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Abstract

We determine the homotopy type of the order complex of the subgroup lattice of the
symmetric group S, when #n is a prime or a power of two. (The prime case has been treated
previously in unpublished work of G. Ivanyos.) We do the same for alternating groups of
prime degree. In addition, we show that, for any n> 1, the homology of the order complex of
the subgroup lattice of S, has rank at least n!/2 in dimension n — 3.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

For a finite group G, let 4(G) be the order complex of the poset obtained by
removing 1 and G from the subgroup lattice of G, so the k-simplices in 4(G) are the
chains

Hy<---<Hj

of nontrivial proper subgroups of G. Kratzer and Thévenaz [KrTh2, Corollary 4.10]
show that if G is solvable with chief series of length n then 4(G) has the homotopy
type of a wedge of spheres of dimension n» — 2 and give a formula for the number of
spheres in this wedge.
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However, not much is known about the topology of 4(G) when G is not solvable.
It is natural from the group-theoretic point of view to begin attacking this problem
by considering 4(G) when G is nonabelian simple. Standard theorems from
topological combinatorics (in particular the homotopy complementation formula of
Bjorner and Walker, see Lemma 2.3) also indicate that one should look first at
simple groups, and, more generally, characteristically simple groups and their
automorphism groups.

In this paper we obtain some partial results on the homotopy type of 4(4,) and
A(S,). The problem of determining the homotopy types of these complexes for all n
seems quite difficult. In fact, the reduced Euler characteristic 7(4(Sy)), which is
equal to the Mobius number u(1,S,) by a theorem of Hall (see [Ha, (2.21)] or [St,
Propositions 3.8.5,3.8.6]), is known only when # is small or n is prime, twice a prime
or a power of two (see [Sh1]). By [KrThl, Théorém 3.1], both 7(4(S,)) and 7(4(4,))
are divisible by % for all n>5. In [Sh1] it is shown that 7(4(S,)) = (—1)"" A4Sl for
infinitely many n but there exist some n>1 for which this equality does not hold

(the smallest is n = 14, and the smallest »n for which 7(A4(S,)) is unknown is n = 18).
Our first main result sheds some light on this phenomenon.

Theorem 1.1. For each n>1 there exist complexes I', and A, such that A(S,) is
homotopy equivalent to the wedge of T',, and A, and T',, is homotopy equivalent to a
wedge of%l spheres of dimension n — 3.

The next corollary is immediate.

Corollary 1.2. For every n>1, the complex A(S,) is not acyclic. In particular,

dim(H,5(4(5,)))> =

for all n>1.

It should be noted that although Theorem 1.1 is not stated explicitly in the
unpublished work of Ivanyos [Iv], it follows easily from results therein. Our proof of
Theorem 1.1 appears in Section 3, where a more precise version of the theorem is
obtained. This more precise version, along with the results in [Sh1], leads to the next
conjecture. Recall that a subgroup G< S, is called primitive if G is transitive and
there is no partition = of [n] into subsets 7y, ..., 7, of equal size k with 1 <k <n, such
that G permutes the ;. We will call an element of order two from S, which is not
contained in A4, an odd involution. Also, from now on,

Vs
will denote a wedge of a spheres of dimension d. More generally,

Vo4

iel
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will denote the wedge of the spaces 4; (iel), AvI will denote the wedge of two
spaces A,I' and A~T will be written to indicate that 4 and I' are homotopy
equivalent.

Conjecture 1.3. If no primitive proper subgroup of S, contains an odd involution then
the complex A, from Theorem 1.1 is contractible, so

AS)~\/ s
n!/2

It is natural to ask which ne N satisfy the condition on primitive subgroups from
Conjecture 1.3. Define Q2 to be the set of all neN such that some primitive proper
subgroup of S, contains an odd involution. For xe N, let ¢(x) be the number of n<x
such that S, contains a primitive subgroup other than A, or S,. Using the
Aschbacher—-O’Nan-Scott Theorem (see for example [DiMo, Theorem 4.1A]),
Cameron et al. show in [CNT] (see also [DiMo, Theorem 4.8A]) that

e(x) 2x

- log x’
It follows that

tim 1200

n— oo n

so if Conjecture 1.3 is correct, then the “typical” A(S,) has the homotopy type of a
wedge of % spheres of dimension n — 3.

As mentioned above, it was shown in [Sh1] that when 7 is prime or # is a power of
2 then j(4(S,)) = (—1)”_1”7!. Examination of the complex A, in these cases shows
gives the following two results. The first of these results appears in [Iv], and our
proof follows the same lines as than in [Iv], although the proofs to the key steps
differ. The proof of the second result involves transferring results about Euler
characteristic from [Sh1] to results on homotopy type. This procedure requires some
care.

