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Introduction 

In this paper we give detailed proofs of the theorems announced in' [I].These 
theorems concern. first of all. an exact sequence. Z(K)) where K is a (connected) 

1 Numbers in square brackets refer to the list of references at the end of the paper . 

The two papers in [2] will be referred to as CH I and CH I1. 
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complex.2 The sequence Z(K) is the same as I: in $1below if 

0, j are the (homotopy) boundary and injection operators and Cz = jA2 , C ,  = 
A, = 0 if n < 2. It is shown to be a homotopy invariant and a fortiori a topo- 
logical invariant of K. 

Various realizability theorems are proved, which show that, if ul(K) = 1 
and dim K 5 4, the part of Z(K) which we call &(K) is an algebraic equivalent 
of the homotopy type of K. Thus Z4(K) may be used to replace the more compli- 
cated cohomology ring, R(K), which was defined in [3]. Moreover Z4(K), besides 
being simpler, is in some other ways better than R(K). For Z4(K), unlike R ( K ) ,  
is defined for infinite complexes. Besides this, &(K) includes ua(K) as a com- 
ponent part and therefore yields more information than R(K) concerning 
homotopy classes of maps K -+ K'. Thus the theory of Z4(K), unlike that of 
R(K), includes the homotopy classification of maps s3+ s2,where S" is an 

But Z4(K) does not include a4(K) and is incapable of distinguishing 
between the two classes of maps S' -+ s3.  A step towards including u4(K) in a 
purely algebraic system would be to calculate u4(8; u s:), where 8; n 8; is a 
single point. 

On replacing H4(K) by H4(K)/ju4(K) we obtain a very simple algebraic expres- 
sion for the 4-type, as defined in CH I, of a simply connected complex." 

Another set of theorems concerns a certain group, r(A), which is constructed 
from a given Abelian group A.  We prove that I'(II2) E I'3 , where Hz, I'3 are 
taken from Z(K).When K is a finite, simply connected complex we use r(II2) 
to express the secondary modular boundary homomorphism, 

in terms of the Pontrjagin square map 

which is defined in Chapter IV. Our expression for b(m) shows that, if K is 
given in a suitable form (e.g. as a simplicia1 complex, which is known to be 
simply connected) &(K) can be calculated constructively. 

In Chapter V we show how the domain of definition of Z(K) can be extended 
from the category5 of CW-complexes to the category of all arcwise connected 

All our complexes will he CW-complexes, as defined in CH I. Here we define Z(K)for 
complexes which need not he simply connected. 

Consider also the group of homotopy classes of maps, tp:K + K ,  where K = Sau S8 
and S2n Sais a single point, such that  t p  I Snis of degree +1 over Snfor each n = 2, 3. 
All such maps induce the identical automorphism of R ( K ) .But the induced automorphism 
of m ( K ) varies with the Hopf invariant of t p  I S8 in  S'. 
'An algebraic expression for the 3-type of a complex, which is not simply connected, is 

given in 191. 
The term category will mean the same as in [lo].We follow Eilenberg and MacLane in 

recognizing categories in which theobjects are "all" groups etc. They indicate various means 
by which this can he justified. 
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spaces. The method used is to realize the singular complex of a space, X, by a 
CW-complex, K(X), which is seen to be of the same homotopy type as X in case 
X is itself a CW-complex. We then define Z(X) as Z{ K(X) 1, if X is any arcwise 
connected space. 

In presenting these theorems we have, as far as possible, separated the purely 
algebraic part of the theory from the geometrical applications. The result is that 
Chapters I and I1 are purely algebraic. The geometrical applications are given 
in Chapters 111, IV and V. In the latter we refer to certain "topological" and 
"homotopy" categories, which we define as follows. The topological category of 
all (topological) spaces will mean the one in which the objects are all spaces and 
the mappings are all maps of one space into another. The homotopy category of 
all spaces will mean the cne in which the mappings are all homotopy classes of 
maps of one space into another. Similarly we define the topological and homotopy 
categories of all (geometrical) complexes of any specified kind. Here a complex 
means a pair (X, K), where X is the space which is covered by a complex K. 
A map of (X, K) into a complex (Y, L) means a triple (4, K, L), where 4 maps 
X into Y, and a homotopy class of maps, (X, K) 4 (Y, L), has a similar meaning. 
We shall denote (X, K) by the single letter K and 4:K L will stand for 
(4,K , L). 

