose x3 = x1x2 and x4 ∈ N \ U . Since Gα

is 3-fold transitive on N# there exists g ∈ G such that xg
1 = x1, xg

2 = x2
and xg

3 = x4, which contradicts

xg
3 = (x1x2)g = xg

1x
g
2 = x1x2 ∈ U.

This shows that |Ω| = 4 , and n = 4 follows. �

4.3 The Symmetric Group

The symmetric group Sn of degree n is the group of all permutations
of the set

Ω := {1, . . . , n}.

Then Sn has order n! and acts by definition n-fold transitively on Ω. A
permutation z ∈ Sn is a cycle of length k (or a k-cycle) if there exist k
different elements α1, . . . , αk ∈ Ω such that

αi
z = αi+1, for i = 1, . . . , k − 1, αk

z = α1,

and
βz = β for all β ∈ Ω \ {α1, . . . , αk}.

We denote z by (α1α2 . . . αk). Then for g ∈ Sn

(∗) g−1(α1 · · ·αk)g = (α1 · · ·αk)g = (α1
g · · ·αk

g).

A cycle z′ = (β1 · · ·βr) is disjoint from z, if

{β1, . . . , βr} ∩ {α1, . . . , αk} = ∅.
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In this case zz′ = z′z . It is evident that every permutation can be written
in a unique way as the product of pairwise disjoint and thus commuting
cycles:

(∗∗) x = (α11 · · ·α1k1)(α21 · · ·α2k2) · · · (αs1 · · ·αsks).

The cycles (αi1 · · ·αiki
) correspond to the orbits of 〈x〉 in its action on

Ω and thus to a partition of Ω. After rearranging the cycles according to
their lengths k1 ≥ k2 ≥ · · · ≥ ks, the tuple (k1, . . . , ks) is called the type
of x. The cycles of length 1 describe the fixed points of x in Ω. In the
representation (∗∗) they are usually omitted.

4.3.1 Two permutations of Sn are conjugate if and only if they have the
same type.

Proof. According to (∗) the conjugate of a k-cycle is a k-cycle. Hence,
conjugate elements have the same type. Conversely, let x be as in (∗∗) and

x′ = (α′
11 · · ·α′

1k1
)(α′

21 · · ·α′
2k2

) · · · (α′
s1 · · ·α′

sks
)

Then x and x′ have the same type. Let a ∈ Sn satisfying a : αij �→ α′
ij .

Then (∗) implies xa = x′. �

The 2-cycles of Sn are called transpositions. For k ≥ 2 every k-cycle
(α1 · · ·αk) is the product of (k − 1) transpositions:

(α1 · · ·αk) = (α1α2)(α1α3) · · · (α1αk).

Thus, (∗∗) shows that every permutation of Sn can be written as a product
of transpositions ti:8

x = t1t2 · · · ts.
In this representation of x the transpositions ti are by no means uniquely
determined – but in fact the number of factors (for a given element) is either
always even or always odd.9 Thus the mapping

sgn: x �→ (−1)s

81 being written as the “empty product.” Of course, for n ≥ 2 also 1 = t2, t transpo-
sition.

9This property usually is proved in a beginner class in linear algebra, when determinants
are introduced.
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is well defined and is a homomorphism from Sn into the multiplicative
group {1,−1} (∼= C2) of order 2. The kernel of this homomorphism is the
alternating group An of degree n; it consists of all even permutations
(the permutations in Sn \ An are called odd). For n ≥ 2 An is a normal
subgroup of index 2 in Sn. For example, a k-cycle is an even permutation,
if and only if k is odd.

4.3.2 An is (n − 2)-transitive on Ω (n ≥ 3).

Proof. The tuple T1 := (3, 4, . . . , n) ∈ Ω(n−2) can be mapped to any other
tuple T2 ∈ Ω(n−2) by a permutation x ∈ Sn . Then also tx , t = (12), maps
T1 to T2, and either x ∈ An or tx ∈ An. �

4.3.3 An is the commutator subgroup of Sn.

Proof. Let K be the commutator subgroup of Sn. Since Sn = An = 1 = K
for n = 1 we may assume that n ≥ 2. Moreover, K ≤ An since Sn/An

∼=
C2 (1.5.2).

Let t be a transposition of Sn. Then 〈t〉K is a normal subgroup of Sn since
Sn/K is Abelian. By 4.3.1 the transpositions of Sn are conjugate, and,
as seen above, every element of Sn is a product of transpositions. Hence
Sn = 〈t〉K and K = An. �

Notice that An = 1 for n = 2 and An = 〈(123)〉 ∼= C3 for n = 3. In the
latter case

1 ≤ A3 ≤ S3

is a chief series (and also a composition series) for S3 with cyclic chief
factors.10

Let n = 4. The elements of order 2 in S4 are either transpositions or of
type (2,2). In the second case the elements are

t1 = (12)(34), t2 = (13)(24), t3 = (14)(23).

The set
N := {1, t1, t2, t3}

10The group table of S3 is given on p. 3.
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is a subgroup of A4 isomorphic to C2 × C2, and N is a regular normal
subgroup of S4. Let d = (123). Then A4 is the (internal) semidirect
product of 〈d〉 with N and

td1 = t3, td2 = t1, td3 = t2.

Hence
1 ≤ N ≤ A4 ≤ S4

is a chief series of S4 with Abelian chief factors, and

1 ≤ 〈t1〉 ≤ N ≤ A4 ≤ S4

is a composition series with cyclic composition factors.

Later we will use the following description of S4:

4.3.4 Let G be a group of order 24 that is not 3-closed. Then either
G ∼= S4 or G/Z(G) ∼= A4. 11

Proof. G acts on
Ω := Syl3 G

by conjugation. Since G is not 3-closed Sylow’s Theorem gives |Ω| = 4.
Thus, there exists a homomorphism ϕ : G → S4 such that

Ker ϕ =
⋂

S∈Ω
NG(S) =: N.

G/N is a subgroup of S4 and |N | a divisor of 24
4 = 6. If |N | ∈ {3, 6}, then

N and thus also G is 3-closed, a contradiction. The case N = 1 yields
G ∼= S4 , and the case |N | = 2 implies N = Z(G) and G/N ∼= A4. �

The subgroup of Sn fixing n ∈ Ω is the symmetric group Sn−1 acting on
{1, . . . , n−1}. In this sense we will regard Sn−1, resp. An−1, as a subgroup
of Sn. For example, S4 is the semidirect product of S3 with the regular
normal subgroup N introduced above.

4.3.5 Theorem. An is simple for n ≥ 5.
11In this case either G ∼= A4 × C2 or G ∼= SL2(3), see 8.6.10 on p. 219.
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Proof. Let n = 5. Then |An| = 60 , and An is not 5-closed since the number
of 5-cycles in A5 is larger than 4. Hence, 3.2.12 on page 68 shows that A5
is simple.

Let n ≥ 6 and N be a normal subgroup of An, 1 �= N �= An. By induction
on n we may assume that An−1 (the stabilizer of n ∈ Ω in An ) is simple.
Moreover, An is 4-transitive and primitive on Ω (4.3.2 and 4.2.4). Thus,
4.2.1 and 4.2.2 imply that An−1 is a maximal subgroup and N is a transitive
normal subgroup of An. Now the simplicity of An−1 shows that N is a
regular normal subgroup, and the 4-transitivity of An together with 4.2.5
gives n = 4. This contradicts n ≥ 6. �

4.4 Imprimitive Groups and Wreath Products

Let G be a group and Ω a set on which G acts transitively and imprimitively.
Then there exists a set of imprimitivity ∆ ⊆ Ω such that 1 �= |∆| �= |Ω|
and

Σ := {∆g | g ∈ G}
is a partition of Ω. Fix α ∈ ∆, and set U := Gα and H := G∆ , where G∆
is the stabilizer of ∆. Then

U < H < G.

We now describe the action of G on Ω by means of the action of G on Σ
and H on ∆.

By 4.1.1 the action of G on Ω is equivalent to the action of G on the right
cosets of U (in G) by right multiplication. Hence, we may assume that

Ω = {Ug | g ∈ G}.

Then
∆g = {Uhg ∈ Ω | h ∈ H}.

Let S be a transversal of H in G. For every x ∈ G and s ∈ S there exist
elements fx(s) ∈ H and sx ∈ S such that

sx = fx(s) sx,

and these elements fx(s) are uniquely determined by x and s. Hence, for
Uhs ∈ ∆s:
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(1) (Uhs)x = Uhfx(s)sx.

For x, y ∈ G and s ∈ S we obtain

fxy(s) sxy = s(xy) = fx(s) sx y = fx(s) fy(sx)(sx)y.

It follows that

(2) fxy(s) = fx(s) fy(sx), and

(3) (sx)y = sxy.

Hence
s �→ sx (s ∈ S, x ∈ G)

defines an action of G on S, which is equivalent to the action of G on Σ.

Let
Ĥ := ×

S

H

be the direct product of |S| copies of H. We describe the elements of Ĥ as
functions from S in H

Ĥ = {f | f : S → H},

where f ∈ Ĥ is the “S-tuple” whose “s-th entry” is the element f(s) ∈ H.
The multiplication is “componentwise”, i.e., (fg)(s) = f(s)g(s) for f, g ∈
Ĥ. The previously defined elements fx(s) ∈ H now give an element

fx : s �→ fx(s)

of Ĥ.

For x ∈ G and f ∈ Ĥ we define

(4) fx ∈ Ĥ such that fx(s) := f(sx−1), s ∈ S.

Since

(fx)y(s) = fx(sy−1) = f(sy−1x−1) = f(s(xy)−1) = fxy(s),

(4) defines an action of G on the group Ĥ. This action permutes the entries
of the S-tuple f according to the action of G on S: f(s) is the sx-th entry
of the S-tuple fx.

Let G � Ĥ be the semidirect product with respect to this action. For
(x, f) ∈ G � Ĥ and Uhs ∈ Ω (h ∈ H, s ∈ S) we set:
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(5) (Uhs)(x,f) := Uhf(sx)sx.

Then
(x, f) (y, g) = (xy, fyg) for (x, f), (y, g) ∈ G � Ĥ,

and
((Uhs)(x,f))(y,g) = (Uhf(sx)sx)(y,g) (3)

= Uhf(sx)g(sxy)sxy
(4)
= Uhfy(sxy)g(sxy)sxy = (Uhs)(xy,fyg).

Thus, (5) defines an action of G� Ĥ on Ω. We denote this action by ρ′ and
the action of G on Ω by ρ.

4.4.1 The mapping

η : G → G � Ĥ with x �→ (x, fx
x)

is a monomorphism and ρ = ηρ′.

Proof. Evidently η is injective. For x, y ∈ G

xηyη = (x, fx
x)(y, fy

y) = (xy, fx
xyfy

y) = (xy, (fxfy
x−1

)xy)
(2)(4)
= (xy, fxy

xy) = (xy)η.

Hence, η is a monomorphism.

For the proof of the second claim let x ∈ G and Uhs ∈ Ω (h ∈ H, s ∈ S).
Then

(Uhs)x
ρ

= Uhsx
(1)
= Uhfx(s)sx

(4)
= Uhfx

x(sx)sx
(5)
= (Uhs)(x,fx

x) = (Uhs)xηρ′
. �

The group G�Ĥ is a special case of a wreath product, which we define now.

We start with a quadruple (H, G, A, τ), where H and G are groups, A is
a subgroup of G, and τ a homomorphism from A in Aut H. We use the
notation

ha := haτ
, h ∈ H, a ∈ A.

Let S be a transversal of A in G. As above we define the |S|-fold direct
product

Ĥ := ×
S

H = {f | f : S → H}
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and, for every (x, s) ∈ G × S, an element (fx, sx) ∈ A × S satisfying

sx = fx(s) sx.

As above, but with A in place of H, the equations (2) and (3) hold. In
particular s �→ sx defines an action of G on S, which is equivalent to the
action of G on the cosets Ag, g ∈ G. For (x, f) ∈ G × Ĥ let fx ∈ Ĥ be
defined by

(6) fx(s) := f(sx−1)fx(sx−1 ), s ∈ S,

where fx(sx−1) acts on H with respect to τ .

Because of

(fx)y(s) = fx(sy−1)fy(sy−1 ) = (f(sy−1x−1)fx(sy−1x−1 ))fy(sy−1 )

(2)
= f(s(xy)−1)fxy(s(xy)−1 ) = fxy(s)

(6) defines an action of G on the group Ĥ. Let

KS := G � Ĥ

be the semidirect product with respect to this action. The index in KS

indicates that this definition might depend on the choice of the transversal
S. But we show:

4.4.2 Let S and S̃ be two transversals of A in G. Then KS
∼= KS̃.

Proof. For every s ∈ S there exists a pair (bs, s̃) ∈ A × S̃ such that

(7) s̃ = bss.

For (x, s) ∈ G × S let (f̃x, s̃) ∈ Ĥ × S̃ such that

s̃x = f̃x(s̃) s̃x.

Since
s̃x = bssx = bs fx(s) sx

(7)
= bs fx(s) b−1

sx
s̃x



4.4. Imprimitive Groups and Wreath Products 95

we obtain

(∗) f̃x(s̃) = bs fx(s) b−1
sx

.

It is evident that the mapping

β : ×
S

H → ×̃
S

H

defined by

(8) fβ(s̃) = f(s)b−1
s

is an isomorphism. Let

ψ : KS → KS̃ such that (x, f) �→ (x, fβ).

Then ψ is an isomorphism if and only if

(+) (fx)β = (fβ)x, for all f ∈ Ĥ, x ∈ G.

Moreover
(fx)β(s̃)

(8)
= fx(s)b−1

s
(6)
= f(sx−1)fx(sx−1 )b−1

s ,

and
(fβ)x(s̃) = fβ(s̃x−1)f̃x(s̃x−1 ) (8)

= f(sx−1)bs−1 f̃x(s̃x−1 ).

Thus, (+) follows from (∗). �

Result 4.4.2 shows that the semidirect product

K := G � Ĥ

constructed from the quadruple (H, G, A, τ) is (up to isomorphism) inde-
pendent of the choice of transversal. The group K is the twisted wreath
product of G with H (with respect to A ≤ G and τ : A → AutH). If
Aτ = 1, then K is the wreath product of G with H.

Exercises

In the first three exercises G is a transitive permutation group on the set Ω.
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1. Let N be a normal subgroup of G and Σ be the set of orbits of N on Ω.
Then G acts transitively on Σ.12

2. (Witt, [101]) Let G be n-transitive on Ω and Σ ⊆ Ω, |Σ| ≥ n, and let P be
a Sylow p-subgroup of

⋂
α∈Σ

Gα. Then NG(P ) acts n-transitively on CΩ(P ).

3. Suppose that G is primitive on Ω and contains a transposition. Then G =
SΩ.

In the following three exercises let G be a Frobenius group with Frobenius comple-
ment H and Frobenius kernel K.

4. If H has even order, then Z(H) �= 1.

5. Suppose that every coset of H in G contains at least one element from K.
Then K is a subgroup of G.

6. If H is a maximal subgroup of G, then K is an elementary Abelian p-group.13

7. Let p be a prime, G := Sp, and P ∈ Sylp G. Determine NG(P ).

8. Let x = (1 · · ·n) ∈ Sm. Then CSm
(x) = R × X, where R = 〈x〉 and

X ∼= Sm−n (S0 := 1).

9. Let H,K ≤ S8, H = 〈(123)(456)(78)〉 and K = 〈(38)〉. Determine the
orbits of H, K and 〈H,K〉 on {1, . . . , 8}.

10. Determine the class equation of A7.

In the following three exercises let G := Sn, n ≥ 3, and T be the conjugacy class
of transpositions of G.

11. (a) |T | = n(n−1)
2 and CG(d) ∼= C2 × Sn−2 for d ∈ T .

(b) o(ab) ∈ {1, 2, 3} for all a, b ∈ T .

12. Let D be a conjugacy class of involutions of G such that

o(ab) ∈ {1, 2, 3} for all a, b ∈ D.

Then D = T , or n = 6 and D = ((12)(34)(56))G, or n = 4 and D =
((12)(34))G.

13. Let α ∈ AutG such that Tα = T . Then α is an inner automorphism of G.

14. Let G̃ be a group and d1, . . . , dm involutions in G̃ (m ≥ 3) such that

(i) G̃ = 〈d1, . . . , dm〉,
12The action of G on Ω induces an action of G on the set of all subsets of Ω.
13For this exercise assume that K is a normal subgroup of G (see 4.1.6).
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(ii) o(didj) =
{

2 if |i − j| ≥ 2
3 if |i − j| = 1 ,

(iii) 〈di, . . . , dm〉 ∼= Sm−i+2 for 2 ≤ i ≤ m.

Then for D := dG
1 and M := 〈d2, . . . , dm〉:

(a) |dM
1 | = m, and M acts 2-transitively on dM

1 (by conjugation).

(b) ab ∈ M for all a, b ∈ dM
1 with a �= b.

(c) D = dM
1 ∪ (D ∩ M).

(d) Let a ∈ dM
1 and b ∈ D . Then

Mab =


M a = b

Mab if b ∈ D ∩ M
Ma b ∈ dM

1 \ {a}
.

(e) |G̃ : M | = m + 1, and d1 acts as a transposition on {Mg | g ∈ G̃}.

15. Let G̃ be a group and d1, . . . , dn−1 (n ≥ 2) involutions in G̃ such that

(i) G̃ = 〈d1, . . . , dn−1〉 and

(ii) o(didj) =
{

2 falls |i − j| ≥ 2
3 falls |i − j| = 1 .

Then there exists an isomorphism ϕ : G̃ → Sn such that dϕ
1 is a transposi-

tion of Sn.

16. There exist two subgroups isomorphic to S5 in S6 that are not conjugate.

17. AutSn = InnSn or n = 6 and |AutSn/ InnSn| = 2.
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Chapter 5

p-Groups and Nilpotent
Groups

As was mentioned in the introduction of Section 3.2, Sylow’s Theorem di-
rects attention to the p-subgroups of a finite group. In this chapter we
will present some basic facts about p-groups (and more generally nilpotent
groups), which will be used in later chapters.

In the second section we investigate p-groups that contain a cyclic maximal
subgroup.

5.1 Nilpotent Groups

A group G is nilpotent, if every subgroup of G is subnormal in G.1 It is
evident that this property is equivalent to

U < NG(U) for every subgroup U < G.

As a direct consequence of 1.2.8 on page 14 and Cauchy’s Theorem one
obtains:

5.1.1 Subgroups and homomorphic images of nilpotent groups are nilpo-
tent. Maximal subgroups of nilpotent groups are normal and of prime index.

�

1This definition applies only to finite groups. See the footnote on p. 102.

99
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5.1.2 Let G be a group and Z a subgroup of Z(G). Then G is nilpotent
if and only if G/Z is nilpotent.

Proof. One direction follows from 5.1.1. For the other direction let G/Z be
nilpotent and U ≤ G. Then UZ/Z �� G/Z and thus UZ �� G (1.2.8 on
page 14). Since Z ≤ Z(G) also U � UZ. Hence U �� G. �

Result 3.1.10 on page 61 gives the most important class of nilpotent groups:

5.1.3 p-Groups are nilpotent. �

Recall that Op(G) denotes the largest normal p-subgroup of a group G
(3.2.2 on page 63), and G is p-closed if Op(G) is a Sylow p-subgroup of G.

5.1.4 Theorem. The following statements are equivalent:

(i) G is nilpotent.

(ii) For every p ∈ π(G) G is p-closed.

(iii) G = ×
p∈π(G)

Op(G).

Proof. (i) ⇒ (ii): Let U := NG(Gp), where p ∈ π(G) and Gp ∈ Sylp G.
Then the Frattini argument yields

NG(U) = UNNG(U)(Gp) = U

since Gp is a Sylow p-subgroup of U . The definition of nilpotency gives
U = G and thus Gp � G.

(ii) ⇒ (iii): This follows from 1.6.5 on page 31.

(iii) ⇒ (i): Z(Op(G)) �= 1 for p ∈ π(G) by 3.1.11 on page 61. Hence also

Z(G) = ×
p∈π(G)

Z(Op(G)) �= 1

(1.6.2 (a) on page 29). Let G := G/Z(G). Then 1.6.2 (c) implies

G = ×
p∈π(G)

Op(G) = ×
p∈π(G)

Op(G).
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By induction on |G| we may assume that G is nilpotent. But then also G is
nilpotent (5.1.2). �

From 1.6.2 (a) and 3.1.11 on page 61 we obtain:

5.1.5 Let G be a nilpotent group and N �= 1 a normal subgroup of G.
Then Z(G) ∩ N �= 1. �

This property characterizes nilpotent groups:

5.1.6 The following statements are equivalent:

(i) G is nilpotent.

(ii) Z(G/N) �= 1 for every proper normal subgroup N � G.

(iii) [N, G] < N for every nontrivial normal subgroup N � G.

Proof. (i) ⇒ (ii): This follows from 5.1.5 since factor groups of nilpotent
groups are nilpotent.

(ii) ⇒ (iii): Let G �= 1 and G := G/Z(G). Then Z(G) �= 1. Every factor
group of G also satisfies (ii). Thus we may assume by induction on |G|
that either N = 1 or [N, G] < N . The first case gives N ≤ Z(G) and
[N, G] = 1 < N . In the second case [N, G] < N follows from 1.5.1 on page
24.

(iii) ⇒ (i): Let G �= 1 and M be a minimal normal subgroup of G. Since
also [M, G] is a normal subgroup of G (1.5.5 on page 26) we get [M, G] = 1
and thus

M ≤ Z(G).

Let G := G/M and M < N � G. Assume first that [N, G] = N . Then
N = [N, G]M (1.5.1 on page 24) and

[N, G] = [[N, G], G].

Hence (iii) gives [N, G] = 1 . But now N = M , which contradicts the choice
of N .

We have shown that also G satisfies (iii). Thus, by induction on |G| we may
assume that G is nilpotent. But then G is nilpotent (5.1.2). �

The following is a useful property of nilpotent groups:
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5.1.7 Let G be nilpotent and N a maximal Abelian normal subgroup of
G. Then CG(N) = N .

Proof. By way of contradiction we assume that N < CG(N) =: C. Then
C/N is a nontrivial normal subgroup of G/N . By 5.1.1 and 5.1.5

Z(G/N) ∩ C/N �= 1.

Let N < U ≤ G such that U/N is a cyclic subgroup of Z(G/N) ∩ C/N .
Then U is a normal subgroup, and U is Abelian (see 1.3.1 on page 16). This
contradicts the maximality of N . �

According to 5.1.6 (ii), resp. (iii), every nilpotent group G possesses a series
of subgroups

1 = Z0 ≤ Z1 ≤ · · · ≤ Zi−1 ≤ Zi ≤ · · · ≤ Zc−1 ≤ Zc = G

where Zi � G and Zi/Zi−1 ≤ Z(G/Zi−1) for i = 1, . . . , c.2

Conversely, 5.1.2 shows that every group having such a central series is
nilpotent.3

The length c of a shortest such central series of G is the (nilpotent) class of
G, denoted by c(G). For example, c(G) = 1 if G �= 1 is Abelian; c(G) ≤ 2
if G/Z(G) is Abelian.

We conclude this section with two results about p-groups (of class 2) which
we will need later.

5.1.8 Let A and B be subgroups of the p-group G satisfying

[A, B] ≤ A ∩ B and |[A, B]| ≤ p.

Then
|A : CA(B)| = |B : CB(A)|.

2With 5.1.6 (ii) from the “bottom up” : Z1 := Z(G), Z2/Z1 := Z(G/Z1), . . . , and
with 5.1.6 (iii) from the “top down”: G ≥ [G, G] ≥ [G, G, G] ≥ · · ·.

3An infinite group is defined to be nilpotent, if it possesses such a central series.
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Proof. By 1.5.5 on page 26 N := [A, B] is normal in 〈A, B〉. Hence, A/N
and B/N centralize each other in 〈A, B〉/N . Moreover N ≤ Z( 〈A, B〉)
since |N | ≤ p (3.1.11 on page 61). This gives

CB(A) = CB(AN) � B.

Let
|B/CB(A)| = pn,

and b1, . . . , bn ∈ B such that

B = CB(A)〈b1, . . . , bn〉.
A acts on Nbi by conjugation ( i = 1, . . . , n). Let Ai be the kernel of this
action. Then

CA(B) =
n⋂

i=1
Ai.

From |Nbi| = |N | ≤ p we get |A/Ai| ≤ p and thus with 1.6.4 on page 31

|A/CA(B)| ≤ pn = |B/CB(A)|.
The same argument with the roles of A and B reversed also gives

|B/CB(A)| ≤ |A/CA(B)|.
Hence equality holds. �

5.1.9 Let P be a p-group and A a maximal Abelian subgroup of P . Sup-
pose that |P ′| = p. Then

|P : A| = |A/Z(P )| and |P/Z(P )| = |A/Z(P )|2.
In particular, all maximal Abelian subgroups of P have the same order.

Proof. The maximality of A implies

CA(P ) = Z(P ), CP (A) = A;

and |P ′| = p implies P ′ ≤ Z(P ). Hence P ′ ≤ A. Thus, we can apply 5.1.8
with B = P . It follows that

|A/Z(P )| = |P/A|
and |P/Z(P )| = |P/A| |A/Z(P )| = |A/Z(P )|2. �
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Exercises

1. The dihedral group D2n is nilpotent, if and only if n is a power of 2.

Let P be a p-group.

2. Let M1, M2 be two different maximal subgroups of P . Then P = M1M2
and P/M1 ∩ M2 ∼= Cp × Cp.

3. If P contains two different maximal subgroups that both are Abelian, then
P/Z(P ) is Abelian.

4. Let U1, . . . , Ur be proper subgroups of P such that P = U1 ∪ · · ·∪Ur. Then
r ≥ p + 1.

5. Let A be a maximal Abelian normal subgroup of P . If |A : CA(x)| ≤ p for
all x ∈ P , then P ′ ≤ A.

6. Let |P : CP (x)| ≤ p2 for all x ∈ P . Then P ′ is Abelian.

5.2 Nilpotent Normal Subgroups

Let G be a group and N a nilpotent normal subgroup of G. Then 5.1.4 (iii)
shows:

N = ×
p∈π(N)

Op(N).

Since Op(N) is characteristic in N it is normal in G. Hence

Op(N) ≤ Op(G).

The product of all nilpotent normal subgroups of G is a characteristic sub-
group of G; it is called the Fitting subgroup of G and denoted by F (G).4

As we have seen, F (G) is contained in the product of the subgroups Op(G),
p ∈ π(G). On the other hand, by 5.1.3 each of the normal subgroups Op(G)
is nilpotent and thus contained in F (G). Thus:

5.2.1 (a) F (G) is the largest nilpotent normal subgroup of G.

(b) F (G) = ×
p∈π(G)

Op(G). �

4See [44].
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For the following important property of the Fitting subgroup compare with
6.1.4 on page 123 and Section 6.5.

5.2.2 Let C := CG(F (G)). Then

Op(C/C ∩ F (G)) = 1

for all p ∈ P.

Proof. Let P be the inverse image ofOp(C/C ∩ F (G)) in C. Then P is
normal in G (1.3.2 on page 17), and P is nilpotent since C ∩ F (G) ≤ Z(C)
(5.1.2). Hence P ≤ F (G) ∩ C and Op(C/C ∩ F (G)) = 1. �

The intersection of all maximal subgroups of G is a characteristic subgroup
of G; it is called the Frattini subgroup of G and denoted by Φ(G).5 If
G = 1 then Φ(G) = 1 since G does not possess maximal subgroups. The
crucial property of the Frattini subgroup is:

5.2.3 Let H be a subgroup of G such that G = HΦ(G). Then G = H.

Proof. If G �= H, then there exists a maximal subgroup of G containing H
and Φ(G). This contradicts G = HΦ(G). �

5.2.4 Let N be a normal subgroup of G. Then Φ(G)N/N ≤ Φ(G/N).

Proof. The maximal subgroups of G/N are exactly the maximal subgroups
of G that contain N . �

An application of the Frattini argument gives:

5.2.5 (a) Φ(G) is nilpotent.

(b) If G/Φ(G) is nilpotent, then G is nilpotent.

5See [45].
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Proof. (a) By 5.1.4 (ii) it suffices to show that every Sylow p-subgroup
P of Φ(G) is normal in Φ(G). The Frattini argument 3.2.7 yields G =
NG(P )Φ(G) and thus G = NG(P ) by 5.2.3.

(b) By an argument similar to that of (a), we show that every Sylow p-
subgroup P of G is normal in G. By 3.2.5 on page 65 PΦ(G)/Φ(G) is
a Sylow p-subgroup of the nilpotent group G/Φ(G) and thus normal in
G/Φ(G) (5.1.4 (ii)). Hence N := PΦ(G) is normal in G. Now P ∈ Sylp G
implies

G
3.2.7= NG(P )N = NG(P )PΦ(G) = NG(P )Φ(G),

and again G = NG(P ). �

The last results of this section deal with the Frattini subgroup of a p-group.
The first one is an observation that follows from 2.1.2:

5.2.6 Let P be an elementary Abelian p-group. Then Φ(P ) = 1. �

5.2.7 Let P be a p-group.

(a) P/Φ(P ) is elementary Abelian.

(b) If |P/Φ(P )| = pn, then there exist x1, . . . , xn ∈ P such that
P = 〈x1, . . . , xn〉.

Proof. (a) In a nilpotent group every maximal subgroup is normal of index
p. Hence (a) follows from 1.6.4 on page 31.

(b) Because of (a) and 2.1.8 (a) |P/Φ(P )| = pn is generated by n elements
x1Φ(P ), . . . , xnΦ(P ), xi ∈ P . Hence P = 〈x1, . . . , xn〉Φ(P ) = 〈x1, . . . , xn〉
by 5.2.3. �

5.2.8 Let P be a p-group. Then Φ(P ) is the smallest normal subgroup
of P that has an elementary Abelian factor group.

Proof. Let N � P such that P/N is elementary Abelian. By 5.2.4
Φ(P )N/N ≤ Φ(P/N), so 5.2.6 shows that Φ(P ) ≤ N . The result now
follows from 5.2.7 (a). �
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A p-group P is special if P is non-Abelian and

P ′ = Φ(P ) = Z(P ) = Ω(Z(P )).

If, in addition, Z(P ) is cyclic, then P is extraspecial.

From 5.1.9 we obtain:

5.2.9 Let P be an extraspecial group and A a maximal Abelian subgroup
of order pn. Then |P | = p2n−1. �

It should be pointed out that an extraspecial group is a central product of
non-Abelian subgroups of order p3.6

Exercises

Let G be a group.

1. F (G/Φ(G)) = F (G)/Φ(G).

2. If F (G) is a p-group, then F (G/F (G)) is a p′-group.

3. Suppose that G is nilpotent. Then the following statements are equivalent:

(i) G is cyclic.

(ii) G/G′ is cyclic.

(iii) Every Sylow p-subgroup of G is cyclic.

4. G is nilpotent if and only if every maximal subgroup of G is normal in G.

5. G is nilpotent if and only if for every noncyclic subgroup U ≤ G:

〈xU 〉 �= U for all x ∈ U.

6. N � G ⇒ Φ(N) ≤ Φ(G).

7. Let p ∈ π(G) such that Op(G) = 1, and let N be a normal subgroup of G
such that G/N is a p-group. Then Φ(G) = Φ(N).

8. Let N be a normal subgroup of G such that G/N is nilpotent. Then there
exists a nilpotent subgroup U of G such that G = NU .

9. Let P be a p-group. If p = 2, then

Φ(P ) = 〈xp | x ∈ G〉.

Give a counterexample for p �= 2.

6See Exercise 4 on p. 118.
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5.3 p-Groups with Cyclic Maximal Subgroups

In this section we determine all the p-groups that contain a cyclic maximal
subgroup.

Let P be a p-group and H a maximal subgroup of P . By 3.1.10 on page 61
H is normal in P and P/H ∼= Cp. We first deal with the Abelian case:

5.3.1 Let P be Abelian and H a cyclic maximal subgroup of P . Then
either P is cyclic or P = H × C, C ∼= Cp.

Proof. We may assume that P is not cyclic. Then H is a cyclic subgroup of
maximal order in P . Hence, 2.1.1 on page 43 gives P = H ×C, C ∼= Cp. �

We will treat separately the two cases

• H has a complement A in P .

• H has no complement in P .

In the first case P is the semidirect product of H with A and, as we have
seen already, A ∼= Cp. If in addition also H is cyclic, then the multiplication
in P is completely determined by the action of A on H. Thus:

5.3.2 Let P be a non-Abelian p-group and H = 〈h〉 a cyclic maximal
subgroup of P , |H| = pn. Suppose that H has a complement A = 〈a〉 in P .
Then one of the following holds:

(a) p �= 2 and ha = h1+pn−1
(if a ∈ A is chosen suitably).

(b) p = 2 and ha = h−1.

(c) p = 2, n ≥ 3 and ha = h−1+2n−1
.

(d) p = 2, n ≥ 3 and ha = h1+2n−1
.

The four cases above describe four different isomorphism types of P .
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Proof. The statements (a)–(d) follow from 2.2.6 on page 52. It remains to
show that they describe different isomorphism types. This is only a problem
for the cases (b), (c), and (d). In all these cases the involution

z := h2n−1

is in Z(P ). Moreover for i ∈ N

(hi)a =

{
h−izi in case (c)
hizi in case (d)

.

This gives

Z(P ) =


〈z〉 (b)
〈z〉 in case (c)
〈h2〉 (d)

.

Hence it suffices to investigate the cases (b) and (c). In case (b) every
element in P \ H is an involution, while in case (c) ha ∈ P \ H is an
element of order 4. �

In case (b) P is a dihedral group (see 1.6.9 on page 34). In case (c) P is
said to be a semidihedral group.

We now turn to the nonsemidirect case and introduce the quaternion groups
that arise here.

Let 3 ≤ n ∈ N,

H = 〈h1〉 ∼= C2n−1 and A = 〈a1〉 ∼= C4.

Then A acts on H according to

ha1
1 = h−1

1 .

In particular, 〈a2
1〉 acts trivially on H. Let P be the semidirect product

AH with respect to this action. Then

〈a2
1〉 〈h2n−2

1 〉 (∼= C2 × C2)

is a subgroup of Z(P ). Set

N := 〈a2
1h

2n−2

1 〉.
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The group P/N (and every group isomorphic to P/N) is called a quater-
nion group of order 2n and is denoted by Q2n .7 Let

a = a1N and h = h1N.

Then
Q2n = 〈a, h〉, and

o(h) = 2n−1, o(a) = 4, ha = h−1, h2n−2
= a2.

These relations determine the multiplication table of Q2n , i.e., all quaternion
groups of a given order are isomorphic.

The quaternion group of order 8 can be found as a subgroup of GL(2, C),
the group of all invertible 2×2-matrices over the field C of complex numbers,
in the following way: Let

h =
(

i 0
0 −i

)
and a =

(
0 1

−1 0

)
.

Then h2 = a2 =
( −1 0

0 −1

)
, and the subgroup 〈h, a〉 in GL(2, C) is a

quaternion group.

The basic properties of a quaternion group Q := Q2n are:

• 〈h〉 is a normal subgroup of index 2 in Q.

• x2 = h2n−2
for every x ∈ Q \ 〈h〉.

• Z(Q) = 〈h2n−2〉.

• Z(Q) is the unique subgroup of order 2 in Q.

• Every subgroup of Q is either a quaternion group or cyclic.

• If Q has order 8, then every subgroup is normal in Q.

We note:

5.3.3 AutQ8 ∼= S4.

7For n > 2 Q2n is also said to be a generalized quaternion group.
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Proof. A := AutQ8 acts on the set Ω of maximal subgroups of Q8, and
|Ω| = 3. Hence, there exists a homomorphism

ϕ : A → S3.

Let x, y be elements of order 4 in Q8 such that y �∈ 〈x〉. Then

Ω = {〈x〉, 〈y〉, 〈xy〉}

and
xy = x−1, yx = y−1, x2 = y2.

These relations show that A contains an element that interchanges x and y.
Thus Im ϕ contains all the transpositions of S3, i.e.,

Im ϕ = S3.

We have
N := InnQ8 ∼= Q8/Z(Q8) ∼= C2 × C2

and N ≤ Ker ϕ. We first show:

(′) N = Ker ϕ.

Let a ∈ Ker ϕ. Since xy = x−1 we may assume that xa = x . If ya = y
then a = 1, and if ya = y−1 then a is the inner inner automorphism induced
by x. This shows (′).

Now A/N ∼= S3 and thus |A| = 24. A subgroup of order 3 of Im ϕ is
transitive on Ω, and thus on N#. This gives Z(A) = 1, and A is not
3-closed. Hence 4.3.4 on page 90 yields the conclusion. �

To prove that only quaternion groups arise in the nonsemidirect case we
need the following lemma:

5.3.4 Let x, y be elements of the p-group P , and let

[x, y] ∈ Ω(Z(P )).

(a) If p �= 2 then (xy)p = xpyp.

(b) If p = 2 then (xy)2 = x2y2[x, y] and (xy)4 = x4y4.
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Proof. Let z := [x, y]. Then xy = xz and xyi
= xzi for i ≥ 1. The

hypothesis implies zp = 1 and thus

(xp)y = (xy)p = xpzp = xp.

Assume p = 2. Then

(xy)2 = xy xy = xy2x[x, y] = x2y2z,

and (xy)4 = x2y2zx2y2z = x4y4.

Assume p �= 2. Then

(xy−1)p = (xy−1)(xyy−2)(xy2y−3) · · · (xyp−1y−p)
= x xz xz2 · · ·xzp−1 y−p

= (xpy−p) (z z2 · · · zp−1).

Since
zzp · · · zp−1 = z

p(p−1)
2 = 1

(a) follows. �

As a corollary we have:

5.3.5 Let P be a p-group and p �= 2. Suppose that P/Z(P ) is Abelian.8

Then
Ω(P ) = {x ∈ P | xp = 1}.

Proof. Let x, y ∈ P such that xp = yp = 1. Because P/Z(P ) is Abelian,
the element z := [x, y] is contained in Z(P ). Hence

1 = (xp)y = (xy)p = xpzp = zp

and thus z ∈ Ω(Z(P )) since xy = xz. Now the result follows from 5.3.4 (a).
�

Let P be a p-group with a cyclic maximal subgroup H, which does not have
a complement in P . Then 1 �= xp ∈ H for every x ∈ P \ H, and Ω(H) is
the unique subgroup of order p in P .

8That is, c(P ) ≤ 2.
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5.3.6 Let P be a non-Abelian p-group with a cyclic maximal subgroup H.
Suppose that

(∗) 1 �= xp ∈ H for all x ∈ P \ H.

Then P is a quaternion group; in particular p = 2.

Proof. Let H = 〈h〉, o(h) = pn, and z := hpn−1
. Then

Ω(Z(P )) = 〈z〉.

Choose x ∈ P \ H such that o(x) is minimal. Since P is not cyclic we get
〈xp〉 ≤ 〈hp〉. Let h0 ∈ H such that

xp = h0
p.

The case p �= 2 leads to a contradiction: Replacing x by a suitable power
of x one gets from 2.2.6 (a) on page 52

h0
x = h0

1+pn−1

and thus [h−1
0 , x] ∈ Ω(Z(P )). Now 5.3.4 gives (h−1

0 x)p = h−p
0 xp = 1 which

contradicts h−1
0 x ∈ P \ H.

Let p = 2. According to 2.2.6 we have to discuss the following cases:

(b) hx = h−1, i.e., [h, x] = h−2.

(c) n ≥ 3 and hx = h−1z, i.e., [h, x] = h−2z.

(d) n ≥ 3 and hx = hz, i.e., [h, x] = z.

In case (d) we derive a contradiction. Namely, in this case for every power
y of h

[y, x] ∈ 〈z〉.
5.3.4 (b) gives for y := h−1

0

(h−1
0 x)2 = h−2

0 x2z = z

and thus o(h−1
0 x) = 4. The minimal choice of o(x) yields o(x) = 4 and

thus x2 = z. It follows that h0
4 = 1. On the other hand (h2)x = h2z2 = h2
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and CH(x) = 〈h2〉. If h0 ∈ CH(x) then o(h−1
0 x) = 2, which contradicts

h−1
0 x ∈ P \ H. Hence h0 ∈ H \ 〈h2〉 and

H = 〈h0〉 ∼= C4,

which contradicts n ≥ 3.

In the cases (b) and (c)

x2 = (x2)x = (h2
0)

x = h−2
0 = x−2

and thus also o(x) = 4, i.e.,
x2 = z.

Case (c) gives

(hx)2 = hxhx = hx−1hxx2 = z2 = 1,

which contradicts hx ∈ P \ H.

Hence we are in case (b), and x2 = z shows that P is quaternion group of
order 2n+1. �

5.3.7 Theorem. Let P be a p-group containing a unique subgroup of
order p. Then either P is cyclic, or p = 2 and P is a quaternion group.

Proof. By 2.1.7 on page 46 we may assume that P is not Abelian. Moreover,
since also every subgroup U of P with 1 �= U �= P contains a unique
subgroup of order p we may assume by induction on |P | that U is cyclic, or
p = 2 and U is a quaternion group. Let H be a maximal Abelian normal
subgroup of P . Then H is cyclic and

CP (H) = H

(5.1.7). Hence, we may regard A := P/H as a subgroup of AutH (3.1.9
on page 60). Let Q/H, H ≤ Q ≤ P , be a subgroup of order p in A. Then
Q is non-Abelian and

1 �= xp ∈ H for all x ∈ Q \ H

since H contains the only subgroup of order p in P . Thus, p = 2 and Q is
a quaternion group (5.3.6). In particular

ha = h−1
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for every a ∈ Q\H. Therefore the 2-group A contains only one subgroup of
order 2. By 2.2.6 (c) hα2 �= h−1 for all α ∈ AutH. It follows that |A| = 2
and Q = P . �

As a corollary we have:

5.3.8 Suppose that P is a p-group all of whose Abelian subgroups are
cyclic. Then P is cyclic or a quaternion group.

Proof. Let U ≤ P such that |U | = p. Because Z(P )U is Abelian and thus
cyclic, U is the unique subgroup of order p in Z(P )U and thus U ≤ Z(P )
since Z(P ) �= 1. Hence U is also unique in P , and the claim follows from
5.3.7. �

In the following we will describe the non-Abelian p-subgroups of order p3.9

Suppose that P contains an element h of order p2. Then H := 〈h〉 is a
cyclic maximal subgroup of P . This case was treated in 5.3.2 and 5.3.6:

If p �= 2, then there exists a ∈ P \ H such that o(a) = p and ha = h1+p.

If p = 2, then P is a dihedral or quaternion group of order 8.

Suppose that P does not contain any element of order p2; i.e.,

(′) xp = 1 for all x ∈ P.

Then P is not isomorphic to one of the groups just considered. Since P is
Abelian for p = 2 (Exercise 8 on page 10) we also have

(′′) p �= 2.

We now show that (up to isomorphism) P is uniquely determined by (′) and
(′′):

Let H be a subgroup of order p2 in P and a ∈ P \ H. Then P = 〈a〉H a
semidirect product with

(1) H ∼= Cp × Cp and 〈a〉 ∼= Cp

(5.3.1). By 3.1.11 (a) on page 61 there exists 1 �= z ∈ H such that za = z.
Since P is non-Abelian we get ha �= h for h ∈ H \〈z〉, and [h, a] ∈ 〈z〉 since

9These and other small groups were first determined by Hölder [69].
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P/〈z〉 is Abelian (5.3.1). After replacing z by a suitable power, we see that
the action of a on H is given by

(2) H = 〈z〉 × 〈h〉, za = z, ha = zh.

Hence (1) and (2) determine the isomorphism type of P .

It should be pointed out that the dihedral group of order 8 is also a semidirect
product 〈a〉H satisfying (1) and (2).

We conclude this section with two results that will be needed in Chapter 12.

5.3.9 Let P be a p-group all of whose Abelian normal subgroups are cyclic.
Then P is cyclic, or p = 2 and P is a quaternion group or a dihedral group
of order > 8 or a semidihedral group.

Proof. As in the proof of 5.3.7 let H be a maximal Abelian normal subgroup
of P . Then CP (H) = H and by our hypothesis H is cyclic. We may assume
that H �= P . Then

(1) H �= Ω(H) = Ω(Z(P )) ∩ H

and P/H is Abelian. Hence, every subgroup containing H is normal in P .
Let X be the maximal subgroup of H. We show:

(′) Let a ∈ P \ H such that ap ∈ H. Then xa = x−1 for all x ∈ X; in
particular p = 2.

Assume that (′) does not hold. Then

(2) |H| ≥ 23 if p = 2,

and H〈a〉 is not a quaternion group. Thus, we may choose a such that
o(a) = p . Since a induces a nontrivial automorphism on H the result 2.2.6
on page 52 resp. 5.3.1 shows that

[H, a] = Ω(H) and [X, a] = 1.

Assume h ∈ H \ X and o(ha) = p. Then

o(h) = o(a−1(ah)) 5.3.4=
{

p if p �= 2
≤ 4 if p = 2

,
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which contradicts (1), resp. (2). Hence, Ω(H〈a〉) is contained in the non-
cyclic Abelian group X〈a〉. Therefore

Cp × Cp
∼= Ω(H〈a〉) char H〈a〉 � P,

which contradicts the hypothesis. Thus (′) is proved.

In 2.2.6 (b) AutH has been described. It follows from there and (′) that
|P/H| = 2. Now 5.3.2 gives the assertion; notice that in the case P ∼= D8
there exists a noncyclic Abelian normal subgroup in P . �

5.3.10 Let P be a 2-group and t an involution of P such that

CP (t) ∼= C2 × C2.

Then P is a dihedral or semidihedral group.10

Proof. Let H be a maximal Abelian normal subgroup of P . By 5.1.7

(1) |P/H| ≤ |AutH|.

Because of 5.3.9 we may assume that H is not cyclic. Then H contains a
subgroup isomorphic to C2 × C2 (2.1.7).

Assume first that t ∈ H. Then H ≤ CP (t) and thus H ∼= C2 × C2 and by
(1) |P/H| ≤ 2. The case P = H gives P = D4, and the case |P | = 8 gives
P = D8.11

Assume now that t �∈ H. Then

(2) C2 ∼= CH(t) =: Z.

The set
K := {[x, t] | x ∈ H}

is a subgroup of H since H is Abelian. For x, y ∈ H

[x, t] = [y, t] ⇐⇒ xZ = yZ.

10Conversely, dihedral and semidihedral groups have this property.
11Since otherwise P = Q8 but Q8 contains only one involution.
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Hence
|H : K| = 2.

Moreover
[x, t]t = (x−1txt)t = tx−1tx = [x, t]−1,

and thus

(3) kt = k−1 for all k ∈ K.

In particular, the involutions of K are contained in CH(t). Hence, by (2)
Z is the unique subgroup of order 2 in K, and K is cyclic (2.1.7). Since
H is noncyclic there exists an involution y ∈ H \ K. Then also [y, t] is an
involution and thus

yt = yz with 〈z〉 := Z.

In the case |H| = 4, (1) yields P = 〈y, t〉 ∼= D8.

In the case |H| > 4, we have |K| ≥ 4, and there exists k ∈ K such that
o(k) = 4. It follows that k2 = z and

kt (3)
= k−1 = kz.

This implies
(yk)t = ytkt = yzkz = yk,

which contradicts (2) since o(yk) = 4. �

Exercises

1. Determine Ω(P ) for all p-groups P of order p3.

2. Let A, B be two non-Abelian groups of order p3, Z(A) = 〈a〉 and Z(B) =
〈b〉, and let P := (A × B)/〈ab〉. Then P is an extraspecial p-group.

3. Let P be an extraspecial p-group of order p3. Then

InnP = {α ∈ AutP | (xZ(P ))α = xZ(P ) for all x ∈ P}.

4. Every extraspecial p-group is a central product of extraspecial p-groups of
order p3.

5. Let P be a p-group and Z2(P ′) be the inverse image of Z(P ′/Z(P ′)) in P ′.
Then P ′ is cyclic if and only if Z2(P ′) is cyclic.
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6. In the group GL2(3) of all invertible matrices over F3 let

P := 〈
(

0 −1
1 0

)
,

(
−1 1
1 1

)
〉.

Then P ∼= Q8 and P � GL2(3).

7. AutQ2n is a 2-group if and only if n ≥ 4.
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Chapter 6

Normal and Subnormal
Structure

6.1 Solvable Groups

A group G is solvable,1 if

U ′ �= U for all subgroups 1 �= U ≤ G.

Abelian and nilpotent groups are examples of solvable groups (5.1.1 on page
99). Thus, p-groups are solvable.

Let G be a dihedral group. Then G has a cyclic normal subgroup N of
index 2 (1.6.9 on page 34). Hence, U ′ ≤ N for every subgroup U ≤ G, and
U ′ = 1 if U ≤ N . This shows that dihedral groups are solvable.

Further examples of solvable groups are the symmetric groups S3 and S4.
For S3 this follows from the above since S3 is a dihedral group. For S4 a
similar argument as for the dihedral groups, using the chief series of S4 given
in Section 4.3, yields the desired conclusion.

Groups containing a non-Abelian simple subgroup E cannot be solvable
since E = E′; in particular, Sn is not solvable for n ≥ 5 (4.3.5 on page 90).

By a classical Theorem of Burnside every group of order paqb (q, p ∈ P) is
solvable; we will prove this theorem in Section 10.2.

1For infinite groups solvability is defined differently; see the footnote on p. 123.
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One of the most famous theorems in group theory, the theorem of Feit-
Thompson [43], states that every group of odd order is solvable.2

6.1.1 Subgroups and homomorphic images of solvable groups are solvable.

Proof. For subgroups this is clear by the definition of solvability. Let ϕ be a
homomorphism of the solvable group G. Let 1 �= V ≤ Gϕ, and let U ≤ G
be of minimal order such that Uϕ = V . By 1.5.1 on page 24

(U ′)ϕ = V ′.

Since U ′ < U the minimality of U gives V ′ < V . �

6.1.2 A group G is solvable if and only if there exists a normal subgroup
N of G such that N and G/N are solvable.

Proof. One implication follows from 6.1.1. Let N be a normal subgroup of
G such that N and G/N are solvable, and let 1 �= U ≤ G. If U ≤ N , then
U ′ < U by the solvability of N . If U �≤ N , then V := UN/N is a nontrivial
subgroup of the solvable group G/N and

U ′N/N
1.5.1= V ′ < V = UN/N.

Hence also in this case U ′ < U . �

6.1.3 Every minimal normal subgroup N of a solvable group G is an
elementary Abelian p-group.

Proof. 1 and N are the only characteristic subgroups of N (1.3.2 on page
17). Hence N ′ = 1, |π(N)| = 1 (2.1.6 on page 46) and Ω(N) = N . �

Result 6.1.3 shows that for a nontrivial solvable group G there exists p ∈
π(G) such that Op(G) �= 1. Moreover, since also

G1 := CG(F (G))/CG(F (G)) ∩ F (G)

is solvable (6.1.1), we get G1 = 1 by 5.2.2 on page 105. Thus (compare also
with 6.5.8 on page 144) we have:

2See also [3].
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6.1.4 Let G be a solvable group. Then CG(F (G)) ≤ F (G). �

In a group G the series

G1 := G′ ≥ G2 := (G1)′ ≥ · · · ≥ Gi := (Gi−1)′ ≥ · · ·

is the commutator series of G; notice that all subgroups in this series are
characteristic in G.

6.1.5 Theorem. For a group G the following statements are equivalent:

(i) G is solvable.

(ii) There exists l ∈ N such that Gl = 1.3

(iii) G possesses a normal series all of whose factors are Abelian.

(iv) G possesses a composition series all of whose factors have prime
order.

Proof. The implication (i) ⇒ (ii) follows directly from the definition of
solvability, and the implication (ii) ⇒ (iii) is trivial. Assume (iii). Then we
can extend this series to a composition series of G all of whose factors are
of prime order4 (see Section 1.8).

(iv) ⇒ (i): Let (Ai)i=0,...,a be the composition series given in (iv). Then
N := Aa−1 is a normal subgroup of G with cyclic factor group G/N . Since
(Ai)i=0,...,a−1 is a composition series of N we may assume by induction on
|G| that N is solvable. Now (i) follows from 6.1.2. �

As in Section 5.1, where we considered nilpotent normal subgroups of arbi-
trary finite groups, we now investigate solvable normal subgroups.

6.1.6 Let A and B be two solvable normal subgroups of the group G.
Then the product AB is also a solvable normal subgroup of G.

3An infinite group G is defined to be solvable if G satisfies this property.
4By the way, also to a chief series all of whose factors are elementary Abelian; compare

with 6.1.3.
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Proof. Since AB/A ∼= A/A ∩ B the result follows from 6.1.1 and 6.1.2. �

Result 6.1.6 shows that the product

S(G) :=
∏

A�G
A solvable

A

is a (characteristic) solvable subgroup of G. Hence S(G) is the largest
solvable normal subgroup of G. In particular, the direct product of solvable
groups is solvable.

Exercises

Let G be a group.

1. Let G be solvable. Then there exists a normal maximal subgroup in G.

2. Determine the commutator series of S4.

3. G is solvable if one of the following holds:

(a) |G| = pnq (p, q ∈ P).

(b) |G| = pqr (p, q, r ∈ P).

4. Determine all nonsolvable groups of order ≤ 100.

5. Let G be solvable. Suppose that all Sylow subgroups of G are cyclic. Then
G′ is Abelian.

6. Let G be solvable and Φ(G) = 1. If G contains exactly one minimal normal
subgroup N , then N = F (G).

7. Suppose that every nontrivial homomorphic image of G contains a nontrivial
cyclic normal subgroup (such a group G is super-solvable). Then G/F (G)
is Abelian.

8. (Carter, [36]) Let G be solvable. Then G contains exactly one conjugacy
class of nilpotent subgroups A satisfying NG(A) = A.5

9. Let G be solvable and p ∈ π(G). Suppose that NG(P )/CG(P ) is a p-group
for every p-subgroup P of G. Then G contains a normal p′-subgroup N
such that G/N is a p-group. (Compare with 7.2.4 on page 170 and Exercise
6 on page 172.)

10. Suppose that every maximal subgroup of G is nilpotent. Then G is solvable.

5Such a subgroup A is a Carter subgroup of G.
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11. Let A and B be Abelian subgroups of G such that G = AB. Then G is
solvable. (Do not use Exercise 5 on page 27.)

6.2 The Theorem of Schur-Zassenhaus

Let G be a group and K a normal subgroup of G such that

(|K| , |G/K|) = 1.

For Abelian K we have proved in 3.3.1 on page 73 that K has a complement
in G and that all such complements are conjugate in G. The next theorem
generalizes this result.

6.2.1 Theorem of Schur-Zassenhaus. Let G a group and K a normal
subgroup of G such that (|K|, |G/K|) = 1 . Then K has a complement in
G. If in addition K or G/K is solvable, then all such complements are
conjugate in G.6

Proof. Let U ≤ G and N � G. Then

UK/K ∼= U/U ∩ K and (G/N) / (KN/N) ∼= G/KN.

Hence, U ∩K is a normal subgroup of U such that (|U ∩K|, |U/U ∩K|) = 1,
and KN/N is a normal subgroup of G/N such that (|KN/N |, |G/KN |) =
1. Thus, the hypothesis is inherited by subgroups and factor groups of G.
If in addition K or G/K is solvable, then by 6.1.1 also this property is
inherited.

We now prove the existence of a complement by induction on |G|. Hence,
we may assume that in all groups of order less than |G| that satisfy the
hypothesis, such complements exist. Moreover, we can assume that 1 �=
K < G.

Let p ∈ π(K), P ∈ Sylp K and

U := NG(P ).

6If H is such a complement, then the factorization G = KH shows that all complements
are already conjugate under K.
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First assume that U �= G. Then by induction U ∩ K has a complement H
in U . The Frattini argument yields

G = KU = K(U ∩ K)H = KH.

Hence H is also a complement of K in G since H ∩ K = H ∩ (U ∩ K) = 1.

Assume now that U = G. Then P and thus also

N := Z(P )
3.1.11
�= 1

is a normal subgroup of G (1.3.2 on page 17). Let G := G/N . By induction
there exists N ≤ V ≤ G such that V is a complement of K in G. Then

V ∩ K = N and G = KV.

Hence, a complement of N in V is also a complement of K in G. If V �= G,
then by induction such a complement exists. If V = G, then K = 1 and K
is Abelian. Now 3.3.1 on page 73 gives the desired complement.

Using the additional hypothesis that K or G/K is solvable we now show,
again by induction on |G|, that all complements are conjugate in G. Let
H and H1 be two complements of K in G, and let N be a minimal normal
subgroup of G that is contained in K. We set G := G/N . Then H and H1
are complements of K in G, and by induction there exists g ∈ G such that

HN = (H1N)g = H1
gN.

Thus, H and H1
g are complements of N in HN . If N �= K , thenHN �= G,

and by induction the complements H and H1
g are conjugate in HN . Hence

H and H1 are conjugate in G.

Assume that N = K. If K is solvable, then N is a solvable minimal normal
subgroup and thus Abelian (6.1.3 on page 122). Now the conclusion follows
from 3.3.1 on page 73.

Assume that K is not solvable; i.e., G = G/K is solvable. Then there exists
a normal subgroup A in G such that K ≤ A � G and G/A is a nontrivial
p-group (6.1.5 on page 123). The Dedekind identity shows that H ∩ A and
H1 ∩ A are complements of K in A, and by induction they are conjugate in
A. Thus we may assume (after suitable conjugation)

H ∩ A = H1 ∩ A := D � 〈H,H1〉
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Since H/D ∼= G/A ∼= H1/D there exist P ∈ Sylp H and P1 ∈ Sylp H1 such
that

H = DP and H1 = DP1.