Theorem 1.4 (Ivanyos, 1995). If p is prime then

A(Sy) =\ 577
p!/2

Theorem 1.5. If'n = 2¢ for some aeN then
AS)~\/ s

n!/2

The homotopy complementation formula cannot be used in any obvious way
when examining the subgroup lattice of the alternating group A,. However, using
various standard techniques from topological combinatorics, we will also prove the
following theorem.
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Theorem 1.6. Let p=5 be a prime such that every transitive proper subgroup of A, is
solvable. Then

A4~ \/ v\ S
22 -1y (=Dt

Note that the condition on transitive proper subgroups given in Theorem 1.6 holds
for most primes p. Indeed, it was already known by Burnside (see [DiMo, Theorem
3.5B]) that every nonsolvable transitive subgroup of S, is 2-transitive and almost
simple. All 2-transitive almost simple groups are known (a list appears in [Ca], see
also [DiMo, Section 7.7]), and upon examining this list one can see that if there is a

nonsolvable transitive proper subgroup of 4, then either pe{11,23} or p = %,
where ¢ is a prime power and d is a prime.

In a forthcoming paper, we will use the theory of lexicographic shellability, due to
A. Bjorner and M. Wachs, to show among other things that the homology group
H,_4(A(A,)) is nontrivial for all n>2.

The remainder of this paper is organized as follows. In Section 2 we record some
basic results about the topology of order complexes. In Section 3 we prove Theorems

1.1, 1.4-1.6.

2. Basic results in poset topology

In this section we collect some fundamental results on topology of order
complexes which we will use throughout the paper. The reader is referred to [Bj3],
where many of the results listed below appear, for definitions of terms not defined
here. We begin with some notation. For a finite lattice L, the unique minimum and

maximum elements of L will be denoted by 0 and T, respectively, unless otherwise
indicated. Also, L will denote the poset L \{6, T} The atoms and coatoms of L are the

minimal and maximal elements of Z, respectively. For any poset P, any Q< P and
any xe P, we define

O<y={yeQ: y<x}
and
0>y ={yeQ: y=x}.

The order complex AP of a poset P is the abstract simplicial complex whose
k-dimensional simplices are the chains

X< - <Xk
from P. For x,ye P we define

[x,9] ={zeP: x<z<y}
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and
(x,y) ={zeP: x<z<y},

and define (x,y] and [x,y) similarly.

Note that if f: P— Q is an order preserving map of posets then f determines
a simplicial map (also called f) from AP to AQ. The next result, due to Quillen
(see [Qu, Proposition 1.6]), is perhaps the most important one on topology of order
complexes.

Lemma 2.1 (Fiber lemma). Let f: P— Q be an order preserving map of posets. If
either Af~'(Q<,) is contractible for each qge Q or Af~'(Q,) is contractible for each
q€ Q then the simplicial map  is a homotopy equivalence, so

AP~ AQ.

Note that each abstract simplicial complex A4 has a geometric realization, and all
geometric realizations of 4 are homeomorphic. We make no distinction between an
abstract simplicial complex and its geometric realization. One condition which
implies that AP is contractible is that P has a unique minimum element or a unique
maximum element, as if x is an element of either type then one can define a series of
elementary collapses which reduce 4P to the point x by pairing each nonempty chain
C from P\{x} with Cu{x} (see also [Qu, Section (1.5)]).

For a lattice L, L* will denote the subposet containing all elements of L which can

be obtained by taking the meet of a set of coatoms of L. Note that TeL*, since it is
the meet of the empty set of coatoms. The following result is well known and is
implicit in [Bj2, Theorem 2.1], which is a homotopy version of Rota’s cross-cut
theorem (see [Ro]).

Lemma 2.2. Let L be a finite lattice and let P be any subposet of L which contains
L u{0}
(1) If 0eL* then
AP~ AL*.

2) IfaqéL* then AP is contractible.
Proof. We prove Lemma 2.2 using the fiber lemma. Set

M= {E - §e L*,

LN{1}, 0¢L".

