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Abstract

We determine the homotopy type of the order complex of the subgroup lattice of the

symmetric group Sn when n is a prime or a power of two. (The prime case has been treated

previously in unpublished work of G. Ivanyos.) We do the same for alternating groups of

prime degree. In addition, we show that, for any n41; the homology of the order complex of
the subgroup lattice of Sn has rank at least n!=2 in dimension n � 3:
r 2003 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

For a finite group G; let DðGÞ be the order complex of the poset obtained by
removing 1 and G from the subgroup lattice of G; so the k-simplices in DðGÞ are the
chains

H0o?oHk

of nontrivial proper subgroups of G: Kratzer and Thévenaz [KrTh2, Corollary 4.10]
show that if G is solvable with chief series of length n then DðGÞ has the homotopy
type of a wedge of spheres of dimension n � 2 and give a formula for the number of
spheres in this wedge.
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However, not much is known about the topology of DðGÞ when G is not solvable.
It is natural from the group-theoretic point of view to begin attacking this problem
by considering DðGÞ when G is nonabelian simple. Standard theorems from
topological combinatorics (in particular the homotopy complementation formula of
Björner and Walker, see Lemma 2.3) also indicate that one should look first at
simple groups, and, more generally, characteristically simple groups and their
automorphism groups.
In this paper we obtain some partial results on the homotopy type of DðAnÞ and

DðSnÞ: The problem of determining the homotopy types of these complexes for all n

seems quite difficult. In fact, the reduced Euler characteristic *wðDðSnÞÞ; which is
equal to the Möbius number mð1;SnÞ by a theorem of Hall (see [Ha, (2.21)] or [St,
Propositions 3.8.5,3.8.6]), is known only when n is small or n is prime, twice a prime
or a power of two (see [Sh1]). By [KrTh1, Thèorém 3.1], both *wðDðSnÞÞ and *wðDðAnÞÞ
are divisible by n!

2
for all nX5: In [Sh1] it is shown that *wðDðSnÞÞ ¼ ð�1Þn�1jAutðSnÞj

2
for

infinitely many n but there exist some n41 for which this equality does not hold
(the smallest is n ¼ 14; and the smallest n for which *wðDðSnÞÞ is unknown is n ¼ 18).
Our first main result sheds some light on this phenomenon.

Theorem 1.1. For each n41 there exist complexes Gn and Ln such that DðSnÞ is

homotopy equivalent to the wedge of Gn and Ln; and Gn is homotopy equivalent to a

wedge of n!
2

spheres of dimension n � 3:

The next corollary is immediate.

Corollary 1.2. For every n41; the complex DðSnÞ is not acyclic. In particular,

dimðH̃n�3ðDðSnÞÞÞX
n!

2

for all n41:

It should be noted that although Theorem 1.1 is not stated explicitly in the
unpublished work of Ivanyos [Iv], it follows easily from results therein. Our proof of
Theorem 1.1 appears in Section 3, where a more precise version of the theorem is
obtained. This more precise version, along with the results in [Sh1], leads to the next
conjecture. Recall that a subgroup GpSn is called primitive if G is transitive and
there is no partition p of ½n� into subsets p1;y; pr of equal size k with 1okon; such
that G permutes the pj: We will call an element of order two from Sn which is not

contained in An an odd involution. Also, from now on,_
a

Sd

will denote a wedge of a spheres of dimension d: More generally,_
iAI

Di
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will denote the wedge of the spaces Di (iAI), D3G will denote the wedge of two
spaces D;G and DCG will be written to indicate that D and G are homotopy
equivalent.

Conjecture 1.3. If no primitive proper subgroup of Sn contains an odd involution then

the complex Ln from Theorem 1.1 is contractible, so

DðSnÞC
_
n!=2

Sn�3:

It is natural to ask which nAN satisfy the condition on primitive subgroups from
Conjecture 1.3. Define O to be the set of all nAN such that some primitive proper
subgroup of Sn contains an odd involution. For xAN; let eðxÞ be the number of npx

such that Sn contains a primitive subgroup other than An or Sn: Using the
Aschbacher–O’Nan-Scott Theorem (see for example [DiMo, Theorem 4.1A]),
Cameron et al. show in [CNT] (see also [DiMo, Theorem 4.8A]) that

eðxÞB 2x

log x
:

It follows that

lim
n-N

jO-½n�j
n

¼ 0;

so if Conjecture 1.3 is correct, then the ‘‘typical’’ DðSnÞ has the homotopy type of a
wedge of n!

2
spheres of dimension n � 3:

As mentioned above, it was shown in [Sh1] that when n is prime or n is a power of

2 then *wðDðSnÞÞ ¼ ð�1Þn�1n!
2 : Examination of the complex Ln in these cases shows

gives the following two results. The first of these results appears in [Iv], and our
proof follows the same lines as than in [Iv], although the proofs to the key steps
differ. The proof of the second result involves transferring results about Euler
characteristic from [Sh1] to results on homotopy type. This procedure requires some
care.