Moreover, (|K|, |H|) = 1 implies that P and P1 are Sylow p-subgroups
of NG(D). Hence by Sylow’s Theorem there exists g ∈ NG(D) such that
P1

g = P , and H1
g = DgP1

g = DP = H follows. �

The additional solvability hypothesis in the theorem of Schur-Zassenhaus is
not really a loss of generality. Since |K| and |G/K| are coprime at least
one of the groups K and G/K has odd order. But then the theorem of
Feit-Thompson shows that one of these groups is solvable.

Result 6.2.1 will be used in Section 6.4. Next we give a corollary, which will
be of importance for the discussion in Chapter 8.

6.2.2 Let G be a group acting on the set Ω, and let K be a normal
subgroup of G. Suppose that

(1) (|K|, |G/K|) = 1,

(2) K or G/K is solvable, and

(3) K acts transitively on Ω.

Then for every complement H of K in G:

(a) CΩ(H) �= ∅, and

(b) CK(H) acts transitively on CΩ(H).

Proof. (a) Let β ∈ Ω. By (3) |Ω| is a divisor of |K| (3.1.5 on page 58), and
G = KGβ (Frattini argument) implies G/K ∼= Gβ/K ∩ Gβ. The theorem
of Schur-Zassenhaus, applied to K ∩ Gβ and Gβ, gives a complement H1
of K ∩ Gβ in Gβ. Then H1 is also a complement of K in G such that
β ∈ CΩ(H1). Now (a) follows since, according to Schur-Zassenhaus, all
complements of K in G are conjugate to H1.

(b) Let α, β ∈ CΩ(H) and k ∈ K such thatαk = β. Then H and Hk are
two complements of K ∩ Gβ in Gβ. Again by Schur-Zassenhaus they are
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conjugate under Gβ and thus even under K ∩ Gβ. Let k′ ∈ K ∩ Gβ such
that Hkk′

= H. Then αkk′
= β and

[kk′, H] ≤ H ∩ K = 1,

i.e., kk′ ∈ CK(H). �

If in 6.2.2 the complement H is a p-group (and this is the case in many
applications), then (a) is a consequence of 3.1.7 on page 59 since (|H|, |Ω|) =
1, and all complements are conjugate by Sylow’s Theorem.

Exercises

1. Prove that the complements in the theorem of Schur-Zassenhaus are conju-
gate using the following hypothesis:

AutE/ InnE is solvable for every simple group E. 7

Let G be a group, p ∈ P, π ⊆ P and π′ = P \ π.

2. If G/Φ(G) contains a nontrivial normal subgroup whose order is not divisible
by p, then so does G.

3. Let A be a nilpotent π-subgroup of G and q ∈ π′. Let |/|X(A) be the set of
A-invariant q-subgroups X ≤ G and |/|∗

X(A) the set of maximal elements of
|/|X(A) (with respect to inclusion). Suppose that

∗ Oπ′(CG(A) ∩ NG(Q)) acts transitively on |/|∗
NG(Q)(A) for all Q ∈

|/|G(A).

Then the following hold:

(a) Every nilpotent π-subgroup B of G containing A satisfies ∗ in place
of A.

(b) |/|∗
G(B) ⊆ |/|∗

G(A), where B is as in (a).

6.3 Radical and Residue

In this section we present some of the arguments of Section 6.1 in a more
general context. This allows us then to define further characteristic sub-
groups. In the following let K be always a class of groups that contains the

7This is Schreier’s conjecture, which up to now only can be verified using the classifi-
cation of the finite simple groups.
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trivial group and with a given group also all its isomorphic images. For any
group G

OK(G) :=
⋂

A�G
G/A∈K

A and OK(G) :=
∏

A�G
A∈K

A

are characteristic subgroups of G. OK(G) is the K-residue and OK(G)
the K-radical of G.

In general neither OK(G) nor G/OK(G) is in K. For example, if K is
the class of all cyclic groups, then OK(G) = 1 and OK(G) = G for every
Abelian group G (2.1.3 on page 45). On the other hand, if OK(G) ∈ K
then OK(G) is the largest normal subgroup of G contained in K. Similarly,
if G/OK(G) ∈ K, then OK(G) is the smallest normal subgroup of G with
factor group in K.

In this section we are interested in the classes:

• A of all Abelian groups,

• N of all nilpotent groups,

• S of all solvable groups,

• P of all p-groups (p ∈ P),

• Π of all π-groups (π ⊆ P).

Here G is a π-group if π(G) ⊆ π ⊆ P .

Using the notation introduced earlier we get

ON (G) = F (G), OS(G) = S(G), OP(G) = Op(G)

and
OA(G) = G′.

Let
Oπ(G) := OΠ(G) and Oπ(G) := OΠ(G).

Then for π′ := P \ π also Oπ′(G) and Oπ′
(G) are defined. In the case

π = {p} we write p, resp. p′, in place of π, resp. π′; this gives the particu-
larly important subgroups

Op(G), Op(G), and Op′(G), Op′
(G).
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If G is a quaternion group of order 8, then OA(G) = G and thus OA(G) �∈ A.
For all the other classes mentioned above

OK(G) ∈ K.

For K = N , S, Π this assertion follows from 5.2.1, 6.1.6, and 1.1.6, respec-
tively. In particular Op(G) resp. Op′(G) is the largest normal p-subgroup
resp. p′-subgroup of G.

6.3.1 Let K ∈ {N ,S,Π}. Then for every group G

OK(G) = 〈A | A �� G, A ∈ K〉;

in particular, OK(G) is also the largest subnormal subgroup of G that is in
K.

Proof. We have to show that every subnormal subgroup A �� G with
A ∈ K is contained in OK(G). For A � G this is obvious. Thus, we may
assume that A is not normal in G. Hence, there exists a normal subgroup
N � G such that

A �� N < G.

By induction on |G| we may also assume that

A ≤ OK(N).

OK(N) is normal in G since it is characteristic in N . Moreover K ∈
{N ,S,Π} , and as mentioned above OK(N) ∈ K. Hence A ≤ OK(N) ≤
OK(G). �

We call a class K of groups closed, if for every X ∈ K:

• The homomorphic images of groups from K are in K.

• The subgroups of groups from K are in K.

• Direct products of groups from K are in K.

All the above mentioned classes are closed. Similarly to 1.5.2 and 1.5.1 on
page 24 one gets:
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6.3.2 Let K be a closed class. Then for every group G:

(a) G/OK(G) ∈ K.

(b) (OK(G))ϕ = OK(Gϕ) for every homomorphism ϕ of G.

Proof. (a) follows from 1.6.4 on page 31 and the definition of a closed class.

(b) Let ϕ be a homomorphism of G. Then Gϕ/(OK(G))ϕ is in K since it is
a homomorphic image of G/OK(G), i.e.,

OK(Gϕ) ≤ (OK(G))ϕ.

Now let ψ be a homomorphism of Gϕ in a group X ∈ K. Then ϕψ is
a homomorphism from G in X. This means that OK(G) ≤ Ker (ϕψ) and
thus (OK(G))ϕ ≤ Ker ψ. It follows that

(OK(G))ϕ ≤ ⋂
ψ

Ker ψ = OK(Gϕ),

where ψ runs through all homomorphisms from Gϕ in a group of K. �

Let K be a closed class of groups. In analogy to the definition of solvability
we call a group G a K-group if

OK(U) �= U for all subgroups 1 �= U ≤ G.

By K̂ we denote the class of all K-groups. Clearly K ⊆ K̂.

For example, by definition Â = S and N̂ = Ŝ = S.

With 6.3.2 in hand the same argument as in 6.1.1 shows that subgroups and
homomorphic images of K-groups are again K-groups. The proof of 6.1.2 on
page 122 gives:

6.3.3 Let K be a closed class. Then G ∈ K̂ if and only if there exists a
normal subgroup N of G such that N ∈ K̂ and G/N ∈ K̂. �

From 6.3.3 we get as corollaries (also compare with 6.1.6 on page 123):

6.3.4 Let K be a closed class. Then OK̂(G) ∈ K̂. �
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6.3.5 Let K be a closed class. Then K̂ is also closed. �

6.3.6 Let K be a closed class. The following statements are equivalent:

(i) G ∈ K̂.

(ii) If G(0) = G and G(i) = OK(G(i−1)), for i ≥ 1, then there exists � ∈ N
such that G(�) = 1.

(iii) G has a composition series all of whose composition factors are in
K. �

For the class Π of π-groups we get Π = Π̂. A similar equality is no longer
true for the class of π-closed groups:

Here a group G is π-closed if G/Oπ(G) is a π′-group; in other words if

Oπ(G) = Oπ′
(G).8

For example, the theorem of Schur-Zassenhaus 6.2.1 is a theorem about π-
closed groups, π := π(K). In its proof we have used the fact that subgroups
and factor groups of π-closed groups are π-closed. Since also direct products
of π-closed groups are π-closed the class of all π-closed groups is a closed
class. We denote this class by Πc.

Πc contains all π-groups and all π′-groups. The groups in Π̂c are called
π-separable.9 Since Πc is a closed class, π-separable groups—as explained
earlier—possess the same formal properties as solvable groups.

Exercises

Let G be a group.

1. Let C be the class of all groups H satisfying CH(F (H)) ≤ F (H). Then the
following hold:

(a) OC(G) ∈ C and G/OC(G) ∈ C.

(b) Let N � G. If N and G/N are in C, then also G is in C.

8Compare with the remark following 3.2.2 on p. 63 about p-closed groups.
9Those who feel uncomfortable with this abstract definition may prefer the equivalent

property given in 6.4.2.
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6.4 π-Separable Groups

In this section we investigated π-separable groups (π ⊆ P). Recall that a
π-separable group G satisfies the following:

• Every nontrivial subgroup of G has a nontrivial π-closed factor group.

Since Abelian groups are π-closed we get:

6.4.1 Solvable groups are π-separable. �

Hence, all results about π-separable groups are also results about solvable
groups. We will present some of these results after we have introduced
convenient notation. In the second part of this section we will characterize
the solvable groups within the class of π-separable groups. It will turn out
that solvable groups are characterized by the fact that a generalization of
Sylow’s Theorem holds for them. This was proved by P. Hall and became
the starting point for a today highly developed theory of solvable groups;
we refer the reader the book of Doerk-Hawkes [8].

6.4.2 A group G is π-separable if and only if G possesses a series

1 = A0 < A1 < · · · < Ai−1 < Ai < · · · < , An = G

of characteristic subgroups Ai (i = 1, . . . , n) such that every factor Ai/Ai−1
is a π-group or a π′-group.

Proof. Let G be π-separable. Then also OΠc(G) is π-separable,10 and

G := G/OΠc(G)

is π-closed. Hence G/Oπ(G) is a π′-group. As OΠc(G) is characteristic
in G, the characteristic subgroups of OΠc(G) and the inverse images of
characteristic subgroups of G are characteristic in G. Now induction on |G|
yields the desired series for G.

Conversely, let (Ai)i=0,...,n be as in the statement of 6.4.2 and G(i) as in
6.3.6. Then G(1) is contained in An−1 , and more generally G(i) ≤ An−i;
in particular G(n) = 1. Now 6.3.6 implies the G is π-separable. �

10Πc is the class of π-closed groups.
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It is evident that a group is π-separable if and only if it is π′-separable.

For a group G the subgroup Oπ′π(G) is defined by

Oπ′π(G)/Oπ′(G) := Oπ(G/Oπ′(G))

and Oπ′ππ′(G) ≤ G by

Oπ′ππ′(G)/Oπ′π(G) := Oπ′(G/Oππ′(G)).

Continuing in this way one gets a series of characteristic subgroups

1 ≤ Oπ′(G) ≤ Oπ′π(G) ≤ Oπ′ππ′(G) ≤ Oπ′ππ′π(G) ≤ · · · ,

which terminates in G if and only if G is π-separable.

For the particularly important case π = {p} this series is

1 ≤ Op′(G) ≤ Op′p(G) ≤ Op′pp′(G) ≤ Op′pp′p(G) ≤ · · · .

6.4.3 Let G be a π-separable group and Oπ′(G) = 1. Then

CG(Oπ(G)) ≤ Oπ(G).

Proof. Let C := CG(Oπ(G)) and K := C ∩ Oπ(G) (= Z(Oπ(G))). Then
C/K is a π-separable normal subgroup of G/K satisfying Oπ(C/K) = 1
since Oπ(G) is the largest normal π-subgroup of G. Let K ≤ A ≤ C such
that A/K = Oπ′(C/K). Then the theorem of Schur-Zassenhaus gives a
complement H of K in A, and

A = KH = K × H

since A ≤ C. This implies H = Oπ′(A) and thus H ≤ Oπ′(G) = 1. Hence
Oπ′(C/K) = 1 = Oπ(C/K) and C = K. �

The following result consists of some frequently used consequences of 6.4.3:

6.4.4 Let G be p-separable for p ∈ π(G) and P a Sylow p-subgroup of
Op′p(G).

(a) CG(P ) ≤ Op′p(G); in particular:

Op′(G) = 1 ⇒ CG(Op(G)) ≤ Op(G).
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(b) Let U be a P -invariant p′-subgroup of G. Then U is contained in
Op′(G).

(c) If G has Abelian Sylow p-subgroups, then G = Op′pp′(G).

Proof. (a) Because of 3.2.8 (a) on page 66 we may assume that Op′(G) = 1.
Then P = Op(G), and the conclusion follows from 6.4.3.

(b) Again we may assume that Op′(G) = 1. Then P = Op(G) and thus
[U, P ] ≤ U ∩ P = 1. Now (a) gives U ≤ Op′(G) = 1.

(c) Let P ≤ S ∈ Sylp G, S Abelian. Then S ≤ CG(P ) and thus by (a)
S = P . �

A π-subgroup H of the group G is a Hall π-subgroup of G if

π(|G : H|) ⊆ π′.

For example, for p ∈ P the Hall p-subgroups of G are the Sylow p-subgroups
of G. As for Sylow subgroups we denote by SylπG the set of Hall π-subgroups
of G.

In contrast to the case π = {p} , where one has Sylow’s Theorem, in general
Hall π-subgroups do not always exist. For example, the alternating group
A5 possesses Hall {2, 3}-subgroups but not Hall {3, 5}- and {2, 5}-subgroups
(3.2.12 on page 68).

With the same argument as in 3.2.2 on page 63, resp. 3.2.5 on page 65, we
get:

• Let SylπG �= ∅. Then

Oπ(G) =
⋂

H∈ SylπG

H.

• Let H ∈SylπG and N � G. Then

N ∩ H ∈ SylπN and NH/N ∈ SylπG/N.

6.4.5 Every π-separable group contains Hall π-subgroups.
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Proof. Let G �= 1 be a π-separable group and N �= 1 a normal subgroup
of G. Since also G/N is π-separable we may assume by induction on |G|
that G/N contains a Hall π-subgroup

H/N (N ≤ H ≤ G).

If Oπ(G) �= 1, we choose N := Oπ(G). Then H is a Hall π-subgroup of G.

Assume that Oπ(G) = 1. Then 1 �= Oπ′(G), and we choose

N := Oπ′(G).

Now N is a normal π′-subgroup of G and π(H/N) ⊆ π. The theorem of
Schur-Zassenhaus gives a complement H1 of N in H. This complement is a
Hall π-subgroup of G. �

We say that the π-Sylow Theorem holds in G, if every π-subgroup of G is
contained in a Hall π-subgroup of G and all Hall π-subgroups are conjugate
in G.

6.4.6 Let G be a π-separable group satisfying the following:

(∗) Every π-section or every π′-section of G is solvable.11

Then the π-Sylow Theorem holds in G.

Proof. Let U be a π-subgroup and H a Hall π-subgroup of G (6.4.5). It
suffices to show that U is contained in a conjugate of H. We prove this by
induction on |G|.
Obviously, we may assume that G �= 1 . Let 1 �= N � G and G := G/N . By
induction there exists g ∈ G such that U

g ≤ H and (UN)g = UgN ≤ HN .
Since we are allowed to replace U by any conjugate we may assume

U ≤ HN.

We now proceed as in 6.4.5: If Oπ(G) �= 1 we choose N := Oπ(G). Then
HN = H and U ≤ H. Assume that Oπ(G) = 1. Then Oπ′(G) �= 1
and we choose N := Oπ′(G). The π-subgroup U is a complement of N
in NU . Since also H ∩ NU is such a complement (1.1.11) the theorem of
Schur-Zassenhaus shows that U is conjugate to the subgroup H ∩ NU of
H. �

Since solvable groups are π-separable 6.4.6 implies:
11A π-section is a section that is a π-group.
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6.4.7 The π-Sylow Theorem holds in solvable groups for every π ⊆ P. �

Result 6.4.7 in fact characterizes the solvable groups. To show this we need
two lemmata.

6.4.8 Let H,K be subgroups of the group G such that

(|G : H|, |G : K|) = 1.

Then G = HK and |G : H ∩ K| = |G : H| |G : K|.

Proof. By 1.1.6

n :=
|G|

|HK| =
|G| |H ∩ K|

|H| |K| .

Hence n is a divisor of |G : H| and |G : K|. Since these two integers are
coprime we get n = 1 and G = HK. Now

|G : H| |G : K| =
|G|2

|H| |K|
1.1.6=

|G|2
|G| |H ∩ K| = |G : H ∩ K|. �

6.4.9 Let H1, H2 and H3 be solvable subgroups of the group G such that

G = H1H2 = H1H3 and (|G : H2|, |G : H3|) = 1.

Then G is solvable.

Proof. If H1 = 1 then G = H2 is solvable. Assume that H1 �= 1. Let A
be a minimal normal subgroup of H1. Then A is a p-group (6.1.3 on page
122). Since (|G : H2|, |G : H3|) = 1 we may assume that p does not divide
|G : H2|. Thus H2 contains a Sylow p-subgroup of G. By Sylow’s Theorem
there exists g ∈ G such that A ≤ H2

g. Since G = H2H1 we may assume
that g ∈ H1. It follows that Ag−1

= A ≤ H2 and

N := 〈AG〉 = 〈AH1H2〉 = 〈AH2〉 ≤ H2.

Hence, N is a solvable normal subgroup of G. Since G/N satisfies the
hypothesis we may assume by induction on |G| that G/N is solvable. But
then also G is solvable (6.1.2). �

Let G be a group. A set S of Sylow subgroups of G is a Sylow system of
G, if
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• |S ∩ Sylp G| = 1 for all p ∈ π(G), and

• PQ = QP for all P, Q ∈ S.

Let S be a Sylow system of G. Then for every nonempty S0 ⊆ S a repeated
application of 1.1.5 and 1.1.6 shows that the group∏

P∈S0

P

is a Hall π-subgroup of G, where

π = {p ∈ π(G) | (Sylp G) ∩ S0 �= ∅}.

Suppose that π(G) = {p, q}, then PQ = QP = G for every P ∈ Sylp G
and Q ∈Sylq G. Thus, each such pair is a Sylow system of G. Moreover,
a theorem of Burnside, mentioned earlier, shows that G is solvable; we will
prove this theorem in Section 10.2.

The following theorem, the characterization of solvable groups announced
above, shows in general that the existence of Sylow systems is equivalent to
solvability. The proof of the implication (v) ⇒ (i) requires the theorem of
Burnside.

6.4.10 Theorem (P. Hall).12 Let G be a group. The following state-
ments are equivalent:

(i) G is solvable.

(ii) G is π-separable for every set of primes π.

(iii) G contains a Hall π-subgroup for every set of primes π.

(iv) G contains a Hall p′-subgroup for every prime p.

(v) G possesses a Sylow system.

Proof. (i) ⇒ (ii): 6.4.1.

(ii) ⇒ (iii): 6.4.5.

(iii) ⇒ (iv): Trivial.
12See [63], [65], [66].
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(iv) ⇒ (v): For p ∈ π(G) let Hp be a Hall p′-subgroup of G, and for
∅ �= π ⊆ π(G) let

Hπ :=
⋂

p∈π
Hp.

First we show:

(′) Hπ is a Hall π′-subgroup of G.

This follows from 6.4.8 using induction on |π|. For |π| = 1 there is nothing
to prove. Assume that |π| ≥ 2 and let p ∈ π and σ := π \ {p}. Then

Hπ = Hσ ∩ Hp.

Since by induction Hσ is a Hall σ′-subgroup we are allowed to apply 6.4.8
with respect to the subgroups Hσ and Hp . This gives (′).

In particular, for pi ∈ π(G),

Pi :=
⋂

p∈π(G)\{pi}
Hp

is a Sylow pi-subgroup of G. Let pi, pj ∈ π(G). Then Pi, Pj are Sylow
subgroups of

H :=
⋂

p∈π(G)\{pi,pj}
Hp,

and by (′) H is a Hall {pi, pj}-subgroup of G. This gives PiPj = PjPi = H.
Hence {Pi | pi ∈ π(G)} is a Sylow system of G.

(v) ⇒ (i): If |π(G)| = 1, then G is a p-group and thus solvable. If |π(G)| =
2, then the solvability of G follows from 10.2.1 on page 276. We now assume
that |π(G)| ≥ 3 and that {P1, . . . , Pn} is a Sylow system of G. For i ∈
{1, 2, 3} let

Hi =
∏
j �=i

Pj .

Then |G : H1|, |G : H2|, and |G : H3| are pairwise coprime and

G = H1H2 = H1H3 = H2H3.

Moreover, since {P1, . . . , Pn}\{Pi} is a Sylow system of Hi we may assume
by induction on |G| that H1, H2, and H3 are solvable. Hence 6.4.9 shows
that G is solvable. �

We conclude this section with a property of π-separable groups, which we
will refer to in Chapter 12. For π = {p} this property is a consequence of
Baer’s Theorem (6.7.6 on page 160) and therefore also true for groups which
are not p-separable.



140 6. Normal and Subnormal Structure

6.4.11 Let G be a π-separable group and A a π-subgroup of G. Then the
following statements are equivalent:

(i) A �≤ Oπ(G).

(ii) There exists x ∈ Oππ′(G) such that x ∈ 〈A, Ax〉 and 〈A, Ax〉 is not
a π-group.

Proof. If A ≤ Oπ(G), then 〈A, Ax〉 ≤ Oπ(G) for all x ∈ G. This shows (ii)
⇒ (i).

(i) ⇒ (ii): Let G := G/Oπ(G). Assume that 〈A, Ax〉 is a π-group for all
x ∈ Oππ′(G). Then

[Oπ′(G), A] = 1

and by 6.4.3 A = 1, which contradicts A �≤ Oπ(G). Hence, there exists
x ∈ Oππ′(G) such that 〈A, Ax〉 is not a π-group. Let

G1 := 〈A, Ax〉 (≤ Oππ′(G)A ).

Then A �≤ Oπ(G1) and Ax �≤ Oπ(G1). If G1 < G, then induction on |G|
yields (ii). If G = G1, then (ii) is obvious. �

Exercises

1. Let G be a p-separable group, p ∈ π(G). Suppose that for all q ∈ π(G)
and S ∈Sylq G:

Sylp NG(S) ⊆ Sylp G.

Then G = Op′p(G).

2. (Example for 6.4.11) Let G := S5 and A := 〈(1 2)〉 ≤ G. Then there exists
π ⊆ π(G) such that A �≤ Oπ(G) and

〈A, Ax〉 is π-subgroup for all x ∈ G.

3. Let G be a p-separable group. The p-length �p(G) of G is defined recursively
by:

�p(G) := 0, if G = Op′(G), and

�p(G) := 1 + �p(G/Op′p(G)), if G �= Op′(G).

Show that �p(G) ≤ c(P ), P ∈ Sylp G.
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6.5 Components and the Generalized
Fitting Subgroup

The concepts mentioned in the title of this section came up around 1970 in
the course of the classification of the finite simple groups. They are examples
of how the essence of a new development is reflected by appropriate concepts
and that these concepts—as a language—contribute to the success of this
development.13

A group K �= 1 is quasisimple if K is perfect and K/Z(K) is simple.
Clearly, for every subnormal subgroup N of a quasisimple group K either

N ≤ Z(K) or N = K.

This implies that nontrivial homomorphic images of quasisimple groups are
quasisimple.

Let G be a group. A subgroup K of G is a component of G, if K is
quasisimple and subnormal in G. The first of these two properties is an
internal property of K, while the second one describes the embedding of
K in G. Therefore components K are endowed with similar inheritance
properties as subnormal subgroups in general:

• If K ≤ U ≤ G, then K is a component of U .

• If K � N � G, then KN/N is a component of G/N .

• If K is a component of a subnormal subgroup of G, then K is a
component of G.

Minimal subnormal subgroups of G are simple groups. Hence, those which
in addition are non-Abelian are components of G.

6.5.1 Let Z and E be subgroups of G such that Z ≤ Z(G) and EZ/Z
is a component of G/Z. Then E′ is a component of G.

Proof. Since Z ≤ Z(G) we have E′ = (EZ)′, and since EZ �� G also
E′ �� G. Moreover, 1.5.3 on page 25 shows that E′ is perfect. Let N be a
normal subgroup of E′ and G := G/Z. Then either

N = E = E
′ or N ≤ Z(E).

13Namely the classification of the finite simple groups.
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The first case gives N ≤ E′ ≤ NZ and thus N(Z ∩ E′) = E′. Hence
N = E′ since E′ is perfect. The second case gives [E′, N ] ≤ Z and

[E′, N, E′] = 1 = [N, E′, E′].

The Three-Subgroups Lemma (1.5.6 on page 26) yields [E′, E′, N ] = 1 and
thus [E′, N ] = 1, again since E′ is perfect. Hence N ≤ Z(E′), and E′ is
quasisimple. �

6.5.2 Let K be a component of G and U a subnormal subgroup of G.
Then K ≤ U or [U, K] = 1.

Proof. Obviously, U = G implies K ≤ U . Moreover, as mentioned earlier,
K = G implies either U = K or [U, K] = 1. Thus, we may assume that
there exist proper normal subgroups N, M of G such that

K ≤ N < G and U ≤ M < G.

In particular
U1 := [U, K] ≤ N ∩ M

and K ≤ NN (U1) =: G1 (1.5.5 on page 26). Thus, K is a component of G1,
and U1 is subnormal (in fact normal) in G1. By induction on |G|, applied
to G1, we get

[U1, K] = 1 or K ≤ U1.

The first case gives
1 = [U, K, K] = [K, U, K]

and then using the Three-Subgroups Lemma

1 = [K, K, U ] = [K ′, U ] = [K, U ].

The second case gives K ≤ M since [K, U ] ≤ M , and the conclusion follows
by induction on |G|, now applied to M . �

6.5.3 Let K1 and K2 be components of G. Then either K1 = K2 or
[K1, K2] = 1. In particular, products of components are subgroups of G.
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Proof. In the case [K1, K2] �= 1 6.5.2 implies K1 ≤ K2 and by symmetry
also K2 ≤ K1. �

We now define two characteristic subgroups of G.

E(G) : the subgroup generated by the components of G,

F ∗(G) := F (G) E(G).

F ∗(G) is the generalized Fitting subgroup of G. Notice that by 6.5.2

[F (G), E(G)] = 1.

Let N be a minimal normal subgroup of G. By 1.7.3 on page 38 either N
is Abelian and N ≤ F (G), or N is product of components and N ≤ E(G).
Hence:

6.5.4 F ∗(G) contains every minimal normal subgroup of G; in particular
F ∗(G) �= 1 if G �= 1. �

6.5.5 (a) Let K be a component of G such that Z(K) = 1. Then
〈KG〉 is a minimal normal subgroup of G; in particular, 〈KG〉 is the
direct product of the components conjugate to K.

(b) Let F (G) = 1. Then E(G) is the product of the minimal normal
subgroups of G.

Proof. (a) By 6.5.3 〈KG〉 is the central product of the components Kg,
g ∈ G, and thus by 1.6.7 a direct product since K is simple. Let N be a
minimal normal subgroup of G contained in 〈KG〉. Then 1.6.3 on page 30
shows that at least one of the factors Kg is in N . But then N = 〈(Kg)G〉 =
〈KG〉.
(b) By 6.3.1 on page 130 Z(K) ≤ F (G) for every component K of G. Now
the hypothesis F (G) = 1 implies that all the components of G are simple,
and (b) follows from (a). �

In general one gets:

6.5.6 Let E(G) �= 1 and K1, . . . , Kn be the components of G. Set

Z := Z(E(G)), Zi := Z(Ki), Ei := KiZ/Z (i = 1, . . . , n).



144 6. Normal and Subnormal Structure

(a) E(G) is the central product of K1, . . . , Kn, in particular
Z = Z1 · · ·Zn.

(b) Zi = Z ∩ Ki and Ei
∼= Ki/Zi (i = 1, . . . , n).

(c) E(G)/Z = E1 × · · · × En.

Proof. Let Z0 =
n∏

i=1
Zi. By 6.5.3 E(G) is the product of the normal

subgroups K1Z0, . . . , KnZ0 and

KiZ0 ∩ ∏
i�=j

KkZ0 = Z0.

Now 1.6.2 and 1.6.7 imply Z0 = Z and (a)–(c). �

6.5.7 Let L be a subnormal subgroup of G.

(a) If L ≤ F ∗(G), then L = (L ∩ F (G))(L ∩ E(G)).

(b) F ∗(L) = F ∗(G) ∩ L.

(c) E(L) CE(G)(L) = E(G). In particular, E(L) is normal in E(G).

Proof. Every component of L is also a component of G and F (L) ≤ F (G)
(6.3.1 on page 130). Now apply 6.5.2, 6.5.6 (a) and [F (G), E(G)] = 1. �

The following is the fundamental property of F ∗(G). It generalizes 6.1.4:

6.5.8 Theorem. Let G be a group. Then CG(F ∗(G)) ≤ F ∗(G).

Proof. Let L := CG(F ∗(G)), Z := Z(L), and L := L/Z. It suffices to show
that F ∗(L) = 1 since this implies L = 1 and L ≤ Z ≤ F ∗(G).

By 6.5.7 F ∗(L) ≤ F ∗(G) and thus

F ∗(L) = Z.

Hence, the inverse image of F (L) in L is a nilpotent normal subgroup of L
(5.1.2 on page 100) and thus contained in F (L). It follows that F (L) = 1.
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If F ∗(L) �= 1 , then L contains a component E, Z < E ≤ L. But then E′ is
a component of L (6.5.1), which contradicts F ∗(L) = Z. �

Exercises

Let G be a group.

1. Describe F ∗(CG(E(G))) and F ∗(CG(F (G))).

2. Let t be an involution of G and E a component of CG(t). Then E normalizes
every component of G.

3. Let Aut E/ InnE be solvable for every component E of G, and let F (G) = 1.
Then

E(CG(t)) ≤ E(G)

for every involution t of G.

4. Let K be a subgroup of G. Suppose that for every g ∈ G:

K is a component of 〈K, Kg〉.

Then K is a component of G (compare with 6.7.4 on page 159).

6.6 Primitive Maximal Subgroups

In this section we investigate embedding properties of maximal subgroups.
Let G be a group and M a maximal subgroup of G, and let N be a normal
subgroup of G. If N ≤ M , then M/N is a maximal subgroup of G/N .
Hence, we may assume—possibly after substituting for G a suitable factor
group—that no nontrivial normal subgroup of G is contained in M . Then
M satisfies:

(∗) 1 �= N � M ⇒ M = NG(N).

(∗∗) 1 �= N � G ⇒ G = MN.

Since the embedding property (∗) will also be central in later investigations
we call a proper—not necessarily maximal—subgroup M of G primitive,
if M satisfies (∗).
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Recall that point stabilizers of primitive permutation groups are primitive
maximal subgroups. Conversely, the action of G on the right cosets of a
primitive maximal subgroup M (by right multiplication) or on the conju-
gates of M is faithful and primitive.

We start with two elementary properties of primitive subgroups:

6.6.1 Let M be a primitive subgroup and N a normal subgroup of G such
that M ∩ N �= 1. Then CG(N) = 1.

Proof. 1 �= N ∩ M � M and the primitivity of M give

CG(N) ≤ CG(N ∩ M) ≤ M.

Thus CG(N) = 1 since CG(N) is a normal subgroup of G. �

6.6.2 Let M be a primitive subgroup of G. Then no nontrivial subnormal
subgroup of G is contained in M . In particular M ∩ F (G) = 1.

Proof. Assume by way of contradiction that there exists a subnormal sub-
group L �= 1 of G such that L ≤ M . Without loss we may further assume
that L is a minimal subnormal subgroup of G. Then L ≤ F ∗(G), and from
6.6.1, applied to N = F ∗(G), we get

1 = Z(F ∗(G)) (= Z(F (G)) Z(E(G))).

In particular F (G) = 1 (5.1.5 on page 101). It follows that L is a component
of G. Now 6.5.6 on page 143 shows that 〈LM 〉 is a normal subgroup of E(G).
Hence, the primitivity of M yields first E(G) ≤ M and then E(G) = 1.
This contradicts L �= 1. �

6.6.3 Let M be a primitive subgroup, p ∈ π(M), and N a normal sub-
group of G. Suppose that M ∩ N = 1 and Op(M) �= 1.

(a) p �∈ π(N).

(b) For every q ∈ π(N) there exists a unique M -invariant Sylow q-
subgroup of N .
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(c) If |π(N)| ≥ 2, then M is not a maximal subgroup of G.

Proof. (a) For P := Op(M) the primitivity of M gives

M = NG(P ).

In particular, P is a Sylow p-subgroup of NP since N ∩ M = 1 (3.1.10 on
page 61). This implies p �∈ π(N) (3.2.5).

(b) PN acts on Ω := SylqN by conjugation, and by Sylow’s Theorem N
is a transitive normal subgroup of PN . Hence 6.2.2 on page 127 applies
to PN and Ω. It follows that CΩ(P ) �= ∅ and CN (P ) is transitive on
CΩ(P ). Now CN (P ) ≤ M ∩ N = 1 gives |CΩ(P )| = 1; in particular
CΩ(P ) = CΩ(M) since P is normal in M .

(c) According to (b) there exists an M -invariant Q ∈ SylqN . Since Q is a
proper subgroup of N we get M < QM < NM ≤ G. �

6.6.4 Let M be a primitive subgroup and N a normal subgroup of G such
that

M ∩ F ∗(N) �= 1.

Then F (G) = 1 and F ∗(N) = F ∗(G) = E(G). In particular, every minimal
normal subgroup of G is contained in N .

Proof. Note that F ∗(N) ≤ F ∗(G) (6.5.7). Hence 6.6.1 implies

Z(F (G)) ≤ CG(F ∗(N)) = 1,

and thus F (G) = 1 by 5.1.5 on page 101. In particular F ∗(N) = E(N), and

F ∗(G) 6.5.7= CF ∗(G)(E(N)) E(N).

Another application of 6.6.1 gives F ∗(G) = E(N) = F ∗(N). �

In the following let M be a primitive maximal subgroup of G. Then

G = F ∗(G) M.

For the rest of this section we will investigate this factorization. The results
will be collected in the theorem of O’Nan-Scott.

We distinguish three cases:
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(F1) F (G) = F ∗(G), F (G) is the unique minimal normal subgroup of
G,14 and M is a complement of F (G) in G.

(F2) G contains exactly two minimal normal subgroups N1 and N2. These
normal subgroups are non-Abelian, i.e.,

F ∗(G) = N1 × N2 = E(G).

(F3) F ∗(G) is a non-Abelian minimal normal subgroup of G.

6.6.5 Suppose that G contains a primitive maximal subgroup M . Then
either (F1), (F2), or (F3) holds.

Proof. Let N1 be a minimal normal subgroup of G. Then

(′) G = N1M.

From 6.6.1 we get CG(N1) ∩ M = 1. If N1 is Abelian, then (′) implies
N1 = CG(N1) and thus N1 = Z(F ∗(G)). It follows that N1 = F ∗(G).
Hence (F1) holds since M is a complement of N1 by 6.6.2.

We may assume now that no minimal normal subgroup of G is Abelian.
Then F (G) = 1, and E(G) is the product of the minimal normal subgroups
of G (6.5.5 (b)). If N1 is the only minimal normal subgroup of G, then (F3)
holds.

Assume that there exists another minimal normal subgroup N2 of G. Then

N := N1N2 = N1 × N2,

and N ∩ M �= 1 by (′). As N = F ∗(N) we get E(G) = N from 6.6.4.
Hence, N1 and N2 are the only minimal normal subgroups of G (1.6.3 (b)
on page 30), and (F2) holds. �

We now discuss the three cases (F1), (F2), and (F3) separately.

6.6.6 Suppose that (F1) holds. Let p ∈ π(M) such that Op(M) �= 1.
Then all primitive maximal subgroups of G are conjugate.15

14Thus F (G) is elementary Abelian.
15In particular, this holds for solvable groups G.
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Proof. Set P := Op(M) and F := F ∗(G). Then

M = NG(P ) and FP � G,

and by 6.6.3 (a)
Sylp M ⊆ Sylp G.

Let H be another primitive maximal subgroup of G. Then also H is a
complement of F ; in particular |H| = |M |. According to Sylow’s Theorem
there exists g ∈ G such that P ≤ Hg. This implies

P = Hg ∩ FP � Hg,

and thus Hg = NG(P ) = M . �

6.6.7 Suppose that (F2) holds. Then there exists an M -isomorphism
α : N1 → N2 such that

M ∩ F ∗(G) = {xxα | x ∈ N1}.16

Proof. Let D := M ∩ F ∗(G). Then 6.6.1 implies

D ∩ N1 = 1 = D ∩ N2.

Since G = NiM we get F ∗(G) = NiD. Hence, for every x1 ∈ N1 there
exists a unique x2 ∈ N2 such that x1x2 ∈ D, and the mapping

α : N1 → N2, x1 �→ x2

is an isomorphism. Moreover, this isomorphism commutes with the conju-
gation by elements of M since N1, N2, and D are M -invariant. �

We now start the discussion of case (F3) and begin with the remark (compare
with 1.7.1 (b) on page 36):

6.6.8 Let F be a minimal normal subgroup of G and M a proper subgroup
of G such that G = FM .

16Thus, M ∩ F ∗(G) is a “diagonal” of N1 × N2.
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(a) Suppose that U is a proper M -invariant subgroup of F . Then UM is
a proper subgroup of G.

(b) M is a maximal subgroup of G if and only if F ∩ M is the unique
maximal M -invariant subgroup of F .

Proof. (b) follows from (a). For the proof of (a) we assume, by way of
contradiction, G = UM . Then U is normal in G, and thus F is not a
minimal normal subgroup of G. �

In case (F3) F ∗(G) is a non-Abelian minimal normal subgroup of G. We
investigate the following situation:

F F is a non-Abelian minimal normal subgroup of G;

M is a maximal subgroup of G such that G = FM ;

K is a component of F ;

M0 := NM (K);

G0 := KM0;

G0 := G0/CG0(K).

Then K is a non-Abelian simple group, and F is the direct product of the
conjugates of K. In fact, since G = FM these conjugates are already
conjugate under M . This also shows that K �≤ M since F �≤ M .

Note that K (≤ G0) is isomorphic to K and thus is a minimal normal
subgroup of

G0 = K M0.

6.6.9 Suppose that F holds.

(a) M0 is a maximal subgroup of G0.

(b) Let M0 �= G0. Then M0 is a primitive maximal subgroup of G0.

(c) M0 ∩ K ∈ {M ∩ K, K}.
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Proof. (a) We apply 6.6.8 (b) to G0 and M0 (with K in place of F ). Then it
suffices to show that every proper M0-invariant subgroup V of K is contained
in K ∩ M0.

Let U := 〈V M 〉. Then either UM = M or UM = G. In the first case we
have V ≤ K ∩ M0. In the second case we derive a contradiction, as follows.
Note that now U is normal in G. The minimality of F gives F = U . On
the other hand, V x ≤ Kx �= K for every x ∈ M \ M0. It follows that
U = V CF (K) = F (6.5.3) and V � F . But then V = K, a contradiction.

(b) The maximality of M0 follows from (a) since M0 �= G0. To show the
primitivity of M0 let N ≤ M0 such that N � G0. Then [N, K] = 1 since
K �≤ M0. As the mapping

K → K with x �→ x

is an N -isomorphism we get N ≤ CG0(K) and thus N = 1.

(c) Let V := {x ∈ K | x ∈ M0 ∩ K}. Then V = M0 ∩ K and V is an
M0-invariant subgroup of K, which contains M0 ∩ K. Now the conclusion
follows from (a) and 6.6.8. �

6.6.10 Suppose that F holds.

(a) If K ∩ M �= 1, then M0 is a primitive maximal subgroup of G0.

(b) If K ∩ M = 1, then (b1) or (b2) holds:

(b1) K ≤ M0 = G0.

(b2) M0 ∩ K = 1, and M0 is a primitive maximal subgroup of G0.

Proof. (a) This follows from 6.6.9 (b) if M0 �= G0. Assume that M0 = G0.
Then K ≤ M0, and M ∩ K = M0 ∩ K is K-invariant. This contradicts the
simplicity of K.

(b) This follows from 6.6.9 (c) and (b). �

The following conjecture can be verified using the classification of the finite
simple groups.

Schreier’s Conjecture:
Let E be a simple group. Then AutE/ InnE is solvable.
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With the help of this conjecture one can show that case (b2) in 6.6.10 does
not occur:

According to 3.1.9 on page 60, G0 can be identified with a subgroup of
AutK such that K = InnK. Then

G0/K ≤ AutK/ InnK.

It follows that G0/K and thus also M0 ∼= M0K/K is solvable. Moreover,
|π(K)| ≥ 2 since K is a non-Abelian simple group. Hence 6.6.3 (c) shows
that M0 is not maximal, which contradicts (b2).

We denote the set of components of the group X by K(X). Let F be as in
F and N a normal subgroup of F . Then (see 1.7.5)

N = ×
E∈K(N)

E and F = N ×
( ×

E∈K(F )\K(N)
E
)
.

For E ∈ K(F ) let
πE : F → E

be the projection of F onto E (we write πE(x) for the image of x ∈ F ).

6.6.11 Suppose that F holds and

1 = K ∩ M �= F ∩ M.

Then there exist normal subgroups N1, . . . , Nr of F such that the following
hold:

(a) F = N1 × · · · × Nr, and M acts transitively on {N1, . . . , Nr}.

(b) F ∩ M =
r×

i=1
(Ni ∩ M).

(c) For every E ∈ K(Ni) the mapping

Ni ∩ M → E with x �→ πE(x)

is a NM (E)-isomorphism (i = 1, . . . , r).17

(d) M0 = G0.

17Thus, Ni ∩ M is a diagonal of the direct product Ni = ×
E∈K(Ni)

E.
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Proof. Let D := F ∩ M and

F0 := ×
E∈K(F )

πE(D).

Since D �= 1 also F0 �= 1. Moreover F0 �≤ M since K ∩ M = 1 and all
components of F are conjugate under M . Hence 6.6.8 (b) gives F0 = F and
thus

(1) πE(D) = E for all E ∈ K(F ).

Choose a ∈ D# such that the number of components E ∈ K(F ) with
πE(a) �= 1 is minimal, and let N be the product of these components, i.e.,

K(N) = {E ∈ K(F ) | πE(a) �= 1}.

Set
C := D ∩ N ;

note that a ∈ C# and C � D. Then 1 �= πE(C) � πE(D) for E ∈ K(N).
Now (1) and the simplicity of E give πE(C) = E. By the minimal choice of
a the mapping πE |C is injective. Hence we obtain:

(2) For every E ∈ K(N) the mapping

C → E with x �→ πE(x)

is a D-isomorphism.

That this isomorphism commutes with the action of D follows from the fact
that CD = C and ED = E.

We now show:

(3) Let d ∈ D and c ∈ C such that

πE0(d) = πE0(c) for some E0 ∈ K(N).

Then [N, dc−1] = 1.

For the proof of (3) let x ∈ C. By (2)

πE0(x
d) = πE0(x)d = πE0(x)πE0 (d) = πE0(x)πE0 (c) = πE0(x

c),
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and thus xd = xc since πE0 |C is injective; in particular [C, f ] = 1 where
f := dc−1. It follows that for all E ∈ K(N)

1 = πE([C, f ]) = [πE(C), πE(f)]
(2)
= [E, πE(f)],

and thus πE(f) = 1 since Z(E) = 1. This implies (3).

Of course, the statements (2) and (3) also hold with Nm (m ∈ M) in place
of N .

Let E0 ∈ K(N)∩K(Nm) and d := am. By (2) there exists c ∈ C such that
πE0(d) = πE0(c). Hence (3), applied to N and Nm, gives [NNm, dc−1] =
1. Together with dc−1 ∈ NNm we get that d = c ∈ N ∩ Nm, and the
minimality of a yields N = Nm. We have shown:

(4) N ∩ Nm = 1 or N = Nm for m ∈ M . In particular NM (E) ≤
NM (N) for all E ∈ K(N).

The second part of (4) implies that the mapping in (2) is an NM (E)-
isomorphism for all E ∈ K(N). With this remark (a) and (c) follow from
(2) and (4), where the Ni are the conjugates of N . Moreover, (3) first gives

D = (D ∩ N) × CD(N)

and then after repeated application

D = ×
m∈M

(Nm ∩ D).

This is (b). Finally (d) follows from (c). �

The results 6.6.5 – 6.6.11 now yield:

6.6.12 Theorem of O’Nan-Scott.18 Let M be a primitive maximal
subgroup of G. Then one of the following holds:

(a) F ∗(G) = F (G), and F (G) is the unique minimal normal subgroup of
G.

(b) F (G) = 1, and F ∗(G) = N1 × N2; here N1 and N2 are the only min-
imal normal subgroups of G. There exists an isomorphism α : N1 →
N2 such that F ∗(G) ∩ M = {xxα | x ∈ N1}.

18See [81] and [35].
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(c) F (G) = 1, and F ∗(G) is the unique minimal normal subgroup of G.
Moreover one of the following holds, where the notation is as in F :

(c1) M0 is a primitive maximal subgroup of G0 (and K ∩M �= 1).19

(c2) M0 = G0 and M ∩ F = 1.

(c3) M0 = G0, 1 = K ∩ M �= F ∩ M , and F is as described in
6.6.11. �

We now give an example for each of the cases that arise in the theorem of
O’Nan-Scott.

Case (a): G = S3 and M = S2 (≤ G) or G = S4 and M = S3 (≤ G).
In general (a) holds for every solvable group G as long as Φ(G) = 1 and G
contains exactly one minimal normal subgroup.

In the other cases F ∗(G) is the direct product of its components. For the
cases (b), (c1), and (c3) let

K ∼= A5 and H := K × K

and t ∈ AutH such that

(k1, k2)t = (k2, k1) for all (k1, k2) ∈ H.

Using these data we construct a group G (and a primitive maximal subgroup
M) such that F ∗(G) = H.

Case (b): G := H and M := {(k, k) | k ∈ K}.

Case (c1): G = 〈t〉H, the semidirect product of H with 〈t〉, and M1 is a
maximal subgroup of K. Let M2 := {(k1, k2) | k1, k2 ∈ M1} and M :=
M2〈t〉.
Case (c3): G is as in the example for (c1) but M2 := {(k, k) | k ∈ K} and
M := M2〈t〉.
Case (c2): In the alternating group M := A6 the stabilizer

M0 := {x ∈ A6 | 6x = 6}

is a subgroup isomorphic to A5. Let G be the twisted wreath product

(A5, M, M0, τ),

19K ∩ M �= 1 follows if one uses Schreier’s conjecture; see above.
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where τ : M0 → AutA5 describes the action by conjugation, i.e., Im τ =
InnA5 (see Section 4.4). Then G is the semidirect product of a normal
subgroup

Â5 = A5 × A5 × A5 × A5 × A5 × A5

with M , and F ∗(G) = Â5. Moreover, M is primitive since A6 is simple,
and 1 and K are the only M0-invariant subgroups of K since M0 acts on
the first component K ∼= A5 of Â5 as InnA5. Now 6.6.8 shows that M is
a maximal subgroup of G (also compare with the proof of 6.6.9 (a).

Exercises

Let G be a solvable group.

1. Let U be a primitive group and N a minimal normal subgroup of G. Set
G := G/N . Then U = G or U is a primitive subgroup of G.

2. Let U1 and U2 be primitive subgroups of G such that |U1| ≤ |U2|. Then U1
is conjugate to a subgroup of U2.

6.7 Subnormal Subgroups

In this last section of the chapter we present two theorems of Wielandt about
subnormal subgroups. In particular, corollary 6.7.6 (Baer’s Theorem) is a
frequently used result.

6.7.1 Theorem (Wielandt [98]). Let G be a group and A and B sub-
normal subgroups of G. Then also 〈A, B〉 is subnormal in G.

Proof. Let G be a minimal counterexample20 and S the set of all subnormal
subgroups of G. Then there exist A, B ∈ S such that 〈A, B〉 �∈ S . We fix
B and choose A ∈ S maximal such that 〈A, B〉 �∈ S. It follows:

(1) If A < X ∈ S then 〈X,B〉 ∈ S.

20This means: We assume that the theorem is false. Then there exist groups G that
satisfy the hypothesis but not the conclusion of the theorem. Among these groups we
choose G such that |G| is minimal.



6.7. Subnormal Subgroups 157

If A � G, then 1.2.8 on page 14 implies AB/A �� G/A and thus 〈A, B〉 =
AB ∈ S. Hence

(2) A is not normal in G.

Since A ∈ S there exist subgroups X and G1 of G such that

(3) A � X �� G1 � G and A �= X, G1 �= G.

Clearly Ab �� G1 for every b ∈ B since G1 is normal in G. The minimality
of G gives

A ≤ 〈AB〉 �� G1;

in particular 〈AB〉 ∈ S. If A < 〈AB〉 then (1) implies

〈A, B〉 = 〈〈AB〉, B〉 �� G,

which is not the case. Thus, we have 〈AB〉 = A, i.e.,

B ≤ NG(A).

Again by (1)
G2 := 〈X,B〉 �� G.

If G2 �= G then as above the minimality of G gives 〈A, B〉 �� G2 and
〈A, B〉 ∈ S. Thus, we have

G = G2 = 〈X,B〉 ≤ NG(A),

which contradicts (2). �

The following lemma gives a typical property of subnormal subgroups (com-
pare with 3.2.6 on page 66):

6.7.2 Let Σ be a set of subnormal subgroups of the group G satisfying
ΣG = Σ, and let Σ0 be a proper subset of Σ. Then there exists X ∈ Σ \ Σ0
such that 〈Σ0〉X = 〈Σ0〉.

Proof. By 6.7.1, 〈Σ0〉 is subnormal in G. Since we may assume that 〈Σ0〉 �=
G there exists a proper normal subgroup G1 of G containing 〈Σ0〉. Hence,
the claim follows by induction on |G|, applied to G1, provided

Σ1 := {U ∈ Σ | U ≤ G1} �= Σ0.
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Assume that Σ0 = Σ1. Clearly (Σ1)G = Σ1 since GG
1 = G1 and ΣG = Σ.

Hence 〈Σ0〉 = 〈Σ1〉 is normal in G. �

Central in the proof of the next theorem is the fact that a certain set of
subgroups contains a unique maximal element.21 Such uniqueness results are
frequently used tools in the investigation of finite groups. As the uniqueness
result used here22 is also needed in Chapter 12, we formulate it separately:

6.7.3 Let A be a subgroup of the group G and U a nonempty set of sub-
groups of G. For U ∈ U set

ΣU := {Ag | g ∈ G, Ag �� U}.

Suppose that for all U, Ũ ∈ U :

(1) A ∈ ΣU .

(2) {B ∈ Σ
Ũ

| B ≤ U} ⊆ ΣU .

(3) There exists Û ∈ U such that NG(〈ΣU ∩ Σ
Ũ
〉) ≤ Û .

Then U contains a unique maximal element.

Proof. Set
Σ :=

⋃
U∈U

ΣU .

From (2) we obtain

ΣU = {B ∈ Σ | B ≤ U} for U ∈ U .

By way of contradiction we assume that there exist two different maximal
elements U1 and U2 of U . In addition, we choose these maximal elements
such that

Σ0 := ΣU1 ∩ ΣU2

is maximal. According to (3) NG(〈Σ0〉) is contained in a maximal element
U3 of U . The definition of ΣUi shows that 〈ΣUi〉 � Ui, and the maximality
of Ui and (3) give

(∗) Ui = NG(〈ΣUi〉), i = 1, 2, 3;
21With respect to inclusion.
22One version of this result Wielandt calls the Zipper Lemma—according to the method

used in the proof; see [99], p. 586.
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in particular ΣU1 �= ΣU2 .

Let i ∈ {1, 2} such that Σ0 � ΣUi . Then by 6.7.2 there exists X ∈ ΣUi \Σ0
with 〈Σ0〉X = 〈Σ0〉. It follows that X ∈ ΣU3 , and thus Σ0 � ΣU3 ∩ ΣUi

and Ui = U3 by the maximal choice of Σ0. Hence, we can choose notation
such that U2 = U3 and U1 �= U3. Then Σ0 = ΣU1 and by (∗)

U1 = NG(〈ΣU1〉) ≤ U3,

i.e., U1 = U3, a contradiction. �

6.7.4 Theorem (Wielandt [98]). Let A be a subgroup of the group G.
Suppose that

A �� 〈A, Ag〉 for all g ∈ G.

Then A is subnormal in G.

Proof. Note that the hypothesis also holds for all conjugates Ax, x ∈ G:

A �� 〈A, Agx−1〉 ⇒ Ax �� 〈Ax, Ag〉.

We now proceed by induction on |G| and assume that A is not subnormal
in G. Let U be the set of all proper subgroups of G that contain A; in
particular 〈A, Ag〉 ∈ U for all g ∈ G since A is not subnormal in G. Let
U ∈ U . By induction on |G| we may assume that every subgroup of

ΣU := {Ax | Ax ≤ U, x ∈ G}

is subnormal in U . Moreover for Σ0 ⊆ ΣU and A ∈ Σ0

A �� 〈Σ0〉.

Hence 〈Σ0〉 is not normal in G. It follows that NG(〈Σ0〉) ∈ U , and U
satisfies the hypothesis of 6.7.3. Thus there exists a maximal subgroup M
of G that contains 〈A, Ag〉 for all g ∈ G. Hence

A �� 〈ΣM 〉 � G

and thus A �� G which contradicts our assumption. �

Every subgroup of a nilpotent group is subnormal. This gives the following
corollary:
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6.7.5 Let A be a subgroup of G. Suppose that 〈A, Ag〉 is nilpotent for
every g ∈ G. Then A is subnormal in G; in particular A ≤ F (G). �

Since p-groups are nilpotent we get as another corollary:

6.7.6 Baer’s Theorem [24]. Let x be a p-element of G. Suppose that
〈x, xg〉 is a p-subgroup for every g ∈ G. Then x ∈ Op(G). �

For the prime 2 we obtain:

6.7.7 Let t be an involution of G that is not in O2(G). Then there exists
an element y ∈ G# of odd order such that yt = y−1.

Proof. By 6.7.6 there exists g ∈ G such that 〈t, tg〉 is not a 2-subgroup.
Then 1.6.9 on page 34 shows that d := ttg is not a 2-element. Hence there
exists 1 �= y ∈ 〈d〉 of odd order, and again by 1.6.9 yt = y−1. �

The following lemma, which is similar to 6.7.6, will be needed in Chapters
10 and 11.

6.7.8 Matsuyama’s Lemma [80]. Let Z, Y be subgroups of G and
p ∈ π(G). Suppose that

〈(Zg)Y 〉 is a p-subgroup for all g ∈ G.23

Then there exists a Sylow p-subgroup P of G such that

〈Zg | g ∈ G, Zg ≤ P 〉

is normalized by Y .24

Proof. Let M be the set of all Y -invariant p-subgroups Q of G that have
the following property:

Z ≤ Q and Q = 〈Zg | g ∈ G, Zg ≤ Q〉.
23This implies Zg �� 〈Zg, Y 〉 for all g ∈ G.
24On p. 169 this subgroup is denoted by wclG(Z, P ).
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By our hypothesis 〈ZY 〉 is contained in M; in particular M is nonempty.

Let Q be a maximal element of M and

Q ≤ P ∈ Sylp G.

We set

Σ := {Zg | g ∈ G, Zg ≤ P} and Σ0 := {Zg | g ∈ G, Zg ≤ Q}.

Then Q = 〈Σ0〉, and the claim follows if Σ0 = Σ.

Thus, we may assume that Σ0 ⊂ Σ. Since all subgroups of P are subnor-
mal in P we can apply 6.7.2. Hence, there exists Zg ∈ Σ \ Σ0 such that
Zg ≤ NG(Q). Then also 〈ZgY 〉 ≤ NG(Q) since QY = Q. It follows that
Q 〈ZgY 〉 ∈ M, which contradicts the maximal choice of Q. �

Exercises

Let G be a group.

1. Let H �� G. Then H ∩ S ∈ Sylp H for all p ∈ P and S ∈ Sylp G.

2. Let H be a solvable subgroup of G such that

S ∩ H ∈ Sylp H for all p ∈ P and S ∈ Sylp G.

Then H is subnormal in G.

Let D be a conjugacy class of p-elements of G, p ∈ P.

3. If 〈D〉 is not a p-group, then there exist x, y ∈ D such that x �= y and x is
conjugate to y in 〈x, y〉.

4. Let E ⊆ D and |E| be maximal satisfying

(∗) E is a conjugacy class of 〈E〉.
Then 〈E〉 �� G.