Let i: M — P be the identity embedding. For each xeﬁ, let x* be the meet of all

coatoms of L which liec above x. Then i~!(Ps,) = M, is contractible. The first

claim of the lemma follows immediately. If 6¢L* then M contains a unique
minimum element, namely the meet of all coatoms of L, and the second claim
follows. O
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If L is a finite lattice with meet and join operations A and v, respectively, and

xeL then aeL is called a complement to x if xAa =0 and xva=1. The set of
complements to x will be denoted by x*. We will use the following result of Bjdrner
and Walker (see [BjWal, Theorem 4.2]). Here X(4) denotes the suspension of a
complex 4 and 4 x I denotes the join of complexes A and I'.

Lemma 2.3 (Homotopy complementation formula). Let L be a finite lattice and let
xeL. If x* is an antichain in L then

AL~ \/ 2(4(0,a) * A(a,1)).

In particular, if x+ = 0 then AL is contractible.

Finally, we will need the following gluing lemma, which is a slight generalization
of [Bj3, Lemma 10.4(ii)]. Recall that a complex 4 is k-connected if for every
[<k, every continuous function from the /-sphere S’ to A can be extended
to a continuous function from the (/+ 1)-ball B! to 4. (Equivalently, 4 is
k-connected if m;(4) =0 for all i<k.) In particular, a wedge of k-dimensional
spheres is (k — 1)-connected. If I' is a subcomplex of the complex 4, the
quotient CW-complex obtained from A4 by identifying all points in I is
denoted by 4/I'. (See, for example, [Hat, p. 8] for basic information on quotient
complexes.)

Lemma 2.4. Let A be a complex with subcomplexes Ay, Ay, ..., A, such that

A= U A
i=0

Assume that there is some k>0 such that

® A is k-connected,
® dim(4;) <k for 1<i<r, and
® A;nA;c 4 for I<i<j<r.

Then
A~Agv \/ Ai/(4;0 Ag).
i=1

If A; is contractible for each i€|r] then

A~Agv \/ Z(4; 0 Ay).
i=1



J. Shareshian | Journal of Combinatorial Theory, Series A 104 (2003) 137-155 143

Proof. Set

and

~

r=\];na),
i=1
so '=4"n4y. Let 1:T'—> Ay be the identity embedding and let ¢:I'— A4y be
any constant map. Since 4y is k-connected and dim(I')<k, we see that i and
¢ are homotopic (see [Hat, Lemma 4.6]). It follows (see [Hat, Proposition 0.18])
that

a0 L) 4~ a0 L 4.

(For spaces 4, B, C with A< B and a function f: 4— C, BI_I_/«-C denotes the space
obtained from the disjoint union of B and C by identifying a with f(a) for each
aeA.) Now

Ao Ll 4t =4,
1
and since 4;n4;= 4y for 1<i<j<r, we have

.
Ao | At ~Agv \/ A;/(4i 0 Ao).
¢ i=1
This gives the first claim. The second claim follows from the well-known fact (a proof
appears in [Sh2, Lemma 2.5]) that if A is a contractible complex and @ is a
subcomplex of A then

A/@~2(0). O

3. Proofs of Theorems 1.1, 1.4, 1.5 and 1.6

In this section we prove Theorems 1.1, 1.4, 1.5 and 1.6. A key object in the proof
of Theorem 1.1 and that of Theorem 1.6 is the partition lattice I1,,, which we examine
below.

3.1. The partition lattice. The partition lattice II, is the lattice of all partitions =
of the set [n] into subsets, which are called the parts of m. The order on II, is
the refinement order, so <o if each part of « is a subset of some part of ¢. Thus

the minimum element 0 of I1, is the partition into n singletons and the maximum
element is the partition with one part [n]. If = has parts n,...,m; we write

-~

7 = [m1]...|mx]. Note that in this case the interval [r, 1] in I, is isomorphic to ITj.
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A partition = is called an equipartition if each part of n has the same size. An

equipartition 7 is called nontrivial if neI/Y\,,. Thus a transitive subgroup H<S, is
primitive if and only if H stabilizes no nontrivial equipartition of [n].
The partition lattice is ranked, with rank function r given by

r([m]...|m]) = n— k.
For X =[n — 2] set

¥ = {nel,: r(n)eX}

and let uy be the Mébius function on ITY u{a7 T} (see [St, Section 3.7] for the
definition of the Mobius function). The next result follows easily from theorems of
A. Bjorner on shellability and, with the possible exception of the final claim, is well
known.