Theorem 1.4 (Ivanyos, 1995). If p is prime then

DðSpÞC
_
p!=2

Sp�3:

Theorem 1.5. If n ¼ 2a for some aAN then

DðSnÞC
_
n!=2

Sn�3:

The homotopy complementation formula cannot be used in any obvious way
when examining the subgroup lattice of the alternating group An: However, using
various standard techniques from topological combinatorics, we will also prove the
following theorem.

ARTICLE IN PRESS
J. Shareshian / Journal of Combinatorial Theory, Series A 104 (2003) 137–155 139



Theorem 1.6. Let pX5 be a prime such that every transitive proper subgroup of Ap is

solvable. Then

DðApÞC
_

p�2
2

ðp�1Þ!

Sp�4

0B@
1CA3

_
ðp�1Þ!

S1

0@ 1A:

Note that the condition on transitive proper subgroups given in Theorem 1.6 holds
for most primes p: Indeed, it was already known by Burnside (see [DiMo, Theorem
3.5B]) that every nonsolvable transitive subgroup of Sp is 2-transitive and almost

simple. All 2-transitive almost simple groups are known (a list appears in [Ca], see
also [DiMo, Section 7.7]), and upon examining this list one can see that if there is a

nonsolvable transitive proper subgroup of Ap then either pAf11; 23g or p ¼ qd�1
q�1 ;

where q is a prime power and d is a prime.
In a forthcoming paper, we will use the theory of lexicographic shellability, due to

A. Björner and M. Wachs, to show among other things that the homology groupeHHn�4ðDðAnÞÞ is nontrivial for all n42:
The remainder of this paper is organized as follows. In Section 2 we record some

basic results about the topology of order complexes. In Section 3 we prove Theorems
1.1, 1.4–1.6.

2. Basic results in poset topology

In this section we collect some fundamental results on topology of order
complexes which we will use throughout the paper. The reader is referred to [Bj3],
where many of the results listed below appear, for definitions of terms not defined
here. We begin with some notation. For a finite lattice L; the unique minimum and

maximum elements of L will be denoted by b00 and b11; respectively, unless otherwise
indicated. Also, bLL will denote the poset L \fb00;b11g: The atoms and coatoms of L are the

minimal and maximal elements of bLL; respectively. For any poset P; any QDP and
any xAP; we define

Qpx :¼ fyAQ : ypxg

and

QXx :¼ fyAQ : yXxg:

The order complex DP of a poset P is the abstract simplicial complex whose
k-dimensional simplices are the chains

x0o?oxk

from P: For x; yAP we define

½x; y� :¼ fzAP : xpzpyg
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and

ðx; yÞ :¼ fzAP : xozoyg;

and define ðx; y� and ½x; yÞ similarly.
Note that if f : P-Q is an order preserving map of posets then f determines

a simplicial map (also called f ) from DP to DQ: The next result, due to Quillen
(see [Qu, Proposition 1.6]), is perhaps the most important one on topology of order
complexes.

Lemma 2.1 (Fiber lemma). Let f :P-Q be an order preserving map of posets. If

either Df �1ðQpqÞ is contractible for each qAQ or Df �1ðQXqÞ is contractible for each

qAQ then the simplicial map f is a homotopy equivalence, so

DPCDQ:

Note that each abstract simplicial complex D has a geometric realization, and all
geometric realizations of D are homeomorphic. We make no distinction between an
abstract simplicial complex and its geometric realization. One condition which
implies that DP is contractible is that P has a unique minimum element or a unique
maximum element, as if x is an element of either type then one can define a series of
elementary collapses which reduce DP to the point x by pairing each nonempty chain
C from P \fxg with C,fxg (see also [Qu, Section (1.5)]).
For a lattice L; L
 will denote the subposet containing all elements of L which can

be obtained by taking the meet of a set of coatoms of L: Note that b11AL
; since it is
the meet of the empty set of coatoms. The following result is well known and is
implicit in [Bj2, Theorem 2.1], which is a homotopy version of Rota’s cross-cut
theorem (see [Ro]).

Lemma 2.2. Let L be a finite lattice and let P be any subposet of L which contains

L
,fb00g
(1) If b00AL
 then

DbPPCDcL
L
:

(2) If b00eL
 then DbPP is contractible.