5. Let G = 〈D〉, E ⊆ D and |E| be maximal satisfying

(∗∗) E �= D and E is a conjugacy class of 〈E〉.
Then the set of all U ≤ G with E ⊆ U and U = 〈U ∩ D〉 contains a unique
maximal element.

6. (Baumann, [25]) Let G = 〈D〉 and D ⊆ U1 ∪ · · · ∪ Ur for proper subgroups
U1, . . . , Ur of G. Then r ≥ p + 1.



This page intentionally left blank 



Chapter 7

Transfer and p-Factor
Groups

7.1 The Transfer Homomorphism

To search for nontrivial proper normal subgroups is often the first step in the
investigation of a finite group. For example, if the group G has such a normal
subgroup N , then in proofs by induction one frequently gets information
about N and G/N , allowing one to derive the desired result for G (e.g.,
6.1.2 on page 122).

Since normal subgroups are kernels of homomorphisms it is suggestive to
construct homomorphisms of G in order to find normal subgroups. The
difficulty then is to decide whether the kernel of such a homomorphism is a
nontrivial and proper subgroup of G.

In the following let P be a subgroup of G. In this chapter we define a
homomorphism τ from G into the Abelian group P/P ′, whose kernel and
image can be described by means of p-elements if P is a Sylow p-subgroup
of G. This is in the spirit of the philosophy mentioned earlier, that the
structure of a group be deduced from its p-structure.

If G is non-Abelian, then clearly Ker τ is nontrivial since G/ Ker τ is
Abelian. Hence, either G contains a proper nontrivial normal subgroup or
G = Ker τ . In the second case the description of Ker τ in terms of the
conjugacy of p-elements in G will yield information concerning the structure
of G.

163
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Let
P := P/P ′

be the commutator factor group of P and

P → P with x �→ x

the natural epimorphism to the Abelian group P .

Let S be the set of transversals of P in G. For R,S ∈ S let

R|S :=
∏

(r,s)∈R×S
Pr=Ps

rs−1 ( ∈ P ).

(Compare with the definition on page 71.) Since the factors are elements of
the Abelian group P this product does not depend on their ordering. As in
Section 3.3 for R,S, T ∈ S the following properties hold:

(1) (R|S)−1 = S|R

(2) (R|S) (S|T ) = R|T.

We investigate the action of G on S by right multiplication:

S
g∈G�−→ Sg.

Then

(3) Rg |Sg = R|S

and

(4) Rg|R = Sg|S.

For the proof of (4) note that

(Rg|R) (Sg|S)−1 = (Rg|R) (R|Sg) (R|Sg)−1 (Sg|S)−1

= (Rg|R) (R|Sg) ((R|Sg) (Sg|S))−1

(2)
= (Rg|Sg) (R|S)−1 (3)

= 1.

7.1.1 Transfer Homomorphism. Let S ∈ S. The mapping

τG→P : G → P with g �→ Sg|S

is a homomorphism that is independent of the choice of S ∈ S.
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Proof. The independence of the choice of S follows from (4). For x, y ∈ G

Sxy|S (2)
= (Sxy|Sy) (Sy|S) = ((Sx)y|Sy) (Sy|S)

(3)
= (Sx|S) (Sy|S).

Hence τG→P is a homomorphism. �

Next we want to calculate the transfer xτG→P for x ∈ G. To do so we study
the action of 〈x〉 by right multiplication on the set Ω := { Pg| g ∈ G}. Let
Ω1, . . . ,Ωk be the 〈x〉 -orbits of Ω and Pgi ∈ Ωi. Then there exists a divisor
ni of o(x) such that 〈xni〉 is the kernel of the action of 〈x〉 on Ωi.

For i = 1, . . . , k:

• ni = |Ωi| and
k∑

i=1
ni = |G : P |;

• Ωi = {Pgi, Pgix, . . . , Pgix
ni−1};

• Pgi x
ni = Pgi, and thus gix

nig−1
i ∈ P .

In particular
S :=

.⋃
i=1,...,k

{gix
j | j = 0, . . . , ni − 1}

is an element of S and satisfies

Sx ∩ Pgi x
j =

{ {gix
j} for j = 1, . . . , ni − 1

{gix
ni} for j = 0.

Hence

(5) xτG→P =
k∏

i=1
gixnig−1

i .

We now set
P ∗ := 〈 y−1yg | y, yg ∈ P, g ∈ G 〉.

Note here that y−1yg = [y, g] and thus

P ′ ≤ P ∗ ≤ P ∩ G′.

With this notation we get:

7.1.2 (xτG→P ) P ∗ = x|G:P | P ∗ for x ∈ P .
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Proof. For each factor in (5) we have

gix
nig−1

i = xni(x−nigix
nig−1

i ) ∈ xniP ∗,

and thus

xτG→P ≡ x

∑
i

ni

= x|G:P | (mod P ∗). �

Now let π be a nonempty set of primes and let P be a Hall π-subgroup of
G. Then PG′/G′ = Oπ(G/G′) and by 2.1.6 on page 46

G/G′ = PG′/G′ × Oπ′(G/G′).

We denote the inverse image of Oπ′(G/G′) in G by G′(π). Then G′(π) is
the smallest normal subgroup of G having an Abelian π-factor group.1 Since
G = PG′(π) we get

(6) P ∩ G′(π) = P ∩ G′ and P/P ∩ G′ ∼= G/G′(π).

7.1.3 Theorem. Let P be a Hall π-subgroup of G. Then

P ∗ = P ∩ G′(π) = P ∩ G′, and P/P ∗ ∼= G/G′(π).

More precisely: Ker τG→P = G′(π) and P = P ∗ × Im τG→P .

Proof. Let τ := τG→P . Note that (|P |, |G : P |) = 1 since P is a Hall
π-subgroup. Hence 7.1.2 implies

〈xτP ∗ 〉 = 〈 x 〉 P ∗

for all x ∈ P (1.4.3 (b)). This gives P ∩ Ker τ ≤ P
∗ and then

P ∩ Ker τ ≤ P ∗ and P = P ∗ Im τ

since P ′ ≤ P ∗.

Conversely, G′(π) ≤ Ker τ since τ is a homomorphism into the Abelian
π-group P . It follows that

P ∗ ≤ P ∩ G′ (6)
= P ∩ G′(π) ≤ P ∩ Ker τ,

1In the terminology of 6.3, G′(π) = OK(G), where K is the class of Abelian π-groups.
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and thus P ∗ = P ∩ Ker τ = P ∩ G′(π) = P ∩ G′. Hence

|G/G′(π)| ≥ |G/ Ker τ | = | Im τ | ≥ |P/P ∗| = |P/P ∩ G′| (6)
= |G/G′(π)|,

and this implies Ker τ = G′(π) and | Im τ | = |P/P ∗|. Since P = P ∗ Im τ
we get P = P ∗ × Im τ . �

As a corollary one gets:

7.1.4 Let P be a Hall π-subgroup of G and P �= P ∗. Then G �= Oπ(G).
�

The importance of 7.1.3 and 7.1.4 lies mainly in the fact that the subgroup
P ∩G′ 2 can be calculated in P , provided one knows which of the elements of
P are conjugate in G. For π = {p} —according to Alperin’s Fusion Theorem
[20]—this conjugation takes place in the normalizers of certain nontrivial p-
subgroups. In a very special case this result has long been known. Thus:

7.1.5 Burnside’s Lemma ([4], p. 155). Let P be a Sylow p-subgroup
of G and A1, A2 normal subsets of P .3 If A1 and A2 are conjugate in G,
then they are already conjugate in NG(P ).

Proof. Let g ∈ G such that Ag
1 = A2. Then P ≤ NG(A1) implies P g ≤

NG(Ag
1) = NG(A2). Hence, P and P g are two Sylow p-subgroups of NG(A2);

in particular they are conjugate in NG(A2). Let z ∈ NG(A2) such that
P gz = P . Then y := gz ∈ NG(P ) and A1

y = A2. �

If P is an Abelian Sylow p-subgroup, then 7.1.5 can be applied to all subsets
of P ; in particular

x, xg ∈ P, g ∈ G ⇒ xg = xy for some y ∈ NG(P ).

This implies P ∗ = {x−1xy | y ∈ NG(P ), x ∈ P}, and 7.1.3 gives:

7.1.6 Theorem. Let P be an Abelian Sylow p-subgroup of G and H :=
NG(P ). Then P ∩ G′ = P ∩ H ′ and

P/P ∩ H ′ ∼= G/G′(p) ∼= H/H ′(p). �

2That is called the focal subgroup of P in G.
3That is, Ai = Ax

i for all x ∈ P .
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Let Z and P be subgroups of G, Z ≤ P . Then Z is weakly closed in P
(with respect to G), if

Zg ≤ P, g ∈ G ⇒ Zg = Z.

7.1.7 Let P ∈ Sylp G and let Z be a subgroup of Z(P ) that is weakly
closed in P . Suppose that y ∈ P and g ∈ G such that yg ∈ P . Then there
exists g′ ∈ NG(Z) with yg = yg′

.

Proof. Note that yg ∈ P ∩ P g and thus 〈Z,Zg〉 ≤ CG(yg). By Sylow’s
Theorem there exists c ∈ CG(yg) such that 〈Zg, Zc〉 is a p-group. It follows
that

〈Zgh, Zch〉 = 〈Zg, Zc〉h ≤ P

for some h ∈ G, again by Sylow’s Theorem. Since Z is weakly closed in P
we get Zgh = Zch = Z and thus

g′ := gc−1 ∈ NG(Z).

Now c ∈ CG(yg) gives yg′
= yg. �

From 7.1.7 we conclude, using 7.1.3:

7.1.8 Grün’s Theorem [62]. Let P be a Sylow p-subgroup of G and Z
a subgroup of Z(P ) that is weakly closed in P . Set H := NG(Z). Then
P ∩ G′ = P ∩ H ′ and

P/(P ∩ G′) ∼= G/G′(p) ∼= H/H ′(p).

In particular
G �= Op(G) ⇐⇒ H �= Op(H). �

We conclude this section with an elementary remark about weakly closed
subgroups:

7.1.9 Let P be a Sylow p-subgroup of G and Z a subgroup of P that is
normal in NG(P ). Then the following two statements are equivalent:

(i) Z is weakly closed in P with respect to G.
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(ii) Z ≤ R ∈ Sylp G ⇒ Z � R.

Proof. (i) ⇒ (ii): If Z ≤ R = P g−1
, g ∈ G, then Zg ≤ P and thus Zg = Z.

Hence ZR = ZP g−1

= Z.

(ii) ⇒ (i): Let Zg ≤ P . Since (ii) also holds for all conjugates of Z we have
Zg � P . By 7.1.5 there exists y ∈ NG(P ) such that Zy = Zg, and the
hypothesis implies Zg = Zy = Z. �

Let Z and P be subgroups of G, Z ≤ P . The subgroup

wclG(Z,P ) := 〈 Zg | g ∈ G, Zg ≤ P 〉

is said to be the weak closure of Z in P (with respect to G).4

It is evident that the weak closure wclG(Z,P ) is normal in NG(P ) and
weakly closed in P . In particular, one gets a result similar to that of 7.1.9
(ii):

wclG(Z,P ) ≤ R ∈ Sylp G ⇒ wclG(Z,P ) = wclG(Z,R).

7.2 Normal p-Complements

A normal subgroup N of the group G is a normal p-complement of G
if G is the semidirect product of N with a Sylow p-subgroup of G. This is
equivalent to

Op′(G) = N = Op(G).

In other words, the existence of a normal p-complement is equivalent to G
being p′-closed. As we have seen in Section 6.3, also subgroups and factor
groups of groups with a normal p-complement have a normal p-complement.

From 7.1.6 one gets:

7.2.1 Theorem (Burnside ([4], S. 327)). Let P be a Sylow p-subgroup
of G. Suppose that NG(P ) = CG(P ). Then G has a normal p-complement.

4Compare 6.7.8 on p. 160.
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Proof. Let H := NG(P ). Then P ≤ Z(H), so P is Abelian. By 3.3.1 on
page 73 there exists a complement A of P in H. Now P ≤ Z(H) gives
H = P × A and thus H ′ ∩ P = 1, and the claim follows from 7.1.6. �

If P in 7.2.1 is cyclic and p is the smallest prime divisor of |G|, then
NG(P ) = CG(P ) by 3.1.9 on page 60 and 2.2.5 (a) on page 51. Thus,
we have the following corollary:

7.2.2 Suppose that the Sylow p-subgroups of G are cyclic, where p is the
smallest prime divisor of |G|. The G has a normal p-complement. �

The following observation is used in the proof of the next theorem.

7.2.3 Let G be the semidirect product of the normal subgroup N with
the subgroup P . Let Z be a subgroup of P and let g ∈ G such that
Zg ≤ P . Then there exists x ∈ P with Zg = Zx. In particular, every
normal subgroup of P is weakly closed in P .

Proof. The element g can be written g = yx with y ∈ N and x ∈ P since
G = NP . Then Zg ≤ P implies Zy ≤ P . This shows that for all z ∈ Z

[z, y] = z−1y−1zy ∈ N ∩ P = 1

and thus y ∈ CG(Z). Now Zg = Zx follows. �

7.2.4 Normal p-Complement Theorem of Frobenius [47]. Let P
be a Sylow p-subgroup of G. Suppose that for every nontrivial p-subgroup
U of P , NG(U) has a normal p-complement. Then G has a normal p-
complement.

Proof. Obviously, G has a normal p-complement if P = 1. Thus, we may
assume that P �= 1. Then also

Z := Z(P ) �= 1.

By hypothesis H := NG(Z) has a normal p-complement; in particular
Op(H) �= H. We show:
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(′) Z is weakly closed in P .

Using (′) and Grün’s Theorem we get Op(G) �= G. Since the hypothesis is
inherited by subgroups we may assume by induction on |G| that Op(G) has
a normal p-complement K. Then K � G and G/K is a p-group. Hence,
K is also a normal p-complement of G.

For the proof of (′) it suffices to show the implication

Z ≤ R ∈ Sylp G ⇒ Z � R

(see 7.1.9). Hence, we assume that there exists R ∈ Sylp G such that Z ≤ R
and Z �� R. In addition, we choose R such that

S := NR(Z)

is maximal. Let S ≤ T ∈ Sylp NG(Z). Since S < R and T ∈ Sylp G we
also have S < T and thus by 3.1.10 on page 61

S < NR(S) and S < NT (S).

Let M := NG(S) and NT (S) ≤ T1 ∈ Sylp M . Then the maximality of S
shows that Z is normal in T1. Since by our hypothesis M has a normal
p-complement 7.2.3 implies that Z is weakly closed in T1 with respect to M .
But then by 7.1.9 Z is normal in every Sylow p-subgroup of M in which it
is contained. Hence Z � NR(S), which contradicts S < NR(S), and (′) is
proved. �

For p �= 2 the preceding theorem was improved considerably by a result of
Thompson. In 9.4.7 on page 255 we will give a version of Thompson’s Normal
p-Complement Theorem. It turns out—for odd primes p—that G has a
normal p-complement if NG(U) has one, where U is a certain characteristic
subgroup of P .5

Exercises

Let G be a group and P a subgroup of G.

1. Let P ≤ Z(G). Then xτG→P = x|G:P | for every x ∈ G.

2. If P is an Abelian Hall subgroup of G, then P ∩ G′ ∩ Z(G) = 1.

5U = W (P ) in the notation of 9.4.
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3. Suppose that all Sylow subgroups of G are Abelian. Then G′ ∩ Z(G) = 1.

4. Let P be an Abelian Sylow p-subgroup of G. Then G has a factor group
isomorphic to Z(NG(P )) ∩ P .

5. Let P be a Hall subgroup of G such that NG(P ) = CG(P ). Then P has a
normal complement in G.

6. Suppose that NG(P )/CG(P ) is a p-group for every nontrivial p-subgroup P
of G. Then G has a normal p-complement.

7. (Iwasawa [71]) Suppose that every proper subgroup of G is nilpotent. Then
G is solvable.6

8. If G contains a nilpotent Hall π-subgroup, (π ⊆ π(G)), then the π-Sylow
theorem holds in G.

9. Let S ∈Syl2 G and S = H〈a〉 be as in 5.3.2 (d) on page 108. Then G �=
O2(G).

10. Let G = O2(G). Suppose that G has dihedral or semidihedral Sylow 2-
subgroups. Then all involutions in G are conjugate.

11. Let G be a perfect group with (generalized) quaternion groups of order at
least 16 as Sylow 2-subgroups. Then CG(t) is nonsolvable for every involu-
tion t of G.

12. Prove Frobenius’s Theorem 4.1.2 for Frobenius groups with solvable Fro-
benius complements.

Let p and q be two different odd primes. We denote the multiplicative group of the
field Z/pZ by Z∗

p and set Z∗
p = {1, . . . , p − 1}, where z = z + pZ. In addition, set

R := {1, . . . , p−1
2 },

S := {1, . . . , q−1
2 },

F (z, p) := {r ∈ R | (−rz + pZ) ∩ R �= ∅},

F (z, q) := {s ∈ S | (−sz + qZ) ∩ S �= ∅},

M := {(a, b) ∈ R × S | − q−1
2 ≤ bp − aq ≤ p−1

2 }.

13. Let H := {1, p − 1} ≤ Z∗
p and R = {x | x ∈ R}. Then for all x ∈ Z∗

p:

(a) R is a transversal of H in Z∗
p.

(b) x
τZ∗

p→H = x
p−1
2 = (−1)|F (x,p)|.

(c) x is a square in Z∗
p, if and only if |F (x, p)| is even.

6Compare with Exercise 10 on p. 124.
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14. (a) |M | = |F (q, p)| + |F (p, q)|.
(b) The mapping

ε : R × S → R × S with (a, b) �→ (p+1
2 − a, q+1

2 − b)

is an involutionary bijection on R × S such that

i. Mε = M ,
ii. yε �= y for all y ∈ (R × S) \ M .

(c) p−1
2

q−1
2 ≡ |F (q, p)| + |F (p, q)| (mod 2).

15. Prove Gauß’ Quadratic Reciprocity Law using Exercises 13 and 14.
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Chapter 8

Groups Acting on Groups

The action of a group A on a set G is described by a homomorphism

π : A → SG;

see Section 3.1. Suppose that G is not only a set but also a group. Then
AutG ≤ SG, and we say that π describes the action of A on the group G if
Im π is a subgroup of AutG. In other words, in this case the action of A
on G not only satisfies O1 and O2 but also

O3 (gh)a = gaha for all g, h ∈ G and a ∈ A.

The action by conjugation is the most important example for an action that
also satisfies O3. For example, if A a subgroup and G a normal subgroup
of a group H, then A acts by conjugation on the group G. In fact, in the
semidirect product A �π G the action described by π is the conjugation of
A on G (page 34).

In this chapter it is sometimes convenient (or even necessary) to use this
semidirect product, as it allows us to apply, for example, Sylow’s Theorem
or the Theorem of Schur-Zassenhaus. We then simply write AG in place of
A �π G.

8.1 Action on Groups

Let A be a group that acts on the group G. First we introduce some notation
that coincides with earlier notion if A and G are embedded in their semidirect
product.

175
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For U ⊆ G and B ⊆ A

NB(U) := {b ∈ B | U b = U},

CB(U) := {b ∈ B | ub = u for all u ∈ U},

CU (a) := {u ∈ U | ua = u} (a ∈ A),

CU (B) :=
⋂

b∈B

CU (b).

CG(A) is the subgroup of fixed points of A in G, and CA(G) is the kernel
of the action of A on G. With respect to

g
aCA(G)�−→ ga (g ∈ G, a ∈ A)

the factor group A/CA(G) acts faithfully on G.

We also use the commutator notation in this slightly more general situation:

[g, a] := g−1ga (g ∈ G, a ∈ A),

[U, a] := 〈[g, a] | g ∈ U〉 (a ∈ A, U ⊆ G),

[U, B] := 〈[U, a] | a ∈ B〉 (B ⊆ A).

Similarly we define [a, g] := g−ag, [a, U ] and [B, U ]. The commutator
relations given in Section 1.5 also hold in this more general context:

[U, B]a = [Ua, Ba] (a ∈ A),

[A, G] = [G, A],

U ≤ CG(A) ⇐⇒ [U, A] = 1.

In particular, the Three-Subgroups Lemma is at hand:

[X,Y, Z] = [Y, Z, X] = 1 ⇒ [Z,X, Y ] = 1,

where X,Y, Z now can be subgroups of G or A. Result 1.5.4 on page 25
now reads:

[gx, a] = [g, a]x[x, a] (g, x ∈ G, a ∈ A).

From this one gets that [G, A] is an A-invariant normal subgroup of G.
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8.1.1 Let U be an A-invariant subgroup of G. Then

[G, A] ≤ U ⇐⇒ (Ug)a = Ug for all g ∈ G, a ∈ A.

Proof. For a ∈ A and g ∈ G

(Ug−1)a = Ug−1 ⇐⇒ Ug−a = Ug−1 ⇐⇒ [g, a] ∈ U. �

8.1.2 Let N be an A-invariant normal subgroup of G.

(a) If A acts trivially on G/N , then [G, A] ≤ N .

(b) If A acts trivially on N , then A also acts trivially on G/CG(N).

(c) If A acts trivially on N and G/N , then [G, A] ≤ Z(N) and A′ ≤
CA(G).

Proof. (a) follows from 8.1.1.

(b) Let [N, A] = 1. Then

[N, A, G] = 1 = [G, N, A],

and the Three-Subgroups Lemma gives [A, G, N ] = 1.

(c) From (a) and (b) we get

[G, A] ≤ N ∩ CG(N) = Z(N),

and thus [G, A, A] = 1 = [A, G, A]. Again the Three-Subgroups Lemma
yields the desired conclusion [A′, G] = [A, A, G] = 1. �

8.1.3 Let A be a p-group. Then there exists an A-invariant Sylow p-
subgroup of G.

Proof. Let A ≤ P̂ ∈Sylp AG. Then P := P̂ ∩ G is the desired Sylow
p-subgroup of G (3.2.5 on page 65). �

8.1.4 Let A be a p-group.
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(a) If p ∈ π(G), then CG(A) �= 1.

(b) If G p-group, then [G, A] < G.

Proof. (a) By 8.1.3 there exists an A-invariant Sylow p-subgroup P of G.
Hence, P is a normal subgroup of the semidirect product AP . Since AP is
a p-group (a) follows from 3.1.11 (a) on page 61.

(b) This is 5.1.6 (iii) on page 101. �

8.1.5 Let K be an A-composition factor of G that is a p-group. Then
[K, Op(A)] = 1.

Proof. The p-group B := Op(A) acts on the p-group K, so by 8.1.4
CK(B) �= 1. Since K is an A-composition factor and CK(B) is A-invariant
we get CK(B) = K. �

Assume that G allows a direct decomposition

G = E1 × · · · × En

that is invariant under A, i.e.,

Ei
a ∈ {E1, . . . , En} for all a ∈ A and i ∈ {1, . . . , n}.

Under the additional hypothesis that A acts transitively on {E1, . . . , En}
we compare the fixed-point groups CG(A) and CEi(NA(Ei)).

Let
E ∈ {E1, . . . , En} and B := NA(E),

and let S be a transversal for the cosets of B in A. Then

(+) G = 〈EA〉 = ×
s∈S

Es.

Under the above hypotheses the following hold:

8.1.6 (a) CG(A) = {∏
s∈S

es | e ∈ CE(B)}.
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(b)1 If B acts trivially on E and P ≤ E such that 〈PE〉 = E, then

G = 〈CG(A),
∏
s∈S

P s〉.

Proof. (a) Let g ∈ G and

F := { ∏
s∈S

es | e ∈ CE(B)}.

As S is a transversal, for every (s, a) ∈ S × A there exists a unique
(b(s, a), sa) ∈ B × S such that

sa = b(s, a)sa.

Note here that the mapping s �→ sa is a bijection on S.

Let g =
∏
s∈S

es ∈ F . Then for every a ∈ A

ga =
∏
s∈S

esa =
∏
s∈S

eb(s,a)sa =
∏
s∈S

esa = g

since e ∈ CG(B). Thus F ≤ CG(A).

Let g ∈ CG(A). By (+) g has the unique representation

g =
∏
s∈S

es (es ∈ Es).

For all a ∈ A ∏
s∈S

es = g = ga =
∏
s∈S

es
a,

and the uniqueness of the representation gives

{es | s ∈ S} = {es
a | s ∈ S}.

Let s0 ∈ B∩S and e := es0 . Then eb = e for all b ∈ B and g =
∏
s∈S

es ∈ F ,

so CG(A) ≤ F .

(b) From (a) we get

CG(A) = { ∏
s∈S

es | e ∈ E},

1This will be needed in Chapter 9.
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and for s ∈ S

〈(P s)CG(A)〉 = 〈(P s)Es〉 = 〈PE〉s
= Es.

This is (b). �

We conclude this section with some remarks about cyclic operator groups.

8.1.7 Let A = 〈a〉 be cyclic. Then for x, y ∈ G

[x, a] = [y, a] ⇐⇒ xy−1 ∈ CG(a).

In particular, |G : CG(a)| is the number of commutators [x, a], x ∈ G.2

Proof. x−1xa = y−1ya ⇐⇒ yx−1 = yax−a ⇐⇒ yx−1 = (yx−1)a

⇐⇒ yx−1 ∈ CG(a). �

8.1.8 Let A = 〈a〉 such that [G, a2] = 1, and let G be of odd order. Then

{x ∈ G | xa = x−1} = { [x, a] | x ∈ G },

and every coset of CG(a) in G contains exactly one commutator [x, a].

Proof. Since [G, a2] = 1 for every commutator [x, a]

[x, a]a = (x−1xa)a = x−axa2
= x−ax = [x, a]−1.

The conclusion now follows from 8.1.7, if we can show that every coset of
CG(a) contains at most one x such that xa = x−1.

Let x and xf , f ∈ CG(a), be two such elements. Then

xa = x−1, (xf)a = f−1x−1 and fa = f.

This implies
f−1x−1 = (xf)a = xafa = x−1f,

2This number is equal to |aS | in the semidirect product S := 〈a〉G.
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so fx = f−1 and thus fx2
= f . As x has odd order, we get 〈x2〉 = 〈x〉.

Hence f = f−1 and thus f = 1 since f has odd order. �

The operator group A acts fixed-point-freely on G if

CG(A) = 1.

Similarly, the element a ∈ A acts fixed-point-freely on G if CG(a) = 1.

From 8.1.4 we get:

8.1.9 Let A be a p-group. Suppose that A acts fixed-point-freely on G.
Then G is a p′-group. �

Now 8.1.8 implies:

8.1.10 Let a be a fixed-point-free automorphism of G of order 2. Then
for all x ∈ G

xa = x−1.

In particular G is Abelian.3 �

Also for arbitrary p ∈ P the existence of a fixed-point-free automorphism
of order p has consequences for the structure of G. A theorem of Thompson
shows in this case that G is nilpotent. We postpone the proof of this theorem
and further discussion of fixed-point-free action to Section 9.5 since another
fundamental theorem of Thompson (9.4.7 on page 255) is needed for this.
Here we only remark that fixed-point-free automorphisms “behave well”
with respect to induction:

8.1.11 Let a be a fixed-point-free automorphism of G.

(a) G = {[x, a] | x ∈ G} = {x−1xa | x ∈ G}.

(b) For every p ∈ π(G) there exists an a-invariant 4 Sylow p-subgroup of
G.

(c) Let N be an a-invariant normal subgroup of G. Then a acts fixed-
point-freely on G/N .

3This is Exercise 10 on p. 10.
4a-invariant = 〈a〉-invariant.
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Proof. 8.1.7 is (a). For the proof of (b) let P ∈ Sylp G and g ∈ G such
that P a = P g. By (a) there exists x ∈ G such that g = x−1xa. Now (b)
follows since

(P x−1
)a = P ax−a

= P gx−a
= P x−1xax−a

= P x−1
.

(c) Let (xN)a = xN for some x ∈ G, so x−1xa ∈ N . Then (a), applied
to (N, a|N ), shows that there exists y ∈ N such that x−1xa = y−1ya. This
implies

yx−1 = yax−a = (yx−1)a

and thus x = y and xN = yN = N . �

Frobenius groups provide examples for fixed-point-free action:

8.1.12 Let G be the semidirect product of the nontrivial subgroup H with
the normal subgroup K. Then the following statements are equivalent:

(i) G is a Frobenius group with Frobenius complement H and Frobenius
kernel K.

(ii) CK(h) = 1 for all h ∈ H#.5

Proof. The factorization G = HK together with 4.1.7 on page 80 implies:

(i) ⇐⇒ H ∩ Hx = 1 for all x ∈ K#.

On the other hand, since H ∩ K = 1 we get for all h ∈ H# and x ∈ K#:

hx ∈ H ∩ Hx ⇐⇒ x−1h−1xh = [x, h] ∈ H ∩ K ⇐⇒ x ∈ CK(h)#.

Now the equivalence of (i) and (ii) follows. �

Exercises

Let A be a group acting on the group G, and let AG be the semidirect product of
A with G.

5That is, h acts fixed-point-freely on K (with respect to conjugation).
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1. Let ϕ : A → SG and ρ : G → SG be the homomorphisms describing the
action of A on G and the action of G on the set G by right multiplication,
respectively. Suppose that A acts faithfully on G. Then

AG ∼= AϕGρ.

2. Let G be solvable, A nilpotent and N an A-invariant normal subgroup of G.
Suppose that A acts fixed-point-freely on G. Then A acts fixed-point-freely
on G/N (compare with Exercise 8 on page 124).

Let [G, A; 1] := [G, A] and [G, A; n] := [[G, A; n − 1], A] for n ≥ 2. Then A acts
nilpotently on G if there exists an n ∈ N such that [G, A; n] = 1.

3. Let A and G be p-groups. Then A acts nilpotently on G.

4. A acts nilpotently on G if and only if A is a subnormal subgroup of AG.

5. Let A1 and A2 be two normal subgroups of A. If A1 and A2 act nilpotently
on G, them also A1A2 acts nilpotently on G.

6. Let C∗
A(G) be the subgroup generated by all subnormal subgroups of A that

act nilpotently on G. Then C∗
A(G) acts nilpotently on G.

In the next two exercises G acts by conjugation on G, and C∗
G(G) is the subgroup

defined in Exercise 6.

7. C∗
G(G) = F (G).

8. Let F be the set of all normal subgroups N of G satisfying C∗
G(N) ≤ N .

Then
F ∗(G) =

⋂
N∈F

N.

8.2 Coprime Action

As in Section 8.1 let A be a group that acts on the group G. The action of
A on G is coprime if

(1) (|A|, |G|) = 1,

(2) A or G is solvable.6

6Again we want to emphasize that the theorem of Feit-Thompson mentioned earlier
shows that (1) implies (2) since at least one of the groups A and G has odd order.
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In the semidirect product AG the subgroup A is a complement of the normal
subgroup G, so in the case of coprime action the hypothesis of the theorem
of Schur-Zassenhaus is satisfied. Hence, every subgroup of order |A| in AG
is conjugate to A.

A first consequence of this conjugacy-property is:7

8.2.1 Suppose that the action of A on G is coprime. Let U be an A-
invariant subgroup of G and g ∈ G such that (Ug)A = Ug. Then there
exists c ∈ CG(A) such that Ug = Uc.

Proof. UA = U and (Ug)A = Ug imply gag−1 ∈ U for all a ∈ A. In the
semidirect product AG we get a−1gag−1 ∈ U and

Ag−1 ≤ AU.

Hence, A and Ag−1
are complements of U in AU , and by the theorem of

Schur-Zassenhaus (6.2.1 on page 125) they are conjugate in AU . Thus,
there exists u ∈ U such that Au = Ag−1

. For c := ug this gives

c ∈ NAG(A) ∩ Ug,

and [A, c] ≤ A ∩ G = 1. �

For the special case that A is a p-group the proof of 8.2.1 does not require
the theorem of Schur-Zassenhaus but follows from 3.1.7 on page 59 (with
Ω := Ug).

8.2.2 Let N be an A-invariant normal subgroup of G. Suppose that the
action of A on N is coprime.

(a) CG/N (A) = CG(A)N/N. 8,9

(b) If A acts trivially on N and G/N , then A acts trivially on G.10

7A similar statement is also true for left cosets.
8In general only CG(A)N/N ≤ CG/N (A).
9Compare with 3.2.8 (a) on p. 66.

10Compare with 8.1.2.
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Proof. (b) is a consequence of (a), and (a) follows from 8.2.1 with U := N .
�

The next result, another important consequence of the theorem of Schur-
Zassenhaus, is in the spirit of Sylow’s Theorem. As for 8.2.1, the proof is
elementary if A is a p-group.

8.2.3 Let p be a prime divisor of |G|. Suppose that the action of A on G
is coprime.

(a) There exists an A-invariant Sylow p-subgroup of G.

(b) The A-invariant Sylow p-subgroups of G are conjugate under CG(A).

(c) Every A-invariant p-subgroup is contained in an A-invariant Sylow
p-subgroup of G.

Proof. The semidirect product AG acts on the set Ω := Sylp G by conju-
gation, and by Sylow’s Theorem G is transitive on Ω. Hence, (a) and (b)
follow from 6.2.2 on page 127 with (G, A) in place of (K, A).

(c) Let U be a maximal A-invariant p-subgroup of G. We show that U is a
Sylow p-subgroup of G.

Assume that U �∈ Sylp G. Then U is not a Sylow p-subgroup of G1 :=
NG(U) (3.2.6 on page 66). As G1 is A-invariant, there exists an A-invariant
T ∈ Sylp G1 by (a). But U < T , which contradicts the maximality of U . �

The intersection Op(G) of all Sylow p-subgroups of G is the largest normal
p-subgroup of G. An analogue statement is true in the situation of 8.2.3.

8.2.4 Suppose that the action of A on G is coprime. Let p ∈ π(G). Then
the intersection of all A-invariant Sylow p-subgroups of G is the largest A-
invariant p-subgroup of G that is normalized by CG(A).

Proof. By 8.2.3 (a), (b) there exists S ∈ Sylp G such that SA = S, and

{P ∈ Sylp G | PA = P} = {Sc | c ∈ CG(A)}.



186 8. Groups Acting on Groups

Hence, the intersection of these Sylow p-subgroups is CG(A)-invariant.

Any A-invariant p-subgroup U is contained in an A- invariant Sylow p-
subgroup of G (8.2.3 (c)). If in addition U is normalized by CG(A), then—
as seen above—U is contained in every A-invariant Sylow p-subgroup and
thus in their intersection. �

8.2.5 Suppose that the action of A on G is coprime. Let P be an A-
invariant Sylow p-subgroup of G. If H is a subgroup of G that is invariant
under A and CG(A), then P ∩ H is a Sylow p-subgroup of H.

Proof. By 8.2.3 (a), (c) there exists an A-invariant Sylow p-subgroup R of
H such that P ∩ H ≤ R and an A-invariant Sylow p-subgroup S of G such
that R ≤ S; i.e.,

H ∩ S = R.

Hence, there exists c ∈ CG(A) such that Sc = P (8.2.3 (b)), and by our
hypothesis Hc = H. It follows that

H ∩ P = H ∩ Sc ∈ Sylp H. �

In Chapter 11 we will need variations of 8.2.3, 8.2.4, and 8.2.5 for solvable
groups G. Note that in the previous proofs we only used—apart from the
theorem of Schur-Zassenhaus—Sylow’s Theorem for a prime p ∈ π(G).

If we replace p be a nonempty set π ⊆ π(G) for which the π-Sylow Theorem
holds (see 6.4.7 on page 137), then the above arguments yield results with
the term Sylow p-subgroup replaced by the term Hall π-subgroup.

Since the π-Sylow Theorem holds in solvable groups (6.4.7 on page 137) we
get:

8.2.6 Suppose that the action of A on the solvable group G is coprime.

(a) There exist A-invariant Hall π-subgroups of G.

(b) The A-invariant Hall π-subgroups of G are conjugate under CG(A).

(c) Every A-invariant π-subgroup is contained in an A-invariant Hall π-
subgroup of G.
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(d) The intersection of all A-invariant Hall π-subgroups of G is the largest
A-invariant π-subgroup of G that is normalized by CG(A).

(e) If P is an A-invariant Hall π-subgroup of G and H an A-invariant
subgroup of G normalized by CG(A), then P ∩H is a Hall π-subgroup
of H. �

The correspondence between the fixed-point group of A in G and in factor
groups of G described in 8.2.2 (a) has some interesting consequences.

8.2.7 Suppose that the action of A on G is coprime.

(a) G = [G, A] CG(A),

(b) [G, A] = [G, A, A].

Proof. (a) follows from 8.2.2 (a) with N := [G, A]; note 8.1.1 (a). The
commutator formula 1.5.4 on page 25 shows that (a) implies (b). �

8.2.8 Thompson’s P × Q -Lemma. Let A = P × Q be the direct
product of a p-group P and a p′-group Q. Suppose that G is a p-group such
that

CG(P ) ≤ CG(Q).

Then Q acts trivially on G.

Proof. CU (P ) ≤ CU (Q) for all A-invariant subgroups U ≤ G. Thus, we
may assume be induction on |G| that [U, Q] = 1 for all proper A-invariant
subgroups of G. As by 8.1.4 (b) [G, P ] is a proper subgroup, we get

[G, P, Q] = 1 and [P, Q, G] = 1,

the second equality holds since [P, Q] = 1. The Three-Subgroups Lemma
gives [Q, G, P ] = 1, i.e.,

[Q,G] ≤ CG(P ) ≤ CG(Q),

and [G, Q, Q] = 1. Now [G, Q] = 1 follows from 8.2.7 (b) (with Q in place
of A). �
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8.2.9 Suppose that A acts trivially on G/Φ(G).

(a) If the action of A on Φ(G) is coprime, then A acts trivially on G.

(b) If Φ(G) is a p-group, then also A/CA(G) is a p-group.

Proof. (a) 8.2.2 (a) gives G = Φ(G) CG(A) and thus G = CG(A) (5.2.3).

(b) By (a) every p′-subgroup of A acts trivially on G. �

8.2.10 Let G be a p-group and K the set of all A-composition factors of
G. Suppose that the action of A on G is coprime. Then⋂

K∈K
CA(K)/CA(G) = Op(A/CA(G)).

Proof. We may assume that A acts faithfully on G. By 8.1.5 Op(A) acts
trivially on each A-composition factor K ∈ K. On the other hand, by 8.2.2
(b) every p′-subgroup B ≤ A acts trivially on G, if B acts trivially on each
A-composition factor K ∈ K. This shows the assertion. �

The next result will be used in Chapter 11.

8.2.11 Suppose that the action of A on G is coprime. Let G be the pro-
duct of two A-invariant subgroups X and Y . Then CG(A) = CX(A) CY (A).

Proof. Let g = xy ∈ CG(A), x ∈ X, y ∈ Y . Then xy = (xy)a = xaya and
thus

x−1 xa = y y−a ∈ X ∩ Y =: U

for all a ∈ A. This implies (xU)A = xU and (Uy)A = Uy. By 8.2.1 there
exist elements c ∈ CX(A), d ∈ CY (A) and u,w ∈ U such that

x = cu and y = wd.11

11See footnote 7.
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Since cuwd = xy ∈ CG(A) also

uw ∈ CG(A) ∩ X ∩ Y,

and xy ∈ CX(A) CY (A) follows. �

We conclude this section with a particularly important application of the
P × Q-Lemma:

8.2.12 Let p ∈ π(G) and G := G/Op′(G). Suppose that

(∗) CG(Op(G)) ≤ Op(G).

Then for every p-subgroup P ≤ G

Op′(NG(P )) = Op′(G) ∩ NG(P ).

Proof. CG(P ) � NG(P ) implies

Op′(NG(P )) = Op′(CG(P )).

Hence, it suffices to show that

Op′(G) ∩ CG(P ) = Op′(CG(P )).

The inclusion Op′(G) ∩ CG(P ) ≤ Op′(CG(P )) is trivial.

For the proof of the other inclusion we may assume that Op′(G) = 1 (3.2.8
on page 66). Set

G1 := Op(G) and Q := Op′(CG(P )).

By our assumption CG(G1) ≤ G1, and PQ = P × Q acts on the p-group
G1. As CG1(P ) is a normal p-subgroup of CG(P ), the group Q acts trivially
on CG1(P ). Hence the P × Q-Lemma (8.2.8) gives Q ≤ CG(G1) ≤ G1, so
Q = 1. �

Observe that solvable groups—more generally p-separable groups—satisfy
hypothesis (∗) in 8.2.12; see 6.4.3 and 6.4.1.

As a corollary of 8.2.12 we get:
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8.2.13 Let P be a p-subgroup of G and U ≤ Op′(NG(P )). Suppose that
U and P are contained in the solvable subgroup L ≤ G Then U ≤ Op′(L).

Proof. We have U ≤ Op′(NL(P )). Hence, the assertion follows from 8.2.12
(with L in place of G) since L is solvable. �

Exercises

Let A be a group that acts on G.

1. Suppose that the action of A on G is nilpotent and faithful (see page 183).
Then π(A) ⊆ π(G).

2. Let U ≤ CG(A) and x ∈ G such that Ux ≤ CG(A). If the action of A on
G is coprime, then there exists a y ∈ CG(A) such that Ux = Uy.

3. (Zassenhaus [102]) Let |A| = 2 = |CG(A)|. Then there exists an Abelian
normal subgroup N of G such that

(a) xa = x−1 for a ∈ A#.

(b) If |G/N | �= 2, then N = Z(G) and G/N ∼= A4.

4. Let G be π-separable. Then the π∪{p}-Sylow Theorem holds in G for every
p ∈ π′. (Use the fact that every π- or π′-section of G is solvable.)

8.3 Action on Abelian Groups

In the next two sections we investigate the action of groups on Abelian
groups. So in the following let A be a group that acts on the Abelian group
V . Here the choice of notation should remind the reader that in many
applications V is an elementary Abelian p-group and thus also a vector
space over Fp .

The action of A on V is irreducible if 1 and V are the only A-invariant
subgroups of V and V �= 1. For the semidirect product AV this means
that V is a minimal normal subgroup and A a maximal subgroup.

The following remark is fundamental for this section:
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8.3.1 Let A be a nonempty set of proper subgroups of A such that

(#) A# =
.⋃

B∈A
B#, 12

and k := |A| − 1. If
(k, |V |) = 1

and V �= 1, then there exists B ∈ A such that CV (B) �= 1.

Proof. For v ∈ V and B ≤ A set

vB :=
∏

a∈B

va = v
∏

a∈B#
va.

Then
(vB)b =

∏
a∈B

vab = vB

for every b ∈ B, so vB ∈ CV (B). Since A is a partition of A we get

vA =
( ∏

B∈A
vB

)
v−k.

Assume that 1 = CV (B) (≥ CV (A)) for all B ∈ A. Then vB = vA = 1
and thus v−k = 1 for every v ∈ V . But now (k, |V |) = 1 implies V = 1, a
contradiction (compare with 2.2.1 on page 49). �

8.3.2 Theorem. Let V �= 1 and

(+) CV (a) = 1 for all a ∈ A#.

Then A is cyclic provided one of the following conditions holds:

(a) A is Abelian.

(b) A is a p-group for p �= 2.

(c) A is a 2-group but not a quaternion group.13

12A is called a partition of A. A beautiful treatment of groups possessing a partition
can be found in [16].

13See 8.6 for such an action of the quaternion group.
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(d) |A| = pq, where p, q are (not necessarily different) primes.

Proof. Note first that hypothesis (+) also holds for every subgroup A1 ≤ A
in place of A.

Let p ∈ π(A) and A1 ∈ Sylp A. Then A1 acts on the Sylow p-subgroup Vp

of V (see 2.1.6 on page 46). If Vp �= 1, then by 8.1.4 A1 has a nontrivial
fixed point in Vp. Hence Vp = 1, and the action of A on V is coprime.

We now assume that A is not cyclic. In the cases (a), (b), (c) we apply 2.1.7
and 5.3.8 to get an elementary Abelian subgroup A1 ≤ A of order p2. By
induction on |A| we may assume that A = A1. In case (d) A is—again by
2.1.7—non-Abelian of order pq, p �= q, or elementary Abelian of order p2

and p = q.

Let A be the set of all subgroups of prime order of A. Since |A| = pq the
set A is a partition of A as in 8.3.1.

If A is elementary Abelian, then

|A| =
p2 − 1
p − 1

= p + 1.

Let A be non-Abelian of order pq and q < p. Then A is the set of nontrivial
Sylow subgroups of A, and Sylow’s Theorem shows that G possesses exactly
p Sylow q-subgroups and exactly one Sylow p-subgroup. As before |A| =
p + 1.

The coprime action of A on G gives (p, |V |) = 1. Hence 8.3.1 contradicts
hypothesis (+). �

Compare the next result with 8.6.1 on page 211.

8.3.3 Let A be Abelian. Suppose that the action of A on V is irreducible.
Then A/CA(V ) is cyclic.

Proof. We may assume that CA(V ) = 1. Then CV (a) �= V for all a ∈ A#.
Moreover for all x ∈ A

CV (a)x = CV (ax) = CV (a)
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since A is Abelian. The irreducible action of A on V gives CV (a) = 1 for
all a ∈ A#, and the assertion follows from 8.3.2. �

As a corollary of 8.3.3 one gets that the multiplicative group of a finite field
is cyclic:

Let F be a finite field with additive group V and multiplicative group A.
Then the distributive law shows that A acts by right multiplication on V .
Moreover, this action is faithful and transitive on the A�, thus also irre-
ducible. Now 8.3.3 shows that A is cyclic.

Another important corollary of 8.3.3 is:

8.3.4 Let A be an Abelian group acting on the group G. Suppose that the
action of A on G is coprime.

(a) G = 〈CG(B) | B ≤ A and r(A/B) ≤ 1 〉.14

(b) If A is not cyclic, then G = 〈CG(a) | a ∈ A#〉.

(c) [G, A] = 〈 [CG(B), A] | B ≤ A and r(A/B) ≤ 1 〉.

Proof. Let B be the set of all subgroups B ≤ A such that A/B is cyclic.

(a) We first treat two particular cases and then show that the general case
can be reduced to these cases.

First assume that G is Abelian. If A acts irreducibly on G, then B :=
CA(G) ∈ B by 8.3.3, and we get G = CG(B). Hence, we may assume that
A is not irreducible on G. Let W be an A-invariant subgroup of G such that
1 �= W �= G. Induction on |G|, applied to the pairs (W, A) and (G/W, A),
shows that

W = 〈CW (B) | B ∈ B〉 and G/W = 〈CG/W (B) | B ∈ B〉.

Since the action of A on G is coprime 8.2.2 implies that

CG/W (B) = CG(B)W/W,

and thus
G = 〈CG(B)W | B ∈ B〉 = 〈CG(B) | B ∈ B〉.

14r(A/B) ≤ 1 means that A/B is cyclic; see page 48.
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Assume next that G is a p-group. Then A acts on the Abelian factor group
G/Φ(G) . Hence 8.2.2 (a) and the case already proved above give

G = 〈 CG(B) | B ∈ B 〉Φ(G)

and then together with 5.2.3 the assertion.

In the general case 8.2.3 (a) shows that for every p ∈ π(G) there exists an
A-invariant Sylow p-subgroup Gp of G. As seen above the assertion holds
for the pair (Gp, A) and thus also for (G, A) since G = 〈Gp | p ∈ π(G)〉.
(b) follows from (a).

(c) For B ∈ B the subgroup GB := CG(B) is A-invariant since A is Abelian.
Hence by 8.2.7

GB = [GB, A] CGB
(A) = [GB, A] CG(A).

For G1 := 〈[GB, A] | B ∈ B〉 this implies

G1 CG(A) = 〈 [GB, A] CG(A) | B ∈ B〉 = 〈GB | B ∈ B〉 (a)
= G.

In particular [G, A] ≤ G1. The other inclusion is trivial. �

We conclude this section with a further look on Frobenius groups. This is
done using Frobenius’s Theorem that Frobenius kernels are subgroups (4.1.6
on page 80).

8.3.5 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K. Suppose that G acts on a nontrivial Abelian group
V such that

(|V |, |K|) = 1 and CV (K) = 1.

Then CV (H) �= 1.

Proof. Set A := G and

A := {K} ∪ {Ha | a ∈ A}.

Then A is a partition of G as in (#) of 8.3.1. Moreover by 4.1.5 on page 80

|A| − 1 = |{Ha | a ∈ A}| = |K|.
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According to 8.3.1 there exists B ∈ A such that CV (B) �= 1. Moreover,
B ∈ {Ha | a ∈ A} since by our hypothesis CV (K) = 1. Thus CV (H) �= 1.

�

We now use 8.3.5 to answer the question about the uniqueness of Frobenius
complements raised in Section 4.1 and to discuss their structure.

8.3.6 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K, and let G1 be a subgroup of G. Suppose G = G1K.
Then G1 contains a conjugate of H.

Proof. Since G1 �≤ K we may assume after suitable conjugation that H ∩
G1 �= 1. If G1 ≤ H, then the Dedekind identity (1.1.11) shows that H =
G1(H ∩ K) and thus H = G1 since H ∩ K = 1.

If H �≤ G1, then G1 is a Frobenius group with Frobenius complement H ∩
G1 and Frobenius kernel K ∩ G1 (4.1.8 (a)). In particular |G1| = |K ∩
G1| |H∩G1|. On the other hand, the Homomorphism Theorem gives G/K ∼=
G1/G1 ∩ K and thus

|H| = |G/K| = |G1/G1 ∩ K| = |H ∩ G1|,

which contradicts H �≤ G1. �

8.3.7 Let G be a Frobenius group. Then all Frobenius complements of G
are conjugate.

Proof. Let H and H0 be two Frobenius complements of G. By 4.1.8 (b) on
page 81 we may assume that H0 ≤ H, so it suffices to show that H0 = H.

Assume that H0 < H. By 4.1.8 (a) H is a Frobenius group with Frobenius
complement H0. Let K be the Frobenius kernel of G with respect to H and
K0 the Frobenius kernel of H with respect to H0. Note that KK0 is the
Frobenius kernel of G with respect to H0.

Let
p ∈ π(K), P ∈ Sylp K, V := Z(P ), and G1 := NG(P ).

The Frattini argument gives G = KG1. Thus, by 8.3.6 we may assume that
H ≤ G1. The Frobenius group H acts on V such that CV (K0) = 1 and
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(|V |, |K0|) = 1; see 8.1.12 (applied to the Frobenius complement H) and
4.1.5. Hence 8.3.5 (with A := H) yields CV (H0) �= 1. But this contradicts
8.1.12, this time applied to the Frobenius complement H0. �

The argument used in the proof of 8.3.7 also reveals the structure of the
Sylow subgroups of Frobenius complements:

8.3.8 Let G be a Frobenius group with Frobenius complement H. Then
the Sylow subgroups of H are cyclic or quaternion groups.

Proof. Let K be the Frobenius kernel of G, p ∈ π(K), and P ∈ Sylp K.
As in the proof of 8.3.7 we may assume that H normalizes V := Z(P ).
Moreover, as there 8.1.12 implies that

CV (h) = 1 for 1 �= h ∈ H.

Now 8.3.2 gives the assertion. �

Exercises

Let G be a group and A a group acting on G.

1. Let G be Abelian and A1, . . . , An+1 be a partition of A. Let

G0 := 〈CG(Ai) | i = 1, . . . , n + 1〉.

Then G/G0 has exponent ≤ n.

2. Let G be nilpotent and (|A|, |G|) = 1. If A is Abelian and r(A) ≥ 2, then

G =
∏

a∈A#

CG(a).

3. Let G be a solvable Frobenius group. Then the Frobenius kernel K of G is
nilpotent and F (G) = K.15

4. Let G be p-separable (p ∈ P), A = 〈a〉 ∼= Cp and H := AG. Suppose that
for all x ∈ G

xxa · · ·xap−1
= 1.

(a) The elements y ∈ H \ G act fixed-point-freely on every H-invariant
p′-section of G.

15Use Frobenius’s Theorem 4.1.6 on p. 80.
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(b) G is p-closed.

(c) o(y) = p for all y ∈ H \ G.

8.4 The Decomposition of an Action

As in Section 8.3 let A be a group that acts on the Abelian group V . We now
use the fact that the set of endomorphisms together with the composition
of mappings and the addition

vα+β := vα vβ (α, β endomorphisms, v ∈ V )

is a ring, the endomorphism ring EndV of V .

Since for every a ∈ A the mapping

v �→ va (v ∈ V )

is an endomorphism of V we can compose the endomorphisms of V and the
elements of A in their action on V :

va+β := vavβ, vβa := (vβ)a and vaβ := (va)β (a ∈ A, β ∈ EndV ).

In other words, we identify the elements of a ∈ A with the element of End V
induce by a.

For example, for a ∈ A the commutator mapping

κ : v �→ [v, a] = [a, v] = vav−1 = va−id (v ∈ V )

is the endomorphism a − id with Ker κ = CV (a) and

Im κ = {[v, a] | v ∈ V } = [V, a].16

Since [V, a] is invariant under 〈a〉 and the factor group V/[V, a] is central-
ized by 〈a〉, we get

Im κ = [V, 〈a〉].
The Homomorphism Theorem gives:

8.4.1 V/CV (a) ∼= [V, 〈a〉]. �

16Recall: [V, a] = 〈[v, a] | v ∈ V 〉.
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The next result and 8.4.5 below are corollaries of Gaschütz’s Theorem (3.3.2
on page 73). But they have been known long before this theorem and both
have short and elementary proofs that we will give here.

8.4.2 Suppose that the action of A on V is coprime. Then

V = CV (A) × [V, A].

Proof. By 8.2.7 (a) it suffices to show CV (A) ∩ [V, A] = 1. To do this we
investigate the endomorphism

ϕ : V → V with v �→ ∏
x∈A

vx.

For a commutator v = [w, a] ∈ [V, A]

vϕ = (wa)ϕw−ϕ =
( ∏

x∈A

wax
)( ∏

x∈A

w−x
)

= 1,

and thus [V, A] ≤ Ker ϕ. On the other hand, for v ∈ CV (A) we get
vϕ = v|A| and

v|A| = 1 ⇐⇒ v = 1

since (|A|, |V |) = 1. Hence v = 1 for v ∈ CV (A) ∩ [V, A]. �

As a corollary we get:

8.4.3 Suppose that the action of A on V is coprime and that A acts
trivially on Ω(V ). Then A acts trivially on V .

Proof. The decomposition in 8.4.2 gives

Ω([V, A]) ≤ CV (A) ∩ [V, A] = 1,

and this implies [V, A] = 1. �

Here is another consequence of 8.4.2 that will be needed in Chapter 10:

8.4.4 Suppose that the action of the group A on the group G is coprime
and |G : CG(A)| = p ( p ∈ P). Then [G, A] has order p and A/CA(G) is
cyclic.
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Proof. Let G1 := [G, A]. From 8.2.7 we get

G = G1CG(A) and G1 = [G1, A],

so |G1 : CG1(A)| = p and CA(G1) = CA(G). If G1 < G, then the assertion
follows by induction on |G|. Hence, we may assume that

(∗) G = [G, A].

Let Gp be an A-invariant Sylow p-subgroup of G (8.2.3 (a)). By our hy-
pothesis G = GpCG(A), and thus G = [G, A] = [Gp, A]. In particular G is
a p-group.

For G := G/Φ(G) we get from (∗)

[G, A] = G.

But G is Abelian (5.2.7 on page 106), and 8.4.2 gives

G = [G, A] × CG(A).

Hence CG(A) = 1, and the hypothesis |G : CG(A)| = p implies |G| = p.
Now 5.2.7 (b) on page 106 shows that G is cyclic, and by 8.4.3 |G| = p.
Thus, 2.2.4 on page 50 yields the assertion. �

A similar consideration as in 8.4.2 gives:

8.4.5 Suppose that the action of A on V is coprime. Let U be an A-
invariant subgroup of V . If U has a complement in V , then U also has an
A-invariant complement in V .

Proof. Let W be a complement of U in V ; i.e.,

V = U × W.

If V = U , then clearly W is A-invariant. Thus, we may assume that V �= U .
The projection

η : V → U with uw �→ u (u ∈ U, w ∈ W )

is an endomorphism of V , hence also

ηA : V → V with v �→ ∏
x∈A

vx−1ηx.
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Now UA = U implies

uηA =
∏

x∈A

ux−1x = u|A| for u ∈ U,

and as in 8.4.2 the coprime action of A gives

Ker ηA ∩ U = 1.

On the other hand Im ηA ≤ U and by 1.2.5 on page 13

|Ker ηA| | Im ηA| = |V |.

Hence Ker ηA is a complement of U in V that is invariant under A, as

ηA a =
∑
x∈A

(x−1ηx)a =
∑
x∈A

aa−1x−1ηxa = a
∑
x∈A

(xa)−1η(xa) = a ηA

for a ∈ A.17 �

The action of A on V is semisimple if every A-invariant subgroup of V has
an A-invariant complement in V . Evidently, every irreducible action is also
semisimple.

Suppose that V is an Abelian p-group. If V �= Ω(V ), then the action of A
on V is not semisimple since Ω(V ) has no complement in V . On the other
hand if V = Ω(V ), then every subgroup of V has a complement in V (see
2.1.2 on page 44).18 Hence 8.4.5 gives:

8.4.6 Maschke’s Theorem.19 Suppose that the action of A on V is
coprime and V is an elementary Abelian p-group. Then the action of A on
V is semisimple. �

The minimal A-invariant subgroups of V are the minimal normal subgroups
of the semidirect product AV that are contained in V . Hence 1.7.2 on page
37 applies to this situation:

8.4.7 Let M be the set of all minimal A-invariant subgroups of V . Then
the following statements are equivalent:

17The calculation carried out in the endomorphism ring.
18According to 2.1.8 on page 46 this is the well-known fact that every subspace of a

finite-dimensional vector space has a complement.
19Compare with [76].