Proposition 3.1. For any X [n — 2|, the order complex A(ITX) has the homotopy type
of a wedge of |1y (0,1)| spheres of dimension | X|— 1. In particular,

Ay~ \/ s
(=1t

and

A(Hl[qn72]\{1}) ~ \/ S’174.
222 (1))

Proof. As noted in [Bj1, Example 2.9], the poset II, is shellable. It follows that each
11X U {0,1} is shellable ([Bj1, Theorem 4.1]). Thus if %(X) is the reduced Euler
characteristic of A(IT¥) then (see for example [Bjl, Appendix]) we have

ATy~ \/ s
(x|

The basic result of Hall mentioned in the introduction (see [Ha, (2.21)] or [St,
Propositions 3.8.5,3.8.6]) gives

7(X) = uy (0,1),

and it remains to examine the cases X =[n—2] and X = [n—2)\{1}. It is well
known (see [St, p. 128] or [Bjl, Example 2.9]) that p, 5 (@T) = (="' m-1)
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Now
,“[nz{l}aT Zﬂnz
r(m)>1
= - Z Hin—2)( 1 )+ Z Hin—2) (7, 1)
r(m)>0 r(m)=1
=(-1) ](n 1)!+<Z>(—1)" 2(n 2)!
=2

Indeed, the first equality follows from the definition of the Mébius function and the
third equality follows from the definition and the fact that IT, contains (3) elements

of rank one, with [z, 1]=IT,_| whenever r(z) = 1. [

From now on, Sy will denote the group of all permutations of a set X' (so Sy, =
Sy). For a partition ©n = [ny|...|nx] €II,, S, will denote the group

Say X o0 X Sy, <8,

Also, for any H<S,, we define orb(H) e Il, to be the partition whose parts are the
orbits of H on [n]. We record some simple but important facts about the function
orb, which will be used without reference, in the following lemma.

Lemma 3.2. Let neN.

(1) The map orb form the lattice of subgroups of S, to I, is order preserving.
(2) For any nell,, we have orb(S;) = .
(3) For H S, and nell,, we have orb(H)<m if and only if H<S;.

3.2. The proof of Theorem 1.1. Here we prove a more precise version Theorem 1.1
and explain Conjecture 1.3. Let Z(S,) be the lattice of subgroups of S,. The
minimum and maximum elements of #(S,) are 1 and S, respectively. Let

g ={teS,: |t| =2}
be the set of involutions in S, and let
Iy =I\(INnA,)

be the set of odd involutions in S,. It follows immediately from the fact that
[Sy: A,] =2 that in the lattice Z(S,) we have

AF = {(t): te Sy}

Since (¢} is an atom in Z(S,) for each re.#, the homotopy complementation
formula (Lemma 2.3) gives the following result.
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Lemma 3.3. For any n>2 we have

AS) =~ \/ Z(4(<1),S).

tedy

We will determine the homotopy type of 4(<t),S,) when ¢ is a transposition, and
Theorem 1.1 will follow. Conjecture 1.3 reflects a conjecture on the homotopy type
of A({t),S,) when te.#, is not a transposition. For t€.#, set

NT' = {He({t),S,): H is not transitive}

and

NP’ = {He(<t),S,): H is not primitive}.

Note that both NT’ and NP are ideals in the poset ({¢),S,) and that NT' = NP’
Our first step is to determine the homotopy type of ANT' for arbitrary r€.#.

Lemma 3.4. Assume n>2.

(1) If te S, is a transposition then

ANT! ~ \/ Y
(n—2)!

(2) If teS, is an odd involution which is not a transposition then ANT' is contractible.

Proof. Consider the restriction orb; of the orbit map orb to NT'. For any H eNT,
we know that orb({ 7)) refines orb(H). Conversely, if orb( ) ) strictly refines © ell,
then S,e({t),S,) and

orb; ((11,) ) = (<13, 5.

If ¢ is a transposition then the only subgroup of S, with the same orbits as {z) is
{ty. It follows that
0 t a transposition,

b, (1T, =
orb, " ((I1) corn( 1)) {(<;>,Smb(,)] otherwise.

Therefore,

Image(orb,) =

-~

(orb(1),1) ¢ a transposition,
[orb(7),1) otherwise.

In addition, the preimage of each e Image(orb,) has a unique maximum element .S;,.
The Quillen fiber lemma (Lemma 2.1) gives

ANT' ~ ATmage(orb,),
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and the contractibility of ANT’ when ¢ is not a transposition follows from the
presence of the unique minimum element orb(¢) in Image(orb,). Our claim when ¢ is

a transposition follows from Lemma 3.1, after noting that [orb(t),T] ~I,,. O

Since S, contains (3) transpositions and

2(\/ S") ~ \/ s

for all a,d, we see that Theorem 1.1 will follow from Lemmas 3.3 and 3.4 once we
show that if 1€ S, is a transposition then

A({tY,S,)~ ANT'.