We shall introduce a number of standard operators, 8,j, k, 1etc., which we shall 
denote by the same letters, with or without subscripts, in whatever system they 
occur. With the exception of the deformation operators, in $3 for example, a 
subscript attached to an operator, as in p,:C, --t AnV1, will always agree with 
the one attached to the group which is being operated on. AU our groups, except 
groups of operators, will be additive and we shall denote zero homomorphisms, 
C -+ 0, and identical automorphisms C C, by 0 and 1. 

1.Definition of Z(C, A) 

Let (C, A) denote a sequence of arbitrary ~belian' groups, C, , A, , together 
with a sequence of homomorphisms, 

such that j,,A, = bil(0). In general B,C, # 31!-1(0). We assume that C, ,A, are 
defined for every n = 0, f1, f2, . . . . Let 

Then d,d,+l = 0, since B;j, = 0. Let 2, = ~ ' ( 0 ) .  ThenjA, C 2, , since (5, = 
j,-g,j, = 0, and dC,+1 c jA, . Let 

It is just as easy to define 2 and to prove Theorem 1 if A, , C,  are non-Abelian, pro- 
vided 6Cn+1, dCn+lare invariant sub-groups of An , 2, . 
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and let 

(1.1) i,,:I',,-A,, , kn:An+nn , ln:Zn-+ Hn 

be the identical map of l', and the natural homomorphisms of A, , Z, . Notice 
that the sequence 

(1.2) r, -+ 
i A, +j c, +P A,-I 

is (internally)' exact. Notice also that jnki1(0) = j,,/3,+lC,+1 = c ( 0 ) .  Therefore 
a homomorphism, in:TIn -+ H, , is defined by ink, = lQ, . 

Let z e Zn+l. Then jdn+ lz  = 0, whence /3,+lz e r, . Since 

it follows that I Zn+l induces a homomorphism b,+l: H,+1 -t r, . Therefore a 
sequence of homomorphisms, 

is defined by 

(1.3) blz = pz, i = ki, ik = lj. 

We describe b as the secondary boundary operator. We shall sometimes write 
Z = Z(C, A). 

THEOREM1. The sequence Z is exact. 
It follows from (1.3) and the exactness of (1.2) that 

iblz = $32 = kpz = 0 (2 e Zn+J 

bjk = blj = pj = 0. 

Therefore ib = 0, ii = 0, b i  = 0. 
Let iy = ky = 0, where y e I?, .Then y = pc, for some c e C,+l ,since kil(0) = 

. Moreover dc = jpc = jy = 0. Therefore c e Z,+l , k E H,+1 and we have 

Therefore t l (0 )  = bH,+l . 
Let jka = lja = 0, where a e A, . Then ja = dc = jpc, for some c e Cn+l, 

since ~ ' ( 0 )  = dC,+l . Therefore a = y + pc, where y e I', , and 

ka = ky + kpc = iy E i r n  . 
Therefore i,'(0) = i r ,  . 

Let blz = pz = 0, where z e Z, .Then z = ja, for some a e A, , since /3i1(0) = 
jA, . Therefore 

lz = lja = jka e jTIn . 
Therefore b;;'(0) = jIIn and the theorem is proved. 

1.e. the last homomorphism need not be onto nor the first an  isomorphism into. 
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we mean a family of homomorphisms (iaom~rphisms)~ 

t)n+l:Hn+~ HL+I gn:  rn+ r: , f n : n n  +1~: ,1 

such that 

(3.1) 65 = gb, ig = fi, if = lji, 
where b: H:+~-+ l?: etc. are the homomorphisms in 2'. 

Let (C', A') be a system of the same sort as (C, A). Then a homomorphism 
(isomorphism) 

will mean a family of homomorphisms (isomorphisms), 

h,+l:~n+l+ , -+ A: 

such that 

(33) Bh = j6, jj = hj. 

Notice that dh = jph = jfp = hj6 = hd in consequence of (3.3). Also f I?, C I'k 
since jfi = hji = 0, where i:r, -t A, is the identical map. 

Let (3.2) be a given homomorphism and let 2' = Z(Ct, A'). Then kf/3 = 
lcah = 0, lhd = ldh = 0.Therefore h, f induce homomorphisms 

according to the rules 

(3.4) Ijlz = lhz, ig = fi, fl; = kf (2 e Zn+l). 