Proof. We prove Lemma 2.2 using the fiber lemma. Set

M :¼
cL
L
; b00AL
;

L

\fb11g; b00eL
:

(
Let i : M-bPP be the identity embedding. For each xAbPP; let x
 be the meet of all

coatoms of L which lie above x: Then i�1ðbPPXxÞ ¼ MXx
 is contractible. The first

claim of the lemma follows immediately. If b00eL
 then M contains a unique
minimum element, namely the meet of all coatoms of L; and the second claim
follows. &

ARTICLE IN PRESS
J. Shareshian / Journal of Combinatorial Theory, Series A 104 (2003) 137–155 141



If L is a finite lattice with meet and join operations 4 and 3; respectively, and

xAL then aAL is called a complement to x if x4a ¼ b00 and x3a ¼ b11: The set of

complements to x will be denoted by x>: We will use the following result of Björner
and Walker (see [BjWal, Theorem 4.2]). Here SðDÞ denotes the suspension of a
complex D and D 
 G denotes the join of complexes D and G:

Lemma 2.3 (Homotopy complementation formula). Let L be a finite lattice and let

xAL: If x> is an antichain in L then

DbLLC _
aAx>

SðDðb00; aÞ 
 Dða;b11ÞÞ:
In particular, if x> ¼ | then DbLL is contractible.

Finally, we will need the following gluing lemma, which is a slight generalization
of [Bj3, Lemma 10.4(ii)]. Recall that a complex D is k-connected if for every

lpk; every continuous function from the l-sphere Sl to D can be extended

to a continuous function from the ðl þ 1Þ-ball Blþ1 to D: (Equivalently, D is
k-connected if piðDÞ ¼ 0 for all ipk:) In particular, a wedge of k-dimensional
spheres is ðk � 1Þ-connected. If G is a subcomplex of the complex D; the
quotient CW-complex obtained from D by identifying all points in G is
denoted by D=G: (See, for example, [Hat, p. 8] for basic information on quotient
complexes.)

Lemma 2.4. Let D be a complex with subcomplexes D0;D1;y;Dr such that

D ¼
[r

i¼0
Di:

Assume that there is some kX0 such that

* D0 is k-connected,
* dimðDiÞpk for 1pipr; and
* Di-DjDD0 for 1piojpr:

Then

DCD03
_r

i¼1
Di=ðDi-D0Þ:

If Di is contractible for each iA½r� then

DCD03
_r

i¼1
SðDi-D0Þ:
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Proof. Set

Dþ ¼
[r

i¼1
Di

and

G ¼
[r

i¼1
ðDi-D0Þ;

so G ¼ Dþ-D0: Let i : G-D0 be the identity embedding and let c :G-D0 be
any constant map. Since D0 is k-connected and dimðGÞpk; we see that i and
c are homotopic (see [Hat, Lemma 4.6]). It follows (see [Hat, Proposition 0.18])
that

D0T
i

DþCD0T
c

Dþ:

(For spaces A;B;C with ADB and a function f : A-C; BTf C denotes the space

obtained from the disjoint union of B and C by identifying a with f ðaÞ for each
aAA:) Now

D0T
i

Dþ ¼ D;

and since Di-DjDD0 for 1piojpr; we have

D0T
c

DþCD03
_r

i¼1
Di=ðDi-D0Þ:

This gives the first claim. The second claim follows from the well-known fact (a proof
appears in [Sh2, Lemma 2.5]) that if L is a contractible complex and Y is a
subcomplex of L then

L=YCSðYÞ: &

3. Proofs of Theorems 1.1, 1.4, 1.5 and 1.6

In this section we prove Theorems 1.1, 1.4, 1.5 and 1.6. A key object in the proof
of Theorem 1.1 and that of Theorem 1.6 is the partition latticePn; which we examine
below.

3.1. The partition lattice. The partition lattice Pn is the lattice of all partitions p
of the set ½n� into subsets, which are called the parts of p: The order on Pn is
the refinement order, so pps if each part of p is a subset of some part of s: Thus
the minimum element b00 of Pn is the partition into n singletons and the maximum
element is the partition with one part ½n�: If p has parts p1;y; pk we write

p ¼ ½p1jyjpk�: Note that in this case the interval ½p;b11� in Pn is isomorphic to Pk:
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A partition p is called an equipartition if each part of p has the same size. An

equipartition p is called nontrivial if pAcPnPn: Thus a transitive subgroup HpSn is
primitive if and only if H stabilizes no nontrivial equipartition of ½n�:
The partition lattice is ranked, with rank function r given by

rð½p1jyjpk�Þ ¼ n � k:

For XD½n � 2� set

PX
n :¼ fpAPn : rðpÞAXg

and let mX be the Möbius function on PX
n ,fb00;b11g (see [St, Section 3.7] for the

definition of the Möbius function). The next result follows easily from theorems of
A. Björner on shellability and, with the possible exception of the final claim, is well
known.

Proposition 3.1. For any XD½n � 2�; the order complex DðPX
n Þ has the homotopy type

of a wedge of jmX ðb00;b11Þj spheres of dimension jX j � 1: In particular,

DðP½n�2�
n ÞC

_
ðn�1Þ!

Sn�3

and

DðP½n�2�\f1g
n ÞC

_
n�2
2

ðn�1Þ!