A classical theorem of Jordan (see [DiMo, Theorem 3.3A]) says that if G<S), is
primitive and contains a transposition then G = S,,. Therefore, we have

({1, Sy) = NP,

and the next lemma completes the proof of Theorem 1.1.

Lemma 3.5. Let t€ S, be a transposition with n>?2. Then
ANP' ~ ANT'.

Before proving Lemma 3.5, we note that [Iv] also gives the homotopy type of
A(<{t>,S,) when ¢ is a transposition.

Proof. We use the Quillen fiber lemma (Lemma 2.1) to show that the identity
embedding of NT’ in NP’ determines a homotopy equivalence of order complexes.
Fix a transposition 7. We must show that for HeNP' the complex ANT , is
contractible. If HeNT’ then NT’_,; has a unique maximum element H and the
desired conclusion follows.

So, assume that H¢NT’, so H is transitive but stabilizes some nontrivial
equipartition © = [r;|---|nx] € IT,. We may assume that 1 = (12), and since e H we
may assume that

{1,2}§n1.
Set
L= NT%HU{O‘),H}.

Then L is a lattice with minimum and maximum elements <¢), H, respectively. Note
that for 4, Be L we have Av B = H if and only if {4, B) is transitive. Let X be the
subgroup of H generated by all H-conjugates of ¢. We will show that there are no
complements to X in L, so Lemma 3.5 follows from the homotopy complementation
formula (Lemma 2.3).
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First note that if (ab)eH is a transposition then {a,b}<=m; for some ie(r].
Therefore, for all xe X and all ie[r] we have

;X = T;.

Now assume AL with AnX = {t)>. Then A4 contains no H-conjugate of ¢ other
than ¢. In particular, {¢} is a conjugacy class of 4, so A< Cy(z). But then {1,2} is an
orbit of 4. Since A permutes the 7;, we see that

ma=Tm
for all ae A. But now we have
g =T

for all ge (A, X ). Therefore {4, X ) is not transitive and A is not a complement
toXinL O

Conjecture 1.3 is equivalent to the next conjecture.

Conjecture 3.6. It te S, is an odd involution which is not a transposition then ANP'
(the order complex of the poset of subgroups properly containing {t) which are not
primitive) is contractible.

Note that one cannot hope to prove Conjecture 3.6 for all ze.#, using the same
approach that was used to prove Lemma 3.5. For example, say p is an odd prime and
let n=2p. Let H<S), be dihedral of order 2p, acting regularly. Let te H be any
involution. Then t€.% (as ¢ is the product of p transpositions) and NT ;; = 0, so
ANT'_; is not contractible. Also, if n = 3mod 4, H<S, is a dihedral group of order
2n acting naturally and ¢€ H is an involution then we have te€ .. If in addition # is
squarefree but not prime then HeNP’ and ANT”, is not contractible. It would be
interesting to know (for arbitrary n) if there exist te.#, with more than one fixed
point and HeNP’ such that ANT'_, is not contractible.

3.3. Proof of Theorem 1.4. Here we will see that Theorem 1.4 follows quite easily
from the results in Section 3.2 and basic facts about transitive groups of prime
degree. Let p be any prime. By Lemmas 3.3-3.5, Theorem 1.4 will follow if we show
that if 7€.#, is not a transposition then A({¢),S,) is contractible. As shown in
[Sh1, Corollary 3.2] and [Sh1, proof of Theorem 3.3], if t€.#, then

(1,5,) = NT'

unless p = 3mod 4 and ¢ has exactly one fixed point. In this exceptional case, there
exist some Sylow p-subgroups P<S, such that teNg (P), and every transitive
subgroup of S, which contains 7 is contained in exactly one such Ng,(P). So, let

N = {Ns,(P): PeSyl,(S,),teNs,(P)}.
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Then

A(Lt),8)) = ANT'U | ] 4(<t),N].
NeNV

By observation, we have

A(S3) = \/ 8",
3

so we may assume that p>3. By Lemma 3.4, ANT’ is contractible, and since each
interval ({z),N] contains a maximum element, each A({¢),N] is contractible.
Lemma 10.4(ii) of [Bj3] (or our Lemma 2.4) gives
A((t),8p)= \/ Z(ANT' A ({1),N))).
NeN

Now each poset NT’n({¢>, N] contains a unique maximum element, namely, the
unique cyclic subgroup of order p — 1 in N which contains ¢. Therefore, each
A(NT n (<t>, N]) is contractible and our proof is complete.