8.4. The Decomposition of an Action 201

(i) The action of A on V is semisimple.

(ii) There exist U1, . . . , Un ∈ M such that V = U1 × · · · × Un.

(iii) V =
∏

U∈M
U .

Proof. The implication (ii) ⇒ (iii) is trivial, and the implication (i) ⇒ (ii)
can be shown by a trivial induction on |V |.
(iii) ⇒ (i): Let U1 be an A-invariant subgroup of V . By 1.7.2 (a) on page
37 there exist U2, . . . , Un ∈ M such that V = U1 × U2 × · · · × Un. Hence
U2 × · · · × Un is an A-invariant complement of U1 in V . �

The semisimple action of A on V induces a semisimple action of A on each
A-invariant subgroup of V (Exercise 2). But if we restrict this action to
subgroups of A the situation gets more complicated. For normal subgroups
the resulting action is again semisimple, but not for subgroups in general
(Exercise 1).

We discuss this elementary fact and suggest that the reader compare the
following with the notion of an A-composition series (of V ) introduced in
1.8 on page 39.

From now on we assume that V �= 1. As above, M is the set of all minimal
A-invariant subgroups of V . For U, W ∈ M, define

U ∼ W ⇐⇒ U is A-isomorphic to W .

Then ∼ is an equivalence relation on M. The equivalence classes we denote
by M1, . . . ,Mn. For i = 1, . . . , n

Vi :=
∏

U∈Mi

U and V0 :=
n∏

i=1
Vi.

The subgroups Vi, i = 1, . . . , n, are the homogeneous A-components of
V . From 1.7.2 on page 37 and 8.4.7 we get:

8.4.8 (a) Vi is the direct product of subgroups from Mi (i = 1, . . . , n).

(b) V0 =
n×

i=1
Vi.

(c) The action of A on V0 is semisimple. �
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By 8.4.7 the action of A on V is semisimple if and only if V = V0.

8.4.9 Clifford’s Theorem.20 Let H be a group that acts on V and A
be a normal subgroup of H. Suppose that the action of H on V is semi-
simple. Then also the action of A on V is semisimple. Moreover, if H acts
irreducibly on V , then H acts transitively on the homogeneous A-components
of V , and ACH(A) is contained in the kernel of this action.

Proof. With respect to the action of A on V we use the notation introduced
earlier. Then H acts on M since A is normal in H. We show that this
action preserves the equivalence relation ∼ on M:

Let U, W ∈ M such that U ∼ W and h ∈ H. By definition there exists
an A-isomorphism ϕ : U → W . Now

ϕh := h−1ϕh 21

is an isomorphism from Uh in W h, and Ah = A implies

ϕha = h−1ϕha = h−1ϕah−1
h = h−1ah−1

ϕh = ah−1ϕh = a ϕh.

Hence ϕh is an A-isomorphism and Uh ∼ W h.

We have shown that H acts on the equivalence classes of ∼ and thus on
the set of homogeneous A-components V1, . . . , Vn. The kernel of this action
contains ACH(A).

The subgroup V0 =
n∏

i=1
Vi is H-invariant, and every H-invariant subgroup

of V contains some element of M. Now the semisimple action of H on V
gives V = V0, and the action of A on V is semisimple (8.4.7).

Suppose that H acts irreducibly on V . Then V = 〈V1
H〉, and 8.4.8 (b)

yields
V1

H = {V1, . . . , Vn}. �

Exercises

Let A be a group, which acts on the elementary Abelian p-group V .

1. Suppose that for every U ≤ A the action of U on V is semisimple. Then
p �∈ π(A/CA(V )).

20Compare with [39].
21The product is taken in End V .
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2. Suppose that the action of A on V is semisimple and W is an A-invariant
subgroup of V . Then the action of A on W is also semisimple.

3. Let S ∈ Sylp A and L �� A. If [CV (S), A] = 1, then also

[CV (S ∩ L), L] = 1.

4. Let V = 〈v1, . . . , vn〉 be an n-dimensional vector space over F2. The sym-
metric group Sn acts on V according to

vi
g := vig (g ∈ Sn, i ∈ {1, . . . , n}).

For which n is this action semisimple?

8.5 Minimal Nontrivial Action

In this section we investigate a situation that frequently occurs in proofs by
induction: A group A acts nontrivially on a group G but trivially on each
proper A-invariant subgroup of G. If in addition the action of A on G is
coprime, the structure of G can be described fairly well. Clearly in this case
G is a p-group since A normalizes a Sylow p-subgroup for every p ∈ π(G)
(8.2.3 on page 185). The analysis of this situation—in the literature called
the Hall-Higman-reduction—is given in 8.5.1.22

The second result of this section, (8.5.3), is a generalization of the P × Q-
Lemma, which as the P × Q-Lemma itself is due to Thompson. Our proof
follows Bender, who uses a nice idea that goes back to Baer.

Apart from these two theorems some more special results are proved that
will be used later.

For practical reasons we formulate the Hall-Higman-reduction slightly more
generally:

8.5.1 Let B be a group that acts on the p-group P . Suppose that B
contains a normal p′-subgroup A that acts nontrivially on P but trivially on
every proper B-invariant subgroup of P . Then P = [P, A], and P is either
elementary Abelian or a special p-group. Moreover, B acts irreducibly on
P/Φ(P ). If in addition p �= 2, then xp = 1 for all x ∈ P .

22See [67].
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Proof. Since A � B the subgroup [P, A] is B-invariant, and by 8.2.7
[P, A, A] = [P, A]. This gives

(1) P = [P, A].

Every characteristic subgroup C of P is B-invariant. Hence either [C, A] =
1 or C = P , in particular

[P ′, A] = 1 = [Φ(P ), A].

Let P := P/P ′. The coprime action of A on P and 8.4.2 imply

P = [P , A] × CP (A) = [P, A] × CP (A)

and thus CP (A) = 1 by (1). Now the trivial action of A on every proper
B-invariant subgroup shows that B acts irreducibly on P . In particular,
C = 1 for every proper characteristic subgroup C of P . Hence P ′ ≤ Φ(P )
implies

P ′ = Φ(P ).

If P ′ = 1, then P is elementary Abelian and we are done. Thus, we may
assume now that P ′ �= 1. Then Z(P ) �= P and Z(P ) ≤ P ′ since Z(P )
is characteristic in P . The inclusion P ′ ≤ Z(P ) follows from (1) and the
Three-Subgroups Lemma:

[P, P ′, A] = 1 = [P ′, A, P ]

and thus
[P, P ′ ] = [P, A, P ′ ] = 1.

This gives Z(P ) = P ′.

As P/Z(P ) is elementary Abelian, for every x, y ∈ P

1 = [xp, y] 1.5.4= [x, y]p.

Hence Z(P ) = P ′ = Ω(Z(P )), and P is a special p-group.

Let p �= 2. Then 5.3.4 (a) on page 111 yields

[x, a]p = (x−1xa)p = x−p(xp)a = x−pxp = 1

for x ∈ P and a ∈ A, so P = [P, A] = Ω(P ). Hence 5.3.5 on page 112
applies, and we are done. �

The following result deals with a situation that will occur in Chapter 11:
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8.5.2 Let A be an Abelian p-group that acts on the p′-group G, and set
A0 := CA(G). Suppose that [G, A] �= 1, but [U, A] = 1 for every A-invariant
subgroup U �= G.

(a) r(A/A0) = 1.

(b) If the semidirect product AG acts on the elementary Abelian p-group
V such that CG(V ) = 1, then AG/A0 acts faithfully on CV (A0).

Proof. (a) As already mentioned in the introduction of this section, G is a q-
group (q ∈ P). By 8.5.1 and 8.2.9 (a) the factor group A/A0 acts irreducibly
and faithfully on G/Φ(G), so (a) follows from 8.3.3.

(b) Set K := CAG(CV (A0)). The P × Q-Lemma (8.2.8, with P = A0)
shows that K is a p-group. As A0 ≤ K and G is a p′-group, we get that
K = A0. �

An important generalization of the P ×Q -Lemma for p �= 2 is the following
result:

8.5.3 Theorem (Thompson [93]). Let p �= 2 and A be the semidirect
product of a p-subgroup P with a normal p′-subgroup Q. Suppose that A acts
on a p-group G such that

(′) CG(P ) ≤ CG(Q).

Then Q acts trivially on G.

Proof (Bender [27]). We may assume that [G, Q] �= 1. As every proper
A-invariant subgroup of G also satisfies (′) (in place of G), we may further
assume by induction on |G| that Q acts trivially on every such proper
subgroup. Hence 8.5.1 yields

G = [G, Q] und G′ ≤ Z(G).

We first treat the case G′ = 1: Then 8.4.2 gives CG(Q) = 1 and thus also
CG(P ) = 1 by hypothesis (′). Now 8.1.4 implies G = 1, which contradicts
[G, Q] �= 1.

We now use an idea of Baer23 to show that the case G′ �= 1 already follows
from the Abelian case. This is done by defining an addition on the set G

23Bender applied this idea to this situation ([24], [27]).
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that turns it into an Abelian group and that is compatible with the action
of A. Then the result follows from the case just treated.

As G has odd order, we have 〈x2〉 = 〈x〉 for every x ∈ G. In particular, for
x, y ∈ G

x2 = y2 ⇒ x2y−2 = (xy−1)2 = 1 ⇒ xy−1 = 1

and thus
x2 = y2 ⇐⇒ x = y.

Hence, for every g ∈ G there exists a unique x ∈ G such that x2 = g. Set
√

g := x.

Then the following hold:

g, h ∈ Z(G) ⇒ √
g,

√
h ∈ Z(G) and

√
gh =

√
g
√

h;

g ∈ G, a ∈ A ⇒ √
g a =

√
ga;

g ∈ G ⇒ g−1√g =
√

g−1.

We now define an addition on the set G by

(+) g + h := gh
√

[h, g].

The commutator identity [g, h]−1 = [h, g] implies

g + h = gh
√

[h, g] = hg[g, h]
√

[h, g] = hg[g, h]
√

[g, h]−1 = hg
√

[g, h]
= h + g,

so this addition is commutative.

The proof of the associativity of + uses the fact that G′ ≤ Z(G): For
g, h, f ∈ G (1.5.4 on page 25) yields

[f, g + h] = [f, gh] = [f, g][f, h] and
[h + f, g] = [hf, g] = [h, g][f, g].

This shows that

(g + h) + f = ghf
√

[h, g]
√

[f, g]
√

[f, h] = g + (h + f).

Evidently, 1 is the identity of G(+) and −g := g−1 is the inverse of g (with
respect to +). Hence G(+) is an Abelian group.
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The group A acts on the Abelian group G(+) since

(g + h)a = gaha
√

[ha, ga] = ga + ha,

where the action of A on the set G is as before. Now the above-treated
Abelian case shows that Q acts trivially on G. �

The following two results are used in the proof of 8.5.6, and this result is
used in Section 11 to prove Glauberman’s Signalizer Functor Theorem.

8.5.4 Let P be a special 2-group such that Ω(P ) = Z(P ) and |Z(P )| = 4.
Then 23 ≤ |P/Z(P )| ≤ 24.

Proof. Set Z := Z(P ) and 2n := |P/Z|. Since P is special we have
P ′ = Z = Φ(P ), and by our hypothesis P ′ = Ω(P ) and |P ′| = 4. In
particular, every element in P \ Z has order 4. If n = 2, then there exist
x, y ∈ P such that P = 〈x, y, Z(P )〉. Hence P ′ = 〈[x, y]〉 ∼= C2 which
contradicts |P ′| = 4. Thus we have n ≥ 3.

Let a ∈ P \ Z and set

C := CP (a), C := C/〈a〉.

Note that |Z| = 2 since 1 �= a2 ∈ Z. Pick x ∈ C such that x is an involution.
In the case x �∈ Z the element x has order 4 and x2 ∈ 〈a〉, i.e., x2 = a2.
Hence o(xa) = 2, which contradicts Ω(P ) = Z and xa �∈ Z.

We have shown that Z is the unique subgroup of order 2 in C. Thus, by
5.3.7 on page 114 either C is cyclic (of order ≤ 4) or a quaternion group of
order 8. This gives

|C| ∈ {8, 16, 32}.

On the other hand, the conjugacy class aP is contained in aZ since 〈a〉Z
is normal in P . It follows that

|P/C| = |aP | ≤ |aZ| = 4

and thus |P | ≤ 27, i.e., |P/Z| ≤ 25.

In the case |P/C| ≤ 2 we get |P | ≤ 26, so |P/Z| ≤ 24 and we are done.
Hence it suffices to show that the assumption

(+) |P : CP (a)| = 4 for all a ∈ P \ Z and |P/Z| = 25
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leads to a contradiction. Let z ∈ Z# and P̃ := P/〈z〉.24 Then

Φ(P̃ ) = P̃ ′ = Z̃ ∼= C2.

If Z̃ = Z(P̃ ), then P̃ is extraspecial and |P̃ /Z̃| a square (5.2.9), which
contradicts (+).

Assume that Z̃ �= Z(P̃ ). Then there exists a ∈ P \ Z such that ã ∈ Z(P̃ ),
so

{x−1xa | x ∈ P} = {1, z}.

Now 8.1.7 yields |P : CP (a)| = 2, which again contradicts (+). �

8.5.5 Let 〈d〉 be a cyclic 3-group that acts faithfully and fixed-point-freely
on the 2-group P . Suppose that

(+) r(V ) ≤ 2 for every Abelian subgroup V of P .

Then o(d) = 3.

Proof. Set o(d) = 3n. By induction on |P | we may assume that 〈d3〉 acts
trivially on every proper 〈d〉-invariant subgroup of P . Hence 8.5.1 shows
that 〈d〉 acts irreducibly on

P := P/Φ(P ),

and either P is elementary Abelian or a special p-group. Moreover, by 8.2.9
(a) 〈d〉 also acts faithfully on P . Hence CP (x) = 1 for all 1 �= x ∈ 〈d〉. In
particular, every orbit of 〈d〉 on P

# has length o(d) = 3n. This gives

(1) |P | ≡ 1 (mod 3n).

As Z(P ) is elementary Abelian, the fixed-point-free action of 〈d〉 gives
|Z(P )| ≥ 4. Now (+) implies

(2) |Z(P )| = 4 and Ω(P ) = Z(P ).

The case P ′ = 1 gives |P | = 4, and o(d) = 3 since 〈d〉 acts faithfully on
P .

In the remaining case P is special and satisfies the hypothesis of 8.5.4 (see
(2)). It follows that |P | = 23 or |P | = 24. Hence (1) gives |P | = 24 and
n = 1. �

24Tilde instead of bar convention.
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8.5.6 Let G be a group and 1 �= d ∈ G a 3-element. Suppose that the
following hold:

(1) CG(O2(G)) ≤ O2(G).

(2) There exists an element of order 6 in G.

(3) There exists a 〈d〉-invariant elementary Abelian 2-subgroup W in G
such that

CW (d) = 1 �= W.

Then G contains an elementary Abelian subgroup of order 8.

Proof. Set

P := O2(G), Z := Ω(Z(P )) and C := CG(Z).

We assume that G is a counterexample, so

(+) r(V ) ≤ 2 for every Abelian 2-subgroup V of G.

This shows that |Z| ≤ 4 and |WCZ(W )| ≤ 4. As d normalizes W and Z
and acts fixed-point-freely on W , we get

W = Z ∼= C2 × C2 and CZ(d) = 1.

Let D ∈Syl3 G such that d ∈ D and pick x ∈ D. If [Z, x] �= 1, then
CZ(x) = 1 since |Z| = 4, and (+) yields CP (x) = 1. Hence P and x satisfy
the hypothesis of 8.5.5. We get

(∗) CP (x) = 1 and o(x) = 3 for all x ∈ D such that [Z, x] �= 1.

Assume first that D is cyclic. Then by (∗) D = 〈d〉 ∼= C3, and hypothesis
(2) together with Sylow’s Theorem shows that there exists an involution
t ∈ G such that [t, d] = 1. Since Z〈t〉 is nilpotent we get |[Z, t]| ≤ 2 (5.1.6
on page 101). Now [Z, t] = 1 follows since [Z, t] is 〈d〉 -invariant. Moreover,
t is not contained in Z, so Z〈t〉 is elementary Abelian of order 8. This
contradicts (+).

Assume now that D is not cyclic. Then CD(Z) is a nontrivial normal
subgroup of D. Let b be an element of order 3 in CD(Z) ∩ Z(D) and
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E := 〈b, d〉. By (∗) E is an elementary Abelian subgroup of order 9. Hence
8.3.4 gives

P = 〈CP (x) | x ∈ E#〉.
In addition, again by (∗), CP (x) = 1 for all x ∈ E \ 〈b〉. Now P = CP (b)
follows, which contradicts hypothesis (1). �

Exercises

1. Let G be a group. Suppose that every proper subgroup of G is nilpotent,
but not G. Then there exist different primes p, r and a p-element a ∈ G
such that

G = F (G)〈a〉 and F (G) = 〈ap〉 × R,

where R is an elementary Abelian or special r-group.

8.6 Linear Action and the Two-Dimensional
Linear Groups

In this section we introduce the action of a group on a vector space. As
examples of such an action we present the groups GL2(q) and SL2(q), but
we also need an important property of SL2(q) in the next chapter.

Let p be a prime. It is well known that (up to isomorphism) for every power

q = pm (m ∈ N)

there exists exactly one finite field Fq with |Fq| = q. We set

K := Fq.

The additive group K(+) is an elementary Abelian p-group and the multi-
plicative group K∗ a cyclic group; see the remark after 8.3.3.

Let V be an n-dimensional vector space over K. Then the additive group
V (+) is an elementary Abelian p-group of order qn.

Let GL(V ) be the group of automorphisms of the vector space V ; i.e.,

GL(V ) = {x ∈ AutV (+) | λvx = (λv)x for all v ∈ V and λ ∈ K}.

A group G is said to act on the vector space V if G acts on the Abelian
group V (+) , so O1 – O3 hold, and in addition:
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O4 (λv)g = λvg (λ ∈ K, v ∈ V , g ∈ G).

Any such action gives rise to a homomorphism from G into GL(V ), which
describes the action of G on V .

The action of G on V is irreducible if V �= 0 and 0 and V are the only
G-invariant subspaces of V .25

8.6.1 Schur’s Lemma. Suppose that G acts irreducibly and faithfully
on the K-vector space V . Then the following hold:

(a) Z(G) is a cyclic p′-group.

(b) If |Z(G)| = n such that n|(q − 1), then there exists a monomorphism
ϕ : Z(G) → K∗ such that

vz = zϕ v for all z ∈ Z(G), v ∈ V.26

Proof. Let Z := Z(G) and z ∈ Z#. Then CV (z) is a proper G-invariant
subspace of V . The irreducible action of G gives CV (z) = 0 for all z ∈ Z#.
Now (a) follows from 8.3.2 and 8.1.4.

(b) For λ ∈ K∗ the mapping

zλ : V → V with v �→ λv

is in Z(GL(V )), and M := {zλ | λ ∈ K∗} is a subgroup of Z(GL(V )) that
is isomorphic to K∗.

As G acts faithfully on V , this action is described by a monomorphism of G
into GL(V ). After identifying the elements of G with their images in GL(V )
we may regard G and thus also Z as subgroup of GL(V ). Then H := MZ
is an Abelian subgroup of GL(V ) which is centralized by G. The irreducible
action of G on V yields:

CV (h) = 0 for all h ∈ H#.

As seen above, this shows that H is cyclic. In particular, H contains exactly
one subgroup of order |Z| (1.4.3 on page 22). Moreover, since n divides |K∗|,
this subgroup is in M (∼= K∗), and Z ≤ M follows. �

25In general this does not imply an irreducible action of G on V (+).
26z acts by scalar multiplication.
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It should be pointed out that decomposition theorems similar to those of
Section 8.4, in particular Maschke’s Theorem and Clifford’s Theorem, can
be proved for groups acting on vector spaces using the same arguments as
in Section 8.4. Of course, now irreducibility and semisimplicity refers to
subspaces rather than subgroups.

It is well known that the mapping

det : GL(V ) → K∗

that maps every element x ∈ GL(V ) on its determinant det x is an epi-
morphism. Hence

SL(V ) := {x ∈ GL(V ) | det x = 1}

is a normal subgroup of GL(V ) such that

GL(V )/ SL(V ) ∼= K∗.

Since (q − 1, p) = 1 all p-elements of GL(V ) are contained in SL(V ); we
will use this fact frequently.

With respect to a fixed basis v1, . . . , vn of V , every x ∈ GL(V ) corresponds
to an invertible matrix

A(x) =

 λ11 . . . λ1n
...

...
λn1 . . . λnn

 ,

where the λij ∈ K are determined by the equations

vi
x =

n∑
j=1

λijvj , i = 1, . . . , n.

The mapping x �→ A(x) is an isomorphism of GL(V ) into the group
GLn(q) of all invertible n × n-matrices over K. In particular SL(V ) is
mapped onto the group SLn(q) of all matrices with determinant 1.

Frequently we will describe the elements x ∈ GL(V ) by the matrices A(x)
(for a fixed basis of V ) writing

x ≡ A(x).

Despite the fact that most of the following results can easily be generalized
to n-dimensional vector spaces, we will from now on assume that V is a
2-dimensional vector space over K.
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The order of GL(V ) is equal to the number of ordered pairs (v, w), where
v, w is a basis of V . Hence

|GL2(q)| = |GL(V )| = (q2 − 1)(q2 − q)

and
|SL2(q)| = |SL(V )| = (q − 1)q(q + 1).

For λ ∈ K∗ the scalar multiplication by λ

zλ : V → V with v �→ λv

is an element of Z(GL(V )), and

zλ ≡
(

λ 0
0 λ

)
with respect to every basis of V . We set

Z := {zλ | λ ∈ K∗} (≤ Z(GL(V )) ),

clearly Z is isomorphic to K∗. Moreover zλ ∈ SL(V ) only if λ = ±1.

Let
z := z−1.

If p = 2 then z = 1, and if p �= 2 then z is an involution in SL(V ).

8.6.2 Let p �= 2. Then z is the unique involution in SL(V ).

Proof. Let t ∈ SL(V ) be an involution. Then

v + vt ∈ CV (t)

for all v ∈ V.

If CV (t) = 0, then vt = −v and thus t = z. Assume that CV (t) �= 0. Then
there exists a basis v, w of V with v ∈ CV (t), and with respect to this basis

t ≡
(

1 0
∗ −1

)
.

But now det t = −1, which contradicts p �= 2 and t ∈ SL(V ). �
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Let V # := {v ∈ V | v �= 0} and v ∈ V #. By

Kv := {λv | λ ∈ K}

we denote the subspace of V generated by v. Let v, w be a basis of V ; i.e.,
Kv �= Kw. We set:27

Ŝ(v) := {x ∈ GL(V ) | (Kv)x = Kv}

≡
{(

δ1 0
λ δ2

) ∣∣∣ δ1, δ2 ∈ K∗, λ ∈ K

}
,

P̂ (v) := {x ∈ GL(V ) | vx = v}

≡
{(

1 0
λ δ2

) ∣∣∣ δ2 ∈ K∗, λ ∈ K

}
,

D̂(v, w) := Ŝ(v) ∩ Ŝ(w) ≡
{(

δ1 0
0 δ2

) ∣∣∣ δ1, δ2 ∈ K∗
}

,

S(v) := Ŝ(v) ∩ SL(V ) ≡
{(

δ 0
λ δ−1

) ∣∣∣ δ ∈ K∗, λ ∈ K

}
,

P (v) := P̂ (v) ∩ SL(V ) ≡
{(

1 0
λ 1

) ∣∣∣ λ ∈ K

}
,

D(v, w) := D̂(v, w) ∩ SL(V ) ≡
{(

δ 0
0 δ−1

) ∣∣∣ δ ∈ K∗
}

.

It is easy to see that all the above sets are subgroups of GL(V ). We now
discuss their structure:

8.6.3 (a) D̂(v, w) ∼= K∗ × K∗ and D(v, w) ∼= K∗. In particular
D(v, w) is a cyclic group of order q − 1.

(b) P (v) ∼= K(+).

(c) P (v) is a normal subgroup of Ŝ(v), and Ŝ(v) (resp. S(v)) is a
semidirect product of P (v) with D̂(v, w) (resp. D(v, w)). In par-
ticular, Ŝ(v) and S(v) are solvable groups.

(d) CP (v)(x) = 1 and [P (v), x] = P (v) for x ∈ D(v, w) \ 〈z〉. 28

27With respect to the basis v, w.
28Hence S(v)/〈z〉 is a Frobenius group; see 8.1.12 on p. 182.
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Proof. Most of the assertions follow directly from the matrix representation
given in the definition of the subgroups. For (c) note that P̂ (v) is the kernel
of the action of Ŝ(v) on Kv. Hence P̂ (v) � Ŝ(v) and P (v) � S(v).

Claim (d) can be verified using(
δ−1 0
0 δ

)−1( 1 0
λ 1

)(
δ−1 0
0 δ

)
=
(

1 0
δ−2λ 1

)
;

note here: δ−2 = 1 ⇐⇒ δ = ±1. �

8.6.4 [V, P (v)] = Kv and [V, P (v), P (v)] = 0 for v ∈ V #.

Proof. The matrix representation of P (v) shows that P (v) acts trivially
on V/Kv. Hence

0 �= [V, P (v)] ⊆ Kv,

and [V, P (v), P (v)] = 0 follows. Since [V, P (v)] is a subspace of V we also
get [V, P (v)] = Kv. �

The next result describes the Sylow p-structure of GL(V ) and thus also of
SL(V ).

8.6.5 (a) Sylp GL(V ) = {P (v) | v ∈ V #} and

P (v) = P (u) ⇐⇒ Kv = Ku.

In particular |Sylp GL(V )| = q + 1.

(b) NGL(V )(P (v)) = Ŝ(v), v ∈ V #.

(c) P (v) ∩ P (u) = 1 if Kv �= Ku ( v, u ∈ V #).

(d) Sylp GL(V ) = {P (u)} ∪ {P (v)x | x ∈ P (u)} for v, u ∈ V # such that
Kv �= Ku.

Proof. Clearly P (v) ( v ∈ V #) is a Sylow p-subgroup of GL(V ) since
|P (v)| = q = pm. Conversely, a Sylow p-subgroup P of GL(V ) acts on the
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set V . Since 0P = 0, 3.1.7 on page 59 shows that there also exists v ∈ V #

such that vP = v. This implies P ≤ P (v) and thus P = P (v).

Let v, u ∈ V #. Since v, u is a basis of V if Kv �= Ku, we get

P (v) �= P (u) ⇐⇒ Kv �= Ku ⇐⇒ P (v) ∩ P (u) = 1.

This implies (c) and also (a); note here that q2−1
q−1 = q + 1 is the number of

subspaces Kv, v ∈ V #. Since P (v)x = P (vx), x ∈ GL(V ), we also get (b).

(d) P (u) acts on Sylp GL(V ) by conjugation. If P (v)x = P (v), x ∈ P (u),
then x = 1 follows from (b) and (c). Hence there exist q = |P (u)| pairwise
distinct Sylow p-subgroups P (v)x, x ∈ P (u). Together with P (u) there
are q + 1 Sylow p-subgroups, and the assertion follows from (a). �

Next we collect some properties about the relations between the above in-
troduced subgroups. As before v, w is a basis of V and with respect to this
basis t ∈ SL(V ) such that

t ≡
(

0 −1
1 0

)
.

8.6.6 (a) For u ∈ V \ (Kv ∪ Kw)

Ŝ(v) ∩ Ŝ(w) ∩ Ŝ(u) = Z.

In particular Z(GL(V )) = Z and Z(SL(V )) = 〈z〉.

(b) NGL(V )(D̂(v, w)) = 〈t〉D̂(v, w) or q = 2 and D̂(v, w) = 1.

(c) NSL(V )(D(v, w)) = 〈t〉D(v, w) or q ≤ 3 and D(v, w) = 〈z〉.

(d) [D̂(v, w), x] = D(v, w) for all x ∈ D̂(v, w)t.

(e) CGL(V )(a) = P (v)Z(GL(V )) for all a ∈ P (v)#.

Proof. (a) Since
Z ≤ Ŝ(v) ∩ Ŝ(w) ∩ Ŝ(u) =: H

it suffices to show that H ≤ Z. Let λ1, λ2 ∈ K∗ such that

u = λ1v + λ2w,
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and let h ∈ H. Then there exist µ1, µ2, µ3 ∈ K∗ such that vh = µ1v,
wh = µ2w and uh = µ3u. It follows that

µ3λ1v + µ3λ2w = µ3u = uh = λ1v
h + λ2w

h = λ1µ1v + λ2µ2w

and thus, since v, w is a basis,

µ3λ1 = λ1µ1 and µ3λ2 = λ2µ2.

Hence µ3 = µ1 = µ2 and h = zµ1 ∈ Z.

(b) and (c) For x ∈ NGL(V )(D̂(v, w))

D̂(v, w) = (D̂(v, w))x = D̂(vx, wx).

Now (a) implies {Kv, Kw} = {Kvx, Kwx} or D̂(v, w) = Z(GL(V )). In
the first case x �∈ D̂(v, w) yields

(Kv)x = Kw, (Kw)x = Kv,

and tx ∈ D̂(v, w). In the second case

D̂(v, w) ∼= K∗ × K∗ and Z(GL(V )) ∼= K∗

implies D̂(v, w) = 1 and q = 2.

With D(v, w) in place of D̂(v, w) the case D(v, w) = Z(SL(V )) gives

q − 1 = |D(v, w)| = |〈z〉| ≤ 2

and thus q ≤ 3.

(d) Since D̂(v, w) is Abelian we may assume that x = t. For the element

d ≡
(

δ1 0
0 δ2

)

d−1t−1dt ≡
(

δ−1
1 0
0 δ−1

2

)(
0 1

−1 0

)(
δ1 0
0 δ2

)(
0 −1
1 0

)
=
(

δ−1
1 δ2 0
0 δ−1

2 δ1

)
;

and (d) follows.

(e) Clearly Z(GL(V ))P (v) ≤ CGL(V )(a) since P (v) is Abelian. On the
other hand CV (a) = Kv, and thus CGL(V )(a) ≤ Ŝ(v). Now (e) follows from
8.6.3 (c) and an elementary calculation. �
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8.6.7 Let P1, P2 be two different Sylow p-subgroups of GL(V ). Then

SL(V ) = 〈P1, P2〉.

Proof. According to 8.6.5 (a) there exists a basis v, w of V such that
P1 = P (v) and P2 = P (w). By 8.6.3 (c) and 8.6.5 (b) NSL(V )(P (v)) =
P (v)D(v, w), and by 8.6.5 (d)

G := 〈P1, P2〉 (≤ SL(V ))

is the group generated by all Sylow p-subgroups of SL(V ). The Frattini
argument implies

SL(V ) = G D(v, w).

Since D(v, w) is Abelian, t acts trivially on SL(V )/G. Hence 8.6.6 (d) shows
that D(v, w) ≤ G and G = SL(V ). �

If x ∈ SL(V ) and v ∈ V # such that vx = v, then x is a p-element (8.6.3
(b)). This shows:

8.6.8 Let R be a p′-subgroup of SL(V ). Then CV (x) = 0 for all x ∈
R#. �

8.6.9 Let r ∈ P, r �= p, and R a Sylow r-subgroup of SL(V ). If r �= 2,
then R is cyclic, and if r = 2, then R is a quaternion group.

Proof. Because of 8.6.8 we can apply 8.3.2. Then R is cyclic or a quaternion
group. It remains to exclude the case where r = 2 and R is cyclic. In this
case SL(V ) has a normal 2-complement (7.2.2), and this 2-complement con-
tains all the Sylow p-subgroups of SL(V ). Now 8.6.7 and R �= 1 contradict
each other. �

SL2(2) is a non-Abelian group of order 6, and thus isomorphic to S3.

SL2(3) is a group of order 24 that is not 3-closed (8.6.5). A Sylow 2-subgroup
Q is a quaternion group (8.6.9), and its center has order 2 (8.6.6 (a)). Hence
4.3.4 on page 90 shows that Q is a normal subgroup of SL2(3).

We sum up:
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8.6.10 SL2(2) and SL2(3) are solvable groups. The group SL2(2) is
isomorphic to S3, and the group SL2(3) is a semidirect product of a cyclic
group of order 3 with a quaternion group of order 8 that is not direct. Con-
versely, every such semidirect product is isomorphic to SL2(3).

Proof. Only the last statement requires a proof. Let A, B be two groups
of order 3, which act nontrivially on a quaternion group Q8. It suffices to
show

A � Q8 ∼= B � Q8.

Both groups act faithfully on Q8 and thus can be regarded as subgroups
of Aut Q8. Now 5.3.3 on page 110 shows that A and B are conjugate in
AutQ8, and the corresponding semidirect products are isomorphic. �

Assume now that q ≥ 4. Then D(v, w) �= 〈z〉, and for x ∈ D(v, w) \ 〈z〉 we
get from 8.6.3 (d)

P (v) = [P (v), x] ≤ SL(V )′.

Hence, every Sylow p-subgroup of SL(V ) is contained in SL(V )′. Now 8.6.7
gives:

8.6.11 SL(V ) is perfect for q ≥ 4. �

Since GL(V )/ SL(V ) (∼= K∗) is Abelian, the commutator group of GL(V )
is contained in SL(V ). Hence, For q ≥ 4 8.6.11 implies

GL(V )′ = SL(V ).29

The next statement about the structure of SL(V ) will be of relevance in
the next chapter.

8.6.12 Let p �= 2. Suppose that a is a p-element and R an 〈a〉-invariant
p′-subgroup of SL(V ) such that 1 �= [R, a]. Then p = 3, R is a quaternion
group of order 8, and R〈a〉 ∼= SL2(3).

29This is also true for q = 3.
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Proof. By 8.2.7 on page 187 we have

R = [R, a] CR(a) and [R, a, a] = [R, a].

In addition, 8.6.6 (e) gives CR(a) ≤ 〈z〉.
We show:

(1) [R, a] is a quaternion group.

(1) implies that 〈z〉 = Z([R, a]) (8.6.2) and thus R = [R, a]. Hence R
is a quaternion group Q2n . For n ≥ 4 R possesses a cyclic characteristic
subgroup of index 2; and a acts trivially on R (8.2.2 (b) on page 184). Hence
R = Q8, and the assertion follows from 8.6.10.

We now prove (1) by induction on |R|. We may assume that R = [R, a]
and, because of 8.2.3 on page 185, also that R is an r-group, r a prime
different from p.

If R is not cyclic, then (1) follows from 8.6.9 (b). We will show that the
other case leads to a contradiction:

Since R = [R, a] the element a acts as an automorphism of order p on the
cyclic group R. By 2.2.5 on page 51

(2) p divides (r − 1).

Hence r �= 2, and

(3) either r divides (q − 1) or r divides (q + 1)

since |SL(V )| = (q − 1)q(q + 1). If q = p, then (2) and (3) contradict each
other.

The case r|(q − 1) is also elementary. By Sylow’s Theorem we may assume
that R ≤ D(v, w), v, w a basis of V (8.6.3 (c)). Then Kv and Kw are the
only R- invariant 1-dimensional subspaces of V (8.6.6 (a)). Hence Ra = R
shows that 〈a〉 is either trivial or transitive on the set {Kv, Kw}. This
contradicts a �= 1 (8.6.5 (c)) and p �= 2, respectively.

We now show that the case r|(q + 1) follows from the case just treated.
Note first that

r divides (q2 − 1).

Next we use from the theory of finite fields the well-known fact that there
exists a field extention L of K = Fq such that L ∼= Fq2 . This shows that

SL(V ) ∼= SL2(q) ≤ SL2(q2) ∼= SL(Ṽ ),



8.6. Linear Action and the Two-Dimensional Linear Groups 221

where Ṽ is a 2-dimensional vector space over L. Hence R〈a〉 is isomorphic
to a subgroup of SL(Ṽ ). Since r|(q2 − 1) we are back in the previous case,
and the contradiction follows as there. �

8.6.13 Let p �= 2 and G a subgroup of SL(V ) that is not p-closed. Then
the Sylow 2-subgroups of G are quaternion groups.

Proof. Assume that G ≤ SL(V ) is a minimal counterexample. As Op′
(G)

is p-closed if and only if G is p-closed, we get

(′) Op′
(G) = G.

Using 8.6.9 we may assume that for all prime divisors r �= p of |G| the
Sylow r-subgroups of G are cyclic. Let r be the smallest such divisor. Since
G has no normal p-complement by (′), we get from 7.2.1 for R ∈Sylr G

CG(R) �= NG(R).

Hence, there exists a prime divisor s of |NG(R)| (and thus of |G|) and an
s-element a ∈ NG(R) \ CG(R). Since R is cyclic 2.2.5 implies

s divides r − 1.

The minimality of r yields s = p. But this contradicts 8.6.12 since R is
cyclic. �

A well-known theorem of Dickson shows that a group G as in 8.6.13 possesses
a subgroup isomorphic to SL2(p).30

Let Ω be the set of 1-dimensional subspaces of V , i.e.,

Ω := {Kv | v ∈ V #}. 31

Then GL(V ) acts on Ω:

Kv �→ Kvx, x ∈ GL(V ),

Ŝ(v) is the stabilizer of the point Kv,

D̂(v, w) = Ŝ(v) ∩ Ŝ(w) (Kv �= Kw)
30See [6], chap. 8, or more modern [12], p. 44.
31Ω is the 1-dimensional projective space, the projective line over K.
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is the stabilizer of two points, and

Z = Z(GL(V ))
8.6.6(a)

= {zλ | λ ∈ K∗}

is the kernel of this action. Hence

〈z〉 = Z ∩ SL(V )
8.6.6(a)

= Z(SL(V ))

is the kernel of the action of SL(V ) on Ω.

Moreover P (v) is a normal subgroup of Ŝ(v) that acts regularly on Ω\{Kv}
(use |P (v)| = q = |Ω\{Kv}| and 8.6.5 (c)). As P (v) ≤ SL(V ), both groups
GL(V ) and SL(V ) are 2-transitive on Ω. The subgroup D̂(v, w)/Z has
order q − 1 and acts regularly on Ω \ {Kv, Kw} (8.6.6 (a)). Thus, the
action of GL(V ) on Ω is 3-transitive.

If p = 2, then SL(V ) acts faithfully on Ω since z = 1. Hence, D(v, w) is
regular on Ω \ {Kv, Kw}, and in this case also SL(V ) is 3-transitive on Ω.

If p �= 2, then z �= 1 and D(v, w)/〈z〉 cannot be transitive on Ω\{Kv, Kw}.
Consequently, in this case SL(V ) is not 3-transitive on Ω.

Our discussion also shows that the group Ŝ(v)/Z (resp. S(v)/〈z〉) acts as a
Frobenius group on Ω\{Kv}, where P (v) (∼= K(+)) is the Frobenius kernel
and D̂(v, w)/Z (∼= K∗) (resp. D(v, w)/〈z〉) a Frobenius complement.

It should be pointed out that by 8.6.5 (a) the mapping

ρ : Ω → Sylp GL(V ) such that Kv �→ P (v)

is a bijection with
((Kv)x)ρ = ((Kv)ρ)x.

Hence the action of G on Ω and on Sylp GL(V ) (by conjugation) are equi-
valent.

The factor groups

PGL(V ) := GL(V )/Z(GL(V )) and PSL(V ) := SL(V )/Z(SL(V ))

are the 2-dimensional projective linear group and the special projec-
tive linear group, respectively.

Similarly one defines

PGL2(q) := GL2(q)/Z(GL2(q)) and PSL2(q) := SL2(q)/Z(SL2(q)).32

32A list of all subgroups of PSL2(q) was first given by Dickson ([6]); see [13], II.2.8.
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8.6.14 Theorem. PSL(V ) is a non-Abelian simple group for every
q ≥ 4.

Proof. Let G := SL(V ), and let N be a normal subgroup of G such that

〈z〉 < N ≤ G.

It suffices to show that N = G. As G is 2-transitive on Ω, by 4.2.2 on page
85 and 4.2.4 on page 86 N is transitive on Ω. Hence the Frattini argument
gives G = N S(v), in particular

G/N ∼= S(v)/S(v) ∩ N.

The solvability of S(v) (8.6.3 (c)), and thus of G/N yields either G/N = 1
or (G/N)′ �= G/N . In the first case we are done, in the second case G′ �= G
(1.5.1 on page 24), which contradicts 8.6.11. �

Exercises

1. PSL2(3) ∼= A4 and PSL2(4) ∼= PSL2(5) ∼= A5.

2. A6 and PSL2(9) are isomorphic.

3. PSL2(9) has a unique conjugacy class of involutions.

4. Every nonsolvable group of order 120 is either isomorphic to S5, SL2(5) or
A5 × C2.

5. For q ≡ 3 (mod 8) and q ≡ 5 (mod 8) the Sylow 2-subgroups of PSL2(q)
are isomorphic to C2 × C2.33

33By a theorem of Gorenstein-Walter these are the only simple groups having a Sylow
2-subgroup isomorphic to C2 × C2; see the Appendix, p. 369.
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Chapter 9

Quadratic Action

9.1 Quadratic Action

In the following p is a prime and G a group that acts on the elementary
Abelian p-group V . An element a ∈ G acts quadratically on V if

[V, a, a] = 1.

This means that a and thus also 〈a〉 acts trivially on [V, a] and V/[V, a].
In particular 〈a〉CG(V )/CG(V ) is a p-group (see 8.2.2 (b) on page 184).

In the endomorphism ring of EndV the quadratic action of a gives

v(a−1)(a−1) = 1 for all v ∈ V,

i.e., (a−1)2 = 0.1 Hence either a acts trivially on V or possesses a quadratic
minimal polynomial.

The group G acts quadratically on V if

[V, G, G] = 1.

In the following examples the action of G on V is quadratic:

(a) G acts trivially on V .

(b) |G| = 2 = p: Then for a ∈ G and v ∈ V

[v, a]a = [v, a]−1 = [v, a].
1Since we write V multiplicatively the zero of End V maps every element of V to 1V .

225
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(c) G is p-group such that |V/CV (G)| = p; see 8.1.4 on page 177.

(d) V is the additive group of a 2-dimensional vector space W over Fpm ,
and G is a Sylow p-subgroup of SL(W ); see 8.6.4 on page 215.

(e) V and G are normal subgroups of the group H, and G is Abelian;

[V, G, G] = [[V, G], G] ≤ [V ∩ G, G] = 1.

The action of G on V is p-stable if for all a ∈ G:

[V, a, a] = 1 ⇒ a CG(V ) ∈ Op(G/CG(V )).

For p = 2 every involution acts quadratically on V (Example (b)). Thus,
p-stability is only interesting for p �= 2.

We first collect some elementary properties:

9.1.1 Suppose that G acts quadratically on V .

(a) [v, an] = [vn, a] = [v, a]n for all v ∈ V , a ∈ G, n ∈ N.

(b) |V | ≤ |CV (a)|2 for all a ∈ G.

(c) G/CG(V ) is an elementary Abelian p-group.

Proof. (a) follows from 1.5.4 on page 25 since [v, a]a = [v, a] for a ∈ G.
Now vp = 1 and (a) give [v, ap] = 1; in particular

ap ∈ CG(V ) for all a ∈ G.

Moreover, the quadratic action of G and the Three-Subgroups Lemma imply
[V, G′ ] = 1. Hence G/CG(V ) is Abelian, and (c) holds.

Finally by 8.4.1 on page 197

V/CV (a) ∼= [V, a] ≤ CV (a),

and (b) follows. �

The next example shows that for p > 2 elements of order p need not act
quadratically.
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Let G = S4 and V be a 4-dimensional vector space over F3 with basis
v1, . . . , v4. Then

vg
i := vig , i = 1, . . . , 4 (g ∈ G)

defines a faithful action of G on V . By 9.1.1 (c) only 3-elements of G can
act quadratically on V .

Let g := (123). Then

[v1, g, g] = [−v1 + v2, g] = v1 + v2 + v3 �= 0,

so no nontrivial 3-element of G acts quadratically on V . In particular the
action of G on V is 3-stable.

In most of the following it would suffice to regard V as a vector space over
the prime field Fp = Z/pZ (2.1.8 on page 46). But in the proof of 9.1.4
it is more appropriate to investigate the action of G on an Fq-vector space
W , where Fq has characteristic p,2 we take a slightly more general point of
view and say that a group or element acts quadratically on the Fq-vector
space W , if it acts quadratically on the additive group of W .

9.1.2 Let G act on the Fq-vector space W �= 0, q = pm. Suppose that

(1) G = 〈a, b〉 , where a and b act quadratically on W ,

(2) G/CG(W ) is not a p-group, and

(3) o(ab) = pek and k|(q − 1).

Then there exists a homomorphism

ϕ : G → SL2(q),

such that Gϕ is not a p-group.

Proof. We proceed by induction on |G| + dim W . If the action of G is not
faithful, then |G/CG(W )| < |G| and the assertion follows by induction.

Let W1 be a maximal G-invariant subspace of W . If G/CG(W1) is not
a p-group, then by induction the claim follows for the pair (G, W1) and
thus also for the pair (G, W ). Finally, if G/CG(W1) is a p-group, then by

2All vector spaces under consideration are finite-dimensional.
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hypothesis (2) and 8.2.2 on page 184 G/CG(W/W1) is not a p-group. The
case W1 �= 0 gives dim W/W1 < dim W , and again the assertion follows by
induction.

We are left with the case that G acts faithfully and irreducibly on W . In
particular a and b are p-elements since they act quadratically. Hypothesis
(2) shows that G is not Abelian.

By hypothesis (3) and Schur’s Lemma (8.6.1 on page 211) the cyclic group
〈ab〉 acts as scalar multiplication on a minimal 〈ab〉-invariant subspace of
W . In particular, there exists a vector w �= 0 in W and λ ∈ F∗

q such that

wab = λw, and thus wa = λwb−1
.

If wa ∈ Fqw then Fqw is G-invariant and thus W = Fqw by the irre-
ducibility of W . But then G is Abelian, a contradiction.

We have shown that W1 := Fqw + Fqw
a is 2-dimensional. The quadratic

action of a and b gives

wa − w = [w, a] ∈ CW1(a), and
wb−1 − w = λ−1wa − w ∈ CW1(b).

Hence (wa)a ∈ W1, wb ∈ W1 and of course also (wa)b ∈ W1. This shows
that W1 is G-invariant and thus W1 = W . In particular G ≤ SL(W ) ∼=
SL2(q) since G is generated by the p-elements a, b. �

9.1.3 Let p �= 2 and G be faithful on V . Suppose that

(1) G = 〈a, b〉, where a and b act quadratically on V , and

(2) G is not a p-group.

Then the following hold:

(a) The Sylow 2-subgroups of G are not Abelian.

(b) If Q is a normal p′-subgroup of G and [Q, a] �= 1, then p = 3, and
there exists a section of G isomorphic to SL2(3).
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Proof. Let o(ab) = pek such that (p, k) = 1, and let q be a power of p such
that k|(q − 1).3 We write V additively as a vector space over Fp (≤ Fq)
and choose a basis v1, . . . , vn of V . Let W be an Fq-vector space with basis
v1, . . . , vn, i.e., V ⊆ W . The action of G on V is uniquely determined by
the images of the basis v1, . . . , vn under G. Hence this action of G on V can
be extended in a unique way to an action of G on the vector space W .4 Now
G and W satisfy the hypothesis of 9.1.2, so there exists a homomorphism
ϕ : G → SL2(q) such that

Gϕ = 〈aϕ, bϕ〉
is not a p-group. In particular, Gϕ is not p-closed since aϕ and bϕ are
p-elements. Thus, claim (a) follows from 8.6.13 on page 221.

For the proof of claim (b) assume that Qϕ is an aϕ-invariant p′-subgroup
such that [Qϕ, aϕ] �= 1. Then (b) follows from 8.6.12 on page 219. �

9.1.4 Theorem. Let p �= 2. Suppose that the action of G on V is
faithful and not p-stable. Then the following hold:

(a) The Sylow 2-subgroups of G are non-Abelian.

(b) If in addition G is p-separable, then p = 3, and there exists a section
of G isomorphic to SL2(3).

Proof. Since G is not p-stable on V there exists a ∈ G \ Op(G) such that
[V, a, a] = 1. Let K be the set of G-composition factors of V . By 8.2.10 on
page 188

Op(G) =
⋂

W∈K
CG(W ).

Hence there exists W ∈ K such that a �∈ CG(W ) and thus

aCG(W ) �∈ Op(G/CG(W )) = 1.

Now G/CG(W ) and W satisfy the hypotheses, and by induction on |G|+|V |
we may assume that W = V and Op(G) = 1. By Baer’s Theorem (6.7.6)
there exists b ∈ aG such that

G1 := 〈a, b〉
3As Z/kZ is finite, there exist positive integers i < j such that pj ≡ pi (mod k), so

pj−i ≡ 1 (mod k).
4In matrices: G ≤ GLn(p) ≤ GLn(q).
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is not a p-group. Now claim (a) follows from 9.1.3 (a) (with G1 in place of
G); note that b also acts quadratically on W .

Assume that G is p-separable and set Q := Op′(G). Then [Q, a] �= 1 (6.4.3
on page 134), and the element b can be chosen in aQ. Hence claim (b)
follows from 9.1.3 (b). �

With the Theorem of Dickson mentioned on page 221 the proof of 9.1.4 (a)
provides a stronger statement: There exists a section of G isomorphic to
SL2(p).

Conversely, let V be a 2-dimensional vector space over Fp. Then the iso-
morphism SL2(p) ∼= SL(V ) gives rise to an action of SL2(p) on V , and this
action is not p-stable since Op(SL(V )) = 1 (see Example (d)).

We close this section with a lemma that will be needed later. The proof
refers to a situation where quadratic action occurs in a natural way.

9.1.5 Suppose that G acts faithfully on V . Let E1, E2 be two subnormal
subgroups of G such that [V, E1, E2] = 1. Then [E1, E2] ≤ Op(G).

Proof. By our hypothesis V1 := [V, E1] is invariant under E := 〈E1, E2〉, so

E0 := CE(V1) and E0 := CE(V/V1)

are normal subgroups of E. As E0 ∩ E0 acts quadratically on V , E0 ∩ E0

is a p-group (9.1.1 (c)), so E0 ∩ E0 ≤ Op(E). Now E1 ≤ E0 and E2 ≤ E0
imply that

[E1, E2] ≤ [E0, E0] ≤ E0 ∩ E0 ≤ Op(E).

By 6.7.1 on page 156 E and thus also Op(E) is subnormal in G, so Op(E) ≤
Op(G) (6.3.1 on page 130). �

9.2 The Thompson Subgroup

As in the first section of this chapter let G be a group that acts on the
elementary Abelian p-group V . In this section we discuss the question how
to find subgroups of G that act quadratically and nontrivially on V .
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Obviously, for every subgroup A ≤ G the subgroup

A∗ := CA([V, A])

acts quadratically on V . Thus, we are interested in conditions that guarantee
CA(V ) < A∗. The next lemma gives a first hint. The crucial argument in
the proof is due to Thompson.

9.2.1 Suppose that the group A acts on the elementary Abelian p-group
V such that A/CA(V ) is Abelian. Let U be a subgroup of V . Then there
exists a subgroup A∗ ≤ A such that one of the following holds:

(a) |A| |CV (A)| < |A∗| |CV (A∗)| or

(b) A∗ = CA([U, A]), CV (A∗) = [U, A]CV (A) and

|A| |CV (A)| = |A∗| |CV (A∗)|.

Proof. We may assume that for all subgroups B ≤ A

(∗) |A| |CV (A)| ≥ |B| |CV (B)|,

and we verify the equations in (b) for

A∗ := CA([U, A]).

Clearly [U, A, A∗] = 1, and since A/CA(V ) is Abelian also [A, A∗, U ] = 1.
Hence the Three-Subgroups Lemma gives [U, A∗, A] = 1, i.e.,

(1) [U, A∗] ≤ CV (A).

First we show that the inequality

(2) |A| |CV (A)| ≤ |A∗| |[U, A]CV (A)|

implies (b). We have

|A∗| |CV (A∗)|
(∗)
≤ |A| |CV (A)|

(2)
≤ |A∗| |[U, A]CV (A)|

≤ |A∗| |CV (A∗)|

and thus |A∗| |CV (A∗)| = |A| |CV (A)| and |[U, A]CV (A)| = |CV (A∗)|. The
last equality implies CV (A∗) = [U, A]CV (A) since [U, A] ≤ CV (A∗).
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It remains to prove (2): We may assume that U �= 1. Let

Y := CV (A) and X := [U, A].

We first treat the case |U | = p, the general case then will be reduced to this
one by induction.

Assume that U = 〈u〉. Then 1.5.4 on page 25 shows that [u,A] = [U, A]
since V is Abelian. The mapping

ϕ : A/A∗ → XY/Y such that aA∗ �→ [u, a]Y

is well-defined since for all a∗ ∈ A∗ by (1)

[u, a∗a] = [u, a] [u, a∗]a ∈ [u, a]Y.

If ϕ is injective, then
|A/A∗| ≤ |XY/Y |,

and (2) follows. Let a1, a2 ∈ A such that [u, a1]Y = [u, a2]Y , i.e.,
[u, a1][u, a2]−1 = ua1u−a2 ∈ Y . Then

[u, a1a
−1
2 ] = u−1ua1a−1

2 = (u−a2ua1)a−1
2 = ua1u−a2 ∈ Y

and thus
[u, a1a

−1
2 , A] = 1 = [a1a

−1
2 , A, u],

so [u, A, a1a
−1
2 ] = 1 and a1a

−1
2 ∈ CA([U, A]) = A∗. This shows that ϕ is

injective, and (2) follows in the case U = 〈u〉.
Assume now that |U | > p. Let U1 be a subgroup of index p in U . Then
U = U1〈u〉 for a suitable u ∈ U . Let

X1 := [U1, A], A1 := CA(X1) and
X2 := [〈u〉, A], A2 := CA(X2).

Note that
X1 X2 CV (A) = X CV (A), A∗ = A1 ∩ A2,

and
X1 CV (A) ∩ X2 CV (A) ≤ CV (A1A2).

By induction on |U | we may assume for i = 1, 2

|A||CV (A)| = |Ai||Xi CV (A)|.
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Hence

|A||CV (A)|
(∗)
≥ |A1A2| |CV (A1A2)|
≥ |A1A2| |X1CV (A) ∩ X2CV (A)|

1.1.6=
|A1||A2|
|A1 ∩ A2|

|X1CV (A)||X2CV (A)|
|X1CV (A) X2CV (A)|

=
|A|2|CV (A)|2
|A∗||XCV (A)| ,

and (∗) implies (2). �

In view of 9.2.1 candidates for quadratic action are subgroups A of G that
satisfy:

Q1 |A| |CV (A)| ≥ |A∗| |CV (A∗)|, for all subgroups A∗ of A, and

Q2 A/CA(V ) is an elementary Abelian p-group.

Note that by 9.1.1 (c) every quadratically acting subgroup A satisfies Q2.
Hence Q2 is a necessary condition.

Let AV (G) be the set of subgroups A of G that satisfy Q1 and Q2. For
every such A we obtain from 9.2.1 (b) (with U = V ):

9.2.2 Let A ∈ AV (G) and A∗ := CA([V, A]). Then

|A/A∗| = |CV (A∗)/CV (A)| and CV (A∗) = [V, A] CV (A). �

9.2.3 Timmesfeld Replacement Theorem [95].5 Let A ∈ AV (G)
and U be a subgroup of V . Then

CA([U, A]) ∈ AV (G) and CV (CA([U, A])) = [U, A]CV (A).

Moreover [V, CA([U, A])] �= 1 if [V, A] �= 1.

Proof. Let A∗ := CA([U, A]). Since A ∈ AV (G) 9.2.1 (b) applies, so

(′) |A∗||CV (A∗)| = |A||CV (A)| and CV (A∗) = [U, A]CV (A).

5See also [38].



234 9. Quadratic Action

In addition, for every A0 ≤ A∗ Q1 gives

|A0||CV (A0)| ≤ |A∗||CV (A∗)|.

Hence A∗ ∈ AV (G).

For the proof of the additional claim we may assume that [V, A∗] = 1. Then
(′) implies that

V = [U, A]CV (A) = [V, A]CV (A).

In particular [V, A, A] = [V, A]. But then [V, A] = 1 since A/CA(V ) is a
p-group (8.1.4 b on page 177). �

By AV (G)min we denote the set of minimal elements of the set

{A ∈ AV (G) | [V, A] �= 1}.

9.2.4 Every element of AV (G)min acts quadratically and nontrivially on
V .

Proof. Let A ∈ AV (G)min. By 9.2.3 A∗ := CA([V, A]) is also in AV (G) and
[V, A∗] �= 1. The minimality of A implies A∗ = A and thus [V, A, A] = 1.

�

Up to now we have discussed candidates for quadratic action but never could
exclude the possibility that these subgroups act trivially on V (Example on
page 226). In this context 9.2.4 yields:

9.2.5 Suppose that G is p-stable on V and Op(G/CG(V )) = 1. Then
every element of AV (G) acts trivially on V . �

The property

(∗) Op(G/CG(V )) = 1

is not only useful for p-stability. We will meet it later in other situations.
For example (∗) is satisfied if G acts irreducibly on V (8.1.5 on page 178).
A more general condition that implies (∗) is the following:

9.2.6 Let V = 〈CV (S) | S ∈ Sylp G〉. Then Op(G/CG(V )) = 1.
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Proof. Let S be a Sylow p-subgroup of G. Set

Z := CV (S) and C := CG(V ).