Sn�4:

Proof. As noted in [Bj1, Example 2.9], the poset Pn is shellable. It follows that each

PX
n ,fb00;b11g is shellable ([Bj1, Theorem 4.1]). Thus if ewwðX Þ is the reduced Euler

characteristic of DðPX
n Þ then (see for example [Bj1, Appendix]) we have

DðPX
n ÞC

_
jewwðX Þj

SjX j�1:

The basic result of Hall mentioned in the introduction (see [Ha, (2.21)] or [St,
Propositions 3.8.5,3.8.6]) gives

ewwðX Þ ¼ mX ðb00;b11Þ;
and it remains to examine the cases X ¼ ½n � 2� and X ¼ ½n � 2�\f1g: It is well

known (see [St, p. 128] or [Bj1, Example 2.9]) that m½n�2�ðb00;b11Þ ¼ ð�1Þn�1ðn � 1Þ!:
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Now

m½n�2�\f1gðb00;b11Þ ¼ �
X

rðpÞ41

m½n�2�ðp;b11Þ
¼ �

X
rðpÞ40

m½n�2�ðp;b11Þ þ X
rðpÞ¼1

m½n�2�ðp;b11Þ
¼ ð�1Þn�1ðn � 1Þ!þ

n

2

� �
ð�1Þn�2ðn � 2Þ!

¼ð�1Þn n � 2

2
ðn � 1Þ!:

Indeed, the first equality follows from the definition of the Möbius function and the
third equality follows from the definition and the fact that Pn contains ðn

2
Þ elements

of rank one, with ½p;b11�DPn�1 whenever rðpÞ ¼ 1: &

From now on, SX will denote the group of all permutations of a set X (so S½n� ¼
SnÞ: For a partition p ¼ ½p1jyjpk�APn; Sp will denote the group

Sp1 �?� Spk
pSn:

Also, for any HpSn; we define orbðHÞAPn to be the partition whose parts are the
orbits of H on ½n�: We record some simple but important facts about the function
orb; which will be used without reference, in the following lemma.

Lemma 3.2. Let nAN:

(1) The map orb form the lattice of subgroups of Sn to Pn is order preserving.
(2) For any pAPn; we have orbðSpÞ ¼ p:
(3) For HpSn and pAPn; we have orbðHÞpp if and only if HpSp:

3.2. The proof of Theorem 1.1. Here we prove a more precise version Theorem 1.1
and explain Conjecture 1.3. Let LðSnÞ be the lattice of subgroups of Sn: The
minimum and maximum elements of LðSnÞ are 1 and Sn; respectively. Let

I :¼ ftASn : jtj ¼ 2g

be the set of involutions in Sn and let

I0 :¼ I \ðI-AnÞ

be the set of odd involutions in Sn: It follows immediately from the fact that
½Sn : An� ¼ 2 that in the lattice LðSnÞ we have

A>
n ¼ f/tS : tAI0g:

Since /tS is an atom in LðSnÞ for each tAI0; the homotopy complementation
formula (Lemma 2.3) gives the following result.
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Lemma 3.3. For any n42 we have

DðSnÞC
_

tAI0

SðDð/tS;SnÞÞ:

We will determine the homotopy type of Dð/tS;SnÞ when t is a transposition, and
Theorem 1.1 will follow. Conjecture 1.3 reflects a conjecture on the homotopy type
of Dð/tS;SnÞ when tAI0 is not a transposition. For tAI0; set

NTt :¼ fHAð/tS;SnÞ : H is not transitiveg

and

NPt :¼ fHAð/tS;SnÞ : H is not primitiveg:

Note that both NTt and NPt are ideals in the poset ð/tS;SnÞ and that NTtDNPt:

Our first step is to determine the homotopy type of DNTt for arbitrary tAI0:

Lemma 3.4. Assume n42:

(1) If tASn is a transposition then

DNTtC
_

ðn�2Þ!
Sn�4:

(2) If tASn is an odd involution which is not a transposition then DNTt is contractible.

Proof. Consider the restriction orbt of the orbit map orb to NTt: For any HANTt;

we know that orbð/tSÞ refines orbðHÞ: Conversely, if orbð/tSÞ strictly refines pAcPnPn

then SpAð/tS;SnÞ and
orb�1t ððPnÞppÞ ¼ ð/tS;Sp�:

If t is a transposition then the only subgroup of Sn with the same orbits as /tS is
/tS: It follows that

orb�1t ððPnÞporbð/tSÞÞ ¼
| t a transposition;

ð/tS;SorbðtÞ� otherwise:

(
Therefore,

ImageðorbtÞ ¼
ðorbðtÞ;b11Þ t a transposition;

½orbðtÞ;b11Þ otherwise:

(
In addition, the preimage of each pAImageðorbtÞ has a unique maximum element Sp:
The Quillen fiber lemma (Lemma 2.1) gives

DNTtCDImageðorbtÞ;
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and the contractibility of DNTt when t is not a transposition follows from the
presence of the unique minimum element orbðtÞ in ImageðorbtÞ: Our claim when t is

a transposition follows from Lemma 3.1, after noting that ½orbðtÞ;b11�DPn�1: &

Since Sn contains ðn
2
Þ transpositions and

S
_

a

Sd

 !
C
_

a

Sdþ1

for all a; d; we see that Theorem 1.1 will follow from Lemmas 3.3 and 3.4 once we
show that if tASn is a transposition then

Dð/tS;SnÞCDNTt:

A classical theorem of Jordan (see [DiMo, Theorem 3.3A]) says that if GpSn is
primitive and contains a transposition then G ¼ Sn: Therefore, we have

ð/tS;SnÞ ¼ NPt;

and the next lemma completes the proof of Theorem 1.1.