3.4. The proof of Theorem 1.5. Note first that A4(S;) contains only the empty face and
is, by definition, a sphere of dimension —1. Either direct inspection or the theorem of
Kratzer and Thévenaz ([KrTh2, Corollary 4.10]) mentioned in the introduction can
be used to prove that 4(Ss) has the homotopy type of a wedge of 12 spheres of
dimension 1. Thus when proving Theorem 1.5, we may assume that ¢>2, that is,
n>=8. The theorem will follow from Lemmas 3.3, 3.4(1) and 3.5 once we prove the
following result.

Lemma 3.7. Let teSy be an odd involution which is not a transposition. Then
A(Lty,Sy) is contractible.

Lemma 3.7 follows from Lemma 3.4(2) and the next two lemmas.

Lemma 3.8. If t€Sy is an odd involution which is not a transposition then
ANT' ~ ANP’.

Proof. We cannot show that the identity embedding of NT' in NP’ induces a
homotopy equivalence of order complexes, so we introduce some additional posets
as follows. Recall that for a finite lattice L, we defined L* to be the lattice consisting
of all elements of L which can be obtained by taking the meet of some coatoms of L.
Set

L. =NP'U{,S,}
(so L, = NP") and set
M, = L: UNT'.

Thus 1\//1\, consists of those elements of ({¢),.S,) which are either intransitive or the
intersection of some collection of maximal transitive but imprimitive subgroups
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(or both). Certainly Ly =M,. It is straightforward to show that {(z)eL; (and
unnecessary to do so for our purposes, since if {7 ¢ L; then ANP' is contractible by
Lemma 2.2(2)). So, by Lemma 2.2(1), we have

ANP' ~ AL} ~ AM,.

We complete the proof by using the fiber lemma to show that the identity embedding
of NT' into IV\I, induces a homotopy equivalence of order complexes. To do this, it

suffices to show that if HeM,\NT' and P = ({t>,H)nNT' then AP is contractible.
Let II(H)<II, be the image of the restriction orby of the orbit map orb to P. For
cach nell(H), the poset orby' (IT(H)_,) has a unique maximum element, namely,
H N S;. By the fiber lemma (Lemma 2.1), we have

AP~ ATI(H).

If we show that orb({¢))ell(H) then we are done, as orb({#)) will be the unique
minimum element of IT(H). Thus, it suffices to show that there is some Ke (¢, H)
such that orb(K) = orb(7).

This is shown in the proof of [Sh1, Lemma 6.2], but we resketch the proof here. By
the definition of M, there exist nontrivial equipartitions ¥, ..., ¥ of [2¢] such that

k
H =) Stab(¥)).
i=1
(Here Stab(P;) is the stabilizer of ¥; in Sy, that is, the group of permutations which
permute the parts of ¥;). Let P be a Sylow 2-subgroup of H which contains z. Since
H is a transitive group of degree 2¢, the group P is also transitive. Let z be an element
of order two in the center of P. Since P is transitive, z is fixed-point free. In
particular, zeAy so z#t. Let ¥,=orb({z)). Then ¥, is a P-invariant
equipartition of [27]. Consider the group Q = <,z ). This group is abelian of order
four and it follows that every orbit of Q has size two or four (Q has no fixed points
since ze Q). Since ¢ is odd, there exist oddly many parts of size two in orb(Q) which
are also parts of orb({¢)). Now consider any ¥;, i€ [k]. Since the transitive group P
stabilizes both ¥; and ¥, there exists some ce N such that if X is a part of ¥; and
Y is a part of ¥, then |[XnY|€{0,c} (this is [Shl, Lemma 5.1], which is easy to
prove). Evidently ce{1,2}, and we claim that ¢ = 2. Assume for contradiction that
¢ =1. Let T" be the set of all parts of size two from orb(Q) which are also parts of
orb(<{7)). As noted above, |I'| is odd. Now let X be any part of ¥; which intersects
some element Y of I' nontrivially. Since Y is a part of ¥, we have |[Xn Y| =1, so
[X'nY|=1.As ¥;is {t)-invariant, we know X # X', so X contains no fixed point
of ¢. Now for each part W of size four from orb(Q), we have |[WnX| = |WnX!| =
2. Any such part of orb(Q) is the union of two parts of size two from orb(<z)). Since
¥, is a nontrivial equipartition of [2¢], we know that |X| is even. It follows that X
intersects evenly many elements of I' nontrivially. Since X is arbitrary, |I'| is even,
which gives the desired contradiction. So, ¢ = 2, which means that every part of
orb(<z)) is contained in some part of ¥;. Let {j, k} be any element of I" and let u be
the transposition (j, k). Since ¥; was arbitrary in the argument above, u stabilizes
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each ¥;. Let K = {t,u). Since ¢ is not a transposition, we have u#¢so {t) <K<H.
Since {j,k} is a part of orb(<{#)) we have orb(K) = orb({¢)) as desired. [

Lemma 3.9. Let t€.S> be an odd involution. Then the identity embedding of NP’ into
(t,S,) induces a homotopy equivalence of order complexes.