Since all Sylow p-subgroups of G are conjugate we get

V = 〈ZG〉.

Let C ≤ D ≤ G such that D/C = Op(G/C). Then D ∩ S ∈ Sylp D,
D = C(D ∩ S) (3.2.5), and

G = CNG(D ∩ S) (Frattini argument).

This gives
V = 〈ZNG(D ∩ S)〉

and thus [V, D ∩ S] = 1. Hence D ∩ S ≤ C and D = C. �

The following application of 9.2.6 can be used frequently:

9.2.7 Let G be a group and CG(Op(G)) ≤ Op(G). Then

V := 〈Ω(Z(S)) | S ∈ Sylp G〉

is an elementary Abelian normal subgroup of G and Op(G/CG(V )) = 1.

Proof. Let S ∈ Sylp G. Then Ω(Z(S)) ≤ CG(Op(G)) ≤ Op(G) ≤ S, so V
is contained in Ω(Z(Op(G))) and Ω(Z(S)) = CV (S). Now the assertion
follows from 9.2.6. �

In the following we are interested in finding conditions for the existence of
elements in AV (G) that act nontrivially on V . As in 9.2.7 we investigate a
situation that holds in most of the applications. From now on we assume:

• V is an elementary Abelian normal subgroup of G, and

• G acts on V by conjugation.
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Fundamental for the following investigations is a subgroup of G that was
introduced by Thompson and carries his name. For the definition of this
subgroup let p be a prime and E(G) be the set of elementary Abelian
subgroups of G. Let

m := max{|A| | A ∈ E(G)},

A(G) := {A ∈ E(G) | |A| = m}, and
J(G) := 〈A | A ∈ A(G)〉.

J(G) is the Thompson subgroup of G with respect to p. It will be always
clear from the context which p is meant in the definition of the Thompson
subgroup.

Before we go back to quadratic action, we first list some elementary proper-
ties of the Thompson subgroup that are easy consequences of the definition.

9.2.8 (a) J(G) is a characteristic subgroup of G, which is nontrivial
if p ∈ π(G).

(b) If J(G) ≤ U ≤ G, then J(G) = J(U).

(c) J(G) = 〈J(S) | S ∈ Sylp G〉.

(d) If x ∈ CG(J(G)) and o(x) = p, then x ∈ Z(J(G)).

(e) If B ⊆ A(G), then J(〈B〉) = 〈B〉. �

The following result gives a connection between A(G) and AV (G):

9.2.9 (a) A(G) ⊆ AV (G).

(b) If V �≤ Z(J(G)), then there exists A ∈ A(G) such that [V, A] �= 1.

Proof. (a) Let A∗ be a subgroup of A ∈ A(G). Then A∗CV (A∗) is in E(G).
It follows that

|A| ≥ |A∗CV (A∗)| =
|A∗||CV (A∗)|

|A∗ ∩ V | ≥ |A∗||CV (A∗)|
|CV (A)| ,

and A satisfies Q1.

(b) is obvious. �

According to 9.2.9 (a) we can apply our earlier results to A(G) and get:
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9.2.10 Theorem. Let A ∈ A(G) and A0 := [V, A]CA([V, A]).

(a) A0 is in A(G) and acts quadratically on V .

(b) If [V, A] �= 1, then also [V, A0] �= 1.

Proof. Let X := [V, A] and A∗ := CA(X); i.e., A0 = A∗X. Then A0 is an
elementary Abelian p-group. By its definition

[V, A0, A0] ≤ [V, A, A0] = 1,

so A0 acts quadratically on V . For the proof of A0 ∈ A(G) it suffices to
show that |A| = |A0|. The maximality of A gives

CV (A) = V ∩ A = V ∩ A∗,

and by the definition of A∗

X ∩ A = X ∩ A∗.

It follows
|A| |A ∩ V | = |A| |CV (A)| 9.2.2= |A∗| |XCV (A)|

and by 1.1.6

|A| =
|A∗| |XCV (A)|

|CV (A)| =
|A∗| |X|

|X ∩ CV (A)| =
|A∗| |X|

|X ∩ A∗| = |A∗X| = |A0|.

This yields (a), and 9.2.3 implies (b). �

A further property that implies nontrivial quadratic action, can be derived
from the observation that for A∗ := CA(V ) condition Q1 implies

Q′
1 |A/CA(V )| ≥ |V/CV (A)|.

9.2.11 Let B be the set of subgroups A ≤ G satisfying Q′
1 and Q2. Let

A ∈ B and suppose that

(m) |A∗/CA∗(V )| |CV (A∗)| ≤ |A/CA(V )| |CV (A)|.

for all subgroups A∗ ≤ A that are in B. Then A ∈ AV (G).
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Proof. We have to verify Q1 for A. Let A∗ ≤ A. If A∗ does not satisfy Q′
1,

then A∗ is not in B and

|A∗/CA∗(V )| |CV (A∗)| < |V |
Q′

1≤ |A/CA(V )| |CV (A)|.

It follows

|A/CA(V )| |CV (A)| ≥ |A∗/CA∗(V )| |CV (A∗)|
1.2.6= |A∗CA(V )/CA(V )| |CV (A∗)|.

This inequality is also true for A∗ ∈ B since then (m) holds. Thus, we have
for all A∗ ≤ A

|A∗| |CV (A∗)| ≤ |A∗CA(V )| |CV (A∗)| ≤ |A| |CV (A)|,

and A satisfies Q1. �

Assume that there exists an A ∈ B that acts nontrivially on V . Among all
such A we choose A with the additional property that

|A/CA(V )| |CV (A)|

is maximal. Then (m) in 9.2.11 holds for A, i.e., A ∈ AV (G) and AV (G)min
�= ∅. Now 9.2.4 gives the existence of subgroups that act quadratically and
nontrivially on V .

Let S be a Sylow p-subgroup of G. Then G is Thompson factorizable
with respect to p if

G = Op′(G) CG(Ω(Z(S))) NG(J(S)).

Note that S is a Sylow p-subgroup of G := G/Op′(G). The Frattini argu-
ment implies (see 3.2.8 on page 66)

NG(J(S)) = NG(J(S)) and CG(Ω(Z(S))) = CG(Ω(Z(S))).

Hence G is Thompson factorizable if and only if G is.

9.2.12 Let Op′(G) = 1 and V := 〈Ω(Z(S)) | S ∈ Sylp G〉. Then G is
Thompson factorizable if and only if J(G) ≤ CG(V ).
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Proof. Let S ∈ Sylp G and C := CG(V ). Assume that G is Thompson
factorizable. Then Sylow’s Theorem gives

V = 〈Ω(Z(S))g | g ∈ G〉 = 〈Ω(Z(S))g | g ∈ NG(J(S))〉.

Since Ω(Z(S)) ≤ Z(J(S)) this implies V ≤ Z(J(S)) and thus J(G) ≤ C
(9.2.8 (c)).

Assume now that J(G) ≤ C. Then J(S) ≤ C ∩ S. Since

J(S) char C ∩ S ∈ Sylp C

and Ω(Z(S)) ≤ Z(J(S)) the Frattini argument yields the factorization

G = CNG(C ∩ S) = CG(Ω(Z(S)))NG(J(S)). �

9.3 Quadratic Action in p-Separable Groups

In this section we consider p-separable groups that are not Thompson fac-
torizable with respect to p. The following observation provides us with
conditions for a suitable set-up:

9.3.1 Suppose that G is a p-separable group that is not Thompson fac-
torizable with respect to p. Let Op′(G) = 1 and set

V := 〈Ω(Z(S)) | S ∈ Sylp G〉 and H := J(G)CG(V )/CG(V ).

Then the following hold:

S1 CH(Op′(H)) ≤ Op′(H).

S2 V is an elementary p-group, and H acts faithfully on V .

S3 H = 〈A | A ∈ AV (H)〉 �= 1.

Proof. By 6.4.3 CG(Op(G)) ≤ Op(G). Hence S2 and Op(G/CG(V )) = 1
follow from 9.2.7, in particular Op(H) = 1. As H is p-separable and thus
also p′-separable, 6.4.3 on page 134 yields S1. Moreover, 9.2.9 and 9.2.12
imply H �= 1 and S3. �
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In the following we will use these properties S1 – S3 rather than the p-
separability of G.

We begin with an example that later in 9.3.7 will turn out to be typical. Let
V1, . . . , Vr be elementary Abelian p-groups of order p2. We regard these
groups as 2-dimensional Fp-vector spaces. Then

Ei := SL(Vi), i = 1, . . . , r,

acts its natural way on Vi, and

AVi(Ei) = {A | A ∈ Sylp Ei}

(compare with 8.6.4 on page 215). Hence, the pair (Ei, Vi) satisfies S2 and
S3. For p = 2 and p = 3 the groups Ei are solvable. Thus, in these cases
also S1 holds, see 8.6.10 on page 219. Let

H := E1 × · · · × Er and V := V1 × · · · × Vr.

Then the action of the components Ei induce an action of H on V , i.e., Ei

acts as SL(Vi) on Vi and [Vj , Ei] = 1 for i �= j. It follows that

AVi(Ei) = AV (Ei) ⊆ AV (H),

so for p ∈ {2, 3} the pair (H,V ) satisfies S1 – S3.

From now on let (V, H) be a pair satisfying S1, S2 and S3.

9.3.2 Let 1 �= A ∈ AV (H).

(a) |A| = |V/CV (A)|.

(b) There exist A1, . . . , Ak ∈ AV (H)min such that A = A1 × · · · × Ak.

(c) |B| = |[V, B]| = |V/CV (B)| = p for all B ∈ AV (H)min.

Proof. The hypothesis A ∈ AV (H) gives

(∗) |Ai||CV (Ai)| ≤ |A||CV (A)|

for all subgroups Ai ≤ A. Let B be the set of maximal subgroups of A, i.e.,

|A/Ai| = p for Ai ∈ B,
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and set Q := Op′(H). We apply 8.3.4 (c) on page 193 to A and Q. Then

(′) 1 �= [Q,A] = 〈[CQ(Ai), A] | Ai ∈ B〉.

Hence there exists A0 ∈ B such that

Q0 := [CQ(A0), A] �= 1,

and Q0 = [Q0, A] (8.2.7 on page 187). If CV (A0) = CV (A), then Q0 acts
trivially on CV (A0), and the P × Q-Lemma (applied to Q0 × A0 and V )
yields [V, Q0] = 1 and thus Q0 = 1, a contradiction.

We have shown that CV (A0) �= CV (A), in particular |CV (A0)/CV (A)| ≥ p
and

|A||CV (A)| ≤ |A0||CV (A0)|.
Since by (∗) also the opposite inequality holds we get

(∗∗) |A||CV (A)| = |A0||CV (A0)|,

and A0 ∈ AV (H). Moreover, if A ∈ AV (H)min, then A0 = 1 and

|A| = |V/CV (A)| = p.

This, together with (∗∗), gives (a) and (c).

It remains to prove (b). We may assume that |A| > p. According to (′)
there exists a second subgroup A1 ∈ B such that [CQ(A1), A] �= 1, and as
we have seen above A1 ∈ AV (H).

By induction on |A| we may assume that (b) holds for A0 and A1 in place
of A. But then (b) also holds for A since A = A0A1. �

9.3.3 Let A ∈ AV (H)min and x ∈ Op′(H) \ COp′ (H)(A), and set

Ex := 〈A, Ax〉, Qx := Ex ∩ Op′(H) and Vx := [V, Ex].

Then the following hold:

(a) p ∈ {2, 3}.

(b) |Vx| = p2.

(c) Ex = SL(Vx) ∼= SL2(p).
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In particular, Qx acts irreducibly on Vx and

Qx
∼=
{

C3
Q8

if
p = 2
p = 3

Proof. The subgroups A and Ax are are two different Sylow p-subgroups
of Ex since

1 �= [x,A] ≤ Ex ∩ Op′(H) = Qx and AQx = Ex.

Thus they are conjugate under Qx, and

(′) [Qx, A] �= 1.

Since Ex acts trivially on V/[V, A][V, Ax] we get

Vx = [V, A] [V, Ax].

By 9.3.2 |A| = p and |[V, A]| = p, so |Vx| ≤ p2. Moreover, by 8.2.2 on
page 184 the p′-group Qx acts faithfully on Vx. Hence, the quadratic action
of A gives (b). In addition, 8.6.12 on page 219 and (′) imply (a). Now
the structure of the groups SL2(2) and SL2(3) given in 8.6.10 on page 219
yields (c) and the additional claim. �

9.3.4 Let A ∈ AV (H)min. Then [Op′(H), A] is a normal 3-subgroup of
Op′(H) and p = 2, or [Op′(H), A] is a non-Abelian normal 2-subgroup and
p = 3. In particular, the subgroups Qx defined in 9.3.3 are subnormal in
Op′(H).

Proof. The subgroup [Op′(H), A] is normal in Op′(H). Let r be a prime
divisor of |Op′(H)| and R an A-invariant Sylow r-subgroup of Op′(H) (8.2.3
on page 185). If [R,A] �= 1, then 9.3.3 for x ∈ R and [x,A] �= 1 shows
that p = 3 and Qx is a quaternion group, or p = 2 and Qx is a non-
trivial 3-group. In particular, this shows that Op′(H) = RCOp′ (H)(A) and
[Op′(H), A] ≤ R (8.1.1 on page 177). �

In the situation of 9.3.4 the following lemma is crucial:
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9.3.5 Let E be a group that acts faithfully on the elementary Abelian
p-group V , and let E1, E2 be two subnormal subgroups of E and

Vi := [V, Ei], i = 1, 2.

Suppose that the following hold:

(1) E = 〈E1, E2〉 and Op(E) = 1.

(2) Ei acts irreducibly on Vi, i = 1, 2.

(3) V1 �≤ V2 and V2 �≤ V1.

(4) |E1| > 2 and |E2| > 2.

Then E = E1 × E2 and [V, E] = V1 × V2.

Proof. Clearly [V, E] = V1V2, and E acts trivially on V/V1V2. By 8.2.2 (b)
CE(V1V2) is a p-group and thus by (1)

CE(V1V2) ≤ Op(E) = 1.

Similarly CEi(Vi) ≤ Op(Ei) = 1 since Ei is subnormal in E (6.3.1). The
irreducibility of Vi gives Vi = [Vi, Ei]. Hence, V1V2 and E satisfy the
hypotheses, and we may assume that

V = V1V2.

Assume first that V E
1 = V1. Then V1 ∩ V2 is invariant under E2 and thus

V1 ∩ V2 = 1 by (2) and (3). It follows that V = V1 × V2 and

[V, E1, E2] = [V1, E2] ≤ V1 ∩ V2 = 1.

Now 9.1.5 implies [E1, E2] ≤ Op(E) = 1. Hence also V2
E = V2. Now a

symmetric argument shows that also [V2, E1] = 1, and V is centralized by
E1∩E2 . The faithful action of E on V gives E1∩E2 = 1, i.e., E = E1×E2.

We may assume now that neither V1 nor V2 is normalized by E. In particular,

K := NE2(V1) < E2.

We choose our notation such that

|V1| ≥ |V2|.
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Let x ∈ E2 \ K and E∗ := 〈E1, E
x
1 〉. Then E∗ is subnormal in E (6.7.1 on

page 156) and thus Op(E∗) ≤ Op(E) = 1. Hence (E1, E
x
1 , V1, V

x
1 ) satisfies

the hypotheses in place of (E1, E2, V1, V2). Moreover E∗ < E since E �= E1
and E1 �� E. By induction on |E| we may assume that

E∗ = E1 × Ex
1 and V1 ∩ V x

1 = 1.

In particular
[V x

1 , E1] = 1 and V1 × V x
1 ≤ V = V1V2.

Thus |V1| ≥ |V2| implies

|V1| = |V2| and V = V1 × V2 = V1 × V x
1 .

In the case |E2 : K| > 2 there exists y ∈ E2 \ K such that V x
1 �= V y

1 . The
same argument as above—this time applied to (Ex

1 , Ey
1 , V x

1 , V y
1 )—gives

V = V1 × V y
1 = V x

1 × V y
1

and [V y
1 , E1] = 1. But this implies [V, E1] = 1, a contradiction.

We have shown that |E2 : K| = 2; in particular K � E2 and V xK
1 = V x

1 .
It follows that

[V1, K] ≤ V1 ∩ V2 = 1 and [V x
1 , K] ≤ V x

1 ∩ V2 = 1.

But this shows that [V, K] = 1 and thus K = 1 and |E2| = 2, which
contradicts (4). �

9.3.6 Let A ∈ AV (H)min and set

E := [Op′(H), A]A and F := CH([V, E]).

(a) E ∼= SL2(p) and p ∈ {2, 3}.

(b) V = [V, E] × CV (E) and |[V, E]| = p2.

(c) H = E × F and AV (H)min = AV (E) ∪ AV (F )min.

(d) [V, F ] ≤ CV (E) and AV (F ) = ACV (E)(F ).
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Proof. From 9.3.2 (c) we get

(′) |A| = |[V, A]| = p.

Let Q := [Op′(H), A], and for x ∈ Q \ CQ(A) let Ex, Qx, Vx be defined as
in 9.3.3. We will use the properties of Ex given there without reference.

The coprime action of A on Op′(H) gives

Op′(H) = COp′ (H)(A)Q,

so
E = 〈Ex | x ∈ Q \ CQ(A)〉 and Op(E) = CA(Op′(H)) = 1.

Pick x, y ∈ Q \ CQ(A). Then Qx and Qy are subnormal in Op′(H) (9.3.4).
If Vx �= Vy, then E1 := Qx and E2 := Qy satisfy the hypotheses of 9.3.5.
Hence Vx ∩ Vy = 1, which contradicts [V, A] ≤ Vx ∩ Vy.

We have shown that Vx = Vy for all x, y ∈ Q \ CQ(A). In particular

[V, Q] = [V, E] = Vx
∼= Cp × Cp.

Now 8.4.2 on page 198 yields

Z, V = [V, Q] × CV (Q).

and (′) implies CV (Q) = CV (E). It follows that

E = SL(Vx) = Ex = E and V = [V, E] × CV (E),

and (a) and (b) hold.

The decomposition Z is invariant under Op′(H) since Q is a normal sub-
group of H. Let B ∈ AV (H)min and

Q̃ = [Op′(H), B].

As above for A and Q we get

|[V, Q̃]| = p2 and CV (Q̃) = CV (BQ̃).

Moreover, by 9.3.3 Q̃ is irreducible on [V, Q̃]. The invariance of the de-
composition Z under Q̃ gives

[V, Q] = [V, Q̃] and CV (Q) = CV (Q̃)
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or
[V, Q] ≤ CV (Q̃) and [V, Q̃] ≤ CV (Q).

In both cases the decomposition Z is invariant under B. Thus, by 9.3.2 (b)
this decomposition is also invariant under H. As CH(CV (Q)) acts faithfully
on [V, Q], we also get that CH(CV (Q)) = E and H = E × F . Moreover,
9.3.2 (b) implies

AV (H)min ⊆ AV (E) ∪ AV (F ).

This is (c), and the H-invariance of Z gives (d). �

9.3.7 Theorem (Glauberman [51]). Let E1, . . . , Er be the different
subgroups of the form [Op′(H), A]A, A ∈ AV (H)min. Then the following
hold:

(a) p ∈ {2, 3}.

(b) H = E1 × · · · × Er and V = CV (H) × [V, E1] × · · · × [V, Er].
In particular, Ei acts faithfully on [V, Ei] and trivially on [V, Ej ]
for j �= i.

(c) |[V, Ei]| = p2 and Ei = SL([V, Ei]) ∼= SL2(p) for i = 1, . . . , r.

(d) A =
r×

i=1
(A ∩ Ei) and |A||CV (A)| = |V | for all A ∈ AV (H).

Proof. By 9.3.6 H = E1 × H1 for H1 := CH([V, E1]), and (H1, CV (E1))
satisfies S1 – S3. Now (a)–(c) follow form 9.3.6 by an elementary induction.
Claim (d) is 9.3.2 (b). �

According to 9.3.1 we now can apply 9.3.7 to p-separable groups:

9.3.8 Let G be a p-separable group with Op′(G) = 1 that is not Thomp-
son factorizable with respect to p, and let

V = 〈Ω(Z(S)) | S ∈ Sylp G〉.

Then the statements (a) – (d) of 9.3.7 hold for H := J(G)CG(V )/CG(V ).
�
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We give two corollaries that will be needed in Chapter 12, resp. 11.

9.3.9 Let G be a p-separable group and V an elementary Abelian normal
p-subgroup of of G such that Op(G/CG(V )) = 1. Then for C := CG(V )

[ Ω(Z(J(C))), J(G) ] ≤ V.

Proof.6 Let H = J(G)C/C. If H = 1, then J(C) = J(G) by 9.2.8 (b)
and thus

[Ω(Z(J(C))), J(G)] = 1.

Hence, we may assume that H �= 1. The pair (V, H) satisfies condition S2
and by 6.4.3 on page 134 also S1. Moreover 9.2.9 (a) implies S3. We apply
9.3.2 (a). Then for A ∈ A(G)

|A/CA(V )| = |AC/C| = |V/CV (A)|.

The maximality of A yields CV (A) = A ∩ V and

|A| ≥ |V CA(V )| = |V/V ∩ A| |CV (A)| = |A|.

It follows that

(′) V CA(V ) ∈ A(C) ⊆ A(G).

Note that V is contained in V0 := Ω(Z(J(C))), so by (′) CA(V ) = CA(V0).
Because of 9.2.9 (a) we are allowed to use Q′

1 on page 237 for A and V0:

|A/CA(V )| = |V/CV (A)| = |V CV0(A)/CV0(A)| ≤ |V0/CV0(A)|
≤ |A/CA(V0)| = |A/CA(V )|.

This gives V0 = V CV0(A) and thus [V0, A] ≤ V for A ∈ A(G). Now
[V0, J(G)] ≤ V follows. �

9.3.10 Let X be an elementary Abelian q-group (q a prime) that acts on
the p-separable q′-group G. Suppose that Op′(G) = 1.

(a) G = 〈NG(J(S)), CG(Ω(Z(S))), CG(X)〉 for S ∈ Sylp G.

6The proof uses an argument of B. Baumann; see [26].
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(b) If G is not Thompson factorizable with respect to p, then p = 2 or
p = 3, and there exist subgroups W and D of CG(X) such that

W ∼= Cp × Cp, WD = W and D/CD(W ) ∼= SL2(p).

Proof. If G is Thompson factorizable, then clearly (a) holds. Thus, we may
assume that G is not Thompson factorizable. Let S be an X-invariant Sylow
p-subgroup of G (see 8.2.3). As in 9.3.8 we set

V := 〈Ω(Z(S)))G 〉, C := CG(V ) and H := J(G)C/C.

Note that the semidirect product XG acts on V . According to 9.3.1 we can
apply 9.3.7 to H. Let Ei and Vi, i = 1, . . . , r, be defined as there. Then X
acts on A(G) (by conjugation) and thus also on {E1, . . . , Er}. We choose
notation such that {E1, . . . , Ek} is an orbit under X. Since π(Ei) = {2, 3}
and (q, |G|) = 1 we get q ≥ 5. Hence NX(E1) acts trivially on E1, as
|E1| = 6 resp. |E1| = 24.

Set

N := J(G)C, T := N ∩ S (∈ Sylp N) and P := (TC/C) ∩ E1 (∈ Sylp E1).

Since E1 = 〈PE1〉 we can apply 8.1.6 on page 178 and get

E1 × · · · × Ek ≤ 〈CH(X), PX〉.

The corresponding statement holds for every other X-orbit of {E1, . . . , Er}.
It follows that

H = 〈CH(X), TC/C〉 and thus N = 〈CN (X), T 〉C

since PX is in TC/C. Now the Frattini argument implies

G = NG(T )N
9.2.8(b)

= NG(J(S))N = 〈NG(J(S)), C, CG(X)〉.

This is (a).

For the proof of (b) we note that NX(Vi) = NX(Ei) and investigate

〈V1
X〉 = V1 × · · · × Vk, 〈E1

X〉 = E1 × · · · × Ek.

Let S be a transversal of NX(E1) in X. Then

W := { ∏
s∈S

vs | v ∈ V1} ≤ CG(X) (8.1.6 (a) on page 178).
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For the corresponding diagonal in 〈E1
X〉 we get

D := { ∏
s∈S

es | e ∈ E1} ≤ CH(X).

Here the action of D on W is equivalent to that of E1 on V1; thus W ∼= V1
and D = SL(W ). The coprime action of X on D gives a subgroup D of
CN (X) such that DC/C = D. This implies (b). �

9.4 A Characteristic Subgroup

Let p be a prime, G a group such that Op′(G) = 1, and S ∈ Sylp G. By
definition G is Thompson factorizable with respect to p if

G = NG(J(S)) CG(Ω(Z(S))).

In this section we investigate the question under which additional hypotheses
one can find a nontrivial characteristic subgroup of S that is normal in G.

The most important and best-known answer to this question is Glauber-
man’s ZJ-Theorem [50]. It states that

G = NG(Z(J(S)))

whenever G is a group such that CG(Op(G)) ≤ Op(G) and the action of G
on the chief factors of G in Op(G) is p-stable. Note here that the definition
of Z(J(S)) only depends on S but not on G.

In this section we prove an analogue of Glauberman’s ZJ-Theorem using a
different approach. Instead of showing that a given characteristic subgroup
of S has the desired property, we will approximate such a subgroup using
suitable subgroups of Z(J(S)).

In the following let S be a p-group. By CJ(S) we denote the class of all
pairs (τ,H) satisfying the following four conditions:7

C1 H is a group with CH(Op(H)) ≤ Op(H), and τ is a monomorphism
from S into H.

C2 Sτ is a Sylow p-subgroup of H.
7Thus (τ, H) ∈ CJ(S) means that C1–C4 hold for (τ, H).
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C3 J(Sτ ) is a normal subgroup of H.

C4 H is p-stable on every normal subgroup of H that is contained in
Ω(Z(J(Sτ ))).

It is evident that (id , S) is in CJ(S).

For a p-group P we set

A(P ) := Ω(Z(P )) and B(P ) := Ω(Z(J(P ))).

Then A(P η) = A(P )η and B(P η) = B(P )η for every isomorphism η of P .

We now define recursively a subgroup W (S) ≤ B(S). We start with

W0 := A(S) ≤ B(S).

Assume that for i ≥ 1 the subgroups W0, W1, . . . , Wi−1 with

A(S) = W0 < W1 < · · · < Wi−1 ≤ B(S)

are already defined. If Wi−1
τ � H for all (τ,H) ∈ CJ(S), then we define

W (S) := Wi−1. In the other case we choose (τi, Hi) ∈ CJ(S) such that
Wi−1

τi is not normal in Hi and define

Wi := 〈(Wi−1
τi)Hi〉τ−1

i .

Note that in this case

A(Sτi) ≤ Wi−1
τi < W τi

i ≤ B(Sτi)
C3
� Hi

and thus
A(S) ≤ Wi−1 < Wi ≤ B(S).

Since B(S) is finite there exists an integer m where this recursive definition
terminates, i.e., where we have

W (S) := Wm.

Then

R A(S) = W0 < · · · < Wi < · · · < Wm = W (S) ≤ B(S)

and

(′) W (S)τ � H for all (τ,H) ∈ CJ(S).
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At first sight this definition of W (S) seems to depend on the choice of the
pairs (τi, Hi). But if one defines in an analogous way

W0 = W̃0 < · · · < W̃m̃ =: W̃ (S)

for suitable pairs (τ̃i, H̃i), i = 0, . . . , m̃, then by (′) W̃ (S) ≤ W (S). The
symmetric argument shows that also W (S) ≤ W̃ (S) and thus W (S) =
W̃ (S).

Let η be an isomorphism of S. Then

(τ,H) �→ (η−1τ,H)

defines a bijection from CJ(S) to CJ(Sη), and the series R corresponds to

A(Sη) = A(S)η = W0
η < · · · < Wm

η = W (S)η ≤ B(S)η = B(Sη).

It follows:

9.4.1 Let η be an isomorphism of S. Then W (Sη) = W (S)η. In parti-
cular, W (S) is a characteristic subgroup of S satisfying

W (S) �= 1 ⇐⇒ S �= 1. �

The additional statement follows from the fact that Ω(Z(S)) ≤ W (S) and
Z(S) �= 1 if S �= 1.

9.4.2 Let x ∈ S such that [W (S), x, x] = 1. Then [W (S), x] = 1.

Proof. For W0 in R we have [W0, x] = 1, for all x ∈ S. Assume now that
S is a counterexample. Then there exists i ∈ {1, . . . , m} such that the
implication

[Wi, x, x] = 1, x ∈ S ⇒ [Wi, x] = 1

does not hold. We choose i minimal with that property. Then

(+) [Wi−1, x] �= 1, x ∈ S ⇒ [Wi−1, x, x] �= 1.

Let y ∈ S such that [Wi, y, y] = 1 but [Wi, y] �= 1. For a := yτi this yields

[Wi
τi , a, a] = 1 and [Wi

τi , a] �= 1,

where (τi, Hi) is the pair used in the construction of Wi.
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Now let C := CHi(Wi
τi) and C ≤ L ≤ Hi such that L/C = Op(Hi/C).

Then C4 implies aC ∈ Op(Hi/C), and P := Sτi ∩ L is a Sylow p-subgroup
of L, so L = CP . The Frattini argument gives Hi = NHi(P )L = NHi(P )C
and thus

Wi
τi = 〈(Wi−1

τi)NHi
(P )〉.

Hence, there exists h ∈ NHi(P ) such that

[(Wi−1
τi)h, a] �= 1.

For x := (ah−1
)τ−1

i we get [Wi−1, x] �= 1. This contradicts (+) since

[Wi−1, x, x] = [(Wi−1
τi)h, a, a]h

−1τ−1
i ≤ [Wi

τi , a, a]h
−1τ−1

i = 1. �

For technical reasons the proof of the main theorem of this section requires
us to investigate—besides CJ(S) —the class C0(S) of all pairs (τ,H) that
satisfy:

C01 H is a group with CH(Op(H)) ≤ Op(H), and τ : S → H is a
monomorphism.

C02 Sτ is a Sylow p-subgroup of H.

C03 J(Sτ ) is not normal in H and (τ,NH(J(Sτ ))) ∈ CJ(S).

C04 H is p-stable on every elementary Abelian normal p-subgroup of H
and on Op(H)/Φ(Op(H)).

9.4.3 W (S)τ is normal in H for every (τ,H) ∈ C0(S).

Proof. Let (τ,H) ∈ C0(S) and

W := W (S)τ .

Since Op(H)τ−1 ≤ S and W (S) � S we get [Op(H), W ] ≤ W ∩ Op(H),
i.e.,

(1) [Op(H), W, W ] = 1.

Because of C04 this implies for V := Op(H)/Φ(Op(H))

WCH(V )/CH(V ) ≤ Op(H/CH(V ))
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and thus W ≤ Op(H) by C01 and 8.2.9 (b) on page 188. Moreover, W τ−1 ≤
Op(H)τ−1

and W τ−1 � S give W � Op(H) and thus W h � Op(H) for all
h ∈ H. It follows that

[W, W h, W h] = 1 and [W (S), (W h)τ−1
, (W h)τ−1

] = 1.

Now 9.4.2 yields

[W (S), (W h)τ−1
] = 1 and [W, W h] = 1.

Hence
W ∗ := 〈WH〉

is elementary Abelian.

Assume first that [W ∗, J(Sτ )] = 1. Then also [W ∗, J(Sτ )h] = 1 for h ∈ H,
so [W ∗, J(H)] = 1. Since J(Sτ ) ≤ J(H) there exists T ∈ Sylp J(H) such
that J(Sτ ) = J(T ). The Frattini argument implies

H = J(H)NH(T ) = J(H)NH(J(Sτ )) = CH(W ∗)NH(J(Sτ ))

and W ∗ = 〈WNH(J(Sτ ))〉. By C03 (τ,NH(J(Sτ ))) ∈ CJ(S) and thus W =
W (S)τ � NH(J(Sτ )), so W ∗ = W follows, and W is normal in H.

We now assume that [W ∗, J(Sτ )] �= 1 and show that this leads to a contra-
diction. Let CH(W ∗) ≤ L ≤ H such that

L/CH(W ∗) = Op(H/CH(W ∗))

and P := Sτ ∩ L. The Frattini argument gives

H = LNH(P ) = CH(W ∗)NH(P )

and thus

(′) W ∗ = 〈WNH(P )〉.

Because of C04 and 9.2.10 there exists A∗ ∈ A(Sτ ) such that [W ∗, A∗] �= 1
and A∗ ≤ P . This implies A∗ ≤ J(P ) ≤ J(Sτ ), so [W, J(P )] = 1. With (′)
we get

[W ∗, A∗] ≤ [W ∗, J(P )] = 1,

which contradicts [W ∗, A∗] �= 1. �

We say that a group G (with S ∈ Sylp G) is p-stable if the following two
conditions hold:
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• G is p-stable on every elementary Abelian normal p-subgroup of G
and on Op(G)/Φ(Op(G)).

• NG(J(S)) is p-stable on every normal subgroup V of NG(J(S)), which
is contained in Ω(Z(J(S))).

9.4.4 Theorem [85]. Let S be a p-group. Then there exists a character-
istic subgroup W (S) of S satisfying:

(a) Ω(Z(S)) ≤ W (S) ≤ Ω(Z(J(S))).

(b) If G is a p-stable group such that CG(Op(G)) ≤ Op(G) and S is a
Sylow p-subgroup of G, then W (S) is a normal subgroup of G.

(c) W (Sη) = W (S)η for every isomorphism η of S..

Proof. Let W (S) be defined as above. Because of 9.4.1 we only have to
prove (b). Let G be as in (b). Then (id , G) is in CJ(S), if J(S) is normal
in G. In this case the construction of W (S) shows that it is normal in G.
If J(S) is not normal in G, then (id , G) is in C0(S), and (b) follows from
9.4.3. �

Here we want to emphasize again that the subgroup W (S) only depends on
S but not on the group G in (b). Thus, given a group Y with S ∈ Sylp Y ,
all p-stable subgroups M ≤ Y satisfying

S ≤ M and CM (Op(M)) ≤ Op(M)

are contained in NY (W (S)).

Concerning the notion of p-stability we collect (see 8.6.12 on page 219):

9.4.5 Let p �= 2. A group G is p-stable, if G satisfies one of the following
conditions:

(1) G is p-separable and p ≥ 5.

(2) G is of odd order.

(3) G has Abelian Sylow 2-subgroups. �
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If one uses Dickson’s Theorem quoted after 8.6.13 on page 221, then condi-
tion (3) in 9.4.5 can be substituted by

(3′) No section of G is isomorphic to SL2(p).

As we have already noted before 9.1.1 on page 226 p-stability is only in-
teresting for p �= 2. But if one replaces p-stability by condition (3′) (for
example in 9.4.4 (b)), one also gets nontrivial results for p = 2; see [53] and
[88].8

We will use the following corollary later:

9.4.6 Let G be a p-separable group, p ≥ 5 and S ∈ Sylp G. Then G =
Op′(G)NG(W (S)).

Proof. Let G := G/Op′(G). Then S ∈ Sylp G and by 9.4.4 (c)

W (S) = W (S).

From 9.4.4 (b) together with 9.4.5 (1) and 6.4.4 (a) on page 134 we get that
W (S) is a normal subgroup of G, i.e.,

Op′(G)W (S) � G.

Now the assertion follows with the Frattini argument. �

We conclude this section with a theorem of Thompson. With some right
the proof of this theorem can be regarded as the beginning of modern group
theory. It already contains the nucleus of the ideas described in this chapter.
We recommend that the reader read [91] and [92]. The original version of this
theorem differs from the one given here since at that time the ZJ-Theorem
(resp. 9.4.4) was not yet available.

9.4.7 Normal p-Complement Theorem of Thompson. Let G be a
group, p an odd prime, and S ∈ Sylp G. Then G has a normal p-complement
provided NG(W (S)) has such a complement.

8This paper uses the same approach as in the proof of 9.4.4.
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Proof. Note first that subgroups and factor groups of groups having a normal
p-complement, also have one. Now let G be a minimal counterexample, and
let K be the set of all subgroups of G that have a normal p-complement.
The minimality of G implies

(1) S ≤ G1 < G ⇒ G1 ∈ K
Set N := Op′(G) and G := G/N . Assume that N �= 1. Then S is a Sylow
p-subgroup of G isomorphic to S. In particular W (S) = W (S) by 9.4.1.
Now 3.2.8 on page 66 shows that

NG(W (S)) = NG(W (S)).

Hence, by the above remark NG(W (S)) has a normal p-complement; so
G satisfies the hypothesis. If |G| < |G|, then by induction also G has a
normal p-complement and thus also G, since N is a normal p′-subgroup of
G. As G is a counterexample, we have

(2) Op′(G) = 1.

By the Normal p-Complement Theorem of Frobenius (7.2.4 on page 170) the
set W of nontrivial p-subgroups W such that NG(W ) �∈ K is not empty.
We choose P ∈ W such that |NG(P )|p is maximal and show:

(3) P � G, in particular Op(G) �= 1.

In a counterexample to (3) G1 := NG(P ) �= G. After conjugating P by
a suitable element of G we may assume that T := NG(P ) ∩ S is a Sylow
p-subgroup of G1. Then T �= S by (1) and thus T < NS(T ) (3.1.10
on page 61). For every characteristic subgroup U of T , in particular for
U = W (T ), we get T < NS(T ) ≤ NG(U). Now the maximal choice of
|NG(P )|p implies that NG(W (T )) ∈ K and thus also NG1(W (T )) ∈ K.
Hence, by induction G1 has a normal p-complement, since |G1| < |G| and
G is a minimal counterexample. But then also the subgroup P ≤ G1 has
such a complement, which contradicts P ∈ W. This contradiction proves
claim (3).

Let
G := G/Op(G)

and N be the inverse image of NG(W (S)) in G. By (3) |G| < |G|. On
the other hand, N < G since Op(G) = 1 and W (S) �= 1, so also N < G.
Now (1) implies that N has a normal p-complement. As G is a minimal
counterexample we conclude that G has a normal p-complement. This yields
together with (2):
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(4) CG(Op(G)) ≤ Op(G), and G has a normal p-complement K. In par-
ticular G is p-separable,

If G is p-stable, then 9.4.4 implies G = NG(W (S)), which contradicts G �∈
K. Thus, G is not p-stable, and K has non-Abelian Sylow 2-subgroups
(9.4.5). Since S and K are coprime there exists an S-invariant Sylow 2-
subgroup T of K (8.2.3). But then also Z(T ) is S-invariant.

Let U be the inverse image of Z(T )S in G. Then U �= G since T is non-
Abelian, and (1) shows that U has a normal p-complement U0 �= 1. From

[U0, Op(G)] ≤ U0 ∩ Op(G) = 1

we get U0 ≤ CG(Op(G)) �≤ Op(G), which contradicts (4). This final contra-
diction shows that G is not a counterexample. �

9.5 Fixed-Point-Free Action

As promised in Section 8.1 we show in this section—using 9.4.7—that a
group admitting a fixed-point-free automorphism of prime order is nilpotent.
We then take this as an opportunity to discuss fixed-point-free action in a
more general context proving a post-classification theorem9 that states that
in general every group admitting a fixed-point-free automorphism is solvable.

It should be pointed out that this section is independent from the other
sections of this chapter, if one takes 9.4.7 for granted.

9.5.1 Theorem (Thompson [90]). Every group admitting a fixed-
point-free automorphism of prime order is nilpotent.

Proof. Let G be a group and α a fixed-point-free automorphism of prime
order. Then G is a p′-group (8.1.4 on page 177). Now let G be a counterex-
ample of minimal order. Then we obtain:

(1) If N < G such that Nα = N , then N is nilpotent.

(2) If N is a nontrivial proper α-invariant normal subgroup of G, then
G/N is nilpotent and G is solvable (6.1.2 on page 122).

9That is, a theorem whose proof uses the classification of the finite simple groups.
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For (2) note that 〈α〉 acts fixed-point-freely on G/N (8.2.2 or 8.1.11 (c)).

We first treat the case that G is solvable. Then G contains a minimal α-
invariant normal subgroup V that is an elementary Abelian q-group.10 As
by (2) G/V is nilpotent but G is not, we get CG(V ) �= G (5.1.2 on page
100). Again by (2)

G := G/CG(V )

is nilpotent, and there exists a prime r such that

G1 := Or(G) �= 1.

Now 8.1.5 on page 178 implies r �= q. Moreover CV (G1) = 1 since CV (G1)
is an α-invariant normal subgroup of G and CG(V ) �= G. Every nontrivial
power of α is also fixed-point-free on G1. Hence, the semidirect product
〈α〉G1 is a Frobenius group with Frobenius complement 〈α〉 (8.1.12 on
page 182). But now 8.3.5 shows that 1 �= CV (α), a contradiction.

We have shown that the minimal counterexample G is not solvable. Accord-
ing to (1) and (2) this implies that G does not contain any nontrivial proper
α-invariant normal subgroup. Thus, by induction we have:

(3) If 1 �= U < G such that Uα = U , then NG(U) is nilpotent.

Since G is not solvable there exists an odd prime divisor q of |G| and an α-
invariant Sylow q-subgroup Q of G (8.2.3). But then α leaves invariant every
characteristic subgroup W of Q and thus also NG(W ). According to (3)
NG(W ) is nilpotent provided W �= 1, and nilpotent groups possess normal
q-complements. Hence, the Normal p-Complement Theorem of Thompson
9.4.7 (here for q in place of p) shows that G has a normal q-complement.
Since this complement is characteristic in G it is invariant under α. But this
contradicts (3). �

From 8.1.12 on page 182 we obtain as a corollary (using Frobenius’s Theorem
4.1.6):

9.5.2 The Frobenius kernel of a Frobenius group is nilpotent. �

It is not too difficult to construct solvable groups that are not nilpotent but
admit a fixed-point-free automorphism of composite order. The conjecture

10V is a minimal normal subgroup of the semidirect product 〈α〉G.
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that every group admitting a fixed-point-free automorphism is solvable could
only be verified by means of the classification of the finite simple groups. In
the following we discuss this result as a typical post-classification theorem.

Recall that 8.1.11 shows that the fixed-point-free action of an automorphism
and coprime action have some basic properties in common.

Let E be the class of simple groups E satisfying:

There exists p ∈ π(E) such that E has a cyclic Sylow p-subgroup.

Let K be the class of groups all of whose composition factors are in E .

From the classification of the finite simple groups one can conclude that
every simple group is in E , so K is the class of all (finite) groups. With this
in mind the following theorem proves the above mentioned conjecture.

9.5.3 Let G ∈ K and A be a group that acts fixed-pont-freely on G, i.e.,
CG(A) = 1. Suppose that the action of A on G is coprime if A is noncyclic.
Then G is solvable.11

Proof. Let G be a minimal counterexample. If G contains an A-invariant
normal subgroup N such that 1 �= N �= G, then 8.1.11 on page 181 resp.
8.2.2 allows to apply induction to N and G/N . Thus N and G/N are
solvable, and G is not a counterexample (see 6.1.2).

Thus, G is a nonsolvable minimal normal subgroup of the semidirect product
AG. By 1.7.3 on page 38 there exists a nonsolvable simple subgroup E of G
such that

G = E1 × · · · × En and EA = {E1, . . . , En}.

The fixed-point-free action of A on G implies a fixed-point-free action of
NA(E1) on E1 (8.1.6 on page 178). If E1 �= G, then by induction E1 is
solvable, a contradiction. Hence, G = E1 is a simple group from E . Let
p ∈ π(G) such that P ∈ Sylp G is cyclic. Because of 8.1.11 (b) resp. 8.2.3
we may assume that PA = P . Then A acts on NG(P )/CG(P ), and this
action is trivial since the automorphism group of a cyclic group is Abelian.
On the other hand, A acts fixed-point-freely on NG(P )/CG(P ) (8.1.11 (c)),
and 8.2.3 on page 185) yields NG(P ) = CG(P ). Now the Theorem of
Burnside (7.2.1 on page 169) shows that G has a normal p-complement.
This contradicts the simplicity of G. �

11The hypothesis (|G|, |A|) = 1 in the non-cyclic case is essential since every group G
with Z(G) = 1 acts fixed-point-freely on itself.
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Chapter 10

The Embedding of p-Local
Subgroups

Let p be a prime and G a group. A subgroup M ≤ G is a p-local subgroup
of G if there exists a nontrivial p-subgroup P ≤ G such that NG(P ) = M .
Clearly then

1 �= P ≤ Op(M).

We have seen frequently—for example, in Grün’s Theorem and in the Nor-
mal p-Complement Theorems of Frobenius and Thompson—that the struc-
ture of p-local subgroups is strongly related to the structure of G. This
connection will be the main theme for last three chapters of this book.

In the first section of this chapter we investigate p-local subgroups by means
of quadratic action which was introduced in the last chapter. In the second
section we use the proof of the paqb-Theorem of Burnside to demonstrate
how these results can be applied. In the last section we introduce a method,
the amalgam method, that allows us to investigate groups by means of suit-
able coset graphs.

A group M has characteristic p if

CM (Op(M)) ≤ Op(M).

According to 6.5.8 on page 144 this property is equivalent to

F ∗(M) = Op(M),

and for p-separable M to
Op′(M) = 1;

261
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see 6.4.3 on page 134. Let M be a proper subgroup of G and p ∈ π(M).
Then M is called strongly p-embedded in G if

|M ∩ Mg|p = 1 for all g ∈ G \ M.1

We will derive statements about p-local subgroups of characteristic p of G
(in particular for p = 2 ) provided they are not strongly p-embedded in G.
Groups with a strongly 2-embedded subgroup have been classified by Bender
[29]. His result belongs to the fundamental theorems in group theory; see
the Appendix.

10.1 Primitive Pairs

In Section 6.6 we have called a proper subgroup M of G primitive if M =
NG(A) for every nontrivial normal subgroup A of M . Suppose now that
M1, M2 are two primitive subgroups of G. Then for {i, j} = {1, 2}

P 1 �= A � Mi, A ≤ M1 ∩ M2 ⇒ NMj (A) = M1 ∩ M2,

and this elementary property gives rise to the following generalization:

Let M1, M2 be two different—not necessarily primitive—subgroups of G.
Then (M1, M2) is a primitive pair of G if P holds for {i, j} = {1, 2}.

Let (M1, M2) be a primitive pair. Then (M1, M2) is solvable if M1 and
M2 are solvable; and (M1, M2) has characteristic p if M1 and M2 have
characteristic p and, in addition,

Op(M1) Op(M2) ≤ M1 ∩ M2.

Note first:

10.1.1 Let M be a group of characteristic p. Suppose that U is a subgroup
of M such that U �� M or Op(M) ≤ U . Then U has characteristic p.

Proof. The case Op(M) ≤ U is obvious. In the other case the assertion
follows from 6.5.7 (b) on page 144. �

The next statements show how to get primitive pairs of characteristic p.
1For n ∈ N we denote by np the largest p-power dividing n.
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10.1.2 Let M1 and M2 be two different maximal p-local subgroups of G
that both have characteristic p. Suppose that M1 and M2 have a common
Sylow p-subgroup. Then (M1, M2) is a primitive pair of characteristic p.

Proof. Let 1 �= A � Mi and A ≤ Mi ∩ Mj , i �= j. By 10.1.1 1 �= Op(A)
(� Mi), and the maximality of Mi gives

Mi = NG(Op(A)).

Hence NMj (A) = Mi ∩ Mj , and this is P.

Let S be a common Sylow p-subgroup of M1 and M2. Then

Op(M1)Op(M2) ≤ S ≤ M1 ∩ M2. �

10.1.3 Let p ∈ π(G). Suppose that every p-local subgroup of G has
characteristic p and Op(G) = 1. Then one of the following holds:

(a) There exists a primitive pair of characteristic p in G.

(b) Every maximal p-local subgroup of G is strongly p-embedded in G.

Proof. Let M be a maximal p-local subgroup of G. Then Op(M) �= 1 and
thus

NG(M) ≤ NG(Op(M)) = M < G,

in particular Mg �= M for all g ∈ G \ M . Moreover, also Mg is a maximal
p-local subgroup.

Among all maximal p-local subgroups L ≤ G that are different from M we
choose L such that |M ∩ L|p is maximal.

We first treat the case |M ∩ L|p �= 1. Let

T ∈ Sylp(M ∩ L) and U := NG(T ).

Since U is p-local there exists a maximal p-local subgroup H of G such
that U ≤ H. Obviously, either H �= L or H �= M . We may assume that
H �= M (the case H = M follows with a symmetric argument, replacing L
by M). Let T ≤ S ∈ Sylp M . If T < S we get from 3.1.10 on page 61

T < NS(T ) ≤ H ∩ M,
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which contradicts the maximality of |M ∩ L|p. Thus, we have

(′) T ∈ Sylp M.

If also T ∈ Sylp L, then (a) follows from 10.1.2. Hence, we may assume that

T < S1 ∈ Sylp L.

Then there exists g ∈ S1 \ T ⊆ G \ M such that T g = T and M �= Mg

(3.1.10 on page 61). Now, again by 10.1.2, (M, Mg) is a primitive pair of
characteristic p.

We have shown that (a) holds if |M ∩ L|p �= 1. Hence, we may assume now
that |M ∩ L|p = 1, whenever M and L are two different maximal p-local
subgroups of G. But then |M ∩ Mg|p = 1 for every g ∈ G \ M , and M is
strongly p-embedded in G. �

A variation of the following theorem is called the theorem of Thompson-
Wielandt.

10.1.4 Theorem (Bender [28]). Let (M1, M2) be a primitive pair of
G. Suppose that F ∗(M1) ≤ M2 and F ∗(M2) ≤ M1. Then there exists a
prime p such that (M1, M2) has characteristic p.

Proof. By our hypothesis

F ∗(M1) F ∗(M2) � M1 ∩ M2

and by 6.5.7 (b) on page 144

(′) F ∗(M1) F ∗(M2) ≤ F ∗(M1 ∩ M2).

Hence, a component K of M1 is also a component of M1∩M2 and normalizes
F ∗(M2). If [F ∗(M2), K] = 1, then K ≤ Z(F (M2)) (6.5.8), which contra-
dicts K ′ = K. Thus, 6.5.2 on page 142 implies that K ≤ F ∗(M2) ≤ M1,
so

K �� F ∗(M2) � M2.

In particular, K is also a component of M2. It follows that E(M1) ≤ E(M2)
and with a symmetric argument E(M2) ≤ E(M1), i.e., E(M1) = E(M2).
The primitivity of (M1, M2) shows that E(M1) = E(M2) = 1 and thus

F ∗(Mi) = F (Mi), i = 1, 2.
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In particular, by (′) F ∗(M1)F ∗(M2) is nilpotent. Let p ∈ π(F (M1)). Since
Op(M1) centralizes every normal p′-subgroup of M1 ∩M2 we get from 6.1.4
on page 123

π(F (M1)) = π(F (M2)).

Assume now that (M1, M2) is a counterexample. Then there exists

q ∈ π(F (M1)), q �= p.

Set

Y1 := [M1, Op(M2), Op(M2)] and Y2 := [M2, Op(M1), Op(M1)].

First we show that the case

(′′) Y1Y2 ≤ M1 ∩ M2,

leads to a contradiction. In this case Op(M1) is normalized by Y2. Thus,
we obtain a subnormal series

Op(M1) � Op(M1)Y2
1.5.5
� Op(M1)[M2, Op(M1)]

1.5.5
� M2,

which shows that Op(M1) ≤ Op(M2). A symmetric argument, with Op(M2)
and Y1 in place of Op(M1) and Y2, also gives Op(M2) ≤ Op(M1); so
Op(M1) = Op(M2). This contradicts the primitivity of (M1, M2).

Hence, it suffices to establish (′′) to show that G is not a counterexample.
Note that

Op(M1) ≤ CM2(Op′(F (M2))) and Oq(M1) ≤ CM2(Oq′(F (M2))).

This implies that X := [M2, Op(M1)] ≤ CM2(Op′(F (M2))) and

[X,Oq(M1)] ≤ CM2(Op′(F (M2))) ∩ CM2(Oq′(F (M2))) = Z(F (M2))
≤ M1 ∩ M2 ≤ M1.

It follows that

[X,Oq(M1), Op(M1)] ≤ Op(M1) ∩ F (M2) ≤ Op(M2).

Thus [Op(M1), Oq(M1), X] = 1, and the Three-Subgroups Lemma gives

[Y2, Oq(M1)] ≤ [X,Op(M1), Oq(M1)] ≤ Op(M2).
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This shows

Y2 ≤ NM2(Oq(M1)Op(M2)) = NM2(Oq(M1) × Op(M2)).

Hence Y2 ≤ NM2(Oq(M1)) = M1 ∩ M2, and with a symmetric argument
Y1 ≤ M1 ∩ M2. This is (′′). �

In the following we investigate a primitive pair (M1, M2) of characteristic p
of G. We set

B := Op(M1) Op(M2) (� M1 ∩ M2).

For i = 1, 2 let Si be a Sylow p-subgroup of Mi, which contains B. We
further set

Zi := Ω(Z(Si)), Vi := 〈ZMi
i 〉, Wi := 〈V Mi

j 〉.

Note that Vi ≤ Ω(Z(Op(Mi))) and

(+) Op(Mi/CMi(Vi)) = 1

(9.2.7 on page 235), and recall that Mi is not p-stable on Vi if any nontrivial
subgroup of Mi/CMi(Vi) acts quadratically on Vi. The investigation of
(M1, M2) can be subdivided in three cases:

(I) Vi �≤ Op(Mj) for some i ∈ {1, 2}, and j �= i.

(II) V1V2 ≤ Op(M1)∩Op(M2), and Wi is non-Abelian for some i ∈ {1, 2}.

(III) W1 and W2 are Abelian.

10.1.5 Let (M1, M2) be a primitive pair of characteristic p of G. Then
there exists i ∈ {1, 2} such that one of the following holds:

(a) The action of Mi on Vi or on Op(Mi)/Φ(Op(Mi)) is not p-stable.

(b) Wi is elementary Abelian, and the action of Mi on Wi is not p-stable.

Proof. We treat the three cases (I), (II), and (III) separately.

Case (I): We choose the notation such that V1 �≤ Op(M2). Since V1 is normal
in B we get

[Op(M2), V1, V1] ≤ [V1, V1] = 1.
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Hence, V1 acts quadratically on the elementary Abelian p-group

W := Op(M2)/Φ(Op(M2)).

Moreover CM2(W ) = Op(M2) by 8.2.9 on page 188 and thus

Op(M2/CM2(W )) = 1.

Since V1 �≤ Op(M2) this shows that the action of M2 on W is not p-stable.

Case (II): We choose the notation such that W2 is non-Abelian. Then there
exists x ∈ M2 such that

[V1, V1
x] �= 1 and V1

x ≤ M1.

The second property holds since V1
x ≤ Op(M2) ≤ M1. As V1 and thus also

V1
x is normal in Op(M2), we get

[V1, V1
x, V1

x] ≤ [V1
x, V1

x] = 1.

Hence, V1
x acts nontrivially and quadratic on V1. Now (+) shows that the

action of M1 on V1 is not p-stable.

Case (III): In this case the Thompson subgroup J(B) enters the stage. If
J(B) ≤ Op(M1) ∩ Op(M2), then

J(B) = J(Op(Mi)) � Mi, i = 1, 2,

which contradicts the primitivity of (M1, M2). We choose the notation such
that

J(B) �≤ Op(M2).

Let

CM2(W2) ≤ D � M2 and D/CM2(W2) = Op(M2/CM2(W2)).

The primitivity of (M1, M2) shows that CM2(W2) ≤ CM2(V1) ≤ M1 and
thus J(B) � BCM2(W2). It follows that

J(B) ∩ CM2(W2) ≤ Op(CM2(W2)) ≤ Op(M2),

so [W2, J(B)] �= 1. By 9.2.10 on page 237 there exists A ∈ A(B) such that

(′) [W2, A] �= 1 = [W2, A, A].
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We assume now that the action of M2 on W2 is p-stable. Then A ≤ B ∩ D
and

B ∩ D � (B ∩ D)CM2(W2) �� D � M2,

so A ≤ B ∩D ≤ Op(M2). Since [W2, A] �= 1 there exists x ∈ M2 such that
[V1

x, A] �= 1. Now
A ≤ Op(M2) ≤ M1

x,

and (′) implies that A acts nontrivially and quadratically on V1
x. Hence

(+) shows that the action of M1
x on V1

x and thus also the action of M1
on V1 is not p-stable. �

10.1.6 Theorem. Let (M1, M2) be a primitive pair of characteristic p
of G. Then M1 or M2 has non-Abelian Sylow 2-subgroups. In particular,
no group of odd order possesses a primitive pair of characteristic p.

Proof. For p �= 2 this follows from 10.1.5 and 9.4.5 on page 254. Let p = 2,
and assume that the Sylow 2-subgroups of M1 and M2 are Abelian. Then
O2(M1) = O2(M2) and (M1, M2) is not primitive. �

It should be pointed out that 10.1.6 is essential in the proof of the paqb-
Theorem in the next section, but none of the results coming now is used
there.

In the case p = 2 every involution acts quadratically (see Section 9.1), so
10.1.5 does not give any information about the structure of M1 and M2. In
this case one has to consider the “quality” of the quadratic action to get
further information.

For the investigation of primitive pairs of characteristic 2 we need four lem-
mata that we will prove first.

10.1.7 Let M be a p-separable group and A a p-subgroup of M satisfying

Φ(A) ≤ Op(M) and A �≤ Op(M).