Lemma 3.5. Let tASn be a transposition with n42: Then

DNPtCDNTt:

Before proving Lemma 3.5, we note that [Iv] also gives the homotopy type of
Dð/tS;SnÞ when t is a transposition.

Proof. We use the Quillen fiber lemma (Lemma 2.1) to show that the identity

embedding of NTt in NPt determines a homotopy equivalence of order complexes.

Fix a transposition t: We must show that for HANPt the complex DNTt
pH is

contractible. If HANTt then NTt
pH has a unique maximum element H and the

desired conclusion follows.

So, assume that HeNTt; so H is transitive but stabilizes some nontrivial
equipartition p ¼ ½p1j?jpk�APn: We may assume that t ¼ ð12Þ; and since tAH we
may assume that

f1; 2gDp1:

Set

L :¼ NTt
pH,f/tS;Hg:

Then L is a lattice with minimum and maximum elements /tS;H; respectively. Note
that for A;BAL we have A3B ¼ H if and only if /A;BS is transitive. Let X be the
subgroup of H generated by all H-conjugates of t: We will show that there are no
complements to X in L; so Lemma 3.5 follows from the homotopy complementation
formula (Lemma 2.3).
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First note that if ðabÞAH is a transposition then fa; bgDpi for some iA½r�:
Therefore, for all xAX and all iA½r� we have

pix ¼ pi:

Now assume AAL with A-X ¼ /tS: Then A contains no H-conjugate of t other
than t: In particular, ftg is a conjugacy class of A; so ApCHðtÞ: But then f1; 2g is an
orbit of A: Since A permutes the pi; we see that

p1a ¼ p1

for all aAA: But now we have

p1g ¼ p1

for all gA/A;XS: Therefore /A;XS is not transitive and A is not a complement
to X in L: &

Conjecture 1.3 is equivalent to the next conjecture.

Conjecture 3.6. It tASn is an odd involution which is not a transposition then DNPt

(the order complex of the poset of subgroups properly containing /tS which are not

primitive) is contractible.

Note that one cannot hope to prove Conjecture 3.6 for all tAI0 using the same
approach that was used to prove Lemma 3.5. For example, say p is an odd prime and
let n ¼ 2p: Let HpSn be dihedral of order 2p; acting regularly. Let tAH be any

involution. Then tAI0 (as t is the product of p transpositions) and NTt
pH ¼ |; so

DNTt
pH is not contractible. Also, if n 
 3 mod 4; HpSn is a dihedral group of order

2n acting naturally and tAH is an involution then we have tAI0: If in addition n is

squarefree but not prime then HANPt and DNTt
pH is not contractible. It would be

interesting to know (for arbitrary n) if there exist tAI0 with more than one fixed

point and HANPt such that DNTt
pH is not contractible.

3.3. Proof of Theorem 1.4. Here we will see that Theorem 1.4 follows quite easily
from the results in Section 3.2 and basic facts about transitive groups of prime
degree. Let p be any prime. By Lemmas 3.3–3.5, Theorem 1.4 will follow if we show
that if tAI0 is not a transposition then Dð/tS;SpÞ is contractible. As shown in

[Sh1, Corollary 3.2] and [Sh1, proof of Theorem 3.3], if tAI0 then

ðt;SpÞ ¼ NTt

unless p 
 3 mod 4 and t has exactly one fixed point. In this exceptional case, there
exist some Sylow p-subgroups PpSp such that tANSp

ðPÞ; and every transitive

subgroup of Sp which contains t is contained in exactly one such NSp
ðPÞ: So, let

N :¼ fNSp
ðPÞ : PASylpðSpÞ; tANSp

ðPÞg:
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Then

Dð/tS;SpÞ ¼ DNTt,
[

NAN

Dð/tS;N�:

By observation, we have

DðS3ÞC
_
3

S0;

so we may assume that p43: By Lemma 3.4, DNTt is contractible, and since each
interval ð/tS;N� contains a maximum element, each Dð/tS;N� is contractible.
Lemma 10.4(ii) of [Bj3] (or our Lemma 2.4) gives

Dð/tS;SpÞC
_

NAN

SðDðNTt-ð/tS;N�ÞÞ:

Now each poset NTt-ð/tS;N� contains a unique maximum element, namely, the
unique cyclic subgroup of order p � 1 in N which contains t: Therefore, each

DðNTt-ð/tS;N�Þ is contractible and our proof is complete.