Proof. As noted in the proof of [Shl, Lemma 6.10], if H is a primitive
proper subgroup of Sy« which contains an odd involution then p=29—1 is a
prime and H=~PGL;,(p) is embedded in S by its action on the p + 1 points
from its natural projective space. Thus our lemma will follow from the fiber lemma
once we show that if 1e PGL,(p)\PSL2(p) is an involution then 4(z, PGL,(p)) is
contractible.

Let ¢ be such an involution and let g be a preimage of ¢ in GLy(g). Then ¢° is a
scalar matrix while ¢ is not, and since ¢ PSL,(p) we see that g is conjugate to a
diagonal matrix with eigenvalues + 4 for some 1€[F,. It follows that ¢ fixes exactly
two points in the projective space on which PGL,(p) acts naturally.

Let L be the lattice of tinvariant subgroups of PSL,(p). The map

K+— KNPSL,(p) determines an isomorphism between (<¢),PGL;(p)) and L (its
inverse maps M to <{t)M). We will show that AL is contractible. We need the
following well-known facts about subgroups of PSL;,(p). The original reference for
these facts is [Di]. See also [Do] or [Sh3] for these facts, and note that since
p =2%—1 with a>2 we have p = 7mod 8.

(1) If K is a proper subgroup of PSL,(p) then one of the following conditions holds.
() K is cyclic of order dividing 24" or 2%,

(b) K is dihedral of order d1v1d1ng p+lorp—1.
(¢) K has a nontrivial normal p-subgroup and |K| divides
(d) K is isomorphic to one of A4, S4 or As.
(2) If K is a maximal subgroup of PSL,(p) then one of the following conditions
holds.
(a) K is dihedral of order p + 1 = 2¢.
(b) K is dihedral of order p — 1. In this case, K is the stabilizer of a set of two
points from the natural projective space.
(c) K is a Borel subgroup, that is the normalizer of a Sylow p-subgroup of

P(I’ D}

PSL,(p). In this case, |[K| =22-Y and K is the stabilizer of a point in the
natural projective space.
(d) K=S,.

(e) K~ As. (Such K occur if and only if ¢ = 1 mod 4.)

(3) If xePSL,(p) has order greater than two then the centralizer of x is cyclic of
order p, ”“ or ”21 and the normalizer of {x) is either a Borel subgroup or is
dihedral of order p +1 or p — 1. If x has order two then the centralizer of x is
dihedral of order p + 1.

(4) The centralizer C(¢) of ¢ in PSL,(p) is dihedral of order p — 1. It is the stabilizer

of the set of the two points which are fixed by r.
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Let KeL. If K is not isomorphic to one of A4, S4 or A5 then K contains a unique
maximal characteristic cyclic subgroup X, which must also lie in L. Then the
normalizer of X, which is maximal in PSL,(p) and contains K also lies in L. If KeLL
is isomorphic to 44 then the normalizer of K, which is isomorphic to Sy, also lies in
L. However, the group Ss has no outer automorphism, so ¢ must induce an inner
automorphism on any X =S4 which lies in L. However, the centralizer of any
element of order at most two in Sy contains a subgroup of order four, while the
centralizer C(¢) of ¢ in PSL,(p) has order p — 1 = 2(2¢~! — 1) which is not divisible
by four. Thus L contains no group isomorphic to 44 or S4. Similarly, if some KeL is
isomorphic to 45 then ¢ acts on K as conjugation by some element of order at most
two in Ss5. Any such element either centralizes a subgroup of order four from As or is
a transposition. Thus if L contains a subgroup X =~ As then {t) X =~Ss5. However,
PGL;(p) contains no subgroup isomorphic to Ss. (This is well known to finite group
theorists. One way to see it is to note that PSL,(p) is isomorphic to the commutator
subgroup Q3(p) of SO;(p) (see for example [As, p. 253]). The action of SOs3(p) on
Qs3(p) by conjugation embeds SO;(p) in Aut(PSL,(p)) =PGL;(p). Since [SO3(p)| =
[PGL,(p)|, we have PGL,(p)=SO;3(p) <GL3(p). The irreducible (complex) char-
acter degrees of Ss are 1,1,4,4,5,5,6, so S5 has no faithful complex representation
of degree three. It follows that Ss has no faithful representation of degree three in
any characteristic p>5). Therefore, L contains no subgroup isomorphic to As.