Then there exists x ∈ Opp′(M) such that for L := 〈A, Ax〉 :

(a) x ∈ Op(L) ≤ Opp′(M).
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(b) [Op(L), A] = Op(L).

(c) |A/A ∩ Op(L)| = p and [A ∩ Op(L), L] ≤ Op(M).

Proof. According to 6.4.11 on page 140 there exists a subgroup L with
property (a) that is not a p-group. We choose L minimal among all such
subgroups. Then (b) follows. Set

L := L/Op(L) and Q := Op′(L),

so L = AQ. Moreover, A is an elementary Abelian p-group since Φ(A) ≤
Op(M) ∩ L ≤ Op(L). Let B be the set of maximal subgroups of A. By 8.3.4
on page 193

Q = 〈CQ(U) | U ∈ B〉,

so [CQ(U), A] �= 1 for some U ∈ B since A acts nontrivially on Q. The
minimal choice of L gives CQ(U) = Q. This implies U = A ∩ Op(L) and

[U, Op(L)] ≤ Op(L) ∩ Opp′(M) ≤ Op(M),

and (c) follows. �

10.1.8 Let M be a group of characteristic 2 that possesses a section iso-
morphic S3. Then M also possesses a section isomorphic S4.

Proof. Let M be a minimal counterexample. Since O2(S3) = 1 also
M/O2(M) has a section isomorphic S3. Let

O2(M) ≤ N � X ≤ M such that X/N ∼= S3.

The minimal choice of M gives X = M (10.1.1). Let

M := M/N (∼= S3)

and D ∈ Syl3 M . Then D (∼= C3) is a normal subgroup of M that is
inverted by every involution in M . The Frattini argument yields M =
NM (D)N . Hence, there exist 2-elements that act nontrivially on the 3-
group D. Let t ∈ NM (D) be such a 2-element. In addition, we choose the
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order of t minimal with that property. Then t acts as an involution on D.
Thus, 8.1.8 on page 180 gives an element d ∈ D such that

o(d) = 3 and dt = d−1,

so 〈d, t〉/〈t2〉 ∼= S3. The minimality of M shows that

M = O2(M)〈d, t〉, t2 ∈ O2(M),

and together with 8.2.9 on page 188 and 8.4.2 on page 198

Φ(O2(M)) = 1 and CO2(M)(d) = 1.

This implies that t2 = 1. By 8.1.4 on page 177 there exists 1 �= z ∈
CO2(M)(t). Set V := 〈z, zd, zd2〉. Then |V | ≤ 8, and V is normal in M . The
case |V | = 8 contradicts CV (d) = 1. Hence V ∼= C2 ×C2 and V 〈d, t〉 ∼= S4,
so M is not a counterexample. �

10.1.9 Let M be a group that acts faithfully on the elementary Abelian
2-group V , and let A be an elementary Abelian 2-subgroup of M . Suppose
that CM (O2′(M)) ≤ O2′(M) and

(∗) |V/CV (A)| < |A|2.

Then M possesses a section isomorphic to S3.

Proof. Among all elementary Abelian 2-subgroups that satisfy (∗), we choose
A of minimal order.

Assume first that |A| = 2. Then (∗) implies that A ∈ AV (M), and the
conclusion follows from 9.3.7 on page 246.

Assume now that |A| > 2. The hypothesis CM (O2′(M)) ≤ O2′(M) shows
that A acts nontrivially on O2′(M). Let Q ≤ O2′(M) be minimal such that
QA = Q and [Q,A] �= 1. It follows from 8.5.2 on page 205 that

A0 := CA(Q)

is a maximal subgroup of A, and QA/A0 acts faithfully on CV (A0). The
already treated case |A| = 2 —applied to the pair (CV (A0), QA/A0)—gives
the conclusion if

|CV (A0)/CV (A)| < |A/A0|2 = 4.
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This condition follows from the minimality of A since

|V/CV (A)| < |A|2 = 4|A0|2 ≤ 4|V/CV (A0)|. �

For the next lemma we need some additional notation. Let X be a group
that acts on the elementary Abelian p-group Z.

Q(Z,X) := {A ≤ X | [Z, A, A] = 1 �= [Z,A]},

q(Z,X) := 0 if Q(Z,X) = ∅, and otherwise

q(Z,X) := min{e ∈ R | |A/CA(Z)|e = |Z/CZ(A)|, A ∈ Q(Z,X)}.

10.1.10 Let M be a group and V an elementary Abelian normal p-sub-
group of M , and let Z ≤ V such that

V = 〈ZM 〉 and Z � Op(M).

Suppose that there exists A ≤ Op(M) such that [V, A, A] = 1. Then

|A/CA(V )|q ≤ |V/CV (A)|,

where q := q(Z,Op(M)).

Proof. Let ZM = {Z1, . . . , Zk}. Then Zi, i = 1, ..., k, is normal in Op(M).
We define the series

A := A0 ≥ · · · ≥ Ai−1 ≥ Ai ≥ · · · ≥ Ak

putting
Ai := CAi−1(Zi) for i = 1, . . . , k.

Then
Ak = CA(V ),

and the quadratic action of A on V gives

[Zi, Ai−1, Ai−1] = 1 for i = 1, . . . , k.

If [Zi, Ai−1] = 1, then Ai−1 = Ai; and if [Zi, Ai−1] �= 1, then the definition
of q implies

|Ai−1/Ai|q ≤ |Zi/CZi(Ai−1)| = |ZiCV (Ai−1)/CV (Ai−1)|
≤ |CV (Ai)/CV (Ai−1)|.
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It follows that

|A/CA(V )|q =
k∏

i=1

|Ai−1/Ai|q ≤
k∏

i=1

|CV (Ai)/CV (Ai−1)| = |V/CV (A)|. �

After these preparations we are now able to investigate solvable primitive
pairs of characteristic 2. We show:

10.1.11 Theorem. Let (M1, M2) be a solvable primitive pair of charac-
teristic 2 of G. Then M1 or M2 possesses a section isomorphic to S4.

Proof. As in the proof of 10.1.5 we treat the cases (I), (II), and (III) given
on page 266 separately. The notation is chosen as there. Because of 10.1.8,
10.1.9 and (+) on page 266 we may assume that for i ∈ {1, 2}

(×) |A/CA(Vi)|2 ≤ |Vi/CVi(A)| for all A ≤ B with Φ(A) ≤ CB(Vi).

Case (I): Without loss we may assume that V1 �≤ O2(M2). We apply 10.1.7
with V1 and M2 in place of A and M . Then there exists a subgroup L ≤ M
and x ∈ O22′(M2) ∩ L such that

L = 〈V1, V1
x〉, [V1 ∩ Op(L), L] ≤ Op(M2),

and

(1) |V1 : V1 ∩ O2(L)| = 2.

Set
W := (V1 ∩ O2(L))(V1

x ∩ O2(L))

and
W0 := V1 ∩ V1

x (≤ W ).

Clearly W0 ≤ Z(L), and thus

(2) W0 = Z(L) ∩ W = CV1
x∩O2(L)(V1) = CV1∩O2(L)(V1

x)

since x ∈ L. Moreover

[W, V1] ≤ V1 ∩ O2(L) ≤ W,



10.1. Primitive Pairs 273

as V1 is normal in O2(M2)V1. Similarly [W, V1
x] ≤ W , and thus

W � L.

Now [O2(M2), V1] ≤ V1 ∩ O2(L) ≤ W and [O2(M2), V x
1 ] ≤ W imply

[O2(M2), L] ≤ W . The nontrivial action of O2(L) on O2(M2) gives a
nontrivial action of L on W and thus also on W/W0 (8.2.2 on page 184).
We now investigate the action of

A := V1
x ∩ O2(L)

on V1. Since

|A/CA(V1)|
(2)
= |A/W0|

(1)
= 1

2 |V1/W0|
(2)
≥ 1

2 |V1/CV1(A)|

we get
|A/CA(V1)|2 > |V1/CV1(A)| or |A/W0| = 2.

The first case contradicts (×). In the second case |W/W0| = 4. Since O2(L)
acts nontrivially on W/W0 we conclude that

L/CL(W/W0) ∼= SL2(2) ∼= S3.

Now 10.1.8 shows that M2 has a section isomorphic to S4.

Case (II): We use a similar argument as in the proof of 10.1.5. As there we
may assume that W2 is non-Abelian. Then there exists x ∈ M2 such that

[V1, V1
x] �= 1 and V1

x ≤ O2(M2) ≤ M1 ∩ M1
x.

The symmetry between (V1, M1) and (V1
x, M1

x) allows to assume—pos-
sibly after interchanging the notation—that

|V1/CV1(V1
x)| ≤ |V1

x/CV1
x(V1)|.

But this contradicts (×) for A = V1
x and Vi = V1.

Case (III): As in the proof of 10.1.5 we use the Thompson subgroup J(B),
and as there we may assume that J(B) �≤ O2(M2). Then there exists
A ∈ A(B) such that

[W2, A] �= 1 = [W2, A, A].

By 9.2.9 on page 236 A ∈ AV1(M1) and

|A/CA(V1)| ≥ |V1/CV1(A)|



274 10. The Embedding of p-Local Subgroups

(this is Q′
1 in 9.2 on page 237). Now (×) implies

(3) [V1, A] = 1.

Assume that A ≤ O2(M2). Since [W2, A] �= 1 there exists x ∈ M2 such
that [V1

x, A] �= 1. Note that

A ≤ O2(M2) = O2(M2)x ≤ M1
x,

and thus [V1, A
x−1

] �= 1 and Ax−1 ≤ B. Now Ax−1 ∈ AV1(B) and the
definition of AV1(B) show that

|Ax−1
/C

Ax−1 (V1)| ≥ |V1/CV1(A
x−1

)|,

which contradicts (×).

Assume now that A �≤ O2(M2), and let L be as in 10.1.7 (with respect to
A and M = M2). Then

A0 := A ∩ O2(L)

is a maximal subgroup of A. Set

Q := O2(L), U := 〈V1
L〉, and U := U/CU (Q).

If U = 1, then Q ≤ CG(V1) ∩ M2 ≤ M1 ∩ M2; and thus

Q = [Q,A] ≤ O2(M1 ∩ M2),

since A ≤ B ≤ O2(M1 ∩ M2). But Q is not a 2-group, a contradiction.
Hence, we have U �= 1.

The subgroup V1 is normalized by O2(L) since O2(L) ≤ A0O2(M2). In
particular O2(L)U ≤ B. We now apply 10.1.10 to (LU, V1, U) in place of
(M, Z, V ). As (×) implies q(V1, O2(LU)) ≥ 2, we get

|A0/CA0(U)|2 ≤ |U/CU (A0)|.

On the other hand, since A ∈ A(L) (⊆ AU (L))

(+) |U/CU (A)| ≤ |A/CA(U)|.

Now |A/A0| = 2 gives

|A/CA(U)|2 ≤ 22|A0/CA0(U)|2 ≤ 4|U/CU (A0)| ≤ 4|U/CU (A)|
≤ 4|A/CA(U)|;

so |A/CA(U)| ≤ 4, and (+) yields either
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(4) A0 = CA(U) and |U/CU (A)| = 2, or

(5) |A0/CA0(U)| = 2 and |U/CU (A)| = 4.

In case (4) we get that |U | = 4 since L = 〈A, Ax〉 for some x ∈ L. Hence
L/CL(U) ∼= S3, and 10.1.8 shows that M2 possesses a section isomorphic to
the symmetric group S4.

Thus, we may assume now that we are in case (5). Let CU (Q) < W ≤ U
such that L acts irreducibly on W . Assume first that |U/WCU (A)| �= 1.
Then |W/CW (A)| ≤ 2 , and the same argument as in case (4) (with W in
place of U) shows that |W | = 4 and L/CL(W ) ∼= S3. Hence, M2 possesses
a section isomorphic to S4.

Assume now that U = WCU (A), so [U, Q] ≤ W . Since L = AQ, V1
A = V1,

and U = 〈V1
L〉 this gives

(6) U = W V 1.

Note that O2(L) and thus also A0 act trivially on the L-chief factor W .
Hence (3) and (6) imply that [U, A0] = 1. Let

P := [〈A0
L〉, Q] (≤ O2(L)).

As also 〈A0
L〉 acts trivially on U we get [U, P ] ≤ CU (Q), so

[U, P, P ] = 1.

If [U, P ] = 1, then PA0 centralizes V1. On the other hand PA0 is normal
in L (= QA); so PA0 also centralizes 〈V1

L〉 = U , which contradicts the
fact that in case (5) |A0/CA0(U)| = 2. Thus, we have

(7) [U, P ] �= 1.

As P acts quadratically on V1 (≤ U) and is normal in L, we get [U,Φ(P )] =
1. Hence (×) also holds for P in place of A. Now as before 10.1.10 yields

|P/CP (U)|2 ≤ |U/CU (P )|
(5)
≤ 42.

It follows that |P/CP (U)| ≤ 4. If Q acts trivially on P/CP (U), then Q
also acts trivially on 〈A0

L〉/CP (U) (8.2.2). But then P = CP (U), which
contradicts (7). Thus, we have P/CP (U) ∼= C2 × C2 and

L/CL(P/CP (U)) ∼= S3;

and again 10.1.8 gives a section of M2 that is isomorphic to S4. �

We conclude this section combining 10.1.3 and 10.1.11:
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10.1.12 Theorem. Let G be a group of even order and O2(G) = 1.
Suppose that for every 2-local subgroup M of G:

(1) M has characteristic 2 and is solvable.

(2) M does not posses a section isomorphic to S4.

Then every maximal 2-local subgroup of G is strongly 2-embedded in G. �

10.2 The paqb-Theorem

In this section we prove:

10.2.1 Burnside’s Theorem. Every group of order paqb (p, q ∈ P) is
solvable.

For the proof of this theorem Burnside used a short and elegant argument
from the character theory of finite groups.2 His result and that of Frobe-
nius about the kernel of a Frobenius group (4.1.6 on page 80) established
character theory as a tool in the investigation of finite groups. Sixty years
passed before Bender [30], Goldschmidt [54], and Matsuyama [80] were able
to give a proof of Burnside’s result that is independent of character theory
but much longer.

In the attempt to prove the theorem of Burnside without character theory
one can hardly avoid concepts and notions we have already met in previous
chapters:

• primitive maximal subgroups,

• the Fitting subgroup of a p-local subgroup,

• coprime and p-stable action.

Moreover, a further concept that will be central in the next chapter might
have been guessed:

• the set of nontrivial q-subgroups of a group that are normalized by a
given q′-subgroup.

2See [4], p. 321, or in a later presentation, for example [9].
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In the 1960s all these concepts (and their generalizations) were put into the
center of attention by the works of Thompson, Gorenstein, Glauberman and
Bender; and their impact on the investigation of finite groups is responsible
for much of the progress made in the last 40 years.

One may wonder how group theory would have developed, if Burnside had
not found this beautiful character-theoretic proof and he and his contem-
poraries had studied the group-theoretic structure of the situation more
intensively, instead.

We now begin with the proof of the theorem of Burnside. Let G be a
counterexample of minimal order.

For U ≤ G a Sylow p- resp. q-subgroup of U is denoted by Up resp. Uq.

By 1.1.6 on page 7 we have the factorization

G = Gp Gq.

The minimality of G implies that every proper subgroup of G and every
factor group G/N , 1 �= N � G, is solvable. Since G (as a counterexample)
is not solvable we get from 6.1.2 on page 122 that G is a non-Abelian simple
group. In particular

1 �= U < G ⇒ NG(U) is solvable.

In the following we analyze the local structure of G. The essential tool will
be 8.2.12 on page 189:

(1) Let M be a maximal subgroup of G and P a p-subgroup of M . Then
Oq(CM (P )) ≤ Oq(M).

Let M be the set of maximal subgroups of G and

Mp := {M ∈ M | M has characteristic p},
Mq := {M ∈ M | M has characteristic q},
M0 := M \ (Mp ∪ Mq).

Note that
F (M) = Op(M) × Oq(M) (M ∈ M),

so
M ∈ Mp ⇐⇒ F (M) = Op(M), and
M ∈ Mq ⇐⇒ F (M) = Oq(M).
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(2) Let M ∈ M and Gp ≤ M . Then M ∈ Mp.

Proof. Let Q := Oq(M) ≤ Gq. Then

〈QG〉 = 〈QGpGq〉 = 〈QGq〉 ≤ Gq.

Thus, 〈QG〉 is a proper normal subgroup of G, and the simplicity of G
implies that Q = 1. �

(3) Let M ∈ M0. Then M is the unique maximal subgroup of G con-
taining Z(F (M)). In particular CG(a) ≤ M for all a ∈ Z(F (M))#.

Proof. Let A := Z(F (M)). Since M ∈ M0 we get

A = Ap × Aq, Ap �= 1 �= Aq.

Moreover, the maximality of M gives M = NG(Ap) = NG(Aq) and

Aq ≤ Oq(CM (Ap)) = Oq(CG(Ap)).

Let A ≤ H ∈ M. Then also Aq ≤ Oq(CH(Ap)), and (1) implies 1 �= Aq ≤
Oq(H) and similarly (with p and q interchanged) 1 �= Ap ≤ Op(H). Hence
H ∈ M0 and

Oq(H) ≤ CG(Ap) ≤ M and Op(H) ≤ CG(Aq) ≤ M,

so F (H) ≤ M . With the roles of H and M interchanged we also get
F (M) ≤ H.

Either H = M or (M, H) is a primitive pair. In the second case 10.1.4
shows that M ∈ Mp or M ∈ Mq, which contradicts M ∈ M0. �

(4) Let M ∈ M0. Then there exist x ∈ G \ M and Mp ∈ Sylp M such
that

Mp = Mp
x (≤ M ∩ Mx).

Proof. Choose Gp such that Mp := Gp ∩ M ∈ Sylp M . By (2) Mp < Gp,
so by 3.1.10 on page 61 there exists

x ∈ Gp \ Mp ⊆ G \ M

such that Mp
x = Mp. �
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(5) M0 = ∅.

Proof. Assume that M0 �= ∅ and M ∈ M0. We choose the notation such
that p > q. As in the proof of (3) let

Ap := Z(Op(M)) and Aq := Z(Oq(M));

in addition let x ∈ G \ M be as in (4). Then

ApAp
x ≤ M ∩ Mx.

Assume first that Aq and thus also Aq
x is cyclic. The action of Ap on

Aq
x (� Mx) is trivial since p > q (2.2.5 on page 51). Thus, (3) implies

that Aq
x ≤ M , so Z(F (Mx)) ≤ M . Now again (3) yields M = Mx, which

contradicts NG(M) = M and x �∈ M .

We have shown that Aq is not cyclic. By (4) there exists a Sylow subgroup
Mq and an element y ∈ G \ M such that

AqAq
y ≤ Mq = Mq

y ≤ M ∩ My.

Hence Aq ≤ My, and Aq acts on P := Ap
y (� My). Now 8.3.4 implies

P = 〈CP (a) | a ∈ Aq
#〉

(3)
≤ M,

so Z(F (My)) = Ap
yAq

y ≤ M . As above (3) gives the contradiction M =
My. �

(6) Let M ∈ M such that Z(Gq) ∩ M �= 1. Then M ∈ Mq.

Proof. Assume that M is a counterexample. By (5) M ∈ Mp, and thus

CM (Op(M)) ≤ Op(M) =: P.

Let P ≤ Gp. The maximality of M yields

Z := Z(Gp) ≤ NG(P ) ≤ M,

so Z ≤ P . Let Y := Z(Gq) ∩ M . Then 〈ZY 〉 (≤ P ) is a p-group. For
g ∈ G there exist x ∈ Gp, y ∈ Gq such that g = xy. Hence

ZgY = ZyY = ZY y;
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so 〈ZgY 〉 = 〈ZY 〉g, and 〈ZgY 〉 is a p-group. By the lemma of Matsuyama
(6.7.8 on page 160) there exists T ∈ Sylp G such that

R := wclG(Z, T )

is normalized by Y . It follows that 〈Y, T 〉 ≤ NG(R) < G, and 〈Y T 〉 is a
proper subgroup of G. On the other hand G = GqT and Y G = Y T , so
〈Y T 〉 is a normal subgroup of G. This contradicts the simplicity of G. �

(7) Let L be a p-local subgroup of G.

(a) L ∩ Z(Gq) = 1 for all Gq ∈ SylqG.
(b) L has characteristic p.

Proof. Let 1 �= R ≤ Gp and M ∈ M such that L = NG(R) and L ≤ M .
In particular Z(Gp) ≤ L ≤ M .

(a) Assume that L ∩ Z(Gq) �= 1. Then M ∩ Z(Gq) �= 1 �= M ∩ Z(Gp), and
this contradicts (6).

(b) Assume that Q := Oq(L) �= 1. Then NG(Q) is a q-local subgroup of G
containing L and thus also Z(Gp). This contradicts (a) (with the roles of p
and q reversed). �

(8) |G| is odd.

Proof. In a counterexample let q = 2 and t be an involution in Z(G2)
(3.1.11 on page 61). The theorem of Baer (6.7.5 on page 160) shows that
there exists a p-element y �= 1 in G such that yt = y−1. Hence, L =
NG(〈y〉) is a p-local subgroup of G containing t. But this contradicts (7a).

�

Now 10.1.6 on page 268 and (8) imply that G does not possess primitive
pairs of characteristic p. But because of (7b) G also satisfies the hypothesis
of 10.1.3 on page 263. Hence, for every maximal p-local subgroup M of G

|M ∩ Mg|p = 1 for all g ∈ G \ M.

As we can choose M to contain Gp, we get Gp ∩ Gp
g = 1 for g ∈ G \ M ,

so (1.1.6 on page 7)
|Gp|2 = |GpGp

g| ≤ |G|.
With a symmetric argument also |Gq|2 ≤ |G|. But this contradicts |G| =
|Gp||Gq| since |Gp| �= |Gq|. �



10.3. THE AMALGAM METHOD 281

10.3 The Amalgam Method

In this section we present a method that is particularly suited investigation of
primitive pairs (M1, M2) of characteristic p. This method was introduced
by Goldschmidt [58] at the end of the 1970s and since then has become
an integral part of the local structure theory of finite groups.3 The name
amalgam method refers to the fact that this method does not require a finite
group but can be carried out already in the amalgamated product of the
finite groups M1 and M2. In our presentation we do not use amalgamated
products.

Let G be a group, and let P1 and P2 be two different subgroups of G. In
this section we do not assume that G is a finite group, but only that the
subgroups P1 an P2 are finite subgroups of G.

Let Γ be the set of right cosets of P1 and P2 in G. The elements of Γ are
called vertices. For {1, 2} = {i, j} two vertices Pix, Pjy ∈ Γ are adjacent
if

Pix ∩ Pjy �= ∅ and Pix �= Pjy,

and in this case {Pix, Pjy} is called an edge of Γ. Then Γ is a graph, the
coset graph of G with respect to P1 and P2.

Note that i �= j if {Pix, Pjy} is an edge and that {P1, P2} is an edge since
1 ∈ P1 ∩ P2.

For α ∈ Γ let ∆(α) be the set of all vertices adjacent to α.

The group G acts on Γ by right multiplication

g : Γ → Γ with Pix �→ Pixg (g ∈ G).

As usual we write αg for the image of α under g, and we call αg a vertex
conjugate to α. As

Pix ∩ Pjy �= ∅ ⇐⇒ Pixg ∩ Pjyg �= ∅,

g acts as an automorphism of the graph Γ, and this action gives rise to a
homomorphism of G into AutΓ, the automorphism group of Γ.

We first collect some elementary properties of this action.

10.3.1 (a) G has two orbits on the vertices of Γ, and P1 and P2 are
representatives of these orbits. Every vertex stabilizer Gα, α ∈ Γ, is
a G-conjugate of P1 or P2.

3See [7].
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(b) G acts transitively on the edges of Γ. Every edge stabilizer in G is a
G-conjugate of P1 ∩ P2.

(c) Gα acts transitively on ∆(α), α ∈ Γ, in particular

|∆(α)| = |Gα : Gα ∩ Gβ| for β ∈ ∆(α).

(d) (P1 ∩ P2)G is the kernel of the action of G on Γ.4

Proof. (a) Note that for Pix ∈ Γ and g ∈ G:

Pixg = Pix ⇐⇒ Pig
x−1

= Pi ⇐⇒ g ∈ Pi
x.

(b) Let {P1x, P2y} be an edge, so there exists z ∈ P1x ∩ P2y. Hence

P1x = P1z and P2y = P2z,

and the element z−1 conjugates the edge {P1x, P2y} to {P1, P2}. Accord-
ing to (a) the stabilizer of {P1z, P2z} is P1

z ∩ P2
z = (P1 ∩ P2)z.

(c) By (a) we may assume that α = P1. Then

∆(α) = {P2y | P2y ∩ P1 �= ∅} = {P2y | y ∈ P1}.

Thus P1 is transitive on ∆(α).

(d) By (a) any normal subgroup of G contained in P1∩P2 fixes every vertex
of Γ. �

An (n+1)-tuple (α0, α1, . . . , αn) of vertices is a path of length n from α0
to αn if

αi ∈ ∆(αi+1) for i = 0, . . . , n − 1 and αi �= αi+2 for i = 0, . . . , n − 2.

Paths can be used to define the distance d(α, β) between vertices α, β ∈ Γ.
Here d(α, β) = ∞ if there is no path in Γ from α to β, otherwise d(α, β)
is the length of a shortest path from α to β.

The subset
{β ∈ Γ | d(α, β) < ∞}

4(P1 ∩ P2)G is the largest normal subgroup of G in P1 ∩ P2.
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is the connected component of Γ that contains α. Any two vertices of
a connected component are joint by a path, and different connected compo-
nents are disjoint. Γ is connected if Γ has only one connected component.

At first sight it is not transparent why these new objects and the language
of graph theory should help to simplify the investigation of the structure of
G (or better that of P1 and P2). The basic reason for this phenomena is
the fact that the graph-theoretic notation allows us to describe the group
theoretic properties that we investigate in a very easy way. Of course, the
coming proofs should reveal this, but two things can be pointed out here
already:

• Statement 10.3.2 below shows that Γ is connected if and only if G
is generated by the two subgroups P1 and P2. This turns a fairly
unhandy group theoretic property into an elementary graph-theoretic
one that can be used easily in proofs and definitions, for example in
10.3.3 and the definition of a critical pair.

• By means of the above-defined distance, a large variety of normal
subgroups of vertex stabilizers can be defined. For example, for i ∈ N,

G
[i]
α :=

⋂
δ∈Γ

d(α,δ)≤i

Gδ.

The reader should try to define these normal subgroups for α = P1 (so
Gα = P1) without the help of the graph Γ.

Of course, not all of these normal subgroups can be different since P1 and
P2 are finite. In fact, one of the essential ideas of the amalgam method is
to find out which of these subgroups are identical.

10.3.2 Γ is connected if and only if G = 〈P1, P2〉.

Proof. Assume first that G = 〈P1, P2〉. Let ∆ be the connected component
of Γ that contains P1. Since P1 and P2 are adjacent also P2 is in ∆. As
different connected components are disjoint we get that

∆ = ∆〈P1,P2〉 = ∆G

and thus ∆ = Γ by 10.3.1 (a).
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Assume now that Γ is connected and set G0 := 〈P1, P2〉. Let

Γ0 := {P1x | x ∈ G0} ∪ {P2x | x ∈ G0}
be the coset graph of G0 with respect to P1 and P2. As we have seen above
Γ0 is connected. Moreover Γ = Γ0 implies G = G0. Assume that Γ �= Γ0.
Since Γ is connected there exists an edge {α, β} of Γ such that α ∈ Γ0 and
β ∈ Γ \ Γ0. By 10.3.1 (a) (applied to G0 and Γ0) Gα is in G0. Since Gα is
transitive on ∆(α) (10.3.1 (c)) not only β but also every other element of
∆(α) is in Γ \ Γ0. Hence, in Γ0 no vertex is adjacent to α. But then Γ0 is
not connected, a contradiction. �

An essential tool in the investigation of coset graphs is the following elemen-
tary fact:

10.3.3 Let G = 〈P1, P2〉 and U ≤ Gα ∩ Gβ. Suppose that {α, β} is an
edge of Γ such that one of the following holds:

(1) NGδ
(U) acts transitively on ∆(δ) for δ ∈ {α, β}.

(1′) U � Gα and U � Gβ.

Then U acts trivially on Γ.

Proof. Hypothesis (1′) together with 10.3.1 (c) implies Hypothesis (1). Thus,
we may assume that (1) holds. Let

Γ0 := αNG(U) ∪ βNG(U).

Then U fixes every vertex in Γ0. Let γ ∈ Γ0, so there exists g ∈ NG(U)
and δ ∈ {α, β} such that γ = δg. Then

∆(δg) = ∆(γ) and NGγ (U) = NGδ
(U)g.

By (1) NGγ (U) is transitive on ∆(δg) = ∆(γ). Moreover, one of the vertices
in {αg, βg} is adjacent to γ and

{αg, βg} ⊆ Γ0.

It follows that ∆(γ) ⊆ Γ0. Since by 10.3.2 Γ is connected we conclude that
Γ = Γ0. Thus, U stabilizes every vertex in Γ. �

We now present the amalgam method in action treating a particular situa-
tion that we will meet again in Chapter 12. For the rest of this section we
assume:
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A Let G be a group generated by two finite subgroups P1 and P2, and set
T := P1 ∩ P2. Suppose that for i = 1, 2:

A1 CPi(O2(Pi)) ≤ O2(Pi).

A2 T ∈Syl2 Pi.

A3 TG = 1.

A4 Pi/O2(Pi) ∼= S3.

A5 [Ω(Z(T )), Pi] �= 1.

The aim of our investigation is to show that A implies:

B P1 ∼= P2 ∼= S4 or P1 ∼= P2 ∼= C2 × S4.

In the following we assume A. Let Γ be the coset graph of G with respect
to P1 and P2. According to 10.3.2 Γ is connected, and 10.3.1 (d) together
with A3 shows that G acts faithfully on Γ.

Let {α, β} be an edge of Γ. Since {α, β} is conjugate to the edge {P1, P2}
(10.3.1 (b)), the statements A1, . . . ,A5 also hold for Gα and Gβ in place
of P1 and P2. In this sense we will apply A1, . . . ,A5 to arbitrary vertex
stabilizers Gα and edges {α, β}.

10.3.4 Let {α, β} be an edge of Γ.

(a) Gα ∩ Gβ has index 3 in Gα and is a Sylow 2-subgroup of Gα. In
particular Gα = 〈Gα ∩ Gβ, t〉 for all t ∈ Gα \ Gβ.

(b) |∆(α)| = 3 and

O2(Gα) =
⋂

δ∈∆(α)

(Gα ∩ Gδ) (= G[1]
α ).

(c) Gα acts 2-transitively on ∆(α).

Proof. (a) follows from A4 and (b), (c) from 10.3.1 (c), (a). �

For α ∈ Γ let
Qα := O2(Gα),
Zα := 〈Ω(Z(T )) | T ∈ Syl2 Gα〉.
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10.3.5 Let α ∈ Γ, V � Gα and T ∈ Syl2 Gα. Suppose that

Ω(Z(T )) ≤ V ≤ Ω(Z(Qα)) and |V : Ω(Z(T ))| = 2.

Then
V = CV (Gα) × W where W := [V, Gα].

Moreover W ∼= C2 × C2 and CGα(W ) = Qα, i.e., Gα/CGα(W ) ∼= S3.

Proof. Let D ∈ Syl3 Gα. By 8.4.2 on page 198 we have the decomposition

V = CV (D) × W with W := [V, D].

A5 and Gα = DT imply W �= 1 and thus |W | ≥ 4. Let d ∈ D#. By our
hypothesis

|V/Ω(Z(T ))| = 2 = |V/Ω(Z(T d))|.
Now Gα = 〈T, T d〉 shows that |V/CV (Gα)| ≤ 4. It follows that CV (Gα) =
CV (D) and |W | = 4. The other statements are consequences of A4. �

10.3.6 Let {α, β} be an edge of Γ.

(a) Zα ≤ Ω(Z(Qα)).

(b) QαQβ = Gα ∩ Gβ ∈Syl2 Gα.

(c) CGα(Zα) = Qα; in particular, the Sylow 2-subgroups of Gα are non-
Abelian.

(d) ZαZβ is normal in Gα if and only if there exists γ ∈ ∆(α) \ {β}
such that ZαZβ = ZαZγ.

Proof. (a) Let T ∈Syl2 Gα. Then Qα ≤ T , and A1 implies that Ω(Z(Y )) ≤
Z(Qα).

(b) By A4 and 10.3.4 Qα and Qβ have index 2 in Gα∩Gβ. Thus, it suffices
to show that Qα �= Qβ.

If Qα = Qβ, then Qα = 1 by 10.3.3 and 10.3.4 since G acts faithfully on Γ.
This contradicts A1.
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(c) By A5 the normal subgroup Zα is not central in Gα. Thus, Zα also is
not central in T ∈Syl2 Gα since Gα = 〈T | T ∈Syl2 Gα〉.
By (a) Qα ≤ CGα(Zα). If Qα < CGα(Zα), then CGα(Zα) contains a
subgroup D of order 3, and Gα = DT , T ∈ Syl2 Gα, by A4. But then
Ω(Z(T )) is central in Gα, which contradicts A5.

(d) If ZαZβ � Gα, then ZαZβ = ZαZγ for all γ ∈ ∆(α) since Gα is
transitive on ∆(α).

Assume now that ZαZβ = ZαZγ for some γ ∈ ∆(α), γ �= β. Then ZαZβ

is normalized by Gα ∩ Gβ and Gα ∩ Gγ and thus also by Gα (A4). �

As a motivation for what will follow later we prove:

10.3.7 Let {α, β} be an edge of Γ. Then the following statements are
equivalent:

(i) B holds.

(ii) Zα �≤ Qβ.

Proof. Assume that B holds. Then by 10.3.1 (a) for δ ∈ {α, β}

Gδ
∼= S4 and Qδ

∼= C2 × C2

or
Gδ

∼= S4 × C2 and Qδ
∼= C2 × C2 × C2.

Hence Zδ = Qδ, and 10.3.6 (b) implies Zα �≤ Qβ.

Assume now that Zα �≤ Qβ. Let δ ∈ {α, β} and set

T := QαQβ and E := Qα ∩ Qβ.

10.3.6 (b) gives T ∈ Syl2 Gδ and |T/Qδ| = 2. It follows that

(1) |Qα : E| = 2 = |Qβ : E|,

and

(2) T = QβZα and Qα = EZα.
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By 10.3.6 (c) [Zα, Zβ] �= 1 and thus also

Zβ �≤ Qα.

Now a symmetric argument yields

(3) T = QαZβ and Qβ = EZβ.

Since Zδ is an elementary Abelian subgroup of Z(Qδ) we get from (2) and
(3) together with 5.2.7 on page 106

Φ(Qα) = Φ(E) = Φ(Qβ),

i.e., Φ(E) is characteristic in Qδ. Hence, Φ(E) is normal in Gα and Gβ.
Now 10.3.3 shows that Φ(E) is trivial. We get

(4) Qα and Qβ are elementary Abelian,

Moreover, T = QαQβ implies

(5) E = Z(T ).

Let Wδ := [Qδ, Gδ]. (1) allows to apply 10.3.5 to V = Qδ, so

(6) Qδ = Z(Gδ) × Wδ and Wδ
∼= C2 × C2.

By (2) and (3) there exists an involution tδ in T \ Qδ that acts nontrivially
on O2(Gδ)/Wδ. Hence

Xδ := O2(Gδ) 〈tδ〉 ∼= S4.

Assume that Z(Gα) = 1. Then |T | = 8, and Z(Gβ) = 1 follows from (5)
and (6). Thus, Gα = Xα and Gβ = Xβ are as in B.

Assume that Z(Gα) �= 1. Then also Z(Gβ) �= 1, again by (5) and (6). On
the other hand Z(Gβ) ∩ Z(Gα) = 1 by 10.3.3. Since Z(Gα) and Z(Gβ)
are in Z(T ) = E we get from (6) that Z(Gα) ∼= C2 ∼= Z(Gβ). This gives
the second possibility in B. �

Let {α, β} be an edge of Γ. In order to prove that A implies B it suffices
to show—according to 10.3.7—that the assumption Zα ≤ Qβ leads to a
contradiction. In doing this the following parameter b plays a central role.
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Let µ be a vertex. Since Zµ acts faithfully on Γ there exists λ ∈ Γ such
that Zµ �≤ Gλ, in particular Zµ �≤ Qλ. As Γ is connected d(µ, λ) < ∞, so

b := min{d(µ, λ) | µ, λ ∈ Γ, Zµ �≤ Qλ}

is an integer. Moreover b ≥ 1 since Zµ ≤ Qµ. A pair (α, α′) of vertices is
a critical pair if

Zα �≤ Qα′ and d(α, α′) = b.

Hence, for vertices µ, λ ∈ Γ with d(µ, λ) < b the minimality of b yields

Zµ ≤ Qλ and Zλ ≤ Qµ.

According to 10.3.7 b = 1 is equivalent to B.

In the following let (α, α′) be a critical pair and γ a path of length b from
α to α′. We enumerate the vertices of γ by

γ = (α, α + 1, α + 2, . . . , α′) or γ = (α, . . . , α′ − 2, α′ − 1, α′),

i.e., α′ − i = α + (b − i) for 1 ≤ i ≤ b − 1. In addition, we set

R := [Zα, Zα′ ].

10.3.8 (a) (α′, α) is also a critical pair.

(b) Gα ∩ Gα+1 = Zα′Qα and Gα′−1 ∩ Gα′ = ZαQα′.

(c) R ≤ Z(Gα ∩ Gα+1) ∩ Z(Gα′−1 ∩ Gα′) and

R = [Zα, Gα+1 ∩ Gα] = [Zα′ , Gα′−1 ∩ Gα′ ].

(d) |R| = 2.

(e) Zα = [Zα, Gα] × Ω(Z(Gα)) and [Zα, Gα] ∼= C2 × C2.

(f) |Zα : Ω(Z(Y ))| = 2 for Y ∈Syl2 Gα.

Proof. The minimality of b implies

Zα ≤ Qα′−1 ≤ Gα′−1 ∩ Gα′ and Zα′ ≤ Qα+1 ≤ Gα ∩ Gα+1.
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Moreover, Zα �≤ Qα′ shows that

Gα′−1 ∩ Gα′ = ZαQα′

since Qα′ has index 2 in Gα′−1 ∩ Gα′ (10.3.4 and A4). As Zα and Zα′ are
normal in Gα and Gα′ , respectively, we get that

(′) R ≤ Zα ∩ Zα′ .

Now 10.3.6 (c) implies R �= 1, thus also Zα′ �≤ Qα and

Gα ∩ Gα+1 = Zα′Qα.

Hence (a) and (b) follow, and (c) is a consequence of (′) and 10.3.6 (a). In
addition 10.3.6 (a), (c) show that

|Zα/CZα(Zα′)| = |Zα′/Zα′(Zα)| = 2 and CZα(Zα′) = Ω(Z(Gα ∩ Gα+1)).

This implies (d) and (f), and 10.3.5 gives (e). �

10.3.9 Let α − 1 ∈ ∆(α) \ {α + 1}. Suppose that (α − 1, α′ − 1) is not
a critical pair. Then the following hold:

(a) ZαZα+1 = ZαZα−1 � Gα.

(b) Qα ∩ Qβ � Gα for all β ∈ ∆(α).

(c) α and α′ are conjugate, and b is even.

Proof. Since (α − 1, α′ − 1) is not critical we get

Zα−1 ≤ Qα′−1 (≤ Gα′−1 ∩ Gα′),

In particular b > 1 and

Zα−1
10.3.8
≤ ZαQα′

10.3.6
= ZαCGα′ (Zα′).

It follows that
[Zα−1, Zα′ ] ≤ R

10.3.6
≤ Zα.

Hence, Zα−1Zα is normalized by Zα′ and Gα−1 ∩ Gα and thus also by
〈Gα ∩ Gα−1, Zα′〉 = Gα (10.3.4). Now 10.3.1 (c) implies (a).
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Fig. 1

Claim (b) follows from (a), 10.3.6 (c) and the transitivity of Gα on ∆(α).

Note that by 10.3.1 either α ∈ (α′)G or α ∈ (α′ − 1)G, so

α ∈ (α′)G ⇐⇒ b is even.

To prove (c) we may assume that α and α′−1 and thus also Gα and Gα′−1
are conjugate. Then (b) gives

Zα ≤ Qα′−2 ∩ Qα′−1 = Qα′−1 ∩ Qα′ .

This contradicts Zα �≤ Qα′ . �

10.3.10 Suppose that there exists α − 1 ∈ ∆(α) \ {α + 1} such that
(α − 1, α′ − 1) is a critical pair. Then b = 1.

Proof. Set R1 := [Zα−1, Zα′−1] and assume that b > 1. Then Zα ≤ Qα+1
and Zα′ ≤ Qα′−1. As (α−1, α′−1) is critical, 10.3.8 applies to (α−1, α′−1)
in place of (α, α′). Hence |R1| = 2 and

R1 = [Zα−1, Gα−1 ∩ Gα] ≤ Z(Gα−1 ∩ Gα) ∩ Z(Gα′−2 ∩ Gα′−1),

in particular R1 ≤ Z(Qα′−1) and thus [R1, Zα′ ] = 1. By 10.3.8 (b) Zα′ and
Gα−1 ∩ Gα generate Gα , so

(1) R1 ≤ Z(Gα).
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Let α − 2 ∈ ∆(α − 1) \ {α} (see Fig. 1).

Next we show:

(2) (α − 2, α′ − 2) is a critical pair.

Assume that (α − 2, α′ − 2) is not critical. Then 10.3.9 (a), applied to
(α−1, α′−1) and α−2 in place of (α, α′) and α−1, shows that Zα−1Zα =
Zα−1Zδ for all δ ∈ ∆(α − 1). With 10.3.1 (c) we get5

Zα+1Zα = Zα+1Zα+2.

The minimality of b yields Zα+1Zα+2 ≤ Qα′ . But then also Zα ≤ Qα′ , and
(α, α′) is not a critical pair. This contradiction shows (2).

Set R2 := [Zα−2, Zα′−2]. According to (2) α − 2 and (α, α′) satisfy the
hypothesis. Hence, we also get for these vertices that |R2| = 2 and

(3) R2 = [Zα−2, Gα−2 ∩ Gα−1] ≤ Z(Gα−1)

By 10.3.1 (c) there exist y ∈ Gα−1 and x ∈ Gα such that

(α − 2)y = α and (α + 1)x = α − 1.

Hence

[Zα, Gα ∩ Gα−1] = [Zα−2, Gα−2 ∩ Gα−1]y = R2
y ≤ Z(Gα−1),

and

Rx 10.3.8 (c)
= [Zα, Gα ∩ Gα+1]x = [Zα, Gα ∩ Gα−1] = R2

y ≤ Z(Gα−1).

It follows that

(4) R ≤ Z(Gα+1).

In addition, (1) and 10.3.3 give

(5) R ∩ R1 = 1.

Next we show:

(6) b = 2.

5Rotate around α such that α − 1 goes to α + 1.
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Assume that b > 2. Then Zα′ ≤ Qα′−2, and by (3) and 10.3.6 (a) R2
centralizes Zα′ and Gα−1. Since Gα = 〈Zα′ , Gα ∩ Gα−1〉 we conclude that
R2 centralizes Gα−1 and Gα. Hence 10.3.3 yields R2 = 1, which contradicts
|R2| = 2.

To treat the remaining case b = 2 we set

Vα := 〈Zβ | β ∈ ∆(α)〉 (� Gα)

and
Vα+1 := 〈Zβ | β ∈ ∆(α + 1)〉 (� Gα+1).

Note that Vα ≤ Qα and Vα+1 ≤ Qα+1 since b > 1. Moreover

Zα = 〈Ω(Z(Gα ∩ Gα+1))Gα〉 ≤ Vα

since Vα is normal in Gα, similarly Zα+1 ≤ Vα+1. Hence

(7) ZαZα+1 ≤ Vα ∩ Vα+1.

As R1 ≤ Z(Gα), the 2-transitive action of Gα on ∆(α) (10.3.4 (c)) implies

V ′
α = R1 ≤ Z(Gα).

We now derive a contradiction showing that Vα is Abelian: Since Vα is
generated by involutions we get that Vα/R1 is elementary Abelian, so

R1 = Φ(Vα).

With the same argument (4) implies

R = Φ(Vα+1).

Let
V α := Vα/Zα.

From 10.3.8 (f) we get |Zβ/Zα ∩ Zβ| = 2 for all β ∈ ∆(α), so |Zβ| = 2. In
addition, V α is generated by the three subgroups Zβ, β ∈ ∆(α), thus

|V α| ≤ 8.

Set
W := Vα ∩ Vα+1 (� Gα ∩ Gα+1).
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By (7) ZαZα+1 ≤ W , and the definition of Vα gives

(8) Vα = 〈WGα〉.

Moreover by 5.2.7 on page 106

Φ(W ) ≤ Φ(Vα) ∩ Φ(Vα+1) = R1 ∩ R
(5)
= 1.

Hence W is elementary Abelian, and V ′
α �= 1 shows that |Vα/W | ≥ 2.

We investigate the action of Gα on V α. The kernel of this action contains
Qα since [Gα−1 ∩ Gα, Zα−1] = R1 ≤ Zα. Set

V 0 := [V α, O2(Gα)].

If V 0 = 1, then W is normal in Gα and V ′
α = 1. But this contradicts

V ′
α = R1 and |R1| = 2.

Now let V 0 �= 1. Since |V α| ≤ 8 we get

(9) |V 0| = 4.

Assume first that |Vα/W | = 2. Let x ∈ Gα such that W x �= W . Then
Vα = WW x and thus W ∩ W x = Z(Vα) and |Vα/W ∩ W x| = 4. Let
D ∈ Syl3 Gα. The nontrivial action of D on V α implies a nontrivial action
of D on Vα/W ∩ W x. Hence, all maximal subgroups of Vα that contain
W ∩ W x, are D-conjugates of W . But then every element of Vα

# is an
involution and Vα is elementary Abelian. Again this contradicts V ′

α = R1.

We have shown that
|Vα/W | ≥ 4.

Because of (7) and |V α| ≤ 8 we get

(10) |V α| = 8, W = ZαZα+1 and |W | = 2.

As Zα′ ≤ Gα and Zα′ �≤ Qα we get that [V 0, Zα′ ] �= 1. On the other hand,
b = 2 and thus

[Vα, Zα′ ] ≤ [Vα, Vα+1] ≤ W,

so W = [V 0, Zα′ ]. But then 〈WGα〉 = V 0, which contradicts (8), (9) and
(10). �
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10.3.11 Theorem. Suppose that A holds. Then either

P1 ∼= P2 ∼= S4 or P1 ∼= P2 ∼= C2 × S4.

Proof. Assume that G is a counterexample. Among all (G, P1, P2, T ) that
satisfy A but not B, we choose (G, P1, P2, T ) such that |T | is minimal. Then
b > 1 (10.3.7) and (α−1, α′−1) is not critical for all α−1 ∈ ∆(α)\{α+1}
(10.3.10). Hence 10.3.9 implies:

(1) b ≡ 0 (mod 2) and X := Qα ∩ Qα+1 � Gα.

Moreover by 10.3.3 (b) and 10.3.4 (a) |Qα : X| = |Qα+1 : X| = 2. Let

D ∈ Syl3 Gα and Gα := Gα/X.

Then Gα is a group of order 12 and Qα a normal subgroup of order 2.
It follows that D is also normal in Gα. Let X ≤ L ≤ Gα such that
L = DQα+1. We obtain:

(2a) L is a normal subgroup of index 2 in Gα,

(2b) L ∼= S3,

(2c) Syl2 L = {Qβ | β ∈ ∆(α)},

(2d) O2(L) = X = Qα ∩ Qβ for all β ∈ ∆(α),

(2e) Qα+1 = Zα′O2(L) (10.3.8 (b)),

(2f) CL(O2(L)) ≤ O2(L).

For the proof of (2f) note that Zα (� Gα) is contained in Qα+1 and thus
also in O2(L). Hence

CL(O2(L)) ≤ CL(Zα)
10.3.6
≤ Qα ∩ L ≤ O2(L).

According to A4 there exists an element t ∈ Gα+1 \ Qα+1 such that

αt = α + 2 und t2 ∈ Qα+1.

Thus Qα+1 = (Qα+1)t is a Sylow 2-subgroup of L (≤ Gα) and Lt (≤
Gα+2). First we show:

(3) O2(L) is not elementary Abelian.
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Assume that O2(L) is a counterexample. Then by (2b), (2d), A1 := O2(L)
and A2 := O2(Lt) are two elementary Abelian subgroups of index 2 in
Qα+1. If A1 = A2, then A1 is normal in 〈Gα, Gα+2〉 and thus also in

〈Gα, Gα ∩ Gα+1, Gα+1 ∩ Gα+2〉 = 〈Gα, Gα+1〉 = G.

But this contradicts A3 and (2f).

We have shown that A1 �= A2. By (2b), (2c), and (2f) Qα+1 is non-Abelian;
so

A := A1 ∩ A2 = Z(Qα+1) and |Qα+1/A| = 4.

If O2(Gα+1) acts trivially on Qα+1/A, then

〈Gα, O2(Gα+1)〉 ≤ NG(A1),

which contradicts 10.3.3. Thus O2(Gα+1) acts transitively on (Qα+1/A)#.
But then every element of Q#

α+1 is an involution and Qα+1 is elementary
Abelian, again a contradiction. This shows (3).

We now set
G0 := 〈L,Lt〉,

and denote the largest normal subgroup of G0 in Qα+1 by Q. Note that
Gt

0 = G0 and thus also Qt = Q. Next we show:

(4) [Q,D] �= 1.

For the proof of (4) assume that [Q,D] = 1 and set

G̃0 := G0/Q.6

Because of Qα+1 ∈ Syl2 L ∩ Syl2 Lt and (2) the quadruple

(G̃0, L̃, L̃t, Q̃α+1)

satisfies the hypotheses A2,A3,A4. Moreover, since [Q,D] = 1 10.3.6 (c)
and 8.2.2 on page 184 imply

W̃ := [Z̃α, D̃] �= 1 (Q ≤ W ≤ O2(L)),

and CL̃(O2(L̃)) ≤ O2(L̃); so also A1 and A5 hold.

6Tilde instead of bar convention.
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Now the minimality of |T | is used. Since |Qα+1| < |T | we get

L̃ ∼= S4 or L̃ ∼= C2 × S4.

In particular, by 10.3.5

W̃ = [O2(L̃), O2(L̃)] �≤ O2(L̃t),

and W̃ ≤ Z̃α implies Zα �≤ O2(Lt). Now (2b) gives

O2(L) = (O2(L) ∩ O2(Lt)) Zα.

Since Zα ≤ Ω(Z(O2(L))) we get

Φ(O2(L)) = Φ(O2(L) ∩ O2(Lt)),

and conjugation with t shows that Φ(O2(L)) = Φ(O2(Lt)). But now—as
in the proof of step (3)—Φ(O2(L)) is normal in 〈Gα, Gα+2〉 = G, and A3
yields Φ(O2(L)) = 1. This contradicts (3), and (4) is established.

(5) Let β ∈ ∆(α) and γ ∈ ∆(β) \ {α}. Then 〈Zα, Zγ〉 is not a normal
in L.

We fix the notation ∆(β) = {α, γ, δ} and set

Vβ := 〈Zα, Zγ , Zδ〉 (� Gβ).

Every x ∈ Qα \ Qβ interchanges γ and δ and normalizes L (see (2a)). If
〈Zα, Zγ〉 is normal in L, then also 〈Zα, Zδ〉 = 〈Zα, Zγ

x〉 is normal in L.
This implies that Vβ is normal in L (�≤ Gα ∩Gβ), which contradicts 10.3.3.

(6) Let b ≥ 4, α − 1 ∈ ∆(α) \ {α + 1} and α − 2 ∈ ∆(α − 1) \ {α}. Then
(α − 2, α′ − 2) is a critical pair.

Assume that (α − 2, α′ − 2) is not critical. Then Zα−2 ≤ Qα′−3 ∩ Qα′−2.
Since by (1) α′ − 2 is conjugate to α we get

Zα−2 ≤ Qα′−3 ∩ Qα′−2
(1)
= Qα′−2 ∩ Qα′−1 ≤ Gα′−1 ∩ Gα′

10.3.8 (b)
= ZαQα′ ,

so [Zα−2, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα. Hence Zα−2Zα (≤ Qα ∩ Qα−1) is nor-
malized by Zα′ and also by Qα−1 (≤ Gα−2 ∩ Gα). Now (2) implies that
Zα−2Zα is normal in L, which contradicts (5).
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In the following let α − 1 ∈ ∆(α) \ {α + 1} and x ∈ L (≤ Gα) such that
(α + 1)x = α − 1. Then

α − 2 := (α + 2)x

is adjacent to α − 1 and different from α and α + 2.

Let b ≥ 4. By (6) (α − 2, α′ − 2) is critical. Hence 10.3.8 implies

R2 := [Zα−2, Zα′−2] ≤ Z(Gα−2 ∩ Gα−1) ∩ Zα′−2.

In addition, b ≥ 4 implies Zα′ ≤ Qα′−2, thus also [R2, Zα′ ] = 1. Now (2)
gives [R2, L] = 1, and

R2 ≤ Z(Gα+2 ∩ Gα+1)

since x ∈ L.

As also (α′, α) is a critical pair (10.3.8 (a)) there exists α′ + 2 such that
d(α′, α′ + 2) = 2 and (α′ + 2, α + 2) is critical. Assume that b > 4. Then
Zα′+2 ≤ Qα′−2 and thus

[R2, Zα′+2] = 1

since R2 ≤ Zα′−2. Hence

Gα+2 ∩ Gα+3
10.3.8 (b)

= Qα+2Zα′+2

is centralized by R2. It follows that R2 ≤ Z(Gα+2) and also R2 ≤ Z(Gα−2)
after conjugation with x ∈ L. This contradicts the action of Zα′−2 on Zα−2,
see 10.3.8 (b), (e), and (f).

We have shown:

(7) b ≤ 4,

We will now derive a final contradiction showing that (7) and (4) contradict
each other.

As Q ≤ O2(Lt) ≤ Qα+2 we have

(′) [Q,Zα+2] = 1.

We now distinguish the two cases Zα+2 �≤ O2(L) and Zα+2 ≤ O2(L).

In the first case Qα+1 = O2(L)Zα+2 and

L = 〈ZL
α+2〉 O2(L) = CL(Q) O2(L).
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This implies O2(L) ≤ CL(Q) since Q is normal in L. In particular [Q,D] =
1, which contradicts (4).

Thus we are in the case Zα+2 ≤ O2(L). Then Zα+2 ≤ Qα, and (7) and (1)
show that b = 4. Hence (6) implies

Zα+2 �≤ Qα−2 = Q(α+2)x ,

and Ltx is a normal subgroup of index 2 in Gα−2. The subgroup

〈(Zα+2)Ltx〉 (≤ G0)

contains a Sylow 3-subgroup D2 of Gα−2. Now as above (′) and Q � G0
show that [Q,D2] = 1. This contradicts (4) since D2 is a G0-conjugate of
the Sylow 3-subgroup D of Gα. �

We conclude this section with two examples of groups satisfying A and thus
also B. They are also examples for the two alternatives of B.

(1) Let G be the symmetric group S6 and

a := (1 2), b := (1 2) (3 4) (5 6),

and let
P1 := CG(a), P2 := CG(b).

Then for x ∈ G

x ∈ P1 ⇐⇒ {1, 2}x = {1, 2} ⇐⇒ {3, 4, 5, 6}x = {3, 4, 5, 6}.

Thus
P1 = 〈a〉 × G1,2 ∼= C2 × S4,

7

O2(P1) = 〈a〉 × 〈(3 4) (5 6)〉 × 〈(3 5) (4 6)〉,
and

T := O2(P1) 〈(3 4)〉 ∈ Syl2 P1.

Similarly for x ∈ G and Ω := {(12), (34), (56)}

x ∈ P2 ⇐⇒ Ωx = Ω.

Hence P2 acts on Ω. The kernel of this action is

N := 〈(1 2)〉 × 〈(3 4)〉 × 〈(5 6)〉,
7G1,2 := {x ∈ G | 1x = 1 and 2x = 2}.
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and
P2/N ∼= SΩ ∼= S3.

It follows that N = O2(P2) and

N 〈(3 5) (4 6)〉 = T

is a Sylow 2-subgroup of P2. Note further that P1 �= P2 and |P1 : T | = 3 =
|P2 : T |, so P1 ∩ P2 = T . In addition

|G : 〈P1, P2〉| ≤ |G|
|P1P2|

=
6!

3 · 48
= 5

and thus G = 〈P1, P2〉 since P1 is not contained in the simple group A6 (see
also 3.1.2 on page 57). This shows that the triple (〈P1, P2〉, P1, P2) satisfies
A.

It should be noted that the triple (A6, P1 ∩ A6, P2 ∩ A6) is an example for
the other alternative in B.

(2) Let G := GL3(2) be the group of invertible 3 × 3-matrices over F2. Let
P1 be the set of all x ∈ G of the form

x =

 a b c
0 d e
0 f g

 ,

and P2 be the set of all x ∈ G of the form

x =

 a b c
d e f
0 0 g

 ,

a, b, c, d, e, f, g ∈ F2. Then P1 and P2 are subgroups of G. The mappings

ϕ1 : P1 → SL2(2) such that x �→
(

d e
f g

)
,

ϕ2 : P2 → SL2(2) such that x �→
(

a b
d e

)
are epimorphisms with kernels

Ker ϕ1 =

{ 1 b c
0 1 0
0 0 1

 | b, c ∈ F2

}
∼= C2 × C2,

Ker ϕ2 =

{ 1 0 c
0 1 f
0 0 1

 | c, f ∈ F2

}
∼= C2 × C2.
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As Ker ϕi (i = 1, 2) has a complement in Pi that acts faithfully on Ker ϕi,
we get

P1 ∼= S4 ∼= P2.