3.4. The proof of Theorem 1.5. Note first that DðS2Þ contains only the empty face and
is, by definition, a sphere of dimension �1: Either direct inspection or the theorem of
Kratzer and Thévenaz ([KrTh2, Corollary 4.10]) mentioned in the introduction can
be used to prove that DðS4Þ has the homotopy type of a wedge of 12 spheres of
dimension 1: Thus when proving Theorem 1.5, we may assume that a42; that is,
nX8: The theorem will follow from Lemmas 3.3, 3.4(1) and 3.5 once we prove the
following result.

Lemma 3.7. Let tAS2a be an odd involution which is not a transposition. Then

Dð/tS;S2aÞ is contractible.

Lemma 3.7 follows from Lemma 3.4(2) and the next two lemmas.

Lemma 3.8. If tAS2a is an odd involution which is not a transposition then

DNTtCDNPt:

Proof. We cannot show that the identity embedding of NTt in NPt induces a
homotopy equivalence of order complexes, so we introduce some additional posets
as follows. Recall that for a finite lattice L; we defined L
 to be the lattice consisting
of all elements of L which can be obtained by taking the meet of some coatoms of L:
Set

Lt :¼ NPt,ft;Sng

(so bLtLt ¼ NPt) and set

Mt :¼ L

t ,NTt:

Thus cMtMt consists of those elements of ð/tS;SnÞ which are either intransitive or the
intersection of some collection of maximal transitive but imprimitive subgroups

ARTICLE IN PRESS
J. Shareshian / Journal of Combinatorial Theory, Series A 104 (2003) 137–155 149



(or both). Certainly L

t DMt: It is straightforward to show that /tSAL


t (and

unnecessary to do so for our purposes, since if /tSeL

t then DNPt is contractible by

Lemma 2.2(2)). So, by Lemma 2.2(1), we have

DNPtCDcL

tL


t CDcMtMt:

We complete the proof by using the fiber lemma to show that the identity embedding

of NTt into cMtMt induces a homotopy equivalence of order complexes. To do this, it

suffices to show that if HAcMtMt\NTt and P ¼ ð/tS;HÞ-NTt then DP is contractible.
Let PðHÞpPn be the image of the restriction orbH of the orbit map orb to P: For

each pAPðHÞ; the poset orb�1H ðPðHÞppÞ has a unique maximum element, namely,

H-Sp: By the fiber lemma (Lemma 2.1), we have

DPCDPðHÞ:

If we show that orbð/tSÞAPðHÞ then we are done, as orbð/tSÞ will be the unique
minimum element of PðHÞ: Thus, it suffices to show that there is some KAðt;HÞ
such that orbðKÞ ¼ orbðtÞ:
This is shown in the proof of [Sh1, Lemma 6.2], but we resketch the proof here. By

the definition of Mt; there exist nontrivial equipartitions C1;y;Ck of ½2a� such that

H ¼
\k
i¼1

StabðCiÞ:

(Here StabðCiÞ is the stabilizer of Ci in S2a ; that is, the group of permutations which
permute the parts of Ci). Let P be a Sylow 2-subgroup of H which contains t: Since
H is a transitive group of degree 2a; the group P is also transitive. Let z be an element
of order two in the center of P: Since P is transitive, z is fixed-point free. In
particular, zAA2a so zat: Let Cz ¼ orbð/zSÞ: Then Cz is a P-invariant
equipartition of ½2a�: Consider the group Q ¼ /t; zS: This group is abelian of order
four and it follows that every orbit of Q has size two or four (Q has no fixed points
since zAQ). Since t is odd, there exist oddly many parts of size two in orbðQÞ which
are also parts of orbð/tSÞ: Now consider any Ci; iA½k�: Since the transitive group P

stabilizes both Ci and Cz; there exists some cAN such that if X is a part of Ci and
Y is a part of Cz then jX-Y jAf0; cg (this is [Sh1, Lemma 5.1], which is easy to
prove). Evidently cAf1; 2g; and we claim that c ¼ 2: Assume for contradiction that
c ¼ 1: Let G be the set of all parts of size two from orbðQÞ which are also parts of
orbð/tSÞ: As noted above, jGj is odd. Now let X be any part of Ci which intersects
some element Y of G nontrivially. Since Y is a part of Cz; we have jX-Y j ¼ 1; so
jX t-Y j ¼ 1: As Ci is /tS-invariant, we know XaX t; so X contains no fixed point
of t: Now for each part W of size four from orbðQÞ; we have jW-X j ¼ jW-X tj ¼
2: Any such part of orbðQÞ is the union of two parts of size two from orbð/tSÞ: Since
Ci is a nontrivial equipartition of ½2a�; we know that jX j is even. It follows that X

intersects evenly many elements of G nontrivially. Since X is arbitrary, jGj is even,
which gives the desired contradiction. So, c ¼ 2; which means that every part of
orbð/zSÞ is contained in some part of Ci: Let f j; kg be any element of G and let u be
the transposition ð j; kÞ: Since Ci was arbitrary in the argument above, u stabilizes
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eachCi: Let K ¼ /t; uS: Since t is not a transposition, we have uat so /tSoKpH:
Since f j; kg is a part of orbð/tSÞ we have orbðKÞ ¼ orbð/tSÞ as desired. &