We now see that every coatom of L is a Borel subgroup or dihedral of order p + 1
or p — 1. A Borel subgroup B is t-invariant if and only if ¢ fixes the point fixed by B.
Thus L contains exactly two Borel subgroups, and the intersection of these two
groups is the cyclic subgroup of C(¢) with order ’%1 If K is a coatom of L which is
neither a Borel subgroup nor C(¢) and M is any other coatom of L then the structure
of centralizers of elements in PSL,(p) described above forces |[KnM|e{l,2,4}.

We now see that if Kei:, one of the following holds.

(1) K is cyclic of order 1’%1 and K< C(1).
(2) K is a Borel subgroup.

(3) K is dihedral of order p+ 1 or p — 1.
(4) [K|e{2,4}.

In all cases just listed but the first, K contains an odd number of elements of order
two. The automorphism ¢ must fix one of these elements. Thus K nC(#)#1. The

group mentioned in the first case is contained in C(¢). Therefore, for each K eL* , We
have K n C(#) # 1. Thus C(¢) has no complement in L* and AL" is contractible by the
homotopy complementation formula (Lemma 2.3). Now AL is contractible by
Lemma 2.2. O

3.5. Proof of Theorem 1.6

The homotopy complementation formula is not available when we examine 4(A4,).
However, after careful examination of the subgroup lattice of 4,, Lemma 2.4 can be
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applied in order to prove Theorem 1.6. We call a prime p>2 “good” if every
transitive proper subgroup of 4, is solvable. Set

N = {Ny4,(P): PeSyl,(4,)}.
If p is good, the maximal transitive proper subgroups of A4, are the elements of .Z.
Each group N e.# is the split extension of a cyclic group P of order p (generated by

a p-cycle) by a cyclic group C of order ’%1 (generated by the square of a (p — 1)-
cycle). We record the following well-known facts.

(A) There are p conjugates of C in N and every intransitive subgroup of N is
contained in one of these conjugates.

(B) Any two distinct conjugates of C in N intersect trivially.

(C) If M, N are distinct elements of .# then M NN is intransitive.

(D) |.4] = (p—2).

Let p be a good prime. In [Sh2] it is shown that
A(45)~\/ S".
60

The group PSL,(7) contains a maximal subgroup isomorphic to Sy. This subgroup
has index seven, and the action on its cosets gives an embedding of the nonsolvable
group PSL,(7) into A7 as a transitive subgroup, so seven is not good. So, we may
assume that p>11. For Ne ./, set

Loy ={H:1<H<N}
and let IN, be the poset of nontrivial intransitive subgroups of 4,. Then

A(4,) = AIN,U | ] ALcy.

Ne.u

By facts (A) and (B) above, for each Ne.# the poset L<y nIN, is the union of p
disjoint components, each of which is isomorphic to the poset obtained by removing
the minimum element from the lattice of divisors of ’%1 The next three facts follow
immediately.

(E) 1f ’%1 has r prime divisors, counting multiplicities, then 4(L<y nIN,) is pure of
dimension r — 1. Therefore,

dim( U A(LgNmIN,,)> =r—1.
Ne.

(F) Since p>11 and r<log,(p — 1) — 1, we have r<p — 6.
(G) We have

ALy nINy) = \/ S
-1



154 J. Shareshian | Journal of Combinatorial Theory, Series A 104 (2003) 137-155

For any neN and any nell,, we have
n r(n)#l,

orb(S;n4,) = 0 rm) =1

Thus the image of IN,, under the orbit map orb is I17~2'{"}_ The fiber lemma (Lemma
2.1) and Proposition 3.1 give the following results.

(H) We have
AN,~ \/ s

221,
(I) In particular, 4IN, is (p — 5)-connected.

Since each L¢y contains the maximum element N, each AL¢y is contractible.
Using this fact along with facts (E),(F),(I) and Lemma 2.4, we get

A(4,)~AIN,v \/ Z(4(L<ynIN))).
Ne.#
Theorem 1.6 now follows from facts (D),(G) and (H) since, as mentioned earlier, for
any a,d >0 we have

z \/Sd :\/S"“.

a
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