Moreover

P1 ∩ P2 =

{ 1 a b
0 1 c
0 0 1

 | a, b, c ∈ F2

}

is a subgroup of order 8 and thus a Sylow 2-subgroup of P1 and P2. Since

|G : 〈P1, P2〉| ≤ |G|
|P1P2|

=
168
72

< 3

and the order of G is not divisible by 16 we get G = 〈P1, P2〉. Hence, the
triple (〈P1, P2〉, P1, P2) satisfies A.
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Chapter 11

Signalizer Functors

In previous chapters it became quite clear that normalizers of nontrivial
p-subgroups (i.e., p-local subgroups) are of particular importance for the
structure of finite groups. In this chapter we introduce another important
concept that in a certain sense is dual to the concept of normalizing.

Let G be a group and A a subgroup of G. While the concept of the norma-
lizer of A deals with subgroups U satisfying AU = A, we are now interested
in subgroups U satisfying UA = U .

This dualization of the notion of a normalizer is one of the fundamental
ideas in the proof of the theorem of Feit-Thompson. It was then Gorenstein
who developed the general concept of a signalizer functor [60], one of the
great achievements in group theory.

The goal of this chapter is to give a proof of the Completeness Theorem of
Glauberman [52]. Two important special cases of this theorem (r(A)≥ 4
and p = 2) had been proved earlier by Goldschmidt ([56], resp. [55]).
Another proof was given by Bender [31]. Later this proof was generalized
by Aschbacher [1] to obtain a new proof of the Completeness Theorem.

In this chapter, A is always a p-group, while the A-invariant subgroups
under consideration usually are p′-subgroups. Therefore we will frequently
use elementary facts about coprime action, as given in 8.2.2, 8.2.3, 8.2.7,
and 8.3.4. We will refer to such properties using the abbreviation (cp).

We find it appropriate to regard A not as a subgroup of G but as a group
that acts on G.

303
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11.1 Definitions and Elementary Properties

In the following p is a prime and A is a noncyclic elementary Abelian p-
group that acts on the group G. Note that for every a ∈ A the fixed-point
groups CG(a) are A-invariant since A is Abelian.

Let U be an A-invariant p′-subgroup of G. Then 8.3.4 on page 193 implies
that

(+) U = 〈 CG(a) ∩ U | a ∈ A# 〉,

and this gives rise to the following generalization.

Let θ be a mapping that associates with every a ∈ A# an A-invariant and
solvable p′-subgroup of CG(a).1 This subgroup is denoted by θ(CG(a)), so

θ(CG(a)) := aθ.

By |/|θ(A) we denote the set of solvable A-invariant p′-subgroups U ≤ G
satisfying

CG(a) ∩ U ≤ θ(CG(a)) for all a ∈ A#.

In other words, for U ∈ |/|θ(A)

(+′) U = 〈 θ(CG(a)) ∩ U | a ∈ A#〉.

Moreover, it is clear from the definition that every A-invariant subgroup of
U is again in |/|θ(A).

The mapping θ is a solvable A-signalizer functor on G if

S θ(CG(a)) ∩ CG(b) ≤ θ(CG(b)) for all a, b ∈ A#,

or equivalently

S ′ θ(CG(a)) ∈ |/|θ(A) for all a ∈ A#.

The solvable A-signalizer functor θ is complete if |/|θ(A) contains a unique
maximal element.2 If θ is complete, then the unique maximal element of
|/|θ(A) is denoted by θ(G).

Let θ be a solvable A-signalizer functor on G and set

E := 〈θ(CG(a)) | a ∈ A#〉.
1Most results of this section also hold without the solvability requirement.
2With respect to inclusion.
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Property (+) implies that θ is complete if and only if E ∈ |/|θ(A). Thus if θ
is complete, then E = θ(G).

The goal of this chapter is to show that θ is complete if r(A) ≥ 3 —this is
the Completeness Theorem of Glauberman.

For an A-invariant subgroup H of G

θH : a �→ θH(CH(a)) := θ(CG(a)) ∩ H (a ∈ A#)

is the restriction of θ to H. Here

|/|θH
(A) = {U ∈ |/|θ(A) | U ≤ H}.

If θ is complete, then also θH is complete and

θH(H) = θ(G) ∩ H.

If θH is complete, we set θ(H) := θH(H).

Condition S ′ says that for every a ∈ A# the restriction θCG(a) is complete
with θ(CG(a)) being the unique maximal element. Evidently also θCG(B)
is complete for every nontrivial subgroup B ≤ A, and

θ(CG(B)) = θ(CG(a)) ∩ CG(B) =
⋂

b∈B#
θ(CG(b)) (a ∈ B#).

Before we continue with properties of signalizer functors we present a typical
example:

11.1.1 Let p be a prime and

θ : a �→ Op′(CG(a)) (a ∈ A#).

(a) Suppose that CG(a) is solvable for all a ∈ A#. Then θ is a solvable
A-signalizer functor on G.

(b) Suppose that G is solvable. Then θ is complete and θ(G) = Op′(G).

Proof. (a) For a, b ∈ A# 8.2.12 on page 189 gives

Op′(CG(a)) ∩ CG(b) ≤ Op′(CCG(b)(a)) ≤ Op′(CG(b))

Thus S holds.
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(b) Again by 8.2.12

θ(CG(a)) = Op′(G) ∩ CG(a),

so Op′(G) ∈ |/|θ(A) and

Op′(G) = 〈θ(CG(a) | a ∈ A#〉 ∈ |/|θ(A).

Hence θ is complete and θ(G) = Op′(G). �

In the following θ is a solvable A-signalizer functor on G. We set:

Ca := θ(CG(a)) for a ∈ A#,

CB := θ(CG(B)) for 1 �= B ≤ A,
|/|∗

θ(A): the set of maximal elements of |/|θ(A),

and for a set π of primes
|/|θ(A, π) := {U ∈ |/|θ(A) | U is a π-group},
|/|∗

θ(A, π): set of maximal elements of |/|θ(A, π).

11.1.2 Let X,Y ∈ |/|θ(A) such that XY = Y X. Suppose that

(1) Y ≤ NG(X), or

(1′) XY is solvable.

Then XY ∈ |/|θ(A).

Proof. Also in case (1) XY is solvable (see 6.1.2 on page 122). Thus, in
both case XY is an A-invariant solvable p′-group. Hence, 8.2.11 on page
188 implies

CXY (a) = CX(a) CY (a) ≤ Ca for all a ∈ A�,

so XY ∈ |/|θ(A). �

11.1.3 Let N be an A-invariant normal p′-subgroup of G and G :=
G/N . Then the mapping

θ : a �→ θ(CG(a)) := Ca (a ∈ A#)

is a solvable A-signalizer functor on G, and |/|θ(A) ⊆ |/|
θ(A).
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Proof. Let a, b ∈ A# and M := NCa, so

M = θ(CG(a)) and CM (b)
(cp)
= CM (b).

It follows that

CM (b) 8.2.11= CN (b) CCa(b) = CN (b) (Ca ∩ CG(b)) ≤ N θ(CG(b)),

and thus

θ(CG(a)) ∩ CG(b) = CM (b) = CM (b) ≤ θ(CG(b)).

Similarly for U ∈ |/|θ(A)

CU (a)
(cp)
= CU (a) = Ca ∩ U ≤ θ(CG(a)),

and U ∈ |/|
θ(A). �

11.1.4 Assume in 11.1.3, in addition, that N ∈ |/|θ(A). Then |/|θ(A) =
|/|

θ(A). In particular θ is complete if and only if θ is complete.

Proof. Let N ≤ U ≤ G such that U ∈ |/|
θ(A). According to 11.1.3 it suffices

to show that U ∈ |/|θ(A).

For a ∈ A#

CU (a)
(cp)
= CU (a) ≤ θ(CG(a)) = Ca = CaN/N

and thus
CU (a) ≤ NCa ∩ CG(a) = CN (a) Ca ≤ Ca

since N ∈ |/|θ(A); so U ∈ |/|θ(A). �

We now set
π(θ) :=

⋃
a∈A#

π(Ca).

11.1.5 Let U ∈ |/|θ(A). Then π(U) ⊆ π(θ).
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Proof. By (cp) for every q ∈ π(U) there exists an A-invariant Sylow q-
subgroup Q of U . Moreover, since A is noncyclic there exists a ∈ A such
that CQ(a) �= 1 (see 8.3.4). As CQ(a) ≤ CU (a) ≤ Ca we get q ∈ π(θ). �

It is clear that the restriction of θ to A-invariant subgroups and the solvable
A-signalizer functor θ (as in 11.1.3) can be used in proofs by induction. But
in this context another variation of θ that reduces the number of primes in
π(θ) is more important.

Let π be a set of primes such that p �∈ π.3 We apply 8.2.6 (d) to the solvable
and A-invariant p′-group Ca = θ(CG(a)) (a ∈ A#). Then Ca contains a
unique maximal ACA-invariant π-subgroup,4 and this subgroup we denote
by θπ(CG(a)).

11.1.6 The mapping

θπ : a �→ θπ(CG(a)) (a ∈ A�)

is a solvable A-signalizer functor on G satisfying

π(θπ) ⊆ π and {U ∈ |/|θ(A, π) | UCA = U} ⊆ |/|θπ(A).

Proof. Let a, b ∈ A�. Then θπ(CG(a)) ∩ CG(b) is an ACA-invariant π-
subgroup of Cb. Thus, θπ(CG(a)) ∩ CG(b) is contained in the unique maxi-
mal ACA-invariant π-subgroup θπ(CG(b)). This shows that θπ is a solvable
A-signalizer functor on G.

Clearly π(θπ) ⊆ π, and the other property again follows from the unique-
ness of θπ(CG(a)). �

In the proof of the next lemma we use an argument that is also useful in
other situations.

11.1.7 Let A be an elementary Abelian p-group with r(A) ≥ 3 that acts
on the group X, and let p �= q ∈ π(X). Suppose that Q1 and Q2 are two
A-invariant q-subgroups of X such that, for D := Q1 ∩ Q2,

Q1 �= D �= Q2.

Then there exists a ∈ A# such that

NG(D) ∩ CQi(a) �≤ D for i = 1, 2.

3In this context observe that 1 is the only π-subgroup for π = ∅.
4ACA-invariant means A-invariant and CA-invariant.
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Proof. Since Q1 �= D �= Q2 we get

D < NQi(D) =: Ni for i ∈ {1, 2};

and 8.3.4 on page 193 shows that Ni is generated by the subgroups CNi(B),
B ≤ A, and r(A/B) ≤ 1. In particular, for i = 1, 2, there exists a maximal
subgroup Bi of A such that

CNi(Bi) �≤ D.

As r(A) ≥ 3 we get B1 ∩ B2 �= 1. Now choose 1 �= a ∈ B1 ∩ B2. �

Our first major result is:

11.1.8 Transitivity Theorem. Let θ be a solvable A-signalizer functor
on G and q ∈ π(θ). Suppose that r(A) ≥ 3. Then the elements in |/|∗

θ(A, q)
are conjugate under CA.

Proof. Assume that the assertion is false. Among all pairs of elements of
|/|∗

θ(A, q) that are not conjugate under CA we choose Q1 and Q2 such that

D := Q1 ∩ Q2

is maximal. Set

N := NG(D) and Na := N ∩ Ca (a ∈ A#).

By 11.1.7 there exists a ∈ A# such that

Na ∩ Q1 �≤ D and Na ∩ Q2 �≤ D.

Moreover, Na is an A-invariant p′-group. Thus by 8.2.3 (b) and (c) there
exists an element c ∈ CNa(A) (≤ CA) such that

E := 〈(Na ∩ Q1)c, Na ∩ Q2〉
is an A-invariant q-subgroup of Na. As D and E are in |/|θ(A, q), by 11.1.2
also DE ∈ |/|θ(A, q). Hence, there exists Q3 ∈ |/|∗

θ(A, q) containing DE, so

D < D(Na ∩ Q1)c ≤ Q1
c ∩ Q3 and D < D(Na ∩ Q2) ≤ Q2 ∩ Q3.

The maximal choice of D implies that Q1
c and Q3 are conjugate under CA

as well as Q2 and Q3. But then also Q1 and Q2 are conjugate under CA, a
contradiction. �

We note two corollaries of the Transitivity Theorem:
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11.1.9 Let q ∈ π(θ) and Q ∈ |/|∗
θ(A, q). Suppose that r(A) ≥ 3. Then

the following hold:

(a) For every H ∈ |/|θ(A) there exists c ∈ CA such that Qc ∩ H is an
A-invariant Sylow q-subgroup of H.

(b) CQ(B) is an A-invariant Sylow q-subgroup of CB for every 1 �= B ≤
A .

Proof. (a) Every A-invariant Sylow q-subgroup Q1 of H is in |/|θ(A, q) and
thus contained in an element Q2 ∈ |/|∗

θ(A, q). By 11.1.8 there exists c ∈ CA

such that Q2 = Qc, and Qc ∩ H = Q1 follows.

(b) follows from (a) (with H := CB) since CA ≤ CB. �

11.1.10 If |π(θ)| ≤ 1 and r(A) ≥ 3, then θ is complete.

Proof. The case π(θ) = ∅ gives θ(G) = 1. Assume that π(θ) = {q}. Then
|/|θ(A) = |/|θ(A, q), and there exists Q ∈ |/|∗

θ(A) such that CA ≤ Q. By 11.1.8
Q is the only element in |/|∗

θ(A, q). �

We conclude this section with an example that shows that one cannot drop
the hypothesis r(A) ≥ 3 in the Completeness Theorem of Glauberman
(11.3.2).

Let q be an odd prime and V an elementary Abelian group of order q2 with
generators v, w, i.e.,

V = 〈v〉 × 〈w〉 ∼= Cq × Cq.
5

Let x, t, z ∈ AutV be defined by

(vx, wx) := (v, vw),
(vt, wt) := (v−1, w),
(vz, wz) := (v−1, w−1),

5V is—written additively—a vector space over Fq with basis v, w.
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and let U be the subgroup of Aut V generated by x, t, z. Then

[t, z] = [z, x] = 1 and xt = x−1.

Let H be the semidirect product of U with V . We identify U and V with
the corresponding subgroups of H. Then

G := V 〈x〉

is a non-Abelian normal subgroup of order q3 and A := 〈t, z〉 an elementary
Abelian subgroup of order 4 in H satisfying:

(′) CG(A) = 1,

(′′) G = 〈x,w〉 = 〈CG(z), CG(t)〉,

(′′′) 〈v〉A = 〈v〉 ≤ CG(tz).

We now define

θ(CG(t)) := CG(t), θ(CG(z)) := CG(z), and θ(CG(tz)) := 1.

By (′) θ is a solvable A-signalizer functor on G.

Assume that θ is complete on G. Then by (′′) G is the maximal element of
|/|θ(A). But then CG(tz) = θ(CG(tz)) = 1, which contradicts (′′′). Hence, θ
is not complete.

11.2 Factorizations

As in the previous section, A is a noncyclic elementary Abelian p-group that
acts on the group G, and θ is a solvable A-signalizer functor on G.

In earlier chapters we have learned that global properties of groups can be
deduced from local properties carried by their p-local subgroups.

In the case of signalizer functors we follow a similar strategy. Now the
carriers of local information are not the p-local subgroups, but the θ-local
subgroups: the normalizers of nontrivial subgroups of |/|θ(A).

We introduce the following notation:

For q ∈ π(θ) set θq′ := θπ(θ)\{q}, where the signalizer functor on the right-
hand side is defined as in 11.1.6. Then θ is said to be locally complete on
G if
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• θNG(U) is complete for all nontrivial U ∈ |/|θ(A), and

• θq′ is complete for every q ∈ π(θ).

Actually, this notion is rather unnecessary since it will turn out in the next
section that for r(A) ≥ 3 locally complete solvable A-signalizer functors
are complete. But we have introduced this notion for two reasons: Firstly
it should again emphasize the importance of local properties in group the-
ory. Secondly it can be used to partition a long proof into independent
intermediate results.

In this section we deal with the case π(θ) �= {2, 3}, in particular with the
case p = 2. We will show that in this case every locally complete solvable
A-signalizer functor θ with r(A) ≥ 3 is complete.

11.2.1 Let G be a p′-group and let X and Y be A-invariant subgroups of
G. Suppose that

(1) CG(a) = CX(a) CY (a) for all a ∈ A#, and

(2) X is CG(A)-invariant.

Then G = XY .

Proof. Let q be a prime divisor of |G| (for G = 1 there is nothing to
prove). First assume that G is a nontrivial q-group, so Z(G) �= 1. Since A
is noncyclic there exists a ∈ A# such that

N := CZ(G)(a) �= 1.

It is evident that N is A-invariant and that G := G/N satisfies the hypo-
thesis (with respect to X, Y ). Using induction on |G| we may assume that
G = XY , so

G = XY N = XNY = XCG(a)Y
(1)
= XY.

We now deduce the general case from the case just treated.

Let a ∈ A#. According to (cp), applied to CY (a), Y , and G, there exists
an A-invariant Sylow q-subgroup of G such that

Q ∩ Y ∈ Sylq Y and Q ∩ CY (a) ∈ Sylq CY (a).
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Moreover, since X, CX(a) and CG(A) are CG(A)-invariant we get from
8.2.5 on page 186 that

X ∩ Q ∈ Sylq X, CX(a) ∩ Q ∈ Sylq CX(a) and CQ(a) ∈ Sylq CG(a).

As X ∩Y and CX∩Y (a) both are CY (A)-invariant, the same argument also
yields

X ∩ Y ∩ Q ∈ Sylq X ∩ Y and CX∩Y (a) ∩ Q ∈ Sylq CX∩Y (a).

Now
|CQ(a)| = |CG(a)|q

(1)
= |CX(a) CY (a)|q

= |CX(a)|q |CY (a)|q |CX∩Y (a)|−1
q

= |CX(a) ∩ Q| |CY (a) ∩ Q| |CX∩Y (a) ∩ Q|−1

= |CX∩Q(a) CY ∩Q(a)|,
and thus CQ(a) = CX∩Q(a)CY ∩Q(a). Since also Q ∩ X is CQ(A)-invariant
the above proved case gives Q = (Q ∩ X)(Q ∩ Y ). It follows that

|Q| = |X ∩ Q||Y ∩ Q||X ∩ Y ∩ Q|−1 = |X|q|Y |q|X ∩ Y |−1
q = |XY |q.

Hence |Q| divides |XY | for every q ∈ π(G), and G = XY . �

In the following the notation is chosen as in Section 11.1. In particular

Ca := θ(CG(a)) for a ∈ A# and CB := θ(CG(B)) for 1 �= B ≤ A.

11.2.2 Let θ be locally complete on G and M ∈ |/|∗
θ(A). Suppose that

|π(θ)| = 2 and there exists an A-invariant subgroup F ≤ F (M) such that

Oq(F ) �= 1 for every q ∈ π(θ).

Then M is the unique element in |/|∗
θ(A) containing F .

Proof. Let π(θ) = {q, r}. We proceed by way of contradiction. Let (F, M)
be a counterexample such that F is maximal, and set

Fq := Oq(F ), Fr := Or(F ) and Nq := NG(Fq).

Note that θNq is complete since Fq ∈ |/|θ(A). We first show:
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(′) M is the unique element in |/|∗
θ(A) containing θ(Nq), q ∈ π(θ).

Let
θ(Nq) ≤ L ∈ |/|∗

θ(A).

Assume first that Fq = Oq(M). Then M ≤ θ(Nq), and the maximality of
M yields θ(N) = M = L.

Assume now that Fq < Oq(M) and set

F̃ := NOq(M)(Fq) × Or(M).

Then F̃ is A-invariant and F < F̃ . Hence (F̃ , M) satisfies the hypothesis
but is not a counterexample. Thus also in this case M = L, and (′) is
proved.

Now let F ≤ H ∈ |/|∗
θ(A), so

NH(Fq) ≤ θ(Nq)
(′)
≤ M.

It follows that Fr ≤ Oq′(NH(Fq)), and 8.2.13 on page 190 implies that
Fr ≤ Oq′(H) = Or(H).

The same argument with the roles of r and q reversed also shows that
Fq ≤ Or′(H) = Oq(H). Thus F ≤ F (H), and the pair (F, H) satisfies
the hypothesis. Now either (′) also applies to (F, H), or (F, H) is not a
counterexample. In both cases θ(Nq) ≤ H since F ≤ θ(Nq). Hence (′)
shows that H = M . But then (F, M) is not a counterexample. �

The following remark describes a situation we will meet in the next proofs.

11.2.3 Let G be a p′-group. Suppose that

θ(CG(a)) = CG(a) for all a ∈ A#.

Then the following hold:

(a) |/|θ(A) is the set of all A-invariant solvable subgroups of G. In parti-
cular, every A-invariant Sylow subgroup is in |/|θ(A).

(b) θ is complete if and only if G = θ(G).
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(c) Let θ be locally complete on G. Then

1 �= U ∈ |/|θ(A) ⇒ NG(U) ∈ |/|θ(A). �

In the following we investigate a factorization of G:

G = KQ with K, Q ∈ |/|θ(A).

Then G is a p′-group, and for all a ∈ A#

CG(a) 8.2.11= CK(a)CQ(a) = θ(CG(a)).

Thus, we are in the situation of 11.2.3.

11.2.4 Let θ be locally complete but not complete on G, q ∈ π(θ), and

G = KQ with K ∈ |/|θ(A, q′) and Q ∈ |/|θ(A, q).

(a) Q does not normalize any nontrivial q′-subgroup of G.

(b) F (U) ≤ Q for all Q ≤ U ∈ |/|θ(A).

(c) Let Q be Abelian. Then U ≤ NG(Q) for all Q ≤ U ∈ |/|θ(A).

Proof. Note that Q ∈ Sylq G and Sylr K ⊆ Sylr G for r ∈ π(K). Moreover,
G = KQ shows that

(1) Sylr G =
⋃

g∈Q

Sylr Kg for r ∈ π(G) \ {q}.

Since θ is locally complete but not complete, no nontrivial normal subgroup
of G is in |/|θ(A). In particular

(2)
⋂

g∈G

Kg =
⋂

g∈Q

Kg = 1.

Let X be a q′-subgroup that is normalized by Q. According to (cp) for
every r ∈ π(X) there exists a Q-invariant Sylow r-subgroup of X. Thus to
prove (a) we may assume that X itself is an r-group. Then (1) implies that
X ≤ K, so by (2)

X ≤
⋂
g∈Q

Kg = 1.
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Claim (b) is a direct consequence of (a) since Q ∈ Sylq G.

For the proof of (c) recall from 6.1.4 on page 123 that

F (U)
(b)
≤ Q ≤ CU (F (U)) ≤ F (U)

since Q is Abelian, so Q = F (U). �

11.2.5 Let θ be locally complete on G, q ∈ π(θ), and Q ∈ |/|θ(A, q).
Suppose that Q is Abelian, r(A) ≥ 3, and

G = KQ for K := θq′(G).

Then θ is complete and θ(G) = G.

Proof. Note that the remark after 11.2.3 shows that G is a p′-group such
that

Ca = CG(a) and CB = CG(B) for a ∈ A#, 1 �= B ≤ A.

In particular, 11.2.3 applies to G. Hence, |/|θ(A) is the set of A-invariant
solvable subgroups of G, and θ is complete if and only if G is solvable.

Thus, we may assume that G is not solvable. Moreover, as θ is locally com-
plete, also the normalizers of A-invariant solvable subgroups are solvable,
i.e.,

(1) U ∈ |/|θ(A) ⇒ NH(U) ∈ |/|θ(A).

The {paqb}-Theorem of Burnside (10.2.1) shows that |π(G)| ≥ 3, so |π(K)|
≥ 2. Hence, as K is solvable, there exist r, r0 ∈ π(K) such that

1 �= Or0(K) ≤ Or′(K).

We fix the following notation:

Qa := Q ∩ Ca, a ∈ A�, QB := Q ∩ CB, 1 �= B ≤ A,

L := NG(Q), and K0 := Or0(K).

Suppose that Q ≤ θr′(G). Then 11.2.4 (c) yields θr′(G) ≤ L. In particular
1 �= Or′(K) ≤ L. The factorization of G gives

Or′(K) ≤ ⋂
g∈K

Lg =
⋂

g∈G

Lg =: D.

Hence, D is a nontrivial normal subgroup of G in |/|θ(A). But then G is
solvable by (1), a contradiction. We have shown:
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(2) Q �≤ θr′(G).

Let Q∗ be a nontrivial A-invariant subgroup of Q. Then

NG(Q∗) ∈ |/|θ(A)

by (1), and Q ≤ NG(Q∗) since Q is Abelian. Hence 11.2.4 (c) implies:

(3) NG(Q∗) ≤ L and in particular NG(Q∗) is q-closed.

Now let U be an A-invariant subgroup of G such that U ∩ Q �= 1. Then (3)
shows that NU (Q ∩ U) ≤ L and U ∩ Q ∈Sylq U . Thus:

(4) Let U be an A-invariant subgroup such that U ∩ Q �= 1. Then U ∩
Q ∈Sylq U .

Let B be a nontrivial subgroup of A. By 11.1.9 QB ∈ Sylq CB since CA ≤
CB. Hence

CB = Oq′(CB)NCB
(QB)

since CB is solvable and QB is Abelian. Now (3) implies:

(5) CB = Oq′(CB) (CB ∩ L) for all 1 �= B ≤ A.

Set
B := {B ≤ A | |A/B| = p and QB �= 1}.

In the following let B ∈ B. Next we show:

(6) Let T ∈Sylr Oq′(CA). Then T �≤ L.

Assume that T ≤ L. According to 8.2.6 on page 186 there exists an A-
invariant Hall r′-subgroup H of CB containing QB. Moreover, the A-
invariant Hall r′-subgroups of CB are conjugate under CA, so H ∩Oq′(CA)
is a Hall r′-subgroup of Oq′(CA) and

Oq′(CA) = T (H ∩ Oq′(CA)).

Together with (5) this gives

CA = (H ∩ Oq′(CA))(CA ∩ L).
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Since CA ∩ L normalizes QB we get

X := 〈QB
CA〉 ≤ 〈QB

H〉 ≤ H.

In particular X is an ACA-invariant r′-subgroup of CB, so

QB ≤ θr′(G) for all B ∈ B.

But now 8.3.4 on page 193 shows that Q ≤ θr′(G) since A is noncyclic.
This contradicts (2), and this contradiction proves (6).

(7) Let B ∈ B and V be an A-invariant Sylow r-subgroup of Oq′(CB).
Then [V, QB] �= 1.

Assume that [V, QB] = 1. Then (3) implies V ≤ CB∩L. On the other hand,
again by 8.2.6 on page 186, V ∩ CA is an A-invariant Sylow r-subgroup of
Oq′(CA). This contradicts (6).

We now set
KB :=

⋂
x∈QB

Kx.

As Oq′(CB)Oq′(Ca) ≤ K and QB ≤ Ca for a ∈ B�, we obtain:

(8) Oq′(CB)Oq′(Ca) ≤ KB for a ∈ B�.

Next we show:

(9) Or′(K) ≤ KB.

Let V be an AQB-invariant Sylow r-subgroup of Oq′(CB) and set

W := [V, QB] and X := Or′(K).

By (8) W normalizes X, so 8.2.7 and 8.3.4 give:

(+) X = CX(W ) [X,W ], CX(W ) = 〈 CX(W ) ∩ Ca | a ∈ B#〉,

and

(++) [X,W ] = 〈 [CX(a), W ] | a ∈ B#〉.

Let a ∈ B#. By (5) and (8)

W ≤ Oq′(Ca) ≤ KB.
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Thus also
[Ca, W ] ≤ Oq′(Ca) ≤ KB,

and (++) implies that
[X,W ] ≤ KB.

Hence, by (+) and (8) it suffices to prove

CX(W ) ∩ Ca ≤ Oq′(Ca).

Let
S := CG(W ) ∩ Ca.

Then S and SQB are AQB-invariant, so by (4) S∩Qa ∈Sylq S. If S∩Qa �= 1,
then (3) yields W ≤ L and thus [W, QB] = 1. But this contradicts (7).
Hence S is a q′-group, and

[S, QB]
(cp)
= [S, QB, QB]

(5)
≤ Oq′(Ca)

(8)
≤ KB.

But then (S∩X)[S, QB] is a QB-invariant subgroup of K and thus in KB.
It follows that S ∩ X = CX(W ) ∩ Ca ≤ KB, and (9) is proved.

Recall that 1 �= K0 = Or0(K) ≤ Or′(K). Hence by (9)

K0 ≤ KB and thus K0 ≤ Or0(KB).

It follows that 〈K0
QB 〉 is an AQB-invariant r0-subgroup of G.

Among all AQB-invariant r0-subgroups of G that contain K0 and are
generated by conjugates of K0 we choose R maximal. Then R is an A-
invariant solvable subgroup, so by (1)

M := NG(R) ∈ |/|θ(A).

Set Q0 := M ∩Q. By (4) Q0 ∈Sylq M since 1 �= QB ≤ M . For every g ∈ G
there exist x ∈ K, y ∈ Q such that g = xy. Hence

〈K0
gQ0〉 = 〈K0

yQ0〉 = 〈K0
Q0〉y

,

as K0 � K and Q is Abelian. In particular,

〈K0
gQ0〉 is an r0-group for every g ∈ G.

Let g ∈ G such that K1 := Kg
0 ≤ M . Then the lemma of Matsuyama

(6.7.8 on page 160), with (M, K1, Q0) in place of (G, Z, Y ), gives a Sylow
r0-subgroup T1 of M such that K1 ≤ T1 and

R1 := wclM (K1, T1)



320 11. Signalizer Functors

is normalized by Q0. Now 6.4.4 on page 134 shows that

R1 ≤ N := Oq′(M).

We have shown that wclG(K0, M) ≤ N . The coprime action of AQB on N
gives an A-invariant Sylow r0-subgroup T of M such that

R ≤ T ∩ N and (T ∩ N)QB = T ∩ N.

The maximal choice of R implies

R = wclG(K0, T ∩ N) = wclG(K0, T ).

It follows that NG(T ) ≤ NG(R) = M , and T ∈Sylr0 G. We have shown:

(10) For every B ∈ B there exists an A-invariant T ∈ Sylr0 G such that
K0 ≤ T and wclG(K0, T ) is invariant under AQB.

We now derive a final contradiction: Let B and T be as in (10). Moreover,
as above,

R := wclG(K0, T ), M := NG(R), and Q0 := Q ∩ M ∈ Sylq M.

Then 1 �= R ≤ Or0(M) and thus Q �≤ M by 11.2.4. Since

Q =
∏

B1∈B
QB1

there exists B1 ∈ B with

Q1 := QB1 �≤ M.

We now apply (10) with B1 in place of B. Then there exists an A-invariant
Sylow r0-subgroup T1 of G such that

R1 := wclG(K0, T1)

is AQ1-invariant. According to the coprime action of A on G and on M ,
there exists c ∈ CA such that T1

c = T ; so R1
c = R and Q1

c ≤ M , and
there exists c′ ∈ CA ∩ M such that

Qcc′
1 ≤ Q0.
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It follows that
Q1

cc′ ≤ CQ0(B1) ≤ Q1

and Q1 = Qcc′
1 ≤ M . This contradicts the choice of B1 ∈ B. �

Next we prove a version of 3.2.9 on page 67 that suits the situation of this
section.

11.2.6 Let θ be locally complete on G and q ∈ π(θ), and let L,M ∈
|/|θ(A), W ∈ |/|θ(A, q), and U := θ(NG(W )). Suppose that W ≤ M ,

M = Oq′(M)(L ∩ M), and U = Oq′(U)(U ∩ M).

Then there exists c1 ∈ CA ∩ M such that

U = Oq′(U) (U ∩ Lc1).

Proof. The factorization M = Oq′(M)(L ∩ M) and (cp) imply that L ∩ M
contains an A-invariant Sylow q-subgroup of M . Hence, there exists c1 ∈
CA ∩ M such that

W ≤ (L ∩ M)c1 = Lc1 ∩ M and M = Oq′(M)(Lc1 ∩ M).

With

(M, q, Oq′(M), Lc1 ∩ M, W ) in place of (G, p, N, H, P ),

then 3.2.9 on page 67 shows that

U ∩ M = (U ∩ Oq′(M))(U ∩ (Lc1 ∩ M))

and thus
U = Oq′(U)(U ∩ Oq′(M))(U ∩ (Lc1 ∩ M)).

Since the third factor normalizes the second one, this second factor is con-
tained in Oq′(U); and the claim follows. �

11.2.7 Let θ be locally complete on G, r(A) ≥ 3 and q ∈ π(θ). Suppose
that there exists M ∈ |/|θ(A) satisfying:

(∗) For every W ∈ |/|θ(A, q), W �= 1, there exists c ∈ CA such that

θ(NG(W )) = Oq′(θ(NG(W ))) (NG(W ) ∩ M c).

Then θ is complete on G.
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Proof. Let Q0 be an A-invariant Sylow q-subgroup of Oq′q(M). Since q ∈
π(θ) there exists 1 �= W ∈ |/|θ(A, q). Hence, (∗) implies that q ∈ π(M), and
Q0 �= 1 since M is solvable.

We fix the following notation:

Q := Z(Q0), L := θ(NG(Q)), and K := θq′(G).

The Frattini argument and 8.2.11 imply

(1) M = Oq′(M)(M ∩ L) and M ∩ Ca = (Oq′(M) ∩ Ca)(M ∩ L ∩ Ca) for
a ∈ A�.

We show:

(2) Ca = Oq′(Ca)(Ca ∩ L) for a ∈ A�.

Let Wa be an A-invariant Sylow q-subgroup of Oq′q(Ca). If Wa = 1, then
(2) holds. Thus, we may assume that Wa �= 1. Set U := θ(NG(Wa)). Then

Ca = Oq′(Ca)(U ∩ Ca)

and by (∗)
U = Oq′(U)(U ∩ M c) for some c ∈ CA.

In particular Wa ≤ Oq(U) ≤ M c. We now apply 11.2.6 to

M c (1)
= Oq′(M c)(M c ∩ Lc).

Then there exists c1 ∈ CA ∩ M c such that

U = Oq′(U)(U ∩ Lcc1).

Hence

Ca = Oq′(Ca)(U ∩ Ca)
8.2.11= Oq′(Ca)(Oq′(U) ∩ Ca)(U ∩ Lcc1 ∩ Ca)

= Oq′(Ca)(Ca ∩ Lcc1).

This implies (2) since cc1 ∈ CA.

As in 11.2.5 let

B = {B ≤ A | |A/B| = p and QB �= 1}
and pick B ∈ B. We set

QB := CQ(B) and KB := 〈Oq′(Ca) | a ∈ B#〉.
Note that KB ≤ K and KB is ACA-invariant. Hence (2) implies
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(3) Ca = (Ca ∩ KB)(Ca ∩ L) and Ca ∩ K = (Ca ∩ KB)(K ∩ L ∩ Ca)
for all a ∈ B�.

As CK(a) = K ∩ Ca and KB is CK(A)-invariant, we get from 11.2.1

(4) K = KB(K ∩ L) for B ∈ B.

Since QB normalizes KB this gives

QBK = QBKB(L ∩ K) = KBQB(L ∩ K)

⊆ KBQ(L ∩ K) = KB(L ∩ K)Q
(4)
= KQ,

and
QK =

∏
B∈B

QBK ⊆ KQ.

It follows that
G0 := KQ = QK

is an A-invariant p′-subgroup of G. Thus 11.2.5 applied to G0 yields:

(5) θG0 is complete and θ(G0) = G0.

Let G1 := [Q,G0]Q, so G1 = [Q,K]Q since Q is Abelian. For B ∈ B we
get

[K, Q] = [Q,K]
(4)
= [Q, (K ∩ L)KB]

1.5.4
≤ [Q,KB]Q

since [Q,K ∩ L] ≤ Q. Thus:

(6) G1 = [Q,KB]Q for all B ∈ B.

Note that CL(B) normalizes KB and thus by (6) also G1. Since L =
〈CL(B) | B ∈ B〉 we get that L ≤ NG(G1). On the other hand, G1 is an
A-invariant normal subgroup of G0 ∈ |/|θ(A); so

G1 ∈ |/|θ(A) and 〈K, L〉 ≤ NG(G1).

The local completeness of θ gives

〈K, L〉 ∈ θ(NG(G1)),

and with (2) we conclude that

E := 〈Ca | a ∈ A�〉 ≤ 〈K, L〉 ∈ |/|θ(A).

Hence θ is complete. �
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11.2.8 Suppose that θ is locally complete on G, r(A) ≥ 3 and π(θ) �=
{2, 3}. Then θ is complete on G.

Proof. For |π(θ)| ≤ 1 the claim follows from 11.1.10. Hence, we may assume
that there exists q ∈ π(θ) such that

q ≥ 5 and |/|θ(A, q) �= {1}.

Let S ∈ |/|∗
θ(A, q) and Q := W (S), where W (S) is the nontrivial character-

istic subgroup of S defined in Section 9.4. We set

M := θ(NG(W (S))).

Then the completeness of θ follows from 11.2.7 if we can show:

(∗) For every W ∈ |/|θ(A, q), W �= 1, there exists c ∈ CA such that

θ(NG(W )) = Oq′(θ(NG(W )))(NG(W ) ∩ M c).

For the proof of (∗) let W ∈ |/|θ(A, q) be a counterexample,

U := θ(NG(W )), and T ∈ Sylq U with TA = T.

In addition, we choose the counterexample W such that |T | is maximal.
Then T �= 1 and T ∈ |/|θ(A, q). Hence

L := θ(NG(W (T )))

exists since θ is locally complete. Pick S∗ ∈ |/|∗
θ(A, q) such that T ≤ S∗.

From 9.4.6 on page 255 we get

(1) U = Oq′(U)(U ∩ L).

Assume first that T = S∗. According to the Transitivity Theorem there
exists c ∈ CA with Sc = T . Hence M c = L (see 9.4.1), and (1) shows that
W is not a counterexample.

Assume now that T < S∗. Then

T < NS∗(W (T )) ≤ M.
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The maximal choice of T gives property (∗) for W (T ) in place of W , so

L = Oq′(L)(L ∩ M c) for some c ∈ CA.

Hence 11.2.6 (with (L,M c) in place of (M, L)) implies that

U = Oq′(U)(L ∩ M cc1), c1 ∈ CA,

and W is not a counterexample. This final contradiction proves (∗). �

An important special case of the Completeness Theorem, the theorem of
Goldschmidt [55], is now a consequence of 11.2.8.

11.2.9 Let p = 2 and θ be a solvable A-signalizer functor on G with
r(A) ≥ 3. Then θ is complete on G.

Proof. Let (G, A, θ) be a counterexample such that |G|+ |π(θ)| is minimal.

Assume that N is a nontrivial normal subgroup of G contained in |/|θ(A).
Then θ, defined as in 11.1.3, is a solvable A-signalizer functor on G := G/N ,
and the minimality of |G| + |π(θ)| shows that θ is complete. But now by
11.1.4 also θ is complete, a contradiction.

Hence, no nontrivial normal subgroup of G is contained in |/|θ(A). In par-
ticular NG(U) < G for 1 �= U ∈ |/|θ(A). Now again by the minimality of
|G| + |π(θ)| θ is locally complete on G. Thus 11.2.8 shows that θ also is
complete, a contradiction. �

11.3 The Completeness Theorem of Glauberman

As before A is an noncyclic elementary Abelian p-group that acts on the
group G. The notation is chosen as in Sections 11.1 and 11.2.

We will need the following remark:

11.3.1 Let G be a solvable p′-group and q ∈ π(G). Suppose that U is
a q′-subgroup of G such that [U, CG(B)] is a q′-group for every maximal
subgroup B of A. Then U ≤ Oq′(G).
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Proof. We may assume that Oq′(G) = 1 and show that U = 1. Let
Q := Oq(G). Then

Q
(cp)
= 〈CQ(B) | B ≤ A, |A/B| = p〉,

so [Q,U ] = 1 since [U, CQ(B)] ≤ Q. It follows that

U ≤ CG(Q)
6.4.3
≤ Q

and thus U = 1. �

11.3.2 Completeness Theorem of Glauberman. Let θ be a solvable
A-signalizer functor on G. Suppose that r(A) ≥ 3. Then θ is complete.

Proof. We proceed by induction on |G| + |π(θ)|. Let (G, A, θ) be a coun-
terexample such that |G| + |π(θ)| is minimal. As in the proof of 11.2.9:

(1) θ is locally complete.

Thus 11.2.8 implies:

(2) π(θ) = {2, 3}.

In the following let q and r be the two primes in π(θ), so

π(θ) = {q, r} = {2, 3}.

We set

|/| := |/|θ(A), |/|∗ := |/|∗
θ(A), |/|s := |/|θ(A, s), |/|∗

s := |/|∗
θ(A, s) (s ∈ π(θ)).

The Transitivity Theorem 11.1.8 yields

|/|∗
q = SCA and |/|∗

r = RCA for S ∈ |/|∗
q and R ∈ |/|∗

r ,

which we will use frequently.

First we prove:

(3) Let S ∈ |/|∗
q. Then S is contained in a unique element of |/|∗.
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Proof. Clearly S �= 1 since q ∈ π(θ). Let

S ≤ M1 ∩ M2 for M1, M2 ∈ |/|∗.

We show that M1 = M2. For i = 1, 2 there exists an A-invariant Sylow
r-subgroup Ri of Mi such that Mi = SRi. Let Ri ≤ R̂i ∈ |/|∗

r and
c ∈ CA with R̂c

1 = R̂2. From 11.1.9 we get that CA ∩ R̂i ∈Sylr CA and
CA ∩ S ∈Sylq CA, so CA = (R̂i ∩ CA)(S ∩ CA). Hence, we can choose c in
S ∩ CA. It follows that

R1
cS = (R1S)c = (SR1)c = SR1

c.

Thus
M∗ := S〈R1

c, R2〉
is an A-invariant subgroup and 〈R1

c, R2〉 ≤ R̂2, in particular 〈R1
c, R2〉 ∈ |/|.

The paqb-Theorem shows that M∗ is solvable. Hence 11.1.2 yields M∗ ∈ |/|.
Since

c ∈ S ≤ M2 ≤ M∗

the maximality of M1 and M2 implies that

M2 = M∗ = M1
c = M1. �

(4) Let S ∈ |/|∗
q and S ≤ M ∈ |/|∗. Then S contains an A-invariant

subgroup Q �= 1 such that the following hold:

(4a) θ(NG(Q)) is not Thompson factorizable (with respect to q).

(4b) θ(NG(Q)) ∩ CA �≤ M , and in particular CA �≤ M .

Proof. Note first that 11.2.7 and SCA = |/|∗
q show that S contains an A-

invariant subgroup Q �= 1 such that

U := θ(NG(Q)) �= Oq′(U)(U ∩ M).

In addition, we choose Q such that |U ∩ M |q is maximal. Let T be an
A-invariant Sylow q-subgroup of U ∩ M . After conjugation in M we may
assume that T ≤ S. By (3) T < S and thus

T < NS(T ) ≤ NG(J(T )).
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The choice of Q implies

U1 := θ(NG(J(T ))) = Oq′(U1)(U1 ∩ M).

On the other hand Q ≤ T and thus Ω(Z(S)) ≤ Ω(Z(T )) ≤ J(T ), so again
by (3)

Oq′(U1) ≤ θ(CG(Ω(Z(T )))) ≤ θ(CG(Ω(Z(S)))) ≤ M.

Hence U1 ≤ M follows. We have shown:

(∗) E := 〈θ(CG(Ω(Z(T )))), θ(NG(J(T )))〉 ≤ M.

In particular θ(NG(T )) ≤ M and thus

T ∈ Sylq U.

If U is Thompson factorizable, then

U = Oq′(U) NU (J(T )) CU (Ω(Z(T ))) = Oq′(U)(U ∩ M),

which contradicts the choice of U . Hence U has property (4a). Now 9.3.10
(a) on page 247 and (cp) give

U = Oq′(U)〈E ∩ U, CU (A)〉 (∗)
= Oq′(U)〈M ∩ U, CU (A)〉.

It follows that CU (A) = CA ∩ U �≤ M , and this is (4b). �

(5) There exist elementary Abelian subgroups of order 9 and 8 in CA.

Proof. Let U := θ(NG(Q)) be as in (4). We apply 9.3.10 (b) to U/Oq′(U).
Because of (cp) there exist subgroups W ≤ D ≤ CA such that

W ∼= Cq × Cq and D/CD(W ) ∼= SL2(q).

Let q = 3. Then W has the desired property. Moreover, there exists an
element of order 6 in CA/O2′(CA) since D/CD(W ) ∼= SL2(3) contains such
an element (see 8.6.10 on page 219 and note that O2′(SL2(3)) = 1).

Now let q = 2 and CA := CA/O2′(CA). Then every 3-element d ∈ D \
CD(W ) acts fixed-point-freely on W . Hence, CA satisfies the hypothesis of
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8.5.6 on page 209, and CA also contains an elementary Abelian subgroup
of order 8. �

In the following B denotes the set of all maximal subgroups of A,6 and B
always denotes an element of B. For q ∈ π(θ) we set

K := θq′(G),

K∨(B) := 〈Oq′(Ca) | a ∈ B#〉, B ∈ B,

K∧(B) :=
⋂

a∈B#
Oq′(Ca), B ∈ B,

KB := 〈K∧(B) | B ∈ B〉.
All four subgroups are CA-invariant, so they are in K. In addition

K∧(B1) ≤ Oq′(Ca) ≤ K∨(B) for all B, B1 ∈ B and a ∈ (B ∩ B1)#.

In particular
K∧(B) ≤ KB ≤ K∨(B) for all B ∈ B.

(6) (6a) KB ∩ H ≤ Oq′(H) for all H ∈ |/|.

(6b) If H ∈ |/| such that H ∩ Ca ≤ Oq′(Ca) for all a ∈ A#, then
H ≤ KB.

(6c) If F ≤ CA is a noncyclic Abelian q-subgroup, then

KB = 〈 Oq′(θ(CG(f))) | f ∈ F# 〉.

In particular θ(CG(F )) ≤ NG(KB).

Proof. (a) Note that K∨(B)∩H is an H ∩CB-invariant q′-subgroup of H.
Since KB ∩H ≤ K∨(B)∩H we get that [KB ∩H,H ∩CB] is a q′-subgroup
for every B ∈ B. Hence (a) follows from 11.3.1.

(b) We have

H ∩ CB = CH(B) =
⋂

a∈B#
(H ∩ Ca) ≤ K∧(B),

so H = 〈H ∩ CB | B ∈ B〉 ≤ KB.

6This is different from the notation of the the previous section.
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(c) Let f ∈ F �. Then 〈f〉 is A-invariant and thus 〈f〉 ∈ |/|. Set Cf :=
θ(CG(f)). Since KB is a CA -invariant q′-subgroup

KB = 〈KB ∩ Cf | f ∈ F �〉
(a)
≤ 〈Oq′(Cf ) | f ∈ F �〉.

Conversely, for a ∈ A� 8.2.12 gives

Ca ∩ Oq′(Cf ) ≤ Oq′(CCa(f)) ≤ Oq′(Ca),

and this implies (c). �

(7) KB = 1 for all q ∈ π(θ).

Proof. Assume that KB �= 1 and set

N := θ(NG(KB)).

Then CA ≤ N , and (3) and (4b) imply

(′) S �≤ N for all S ∈ |/|∗
q .

By (5) there exists E ≤ CA (≤ N) such that

E ∼=
{

Cq × Cq for q = 3
Cq × Cq × Cq for q = 2.

Let Q be an A-invariant Sylow q-subgroup of N with E ≤ Q ≤ N .

First we show that the statement

(′′) Every Q-invariant q′-subgroup of |/|q′ is contained in in KB.

does not hold.

For doing this let Q1 be an A-invariant Sylow q-subgroup of θ(NG(Q)).
Then K0 := 〈KQ1∩CB

B 〉 is Q-invariant. On the other hand,

KB ≤ K∨(B) ≤ K and Q1 ∩ CB ≤ CB ≤ θ(NG(K∨(B)));

so K0 is a Q-invariant q′-subgroup in |/|.
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Assume now that (′′) holds. Then K0 = KB and thus Q1 ∩ CB ≤ N . It
follows that

Q1 = 〈Q1 ∩ CB | B ∈ B〉 ≤ N,

and Q = Q1 since Q ≤ Q1. This shows that Q ∈ |/|∗
q , which contradicts (′).

To derive a contradiction it suffices now to verify (′′). Let U �= 1 be a
Q-invariant subgroup in |/|q′ . First assume that q = 2, so |E| = 8. Then

U
(cp)
= 〈CU (F ) | F ≤ E, |F | = 4〉

(6c)
≤ N,

and thus even U ≤ Oq′(N) since Q ∈Sylq N (see 6.4.4 on page 134).

Let F ≤ E with |F | = 4. Then

CU (F ) ≤ Oq′(N) ∩ θ(NG(F )) ≤ Oq′(θ(CG(F ))),

and 8.2.12 implies for all f ∈ F �

CU (F ) ≤ Oq′(θ(CG(F ))) ≤ Oq′(θ(CG(f)))
(6c)
≤ KB.

It follows that

U = 〈CU (F ) | F ≤ E, |F | = 4〉 ≤ KB,

and (′′) holds if q = 2.

Assume now that q = 3, so |E| = 9 and E ≤ CA ≤ Ca for every a ∈ A�.
Let S0 be an A-invariant Sylow q-subgroup of CCa(E). Then E ≤ Z(S0)
and thus

(z) Z(S0) ∈ Sylq CCa(S0).

Moreover, (6c) implies that S0 ≤ N . Hence, there exists d ∈ CA such that
S0 ≤ Qd and thus

S0 ≤ Ca ∩ Qd = (Ca ∩ Q)d.

The q′-group T := (U ∩ Ca)d ≤ Ca is normalized by the q-group S0 . Let

Ca := Ca/Oq′(Ca) and X := Oq(Ca).

The semidirect product S0T acts on the q-group X, and

CX(S0)
(cp)
= CX(S0)

(z)
≤ Z(S0) ∩ X and [Z(S0) ∩ X, T ] ≤ X ∩ T = 1.

Now 8.5.3 on page 205 shows that [X, T ] = 1. It follows that T ≤ Oq′(Ca)
and thus U ∩ Ca ≤ Oq′(Ca) since d ∈ Ca. Now (6b) (with H = U) implies
(′′). �
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(8) Let M ∈ |/|∗ with CA ≤ M . Then F (M) = Oq(M) for some q ∈
π(θ).

Proof. Let M be a counterexample, so O2(M) �= 1 �= O3(M) by (2).
Moreover, let E ≤ CA be an elementary Abelian q-subgroup as in (5),
so r(E) ≥ 2. Then COq(M)(E) �= 1, and there exists e ∈ E# such that
Oq′(M) ∩ θ(CG(e)) �= 1. It follows that

CO2(M)(e) �= 1 �= CO3(M)(e).

Hence, by 11.2.2 M is the unique subgroup in |/|∗ that contains CF (M)(e).
In particular θ(CG(e)) ≤ M . This shows that

Oq′(M) ∩ θ(CG(e)) ≤ Oq′(θ(CG(e)))
(6c)
≤ KB

(7)
= 1,

a contradiction. �

We now derive a final contradiction that shows that (G, A, θ) is not a coun-
terexample. Let S ∈ |/|∗2. There exists B ∈ B such that

ZB := Z(S) ∩ CB �= 1.

On the other hand, by (7) KB = 1 for q = 3. Hence, there exists b ∈ B#

with
ZB �≤ O3′(Cb) = O2(Cb).

Let M ∈ |/|∗ such that Cb ≤ M . Then also CA ≤ M , and 11.1.9 implies
that S ∩ M ∈Syl2 M . In particular

O2(M) ≤ S and [O2(M), ZB] = 1.

But ZB �≤ O2(M) since O2(M) ∩ Cb ≤ O2(Cb), so (8) and 6.4.4 on page
134 give

F (M) = O3(M) and [O3(M), ZB] �= 1.

Since O3(M) = 〈C
B̃

∩ O3(M) | B̃ ∈ B〉 there exists B̃ ∈ B such that

O3(M) ∩ C
B̃

�≤ CG(ZB).

Hence

(+) [C
B̃

, ZB] is not a 2-group.
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With the same argument for T ∈ |/|∗3 there exist subgroups D, D̃ ∈ B such
that Z(T ) ∩ CD �= 1 and

(++) [C
D̃

, Z(T ) ∩ CD] is not a 3-group.

We now use the fact that r(A) ≥ 3. Then B̃ ∩ D̃ �= 1, so there exists
1 �= w ∈ B̃ ∩ D̃. Let

Cw ≤ H ∈ |/|∗.

According to (8) either F (H) = O2(H) or F (H) = O3(H), and 11.1.9 (a)
shows that

S ∩ H ∈ Syl2 H and T ∩ H ∈ Syl3 H.

Assume that F (H) = O2(H). Then O2(H) ≤ S, and thus

ZB ≤ CH(O2(H))
6.4.4
≤ O2(H).

Hence [C
B̃

, ZB] is a 2-group since C
B̃

≤ H. This contradicts (+).

If F (H) = O3(H), then an analogous argument with T in place of S shows
that [C

D̃
, Z(T ) ∩ CD] is not a 3-group. This contradicts (++). �

We will use the Completeness Theorem in the next chapter. Here we give
an elementary consequence:

11.3.3 Let A be an elementary Abelian p-group with r(A) ≥ 3 that acts
on the p′-group G. Suppose that

CG(a) is solvable for all a ∈ A#.

Then G is solvable.

Proof. Define
θ(CG(a)) := CG(a), a ∈ A#.

By 11.1.1 θ is a solvable A-signalizer functor on G, and this signalizer
functor is complete by the above Completeness Theorem of Glauberman.
Now 8.3.4 on page 193 implies that G is the maximal element of |/|θ(A). In
particular, G is solvable. �



This page intentionally left blank 



Chapter 12

N -Groups

In this chapter we will demonstrate how to use the methods and results es-
tablished in the previous chapters. Our target is to investigate the structure
of N -groups. Here an N -group is a group G that satisfies:

N G has even order, and every 2-local subgroup of G is solvable.

This definition differs slightly from that used in the literature, where an
N -group G satisfies N not only for 2 but for every prime in p ∈ π(G); i.e.,
every local subgroup of G is solvable. All nonsolvable groups satisfying this
stronger condition have been classified by Thompson [94]. Later his result
was generalized by Gorenstein and Lyons [61], Janko [73], and F. Smith [83]
to groups that satisfy N . In the 1970s Thompson’s proof became a pattern
for the classification of the finite simple groups.

A complete treatment of N -groups would be far beyond the reach of this
book. Therefore, in this chapter we will assume the following additional
hypothesis:

Z CG(Ω(Z(S))) ≤ NG(S) for S ∈ Syl2 G.

A group satisfying Z and N is said to be a ZN -group.

Property Z implies that CG(Ω(Z(S))) and thus also NG(Ω(Z(S))) is 2-
closed. Hence, Z is equivalent to

NG(Ω(Z(S))) ≤ NG(S) for S ∈ Syl2 G.

For example, simple N -groups in which the normalizer of a Sylow 2-subgroup
is a maximal subgroup have this property.

335
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The investigation of ZN -groups shows the pattern of proof that is typical
for many classification problems:

• Reduction to groups of local characteristic 2.

• Determination of the 2-local structure.

• Identification of the groups by means of their 2-local structure.

We will carry out the first two steps for ZN -groups. For the identification
we will refer to the corresponding literature.

In this chapter a strongly 2-embedded subgroup of G (for the definition see
page 262) will be called strongly embedded in G.

A group G has local characteristic 2 if G has even order and

L CL(O2(L)) ≤ O2(L) for all 2-local subgroups L of G.

In other words, a group of even order has local characteristic 2 if ev-
ery 2-local subgroup has characteristic 2. Note further that the condition
CL(O2(L)) ≤ O2(L) implies the apparently stronger condition

CG(O2(L)) ≤ O2(L)

since L = NG(Q) for some nontrivial 2-subgroup Q ≤ O2(L) and

CG(O2(L)) ≤ CG(Q)) ≤ L.

If G is an N -group of even order, then by 6.4.4 (a) on page 134 L is
equivalent to:

O2′(L) = 1 for all 2-local subgroups L of G.

In this chapter we prove:

Theorem 1. Let G be an ZN -group with O2′(G) = 1 = O2(G), and let
S ∈ Syl2 G and Z := Ω(Z(S)). Then one of the following holds for

H := O2(G) and R := S ∩ H.

(a) H contains a strongly embedded subgroup.
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(b) R is a dihedral or semidihedral group.

(c) Z ∩ R ∼= C2 and Z ∩ R is weakly closed in R with respect to H.

(d) Ω(R) = Z ∼= C2 × C2.

In all four cases of Theorem 1 other theorems are available that allow to
determine the groups in question:

• The theorem of Bender about groups having a strongly embedded
subgroup.

• The theorem of Gorenstein-Walter about groups having dihedral Sy-
low 2-subgroups.

• The theorem of Alperin-Brauer-Gorenstein about groups having semi-
dihedral Sylow 2-subgroups,

• The Z∗-Theorem of Glauberman (in case (c)).

• The theorem of Goldschmidt about groups having a strongly closed
Abelian 2-subgroup (in case (d)).