Lemma 3.9. Let tAS2a be an odd involution. Then the identity embedding of NPt into

ðt;SnÞ induces a homotopy equivalence of order complexes.

Proof. As noted in the proof of [Sh1, Lemma 6.10], if H is a primitive
proper subgroup of S2a which contains an odd involution then p ¼ 2a � 1 is a
prime and HDPGL2ðpÞ is embedded in S2a by its action on the p þ 1 points
from its natural projective space. Thus our lemma will follow from the fiber lemma
once we show that if tAPGL2ðpÞ\PSL2ðpÞ is an involution then Dðt;PGL2ðpÞÞ is
contractible.

Let t be such an involution and let g be a preimage of t in GL2ðqÞ: Then g2 is a
scalar matrix while g is not, and since tePSL2ðpÞ we see that g is conjugate to a
diagonal matrix with eigenvalues 7l for some lAFp: It follows that t fixes exactly

two points in the projective space on which PGL2ðpÞ acts naturally.
Let L be the lattice of t-invariant subgroups of PSL2ðpÞ: The map

K/K-PSL2ðpÞ determines an isomorphism between ð/tS;PGL2ðpÞÞ and bLL (its
inverse maps M to /tSM). We will show that DL is contractible. We need the
following well-known facts about subgroups of PSL2ðpÞ: The original reference for
these facts is [Di]. See also [Do] or [Sh3] for these facts, and note that since
p ¼ 2a � 1 with a42 we have p 
 7 mod 8:

(1) If K is a proper subgroup of PSL2ðpÞ then one of the following conditions holds.
(a) K is cyclic of order dividing pþ1

2
or p�1

2
:

(b) K is dihedral of order dividing p þ 1 or p � 1:
(c) K has a nontrivial normal p-subgroup and jK j divides pðp�1Þ

2
:

(d) K is isomorphic to one of A4; S4 or A5:
(2) If K is a maximal subgroup of PSL2ðpÞ then one of the following conditions

holds.
(a) K is dihedral of order p þ 1 ¼ 2a:
(b) K is dihedral of order p � 1: In this case, K is the stabilizer of a set of two

points from the natural projective space.
(c) K is a Borel subgroup, that is, the normalizer of a Sylow p-subgroup of

PSL2ðpÞ: In this case, jK j ¼ pðp�1Þ
2

and K is the stabilizer of a point in the

natural projective space.
(d) KDS4:
(e) KDA5: (Such K occur if and only if a 
 1 mod 4:)

(3) If xAPSL2ðpÞ has order greater than two then the centralizer of x is cyclic of

order p; pþ1
2

or p�1
2

and the normalizer of /xS is either a Borel subgroup or is

dihedral of order p þ 1 or p � 1: If x has order two then the centralizer of x is
dihedral of order p þ 1:

(4) The centralizer CðtÞ of t in PSL2ðpÞ is dihedral of order p � 1: It is the stabilizer
of the set of the two points which are fixed by t:

ARTICLE IN PRESS
J. Shareshian / Journal of Combinatorial Theory, Series A 104 (2003) 137–155 151



Let KAL: If K is not isomorphic to one of A4;S4 or A5 then K contains a unique
maximal characteristic cyclic subgroup X ; which must also lie in L: Then the
normalizer of X ; which is maximal in PSL2ðpÞ and contains K ; also lies in L: If KAL

is isomorphic to A4 then the normalizer of K ; which is isomorphic to S4; also lies in
L: However, the group S4 has no outer automorphism, so t must induce an inner
automorphism on any XDS4 which lies in L: However, the centralizer of any
element of order at most two in S4 contains a subgroup of order four, while the

centralizer CðtÞ of t in PSL2ðpÞ has order p � 1 ¼ 2ð2a�1 � 1Þ which is not divisible
by four. Thus L contains no group isomorphic to A4 or S4: Similarly, if some KAL is
isomorphic to A5 then t acts on K as conjugation by some element of order at most
two in S5: Any such element either centralizes a subgroup of order four from A5 or is
a transposition. Thus if L contains a subgroup XDA5 then /tSXDS5: However,
PGL2ðpÞ contains no subgroup isomorphic to S5: (This is well known to finite group
theorists. One way to see it is to note that PSL2ðpÞ is isomorphic to the commutator
subgroup O3ðpÞ of SO3ðpÞ (see for example [As, p. 253]). The action of SO3ðpÞ on
O3ðpÞ by conjugation embeds SO3ðpÞ in AutðPSL2ðpÞÞDPGL2ðpÞ: Since jSO3ðpÞj ¼
jPGL2ðpÞj; we have PGL2ðpÞDSO3ðpÞpGL3ðpÞ: The irreducible (complex) char-
acter degrees of S5 are 1; 1; 4; 4; 5; 5; 6; so S5 has no faithful complex representation
of degree three. It follows that S5 has no faithful representation of degree three in
any characteristic p45). Therefore, L contains no subgroup isomorphic to A5:
We now see that every coatom of L is a Borel subgroup or dihedral of order p þ 1

or p � 1: A Borel subgroup B is t-invariant if and only if t fixes the point fixed by B:
Thus L contains exactly two Borel subgroups, and the intersection of these two

groups is the cyclic subgroup of CðtÞ with order p�1
2
: If K is a coatom of L which is

neither a Borel subgroup nor CðtÞ and M is any other coatom of L then the structure
of centralizers of elements in PSL2ðpÞ described above forces jK-MjAf1; 2; 4g:
We now see that if KAcL
L
; one of the following holds.

(1) K is cyclic of order p�1
2

and KpCðtÞ:
(2) K is a Borel subgroup.
(3) K is dihedral of order p þ 1 or p � 1:
(4) jK jAf2; 4g:

In all cases just listed but the first, K contains an odd number of elements of order
two. The automorphism t must fix one of these elements. Thus K-CðtÞa1: The

group mentioned in the first case is contained in CðtÞ: Therefore, for each KAcL
L
; we
have K-CðtÞa1: Thus CðtÞ has no complement in L
 and DL
 is contractible by the
homotopy complementation formula (Lemma 2.3). Now DL is contractible by
Lemma 2.2. &

3.5. Proof of Theorem 1.6

The homotopy complementation formula is not available when we examine DðApÞ:
However, after careful examination of the subgroup lattice of Ap; Lemma 2.4 can be
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applied in order to prove Theorem 1.6. We call a prime p42 ‘‘good’’ if every
transitive proper subgroup of Ap is solvable. Set

N :¼ fNAp
ðPÞ : PASylpðApÞg:

If p is good, the maximal transitive proper subgroups of Ap are the elements of M:

Each group NAM is the split extension of a cyclic group P of order p (generated by

a p-cycle) by a cyclic group C of order p�1
2

(generated by the square of a ðp � 1Þ-
cycle). We record the following well-known facts.

(A) There are p conjugates of C in N and every intransitive subgroup of N is
contained in one of these conjugates.

(B) Any two distinct conjugates of C in N intersect trivially.
(C) If M;N are distinct elements of M then M-N is intransitive.
(D) jMj ¼ ðp � 2Þ!:

Let p be a good prime. In [Sh2] it is shown that

DðA5ÞC
_
60

S1:

The group PSL2ð7Þ contains a maximal subgroup isomorphic to S4: This subgroup
has index seven, and the action on its cosets gives an embedding of the nonsolvable
group PSL2ð7Þ into A7 as a transitive subgroup, so seven is not good. So, we may
assume that pX11: For NAM; set

LpN :¼ fH : 1oHpNg
and let INp be the poset of nontrivial intransitive subgroups of Ap: Then

DðApÞ ¼ DINp,
[

NAM

DLpN :

By facts (A) and (B) above, for each NAM the poset LpN-INp is the union of p

disjoint components, each of which is isomorphic to the poset obtained by removing

the minimum element from the lattice of divisors of p�1
2
: The next three facts follow

immediately.

(E) If p�1
2
has r prime divisors, counting multiplicities, then DðLpN-INpÞ is pure of

dimension r � 1: Therefore,

dim
[

NAM

DðLpN-INpÞ
 !

¼ r � 1:

(F) Since pX11 and rplog2ðp � 1Þ � 1; we have rop � 6:
(G) We have

DðLpN-INpÞC
_
p�1

S0:
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For any nAN and any pAPn; we have

orbðSp-AnÞ ¼
p rðpÞa1;b00 rðpÞ ¼ 1:

(
Thus the image of INp under the orbit map orb isP½p�2�\f1g

p : The fiber lemma (Lemma

2.1) and Proposition 3.1 give the following results.

(H) We have

DINpC
_

p�2
2

ðp�1Þ!

Sp�4:

(I) In particular, DINp is ðp � 5Þ-connected.

Since each LpN contains the maximum element N; each DLpN is contractible.
Using this fact along with facts (E),(F),(I) and Lemma 2.4, we get

DðApÞCDINp3
_

NAM

SðDðLpN-INpÞÞ:

Theorem 1.6 now follows from facts (D),(G) and (H) since, as mentioned earlier, for
any a; dX0 we have

S
_

a

Sd

 !
C
_

a

Sdþ1:
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