We will state these results in the Appendix since they are not only of use
in our special situation but fundamental for the classification of the finite
simple groups in general.

The first step in the proof of Theorem 1 (Section 12.1) describes those groups
that are not of local characteristic 2. This can be done using a slightly weaker
hypothesis:

C G has even order, and CG(t) is solvable for every involution t ∈ G.

A group satisfying Z and C is said to be a ZC-group. Using the Complete-
ness Theorem of Glauberman we prove in Section 12.1:

Theorem 2. Let G be a ZC-group with O2′(G) = 1 = O2(G). Then one of
the cases (a), (c), and (d) in Theorem 1 holds, or O2(G)Ω(Z(S)) has local
characteristic 2.

The second part of the proof of Theorem 1 (Sections 12.2 and 12.3) investi-
gates the 2-local structure of groups of local characteristic 2. After a lengthy
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analysis of the 2-local structure that mainly uses theorems from Chapters 9
and 10, one ends up with an astonishingly elementary structure:

Theorem 3. Let G be an ZN -group of local characteristic 2 with O2(G) =
1. Then G possesses a strongly embedded subgroup, or there exist two max-
imal 2-local subgroups M1 and M2 of O2(G) such that

(∗) M1 ∼= S4 ∼= M2 and M1 ∩ M2 ∈ Syl2 Mi, i = 1, 2.

It should be pointed out that strongly embedded subgroups show up in The-
orem 2 as well as in Theorem 3. This is typical for the impact of strongly
embedded subgroups in classification problems, and it demonstrates the fun-
damental importance of the theorem of Bender. In Theorem 2 strongly em-
bedded subgroups occur as normalizers of nontrivial subgroups of odd order,
in Theorem 3 as normalizers of nontrivial 2-subgroups.

Finally an elementary argument shows that (∗) of Theorem 3 implies case
(b) of Theorem 1, which concludes the proof of Theorem 1.

12.1 An Application of the Completeness
Theorem

In this section we investigate the relation between the existence of nontrivial
signalizer functors and the existence of strongly embedded subgroups.

Before we turn to the proof of Theorem 2 we formulate two independent
Lemmata.

12.1.1 Thompson’s Transfer Lemma. Let G be a group and S ∈
Syl2 G. Suppose that there exists a maximal subgroup U ≤ S and an invo-
lution t ∈ S such that tG ∩ U = ∅. Then t is not contained in O2(G).

Proof. The group G acts by right multiplication on the set Ω of cosets Ug,
g ∈ G. Let n := |Ω| = |G : U | and ϕ be the homomorphism from G to Sn

that describes this action of G on Ω. Then

n = 2|G : S| and |G : S| is odd.

For Ug ∈ Ω
(Ug)t = Ug ⇐⇒ gtg−1 ∈ U.



12.1. An Application of the Completeness Theorem 339

The hypothesis U ∩ tG = ∅ shows that the involution tϕ ∈ Sn has no
fixed point on {1, . . . , n}, so tϕ is the product of n

2 transpositions. As
n
2 = |G : S| is odd, tϕ is not in An and thus t is not in N := Aϕ−1

n . In
addition, |Sn/An| = 2 implies |G/N | = 2, so O2(G) ≤ N and t �∈ O2(G).

�

12.1.2 Let G be a group satisfying C. Suppose that O2′(CG(t)) = 1 for
every involution t ∈ G. Then G is of local characteristic 2.

Proof. By way of contradiction we may assume that there exists a 2-local
subgroup L ≤ G such that

CL(O2(L)) �≤ O2(L).

Then 6.5.8 on page 144 implies that

F ∗(L) �= O2(L).

Let t be an involution in Z(O2(L)), so F ∗(L) ≤ CG(t). By our hypothesis
CG(t) is solvable. Thus F ∗(L) = F (L) and

O2′(L) �= 1.

An application of 8.2.13 on page 190, with

(2, L, CG(t), O2′(L)) in place of (p, NG(P ), L, U),

gives 1 �= O2′(L) ≤ O2′(CG(t)), a contradiction. �

We now begin with the proof of Theorem 2 and consider the following situ-
ation:

G is a ZC-group with O2(G) = 1 = O2′(G),

S H := O2(G),

S ∈Syl2 G, Z := Ω(Z(S)) and T := S ∩ H ∈Syl2 H .
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Let B(G) be the set of maximal1 Abelian 2-subgroups of G that contain
an elementary Abelian subgroup of order 8. Recall from 11.1.1 on page 305
that for B ∈ B

θB : a �→ O2′(CG(a)), a ∈ Ω(B)�,

is a solvable Ω(B)-signalizer functor on G. The Completeness Theorem of
Glauberman (11.3.2 on page 326) shows that θB is complete. We denote the
maximal element of |/|θB

(Ω(B)) by θB(G). It is evident from the definition
of a signalizer functor that for R := θB(G):

CR(a) = O2′(CG(a)) for a ∈ B�;

CR(B0) = O2′(CG(B0)) for 1 �= B0 ≤ B;

R = 〈O2′(CG(a)) | a ∈ B#〉;

Rg = θBg(G) for every g ∈ G, and in particular NG(B) ≤ NG(R).

12.1.3 Suppose that S holds. Let B ∈ B(G) and R be a B-invariant
2′-subgroup of G. Then

R ≤ θB(G).

Proof. From 11.3.3 on page 333 we get that R is solvable. Hence, according
to the definition of θB(G), it suffices to show that

CR(b) ≤ O2′(CG(b)) for every b ∈ B�.

Let b ∈ B� and X := CR(b). After suitable conjugation we may assume
that

(1) B ≤ CG(b) ∩ S ∈ Syl2 CG(b).

Since B ∈ B(G) we have

(2) Z ≤ CS(B) = B.

This shows that RZ = R; so

(3) X
8.2.7= CX(Z) [X,Z],

1With respect to inclusion.
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and
[X,Z]

6.4.4
≤ R ∩ O2′2(CG(b)) ≤ O2′(CG(b)).

Thus, it remains to prove that Q := CX(Z) ≤ O2′2(CG(b)). Property Z
implies that SQ = S. This gives QB = Q×B since Q is B-invariant. Now
the P × Q-Lemma and (2) show that

[S, Q] = 1.

In particular [Q,S ∩ CG(b)] = 1. Hence 6.4.4 (b) on page 134 yields Q ≤
O2′(CG(b)), and we are done. �

12.1.4 Suppose that S holds. Let A, B ∈ B(G) such that A, B ≤ S.
Then θA(G) = θB(G). In particular NG(S) ≤ NG(θB(G)) for all B ∈
B(G) with B ≤ S.

Proof. Let R := θB(G) and M := NG(R). Then

B ≤ S ∩ M =: S0,

and thus also B ≤ S0 ≤ NG(Rx) for x ∈ NS(S0). Now 12.1.3 gives R = Rx

and x ∈ M ∩ S = S0. Hence NS(S0) = S0 and thus S = S0 ≤ M . In
particular A ≤ M , and again by 12.1.3

R = θB(G) ≤ θA(G).

A symmetric argument, with the roles of A and B reversed, gives θA(G) ≤
θB(G) and thus θA(G) = θB(G).

As NG(S) acts on B(S), we also get

θBg(G) = θB(G)g = θB(G) for g ∈ NG(S). �

12.1.5 Suppose that S holds. Then one of the following holds:

(a) Every involution of TZ is contained in an element of B(G).

(b) Z ∼= C2, and all involutions of H are H-conjugates of the involution
in Z.

(c) Ω(T ) = Z ∼= C2 × C2.
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(d) Z ∩ T ∼= C2, and Z ∩ T is weakly closed in T with respect to H.

Proof. Let N (S) be the set of nontrivial elementary Abelian normal sub-
groups of S. Suppose that there exists X ∈ N (S) such that r(X) ≥ 3.
Then

r(CX(t)) ≥ 2

for every involution t of S, since t acts quadratically on X (Example (b) on
page 225 and 9.1.1 (b)). Hence |CX(t)〈t〉| ≥ 8, and CX(t)〈t〉 is contained
in an element of B(G). This is (a). Thus we may assume:

(1) r(X) ≤ 2 for all X ∈ N (S).

Suppose that r(X) = 1 for all X ∈ N (S). Then 5.3.9 on page 116 shows
that S contains a cyclic maximal subgroup. Hence, also T contains a cyclic
maximal subgroup U . Moreover Z ≤ U if U �= 1, since r(Z) = 1. Now
(b) follows with Thompson’s Transfer Lemma (12.1.1) applied to H and T .
Thus we may assume:

(2) There exists V ∈ N (S) such that V ∼= C2 × C2.

Let S0 := CS(V ). Then S0 is a subgroup of index at most 2 in S. Suppose
that V < Ω(S0). Then every involution of S0 is contained in an element of
B ∈ B(G). If V = Z, then S = S0 and (a) follows. In the other case

V �= Z, |Z| = |S/S0| = 2,

and Z ≤ T since T is normal in S. Now 12.1.1 shows that every involution
in T \ S0 is conjugate to an involution in S0. Thus, again (a) holds. Hence
we may assume:

(3) V = Ω(S0), and in particular Z ≤ V .

Suppose that there exists B ∈ B(G) such that B ≤ S. Then by (2) and (3)
B �≤ S0 and V ≤ B ∩ S0. But now B ≤ CS(V ) = S0, a contradiction. We
have shown:

(4) B(G) = ∅.
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Suppose that Z �∼= C2, so Z = V and S0 = S. Set Z0 := Z ∩ T . If Z ≤ T ,
then (3) implies (c). In the other case Z0 = Ω(T ) ∼= C2, and (d) holds.
Since Z0 �= 1 we may assume now:

(5) Z ∼= C2 and Z ≤ T .

In particular, we have Z < V and thus

|S : S0| = 2.

From now on we assume that (d) does not hold. Then there exists g ∈ H
such that Z �= Zg ≤ S. Let

W := ZZg (∼= C2 × C2), M := NG(W ), and D := S ∩ Sg.

By Hypothesis Z

CG(W ) = NG(S) ∩ NG(Sg) and CS(W ) = D.

Moreover (4) yields

(6) W = Ω(D).

Since D �= S also D < NS(W ) and D < NSg(W ). Hence M/CG(W ) is
not 2-closed. It follows that

M/CM (W ) ∼= S3 and (S ∩ M)/D ∼= C2.

In particular, all involutions in W are conjugate under O2(M).

Suppose first that S ≤ M . Then D is a maximal subgroup of S, and by
12.1.1 every involution of T is conjugate in H to an involution of D ∩ T .
But by (6) this latter involution is in W ∩T and thus an O2(M)-conjugate
of the involution in Z. This implies (b) since O2(M) ≤ H.

Suppose now that S �≤ M . Then there exists x ∈ NS(S ∩ M) such that
W x �= W . Thus |(S ∩ M) : D| = 2 and (6) imply

S ∩ M = W xD = WDx and D = W (D ∩ Dx).

It follows that
Φ(D) = Φ(D ∩ Dx).
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Assume that Φ(D) �= 1. Then W ∩Φ(D) �= 1, and W ∩Φ(D) is M -invariant
since D = O2(M). The transitive action of M on W# gives

W ≤ Φ(D) = Φ(D ∩ Dx) ≤ Dx,

which contradicts Ω(Dx) = W x �= W .

We have shown that Φ(D) = 1 and thus D = W . On the other hand,

[V, W ] ≤ Z ≤ W,

since |V/Z| = 2 and V � S. Hence

V ≤ S ∩ M = WW x.

As WW x is non-Abelian of order 8, it is a dihedral group of order 8 with
W and W x being the only two elementary Abelian subgroups of order 4. It
follows that either V = W or V = W x. Since x is in S both cases yield
V = W = W x, a contradiction. �

12.1.6 Suppose that S and one of the cases (a) and (b) in 12.1.5 hold.
Then H possesses a strongly embedded subgroup, or HZ has local charac-
teristic 2.

Proof. We may assume that HZ does not have local characteristic 2. Then
by 12.1.2 there exists an involution t ∈ HZ such that O2′(CHZ(t)) �= 1, so
also

O2′(CG(t)) �= 1.

Suppose first that case (b) of 12.1.5 holds. Then t is conjugate to the
involution z ∈ Z, and CG(z) = NG(S) since Z holds and |Z| = 2. It
follows that

R := O2′(NG(S)) = O2′(CG(z)) �= 1.

Let M := NH(R). Then M �= H since O2′(G) = 1. We want to show that
M is strongly embedded in H.

Assume that there exists g ∈ H \ M such that M ∩ Mg has even order.
Then M ∩ Mg contains an involution v, and after suitable conjugation in
M we may assume that

v ∈ S ∩ Sg.
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Since [R,S] = 1 we get

[R, v] = 1 = [Rg, v],

so 〈R,Rg〉 ≤ CG(v). As R = O2′(CG(z)) and 〈Zg, Z〉 ≤ CG(v) we can
apply 8.2.13 on page 190 to CG(v) and get

〈R,Rg〉 ≤ O2′(CG(v))
(b)
= O2′(NG(Sy)) = Ry for some y ∈ G.

Hence R = Rg and g ∈ M . This contradiction shows that M is strongly
embedded in H.

Suppose now that case (a) of 12.1.5 holds. Then there exists B ∈ B(G)
such that t ∈ B. As CG(t) is solvable, we get

(1) 1 �= O2′(CG(t)) ≤ θB(G).

We now set
R := θB(G) and M := NG(R)

and show that M ∩ H is strongly embedded in H.

As above O2′(G) = 1 shows that M ∩H �= H. According to 12.1.4 we may
assume, after suitable conjugation, that

(2) B ≤ S ≤ NG(S) ≤ M.

Let g ∈ G \ M . If there exists A ∈ B(G) such that A ≤ M ∩ M g, then
again by 12.1.3 and 12.1.4 R = Rg and g ∈ M . Thus, we have:

(3) A �≤ M ∩Mg for all A ∈ B(G) and g ∈ G\M . In particular, M ∩Mg

does not contain a Sylow 2-subgroup of G.

Next we show:

(4) Z �≤ M ∩ M g for all g ∈ G \ M .

Assume that (4) is false. Then there exists g ∈ G \ M such that

Z ≤ M ∩ M g =: D.

By (2) S ∈Syl2 M , so

Z ≤ Sgh for some h ∈ Mg.
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In particular [Z,Zgh] = 1, and by Z and (2) ZZgh ≤ D and Z �= Zgh.
Since also gh ∈ G \ M we may assume that

ZZg ≤ S ∩ Sg ≤ D.

Let
W := ZZg,

so r(W ) ≥ 2 since Z �= Zg. If r(W ) ≥ 3, then there exists A ∈ B(G) with
W ≤ A. But then Z implies A ≤ S ∩ Sg ≤ D, which contradicts (3). Thus,
we have

W ∼= C2 × C2 and |Z| = 2.

Now, as in the proof of 12.1.5, (2) yields

NG(W )/CG(W ) ∼= S3.

In particular, all elements of W# are conjugate. Hence Z implies for a ∈
W �

CG(a) = NG(Sy) for some y ∈ G.

Since RW = R and W ≤ Sy we get

[CR(a), W ] ≤ R ∩ Sy = 1 for all a ∈ W �.

Now 8.3.4 on page 193 shows that

R ≤ CR(W )
Z
≤ O2′(CG(Z)) ∩ CG(Zg).

Another application of 8.2.13 yields

R ≤ O2′(CG(Zg))
12.1.4
≤ Rg

and thus R = Rg and g ∈ M , a contradiction. Hence (4) is proved.

To derive a final contradiction we now assume that M ∩ H is not strongly
embedded in H. Then there exists g ∈ H \ M such that H ∩ M ∩ Mg has
even order. Note first that by the Frattini argument M = NG(M) since
NG(S) ≤ M , so M �= Mg. Let

Q ∈ Syl2 H ∩ M ∩ Mg and D := S ∩ Sg.

After conjugation in M we may assume that Q ≤ D. By (2) and (3) there
exists a 2-element y of Mg \D such that Qy = Q, and by 8.1.4 on page 177
there exists an involution w ∈ Z(Q) such that wy = w. Hence
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(5) C := CG(w) �≤ M .

There exists x ∈ G such that

S ∩ C ≤ Sx ∩ C ∈ Syl2 C.

Since Z ≤ S ∩ C and Sx ∩ C ≤ Mx, (4) implies that x ∈ M . Thus, after
conjugation in M , we may assume that

S ∩ C ∈ Syl2 C.

As we are in case (a) of 12.1.5, there exists A ∈ B(G) with A ≤ S ∩ C.
Now 12.1.3 and 12.1.4 imply O2′(C) ≤ R, so O2′(C)(S ∩C) ≤ M . But then
6.4.4 on page 134 shows that

Z ≤ O2′2(C) ≤ C ∩ M.

Hence, Z is in Mx for all x ∈ C, and (4) yields C ≤ M . This contradicts
(5). �

The cases (c), (d) in 12.1.5 correspond to the cases (c), (d) of Theorem 1;
and the cases (a), (b) have been treated in 12.1.6. Hence, Theorem 2 is
proved.

12.2 J(T )-Components

In this section G is a ZN -group of local characteristic 2, and T is a non-
trivial 2-subgroup of G.

By J(X) we denote the Thompson subgroup of the group X with respect
to the prime 2. Let L(T ) be the set of subgroups L ≤ G satisfying:

T ∈ Syl2 L, J(T ) �≤ O2(L), and CG(O2(L)) ≤ O2(L).

The last condition implies that O2′(L) = 1 and

Z(S) ≤ Z(T ) ≤ Z(O2(L)) for T ≤ S ∈ Syl2 G.

In particular L is a ZN -group.

For L ∈ L(T ) we use the following notation:

V := 〈Ω(Z(T ))L〉 (≤ Ω(Z(O2(L)))),
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C := CL(V ),

L := L/C and L̃ := L/O2(L).2

12.2.1 Let L be a 2-local subgroup of G and T ∈ Syl2 L.

L ∈ L(T ) ⇐⇒ J(T ) �≤ O2(L).

Proof. As mentioned on page 336 L satisfies

CG(O2(L)) ≤ O2(L)

since G is of local characteristic 2. �

12.2.2 Let L ∈ L(T ).

(a) C̃ = O2′(C̃) and C̃T̃ = C̃ × T̃ .

(b) J(T ) �≤ C.

Proof. (b) follows from (a) since J(T ) �≤ O2(L). Let T ≤ S ∈ Syl2 G. As
mentioned earlier

Z := Ω(Z(S)) ≤ Ω(Z(T )) ≤ V.

Now Z implies

C ≤ CG(Z) ∩ L ≤ NL(S) ≤ NL(T ).

Hence C is 2-closed, and (a) follows. �

According to 12.2.2 (b) and 9.2.12 on page 238 L ∈ L(T ) is not Thompson
factorizable, so we are allowed to apply the results of Section 9.3. From
9.3.8 we get:

12.2.3 Let L ∈ L(T ). Then there exist subgroups E1, . . . , Er of L such
that the following hold:

2We will use the bar and tilde convention.
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(a) C ≤ Ei �� L,

(b) {E1, . . . , Er}L = {E1, . . . , Er},

(c) J(L) = E1 × · · · × Er,

(d) V = [V, E1] × · · · × [V, Er] × CV (J(L)),

(e) [V, Ei] ∼= C2 × C2 and Ei
∼= SL2(2) for i = 1, . . . , r. �

Next we introduce the notion of a J(T )-component. It can be seen as an
attempt to describe the structure of the groups Ei of 12.2.3 independent
of the particular choice of L ∈ L(T ). This then allows us to investigate
the embeddings of such J(T )-components into different elements of L(T ).
The ultimate goal (in Section 12.3) will be to show that a suitably chosen
J(T )-component is contained in a unique maximal 2-local subgroup of G.

A subgroup K ≤ G is a J(T )-component if the following hold:

K1 K = O2(K) = [K, J(T )] and K/O2(K) ∼= C3,

K2 J(T ) = J(T̂ ) for J(T ) ≤ T̂ ∈Syl2(KJ(T )),

K3 WK
∼= C2 × C2 for WK := [Ω(Z(O2(K))), K].

The set of J(T )-components of G we denote by K(T ). For L ≤ G

KL(T ) := {K ∈ K(T ) | K ≤ L},

K0(T ) := {K ∈ K(T ) | J(T ) = J(T0) for T ≤ T0 ∈ Syl2 NG(WK)}.

The first observation is elementary but useful:

12.2.4 Let K ∈ K(T ) and Q be a subgroup of G satisfying

KJ(T ) ≤ NG(Q) and Q ≤ NG(J(T )).

Then Q ≤ NG(K).

Proof. By our hypothesis

〈J(T )QK〉 = 〈J(T )K〉 K1= KJ(T ),

so Q normalizes KJ(T ) and thus, again by K1, also O2(KJ(T )) = K. �
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12.2.5 Let L ∈ L(T ) and Ω := { E1, ..., Er} be the set of subnormal
subgroups of L given in 12.2.3. Then there exists a bijection

ρ : KL(T ) → Ω such that K = O2([O2(Kρ), J(T )])

for K ∈ KL(T ). Moreover

K �� L and WK = [V, Kρ].

Proof. Let K ∈ KL(T ). By 12.2.2 (a) C normalizes T and thus also J(T ).
Hence 12.2.4 (with Q := C) gives

(1) K � KC.

In particular K � KO2(L) and

K
K1= [K, J(T )] ≤ [KC, J(T )] ≤ K[C, J(T )]

12.2.2
≤ KO2(L).

Now K1 implies

(2) K = O2([KC, J(T )]).

Again by K1

(3) K ≤ O2(E1) × · · · × O2(Er),

so O2(K) = 1 and

O2(K) ≤ C ∩ O2(K)
(1)
≤ O2(C) ≤ O2(L).

Now K1 and 12.2.2 (a) give

(4) K ∼= C3 and [V, K] = [V, K, K] = WK
∼= C2 × C2.

Hence, by 12.2.3 there exists exactly one i ∈ {1, . . . , r} such that the pro-
jection of K on Ei is nontrivial, so

(5) KC = O2(Ei)C.

This shows that there exists a mapping

ρ : KL(T ) → Ω such that K = O2(Kρ).
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Moreover, for Ei = Kρ we have

K
(2)
= O2([KC, J(T )])

(5)
= O2([O2(Ei)C, J(T )])

12.2.2 (a)
≤

[O2(Ei), J(T )]O2(L).

As K = O2(K), this shows that K = O2([O2(Ei), J(T )]) = O2(Kρ, J(T )]).

By (1) and (5) K is subnormal in L, and by (4) [V, K] = WK . Thus, it
remains to show the bijectivity of ρ. The injectivity follows from (2).

For proving the surjectivity of ρ we fix E ∈ Ω and set

K0 := O2([O2(Ej)C, J(T )]) and W0 := [Ω(Z(O2(K0))), K0].

It suffices to show that K0 is a J(T )-component.

Clearly K0 satisfies K2 since T ∈Syl2 L. Set X := O2(E)C. By 12.2.2 X̃
is a 2′-group and

|X̃/C
X̃

(J(T ))| = 3.

Hence 8.4.4 on page 198 implies that

K̃0 = [X̃, J(T )] ∼= C3.

In addition, K0/[K0, J(T )] is a 2-group since K0 ≤ [K0, J(T )]O2(L). Thus,
the definition of K0 gives

K0 = O2(K0) = [K0, J(T )],

and K1 holds for K0.

It remains to show that K0 satisfies K3. Again by the definition of K0 we
have [V, K0] ≤ W0. Hence, it suffices to show that |W0| ≤ 4.

Among all A ∈ A(T ) satisfying [K0, A] �≤ O2(K0) we choose A such that
CA(W0) is maximal. There exists d ∈ K0 such that 〈A, Ad〉 contains a
Sylow 3-subgroup D of K0. By 8.4.2 on page 198, D acts fixed-point-freely
on W0 since K0 = DO2(K0). It follows that

(6) CW0(A) ∩ CW0(A
d) = 1 and W0 = [W0, A][W0, A

d].

Set A0 := CA([W0, A])[W0, A] and A1 := CA(K0/O2(K0)). Then |A/A1| =
2, and 9.2.3 on page 233 implies

(7) A0 ∈ A(T ) and [W0, A0] �= 1.
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As
CA(W0)[W0, A] ≤ CA0(W0)

the maximality of |CW0(A)| yields either A0 ≤ A1 or A0 = A. In the first
case

Ad
0O2(K0) = A0O2(K0) ≤ CT ([W0, A]) ∩ CT ([W0, A

d]),

and (6) implies [W0, A0] = 1, which contradicts (7). In the second case the
same argument shows [W0, A1] = 1, and thus |A/CA(W0)| = 2. Now the
maximality of |A| gives CW0(A) = W0 ∩ A and

|A| ≥ |W0CA(W0)| = |CA(W0)||W0/CW0(A)|.

Thus
|W0/CW0(A)| = |W0/[W0, A]| = 2,

and |W0| ≤ 4 follows from (6). �

The next two results are consequences of 12.2.5:

12.2.6 Let L ∈ L(T ), K ∈ KL(T ), and Z(T ) ∩ WK �= 1. Then T ≤
NL(K).

Proof. By 12.2.5 there exists a subgroup Ei as in 12.2.3 such that

WK = [V, Ei] and K = O2([O2(Ei), J(T )]).

Since by 12.2.3 (b), (d)

[V, Ei] ∩ [V, Ex
i ] = 1 for x ∈ L \ NL(Ei).

The hypothesis Z(T ) ∩ WK �= 1 implies that T ≤ NL(Ei), and the claim
follows. �

12.2.7 Let K ∈ K0(T ). Then the following hold:

(a) NG(K) = NG(WK).

(b) K is a J(T g)-component for all g ∈ G with J(T g) ≤ NG(WK).
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Proof. (a) Let L := NG(WK) and T ≤ T0 ∈Syl2 L. Then J(T ) = J(T0)
by the definition of K0(T ), so K is also a J(T0)-component. It follows that
J(T0) �≤ O2(L), and by 12.2.1 L ∈ L(T0).

We apply 12.2.3 and 12.2.5 with the notation given there. Then there exists
E ∈ Ω with

K = O2([O2(E), J(T )]) and WK = [V, E].

Thus, by 12.2.3 (b) and (e)

E � L and J(L) = E.

On the other hand, the Frattini argument yields

L = NL(J(T ))J(L) = NL(J(T ))EC,

and by 12.2.2 C ≤ NL(J(T )). Now (a) follows.

(b) Let J(T g) ≤ NG(WK). Then J(T g) is a NG(WK)-conjugate of J(T ),
and (b) follows from (a). �

We are now able to prove the main result of this section.

12.2.8 Let K ≤ L ∈ L(T ) such that K �� 〈K, J(T )〉. Suppose that
K ∈ K0(T g) for some g ∈ G. Then K ∈ KL(T ), and in particular

K �� L.

Proof. If K ∈ KL(T ) then K �� L by 12.2.5, and if J(T ) ≤ NL(K) then
K ∈ KL(T ) by 12.2.7. Thus, we may assume now that

(∗) J(T ) �≤ NL(K) 12.2.7= NG(WK).

We will show that this leads to contradiction.

We fix some notation:

L0 := 〈K, J(T )〉, L∗ := L0O2(L), L1 := O2(L0)K,

and S ∈Syl2 G such that J(T ) ≤ S ∩ L∗ =: T ∗ ∈ Syl2 L∗. Further

Z := Ω(Z(S)), V ∗ := 〈Ω(Z(T ∗))L∗〉.
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(1) O2(L0) ≤ NG(K).

By our hypothesis K �� L1, so

K = O2(K) ≤ O2(L1) ≤ K.

This implies K = O2(L1), and (1) follows.

(2) Z ≤ Z(T ∗) and V ∗ ≤ Z(O2(L0)).

Note that
CS(O2(L)) ≤ O2(L) ≤ O2(L∗) ≤ T ∗

and
Ω(Z(T ∗)) ≤ J(T ∗) = J(T ) ≤ L0.

This implies Z ≤ Z(T ∗) and Ω(Z(T ∗)) ≤ Z(O2(L∗)) ∩ L0. Hence V ∗ ≤
Z(O2(L0)) follows since O2(L0) ≤ O2(L∗).

(3) WK = [Z,K] = [V ∗, K].

By (1) and (2) [V ∗, K] ≤ Z(O2(K)) since O2(K) ≤ O2(L0). The coprime
action of K on Z(O2(L0)) gives [V ∗, K] ≤ WK . As |WK | = 4 and Z ≤ V ∗

by (2), it suffices to show that [Z,K] �= 1.

Assume that [Z,K] = 1. Then

K ≤ CL(Z)
Z
≤ NL(S ∩ L) ≤ NL(J(T )),

and thus

J(T ) ≤ O2(L0)
(1)
≤ NG(K),

which contradicts (∗). Hence (3) is proved.

We now derive a final contradiction. As J(T ) = J(T ∗) and O2(L) ≤
O2(L∗) we get

CG(O2(L∗)) ≤ CG(O2(L)) ≤ O2(L) ≤ O2(L∗),

so L∗ ∈ L(T ∗). We apply 12.2.3 to L∗ and V ∗ (in place of L and V ).

Let Ei be one of the subnormal subgroups E1, ..., Er given there, and set
Wi := [V ∗, Ei]. According to (3) both subgroups Ei and K normalize
WKWi.
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On the other hand, by 12.2.3 (d) there are at most 2 L∗-conjugates of Wi in
WKWi since |WKWi| ≤ 24. Hence K = O2(K) implies that K ≤ NL∗(Wi)
and either WK = Wi or [Wi, K] = 1.

The first case contradicts (∗). Hence, we have that [Wi, K] = 1 for i =
1, ..., r. It follows with 12.2.3 d) that

[J(T ), V ∗, K] = 1 = [V ∗, K, J(T )],

and then with the Three-Subgroups Lemma [K, J(T )] ≤ C∗ := CL∗(V ∗).
By 12.2.2 C∗J(T ) is 2-closed, so K ≤ NG(J(T )). But this contradicts (3)
and (∗). �

The next result about the structure of J(T )-components will be used at the
end of the next section. It is independent of the other results of this section.

12.2.9 Let K ∈ K(T ) and Z0 := Ω(Z(J(T ))). Then

Z0 = (Z0 ∩ Z(KJ(T )))(Z0 ∩ WK) and |Z0 ∩ WK | = 2.

Proof. Set L := KJ(T ). By K2 we may assume that T ∈Syl2 L, and K1
yields

(1) L/O2(L) ∼= S3.

As J(T ) � T and |L : T | = 3, there are exactly three conjugates of J(T )
in L and thus

(2) L = 〈J(T ), J(T )d〉 for every d ∈ L \ T .

Set
V := 〈Ω(Z(T ))L〉 (≤ Z(O2(L))).

Then WK ∩ V �= 1 since WK � L , and WK ≤ V follows. The coprime
action of K on V shows that

(3) WK = [V, K, K] = [V, K] and CL(V ) = O2(L).
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Let A ∈ A(T ) such that A �≤ O2(L). Then (1) and (3) imply that

CA(V ) = A ∩ O2(L) and |A/CA(V )| = 2.

In particular |A| ≤ |V CA(V )|, and the maximality of A yields

|A| = |CA(V )V | = |(A ∩ O2(L))V |;

so

(4) A(O2(L)) ⊆ A(T ) and Z0 ≤ Z(J(O2(L))).

Now 9.3.9 on page 247 shows that [Z0, K] ≤ V and thus by (3) [Z0, K] ≤
WK . Set V0 := Z0WK and X := Z0 ∩Zd

0 , d as in (2). Since WK ∩Z(T ) �= 1
and |WK | = 4, we get that

|V0 : Z0| = |WK : (WK ∩ Z0)| ≤ 2 and |V0 : X| ≤ 4.

On the other hand, by (2) X ≤ Z(L) and Z(L) ∩ WK = 1, so

Z0 = X × (Z(T ) ∩ WK),

and the claim follows. �

12.3 N-Groups of Local Characteristic 2

In this section G is an ZN -group of local characteristic 2 with O2(G) = 1.
Moreover, S ∈Syl2 G, Z = Ω(Z(S)), and M is a 2-local subgroup of G
containing NG(J(S)).

As J(S) is characteristic in S, we have

CG(Z)
Z
≤ NG(S) ≤ NG(J(S)) ≤ M,

and the Frattini argument shows that NG(M) = M . Thus

M �= Mx for all x ∈ G \ M.

If M is not strongly embedded in G, then there exists x ∈ G \ M such
that M ∩ Mx has even order. This leads to the following notation:

T (M) is the set of nontrivial 2-subgroups T ≤ M satisfying:
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(+) There exists a 2-local subgroup L ≤ G such that T ≤ L and L �≤ M .

12.3.1 M is strongly embedded in G if and only if T (M) is empty.

Proof. By the definition of T (M) it is evident that M is strongly embedded
in G if T (M) = ∅.

Assume now that M is strongly embedded in G but T (M) �= ∅. Then

(′) NG(T ) ≤ M for every T ∈ T (M).

Choose T ∈ T (M) such that |T | is maximal, and let T ≤ L be as in (+);
so L �≤ M .

By (′)
NT0(T ) ≤ M ∩ L for T ≤ T0 ∈ Syl2 L,

and the maximality of T gives T = NT0(T ) = T0. In particular

O2(L) ≤ T0 ≤ M ∩ L.

Hence also O2(L) ∈ T (M), and (′) yields

L ≤ NG(O2(L)) ≤ M,

a contradiction. �

In view of J(T )-components introduced in the previous section we now
investigate subgroups T ∈ T (M) that are maximal with respect to their
Thompson subgroups. More precisely, let

a(T ) := |A|, A ∈ A(T ).

By T ∗(M) we denote the set of T0 ∈ T (M) that are maximal in the
following sense:

• If T ∈ T (M) then a(T ) ≤ a(T0).

• If T ∈ T (M) with a(T ) = a(T0) then |J(T )| ≤ |J(T0)|.

• If T ∈ T (M) with a(T ) = a(T0) and |J(T )| = |J(T0)| then |T | ≤
|T0|.
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12.3.2 NG(J(T )) ≤ M for every T ∈ T ∗(M).

Proof. After conjugation in M we may assume that T ≤ S. If T = S then
the choice of M gives yields NG(J(T )) ≤ M . If T < S then

T < NS(J(T )) ≤ M ∩ NG(J(T )),

and the maximality of T yields NS(J(T )) �∈ T (M); so NG(J(T )) ≤ M . �

12.3.3 Let T ∈ T ∗(M) and L be a 2-local subgroup of G such that
J(T ) ≤ T0 ∈ Syl2 L and L �≤ M . Then

J(T ) = J(T0), T0 ∈ T (M), and L ∈ L(T0).

Proof. By 12.3.2
T1 := NT0(J(T )) ≤ M ∩ L,

so the maximality of T yields J(T ) = J(T1) and thus J(T ) = J(T0). In
particular T0 ∈ T (M). Moreover, again by 12.3.2, J(T0) �≤ O2(L); and
L ∈ L(T0) follows from 12.2.1. �

Because of 12.3.3 we are now able to to use the results of Section 12.2.

12.3.4 Let L be a 2-local subgroup of G and T ∈ T ∗(M). Suppose
that T ≤ L �≤ M . Then L ∈ L(T ), and in particular T ∈ Syl2 L and
KL(T ) �= ∅.

Proof. Let T ≤ T0 ∈Syl2 L. Then 12.3.3 shows that T0 ∈ T (M) and
L ∈ L(T0). The maximality of T implies T0 = T . The remaining claim
follows from 12.2.5. �

We now use the set K0(T ) introduced on page 349. For T ∈ T ∗(M) let
KG\M (T ) be the set of K ∈ K0(T ) such that

K �≤ M and O2(〈K, T 〉) �= 1.



12.3. N -Groups of Local Characteristic 2 359

12.3.5 KG\M (T ) �= ∅ for all T ∈ T ∗(M).

Proof. Let T ∈ T ∗(M). By 12.3.4 there exists L ∈ L(T ) such that L �≤ M .
The Frattini argument gives

L = NL(J(T ))J(L),

so J(L) �≤ M by 12.3.2. Hence, by 12.2.3 and 12.2.5 there exists K ∈
KL(T ) such that K �≤ M .

It remains to prove that K ∈ K0(T ). Let L̂ := NG(WK) and J(T ) ≤ T0 ≤
Syl2 L̂. Then L̂ �≤ M since K ≤ L but K �≤ M . Hence 12.3.3 implies that
J(T ) = J(T0) and thus K ∈ K0(T ). �

12.3.6 Uniqueness Theorem. Let T ∈ T ∗(M) and K ∈ KG\M (T ).
Then KJ(T ) is contained in a unique maximal 2-local subgroup L of G.
Moreover K �� L and T ∈ Syl2 L.

Proof. Let L be the set of 2-local subgroups of G that contain KJ(T ).
Then L is nonempty since WK �= 1 and KJ(T ) ≤ NG(WK). Note that
the subgroups in L are not contained in M since K �≤ M .

Let L ∈ L and J(T ) ≤ T0 ∈Syl2 L. It follows from 12.3.3 that

(1) K ∈ K(T0) and L ∈ L(T0),

so 12.2.5 implies

(2) K �� L for all L ∈ L.

We will show that L and K, in place of U and A, satisfy the hypotheses
(1), (2), and (3) of 6.7.3 on page 158. As in 6.7.3 we set

ΣL := {Kg | g ∈ G, Kg �� L} (L ∈ L).

Then (2) implies hypothesis 6.7.3 (1).

Let L̃ ∈ L, Kg ∈ Σ
L̃

and Kg ≤ L. Since J(T ) ≤ L̃ we have Kg ��
〈Kg, J(T )〉, and 12.2.8 implies that Kg �� L. This is hypothesis 6.7.3 (2).
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For the verification of hypothesis 6.7.3 (3) let

Σ := ΣL ∩ Σ
L̃

and X := 〈Σ〉.

Then K ∈ Σ and K �� X since X ≤ L. In particular

1 �= O2(K) ≤ O2(X),

and NG(O2(X)) is a 2-local subgroup of G. As J(T ) acts by conjugation
on ΣL and Σ

L̃
we get that

J(T ) ≤ NG(X) ≤ NG(O2(X)),

so NG(O2(X)) ∈ L. This shows hypothesis 6.7.3 (3).

Now 6.7.3 shows that L contains a unique maximal element L. As the
definition of KG\M (T ) yields

O2(〈K, T 〉) �= 1,

we also get T ≤ L. Thus, T ∈Syl2 L follows from 12.3.4. �

12.3.7 Let L, K and T be as in 12.3.6 and T ≤ S, and let

Z0 := Ω(Z(J(T ))) and Z := Ω(Z(S)).

Then Z0 ∩ WK �= 1, and one of the following holds:

(a) Z = Z0 ∼= C2.

(b) Z = Z0 ∼= C2 × C2 and T = S.

(c) Ω(Z(T )) = Z0 ∼= C2 × C2 and |NG(Z0) : CL(Z0)| = 2.

Proof. Since T ∈ Syl2 L and L is a 2-local subgroup we get Z ≤ Z(T ), i.e.,

(1) Z ≤ Z0.

Let ZK := CZ0(K). The 12.2.9 implies

(2) |Z0 : ZK | = 2 and Z �= ZK ;
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the latter since by our hypothesis CG(Z) is 2-closed but not KJ(T ). If
Z0 ∼= C2 then (a) holds. Thus, we may assume:

(3) |Z0| ≥ 4.

We first treat the case
NG(J(T )) ≤ L.

Then NS(J(T )) = T and thus S = T . Hence, L has the same property as
M . In particular T ∈ T ∗(L) since M �= L.

According to 12.3.5 (with the roles of L and M interchanged) there exists
F ∈ KG\L(T ). Let ZF := CZ0(F ). As for ZK we get

(4) |Z0 : ZF | = 2 and Z �= ZF .

If ZK ∩ ZF �= 1 then the uniqueness of L yields

〈F, K, J(S)〉 ≤ NG(ZK ∩ ZF ) ≤ L,

which contradicts F �≤ L. Thus, we have

ZK ∩ ZF = 1,

and (2), (3), and (4) imply

Z0 ∼= C2 × C2 and ZK
∼= ZF

∼= C2.

If (b) does not hold, then (1), (2), and (4) show that Z has order 2. Moreover,
Z is neither conjugate to ZK nor ZF since CG(Z) is 2-closed. As Z < Z0 �
S this implies that Zx

K = ZF for some x ∈ S and

〈F, Kx, J(S)〉 ≤ NG(ZF ).

On the other hand x ∈ S ≤ L; and the uniqueness of L shows that

〈F, Kx, J(S)〉 ≤ Lx = L.

This contradicts F �≤ L.

We are left with the case
NG(J(T )) �≤ L.

Let g ∈ NG(J(T )) \ L. If ZK ∩ Zg
K �= 1, then the uniqueness of L yields

KJ(T ) ≤ NG(ZK ∩ Zg
K) ≤ L,
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and similarly, with (Kg, Mg, Lg) in place of (K, M, L),

NG(ZK ∩ Zg
K) ≤ Lg.

This shows that KJ(T ) ≤ Lg, so Lg = L. Since L is a maximal 2-local
subgroup we get g ∈ L, a contradiction.

Hence ZK ∩ Zg
K = 1; and, as above, by (2)

Z0 ∼= C2 × C2.

Next we show:

(5) Z0 ≤ Z(T ).

Otherwise there exists t ∈ T such that [Z0, t] �= 1, and in particular Z < Z0.
As above ZK , Zg

K , and Z are the three subgroups of order 2 in Z0; and
Z is neither conjugate to ZK nor to Zg

K . It follows that Zt
K = Zg

K and

tg−1 ∈ NG(ZK) ≤ L,

which contradicts g �∈ L. Hence, (5) is proved.

From Ω(Z(T )) ≤ Z0 we get

Z0 = Ω(Z(T )),

and the uniqueness of L gives

CG(Z0) ≤ CG(ZK) ≤ L.

If Z = Z0, then S = T and (b) follow.

Assume that Z �= Z0. Then T < S; so T < NS(Z0) and

|NS(Z0)/CS(Z0)| = 2 = |NG(Z0)/CG(Z0)|,

since Z is neither conjugate to ZK nor to Zg
K in NG(Z0). This is (c). �

12.3.8 Let T ∈ T ∗(M) and K ∈ KG\M (T ). Then K is normal in
〈K, T 〉.
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Proof. Possibly after conjugation in M , we may assume that T ≤ S. The
Uniqueness Theorem (12.3.6) shows that 〈K, T 〉 is contained in a unique
maximal 2-local subgroup L and T ∈Syl2 L. Moreover, 12.3.7 implies that

Z(T ) ∩ WK �= 1.

Now the claim follows from 12.2.6. �

12.3.9 Let T ∈ T ∗(M). Then there exist two different J(T )-components
K1, K2 ∈ K(T ) such that for Pi := 〈Ki, T 〉, i = 1, 2, the following hold:

(a) CG(O2(Pi)) ≤ O2(Pi).

(b) T ∈ Syl2 Pi.

(c) Pi/O2(Pi) ∼= S3.

(d) [Ω(Z(T )), Pi] �= 1.

(e) O2(〈P1, P2〉) = 1.

Moreover, Pi is contained in a unique maximal 2-local subgroup Li of G
and T ∈ Syl2 Li.

Proof. By 12.3.5 there exists K1 ∈ KG\M (T ), and according to the Unique-
ness Theorem (12.3.6) P1 is contained in a unique maximal 2-local subgroup
L of G. In addition T ∈Syl2 L, and thus also T ∈Syl2 P1. It follows that

CG(O2(P1)) ≤ CG(O2(L)) ≤ O2(L) ≤ O2(P1).

From 12.3.7 we get that Z(T )∩WK1 �= 1. This shows that [Ω(Z(T )), K1] �=
1. Moreover, by 12.3.8 K1 is normal in P1, i.e., P1 = K1T . Now (a)–(d)
follow for i = 1.

Assume first that NG(T ) �≤ L. Let g ∈ NG(T )\L, and set K2 := Kg
1 . Then

P2 and P1 are conjugate, so P2 also has the properties (a)–(d). In addition
Lg is the unique maximal 2-local subgroup of G containing P2. Hence, (e)
follows since otherwise L = Lg and g ∈ L.

Assume now that NG(T ) ≤ L. Then T ∈Syl2 G, and after conjugation in
M we may assume that

T = S.
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From 12.3.7 we get Z = Z0, Z0 as in 12.3.7; so

NG(J(S)) ≤ NG(Z0)
Z
≤ NG(S) ≤ L.3

Hence, L has the same property as M . As in the proof of 12.3.7 there exists
K2 ∈ KG\L(T ); and as above, with L in place of M , the properties (a)–(d)
follow for P2.

For the proof of (e) assume that O2(〈P1, P2〉) �= 1. Then the Uniqueness
Theorem for K1 shows that P2 ≤ L. This contradicts K2 �≤ L. �

We now use the results of Section 10.3 provided by the amalgam method.

12.3.10 Let T ∈ T ∗(M). Then there exist two different maximal 2-local
subgroups P1 and P2 of G such that T ∈ Syl2 Pi, i = 1, 2, and either

P1 ∼= P2 ∼= S4 or P1 ∼= P2 ∼= S4 × C2.

Proof. Let P1 ≤ L1 and P2 ≤ L2 be as in 12.3.9, so in particular

T ∈ Syl2 L1 ∩ Syl2 L2.

From 10.3.11 we get the desired structure for Pi. It remains to prove that
Pi = Li for i = 1, 2. We fix i and use the notation

(L, K, P ) in place of (Li, Ki, Pi).

Then
Z(T ) ≤ O2(L) ≤ O2(P ) ≤ T ∈ Syl2 L,

and in addition 〈Z(T )P 〉 = O2(P ). It follows that

O2(L) = O2(P ).

By 12.2.3 and 12.3.6 K is the unique J(T )-component of L since |O2(L)| ≤
8. Hence, again by 12.2.3 and 12.2.5, WK is normal in L and |O2(L)/WK | ≤
2. Now 8.2.2 on page 184 shows that CL(WK) is a 2-group, so CL(WK) =
O2(L). Thus, L/CL(WK) ∼= S3 implies L = P . �

3Use the condition equivalent to Z given on page 335.
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We are now able to prove Theorem 1 and Theorem 3 stated in the introduc-
tion of this chapter.4

Proof of Theorem 3: Let H := O2(G) and M be as introduced in the
beginning of this section. We assume that M is not strongly embedded in
G. Then 12.3.1 implies that T (M) �= ∅. Thus, also T ∗(M) �= ∅, and we
are allowed to apply 12.3.10. Let P1, P2, T be as described there and

Mi := H ∩ Pi (i = 1, 2).

Furthermore, for i = 1, 2, set

Zi := Z(Pi),

Qi := O2(O2(Pi)) (≤ H ∩ T ), and

T0 := 〈Q1, Q2〉.

Then Q1 and Q2 are two elementary Abelian subgroups of order 4, and
they intersect in a subgroup of order 2 since Q1 �= Q2. Hence, T0 is a
dihedral group of order 8. As T0 is in Mi, we get for i = 1, 2

Mi
∼= S4 or Mi = Pi.

Assume first that Mi
∼= S4, and let L be a maximal 2-local subgroup of H

containing Mi. Then

NO2(L)(Qi) ≤ O2(L) ∩ Pi ∩ H = O2(L) ∩ Mi = Qi

since NG(Qi) = Pi. It follows that Qi = O2(L) and thus L = Mi.

Hence, to prove Theorem 3 it suffices to show that M1 ∼= S4 ∼= M2. We will
show that the other case

Mi = Pi
∼= C2 × S4 ( i = 1, 2)

leads to a contradiction. Thus, from now on we assume that

T ≤ H.

Set 〈z〉 := Z(T0) and 〈zi〉 := Zi. Then

4Theorem 2 has already been proved in Section 12.2.
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(1) O2(Pi) = 〈zi〉 × Qi, Z(T ) = 〈z〉 × 〈zi〉 and 〈z〉 = Q1 ∩ Q2.

(2) A(T ) = {O2(P1), O2(P2)}.

(3) O2(P1) ∪ O2(P2) = {x ∈ T | x2 = 1}.

Moreover, zi is not a square in Pi.5 The maximality of Pi yields CG(zi) =
Pi. Hence, zi is also not a square in G. On the other hand, z is a square
in T0, so all involutions of T0 are squares since they are conjugate to z (in
〈P1, P2〉). It follows:

(4) zi
G ∩ T0 = ∅ for i = 1, 2.

Let S ∈Syl2 G such that
T ≤ S ∩ H.

If T = S ∩ H, then T ∈Syl2 H and Thompson’s Transfer Lemma (applied
to H) shows that zi is conjugate to an involution of T0, which contradicts
(4). Thus, we have

T < S ∩ H,

in particular T < NS(T ). The maximality of Pi together with P1 �= P2
implies that NS(T ) acts transitively (by conjugation) on each of the sets

{Z1, Z2}, {Q1, Q2}, and A(T ),

and in each case T is the kernel of that action. This gives |NS(T )/T | = 2
and

(5) Ω(CT (x)) = 〈z〉 for every x ∈ NS(T ) \ T .

In particular
〈z〉 = Ω(Z(S)) = Z.

As every element of A(NS(T )) has order at least 8, (2) and (5) imply

T = J(T ) = J(NS(T ));

and thus T = J(S). In particular T � S. Hence, we have

(6) |S : T | = 2, S ∈Syl2 H and J(S) = J(T ) = T .

5That is, there is no x ∈ Pi such that zi = x2.
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Assume first that there exists an involution t ∈ S \ T . Let g ∈ G such that

CS(t) ≤ CSg(t) ∈ Syl2 CG(t).

If CT (t) = Z, then CS(t) = Z〈t〉 ∼= C2×C2; and by 5.3.10 S is a dihedral or
semidihedral group. This contradicts the existence of an elementary Abelian
subgroup of order 8 in S.

We have shown that Z < CT (t). By (5) z is a square in CT (t) and thus in
Sg. Since |Sg : T g| = 2 we get

z ∈ T g.

Now (3), applied to T g, gives a subgroup A ∈ A(T g) such that |A| = 8
and z ∈ A. Hence, Z implies that A ≤ CG(Z) ≤ NG(S), so by (6)

A ∈ A(T ).

On the other hand, Thompson’s Transfer Lemma shows that t is conjugate
to an involution in T . Thus, by (3) there exists an elementary Abelian
subgroup B of order 8 in CG(t), and we may assume that B ≤ Sg. Again
from (6) we get that B ∈ A(T g). Hence, (2) implies that |B ∩ A| ≥ 4 and

B ∩ A ≤ CT (t),

which contradicts (5).

We have shown that there are no involutions in S \ T . Now we determine
the focal subgroup S ∩ H ′. Since H = O2(H) we get from 7.1.3 on page
166 and (6)

(7) S = S ∩ H ′ = 〈y−1yg | y ∈ S, yg ∈ S, g ∈ G〉.

Let y, yg ∈ S, g ∈ G. If y and yg are both in T , then also y−1yg ∈ T .
Assume that y �∈ T . Then o(y) > 2, and (5) shows that Ω(〈y〉) = Z. Either
also yg �∈ T and with the same argument Ω(〈y〉g) = Z, or yg ∈ T and again
Ω(〈y〉g) = Z since z is the only square in T .

We have shown that

Ω(〈y〉) = Z = Ω(〈yg〉) if o(y) > 2.

Thus in this case Z = Zg and g ∈ NG(S) by Z. As |S : T | = 2, we
again get y−1yg ∈ T . Hence, (7) implies that that S = S ∩ H ′ ≤ T , a
contradiction. �
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Proof of Theorem 1: As Theorem 2 was already proved at the end of Section
12.1 we may assume that HZ has local characteristic 2. It is evident that
HZ is also a ZN -group. Thus, we are allowed to apply Theorem 3 to HZ.

If HZ possesses a strongly embedded subgroup, then (a) of Theorem 1
holds. In the other case H contains a maximal 2-local subgroup P isomor-
phic to S4. We want to show that then case (b) of Theorem 1 holds.

We have
O2(P ) ∼= C2 × C2 and P = NH(O2(P )).

Let D be a Sylow 2-subgroup of P , so D is a dihedral group of order 8.
After conjugation in H we may assume that

D ≤ S ∩ H =: R.

Let
Z∗ := Ω(Z(R)).

Then Z∗ ≤ O2(P ), and there exist t ∈ O2(P ) such that

O2(P ) = Z∗ × 〈t〉 ∼= C2 × C2.

It follows that
CR(t) = CR(O2(P )) = O2(P ),

and 5.3.10 on page 117 implies that R is a dihedral or semidihedral group.
Hence, (b) of Theorem 1 holds. �



Appendix

In this Appendix we give the results mentioned in Chapters 10 and 12.

Let G be a group. By Z∗(G) we denote the inverse image of Z(G/O2′(G))
in G.

Brauer, Suzuki [32]: Suppose that the Sylow 2-subgroups of G are quater-
nion groups. Then Z∗(G)/O2′(G) ∼= C2.1

Glauberman (Z∗-Theorem) [49]: Let S be a Sylow 2-subgroup of G.
Then

x ∈ Z∗(G) ⇐⇒ xG ∩ CS(x) = {x}.

Gorenstein, Walter [59]: Suppose that O2′(G) = 1 and that the Sylow
2-subgroups of G are dihedral groups. Then F ∗(G) is isomorphic to

PSL2(q), q ≡ 1 (mod 2), or A7.

Alperin, Brauer, Gorenstein [22]: Suppose that G is simple and that the
Sylow 2-subgroups of G are semidihedral groups. Then G is isomorphic to

PSL3(q), q ≡ −1 (mod 4), PSU3(q), q ≡ 1 (mod 4), or M11.

Bender [29]: Suppose that G possesses a strongly embedded subgroup.2 Then
one of the following holds:

1Hence, the Sylow 2-subgroups of G/Z∗(G) are dihedral groups, so the structure of
G/Z∗(G) is given by the Theorem of Gorenstein-Walter, below.

2A strongly 2-embedded subgroup in the notation of Chapter 10.
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(i) The Sylow 2-subgroups of G are cyclic or quaternion groups.

(ii) G possesses a normal series 1 ≤ M ≤ L ≤ G such that M and G/L
have odd order, and L/M is isomorphic to

PSL2(2n), Sz(22n−1), or PSU3(2n) (n ≥ 2).

Goldschmidt [57]: Let S be a Sylow 2-subgroup of G and A an Abelian
subgroup of S such that

a ∈ A, ag ∈ S (g ∈ G) ⇒ ag ∈ A.3

Suppose that that G = 〈AG〉 and O2′(G) = 1. Then

G = F ∗(G), A = O2(G)Ω(T ),

and for every component K of G the factor group K/Z(K) is isomorphic
to:

PSL2(2n), Sz(22n−1), PSU3(2n) (n ≥ 2), PSL2(q), q ≡ 3, 5 (mod 8),
R(32n+1) (n ≥ 1), or J1.

Thompson [94]: Let G be a nonsolvable group all of whose p-local sub-
groups are solvable for every p ∈ π(G). Then F ∗(G) is isomorphic to

PSL2(q) ( q > 3), Sz(22n−1) (n ≥ 2), A7, M11, PSL3(3), PSU3(3), or
2F4(2)′.

Gorenstein, Lyons [61], Janko [73], Smith [83]: Let G be a nonsolvable
group all of whose 2-local subgroups are solvable. Then F ∗(G) is isomorphic
to

PSL2(q), q > 3, Sz(22n−1), PSU3(2n) (n ≥ 2), A7, M11, PSL3(3),
PSU3(3), or 2F4(2)′.

Classification Theorem.4 Every finite simple group is isomorphic to one
of the following groups:

3A is strongly closed in S with respect to G.
4See [10] and the survey article [84].
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1. A cyclic group of prime order,

2. An alternating group An for n ≥ 5,

3. A classical linear group: 5

PSLn(q), PSUn(q), PSp2n(q), or POε
n(q),

4. An exceptional group of Lie type:6

3D4(q), E6(q), 2E6(q), E7(q), E8(q), F4(q), 2F4(2n), G2(q), 2G2(3n),
or 2B2(2n),

5. A sporadic simple group:

M11, M12, M22, M23, M24 (Mathieu-groups); 7

J1, J2, J3, J4 (Janko-groups); 8

Co1, Co2, Co3 (Conway-groups);

HS, Mc, Suz;

Fi22, Fi23, Fi ′
24 (Fischer-groups);

F1 (the Monster9), F2, F3, F5; He, Ru, Ly, ON.

5A description of these groups can be found in [13], and as groups of Lie type in [5].
6See [5].
7These groups have been found by Mathieu [77] around 1860. The first transparent

construction was given by Witt [100] in 1938.
8J1 was found in 1965 [72], after the Mathieu-groups this was first other sporadic group.
9F1 is the largest sporadic group, its order is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.
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Basel 1985.

[8] Doerk, K., Hawkes, T.: Finite Soluble Groups. deGruyter, Berlin
1992.

[9] Feit, W.: Characters of Finite Groups. Benjamin, New York 1972.

[10] Gorenstein, D.: Finite Simple Groups. Plenum Press, New York
1982.

373



374 Bibliography

[11] Gorenstein, D.: The Classification of Finite Simple Groups. Plenum
Press, New York 1983.

[12] Gorenstein, D.: Finite Groups. Harper & Row, New York 1968.

[13] Huppert, B.: Endliche Gruppen I. Springer-Verlag, Berlin 1967.

[14] Huppert, B., Blackburn, N.: Finite Groups II, III. Springer-Verlag,
Berlin 1982.
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[26] Baumann, B.: Über endliche Gruppen mit einer zu L2(2n) isomor-
phen Faktorgruppe, Proc. AMS 74 (1979), 215–22.
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Gaschütz, 74
Grün, 168
Jordan-Hölder, 41
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