It follows from (1.3), (3.3) and (3.4) that 

bljlz = blhz = Bhz = ffiz 

ig = kig = lcfi = fki = f i  

ifk = ikf = ljf = lhj = h1.j 

= Qjk. 

Therefore (lj, g, f ):X -t Z' is a homomorphism. We call it the homomorphism 
induced by (h, f ) .  

By a deformation operator, t:C -+ C', we mean a family of arbitrary homo- 
morphisms, (n+l:C, -+ ~ : + 1 .  We describe two homomorphiis, 

as homotopie, and write (h,f )  cl. (h*, f*),if, and only if, there is a deformation 
operator, t :C +C', such that 

An isomorphism, without qualification, will always mean an isomorphiim onto. 
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Since 2d = 0, ji = 0, k p  = 0 it follows from (3.5) that Ih*z = lhz, Pi = ji, 
kp = kj. Therefore (h, f)  and (h*, f*) induce the same homomorphism 
Z(C, A )  -+ E(C1,A'). 

Let (C, A) and (C', A') both satisfy (2.1). Let c e d ; ; ] ( m ~ ~ - ~ )  = mz.and let dc 
Let z:-~C c:-1 and H;(m) be defined in the same way as Zn-1 and Hn(m). 
Then hZn-1 C z:-~, since dh = hd, and dhc = hclc = mhz. Therefore h, in-
duces a homomorphism 

according to the rule lj(m)c* = (hc)*, where c* and (hc)* are the elements of 
Hn(m) and H; (m), which correspond to c and hc. L41so Q induces a homomorphism 

such that g ( m ) ~ ~  = ( ~ 7 ) ~  , ( ~ 7 ) ~, where 7, are the cosets which contain 7 ,  07. 
By the definition of b(m) we have b(m)c* = (Bc - ma), where a E AnP1is such 
that dc = mja. Then dhc = hdc = mhja = mjfa and 

= if (8c -

= (g(8c - ma)),, 

Therefore b(m) is natural in the sense that 

Obviously (h, f)  and (h*, f*) induce the same homomorphisms O(m), g(m) if 
(h, f )  -- (A*,$1. 

Let j:An-, -+ Cn-1 and j:A:-l-+ cL-1 have right inverses, 2~ and u', letjAn-I 
= Zn-l and let b(m) be defined by the second method in 92. Since jCfu - u'h) 
= hju - h = Oit follows that fu - u'h = 4:Zn-1 -+ I?:-1. Let dc = mz, where 
c E C,. Then f(B - ud)c = (6 -uld)hc - W z ,  whence~(m)b(m) = b(m)lj(m). 

4. Combinatorial realizability 

By a compose'te chain system we shall mean a system (C, A), of the kind intro- 
duced in $1, such that 

(a) C, = A, = 0 if r < 2 

(b) each C, i a  a free Abelian group. 

Let (C, A) be a composite chain system. Then Z(C, A )  terminates with He --+ 0, 

1, ma) 
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followed by a series of homomorphisms, 0 --t 0, which we discard. Let 

i b r i  iI
Z': .. . -+ H n + l +  r, --+ II, --+ . . . --t H: +0 

be an exact sequence in which the groups are Abelian, but otherwise arbitrary. 
A composite chain system (C, A) will be called a combinatorial realization of 
Z1 if, and only if, Z(C, A) x XI. 

THEOREM2. Z1 has a combinatorial realization. 
Assume that we have constructed a composite chain system (C, A), and 

homomorphisms 

l ;+l :~n+l+ Hb+l,  9n:rn rln, k ' , : ~ ,  --t rl:, 

for every n = 1, 2, . , such that 
I .  

(4.1i (a) {bn+il:+i~ = gBn+s, inon= kkin , ink: = lnln 

(b) )k+izn+i= fL+i7 n = PC*+l c k?(0), 

where, as usual, z E Zn+l and in:I', +A, is the identical map. Then i t  follows 
from (4.lb) that isomorphisms and homomorphisms, 

$,+I: H ~ + I  % , f n : n n  + fll (n = 1, 2, . . a ) ,  

are defined by $1 = l', fli = I;', here Hn+l, IIn are in Z = Z(C, A). It follows 
from (4.la) and (1.3) that 

bljlz = bl'z = g@z= gblz 

ig = kli = fki = f i  

ifk = jk' = l ' j  = Qlj= Qjk. 

Therefore blj = gb etc. and (Q, g, f):Z + Z' is a homomorphism. Since $,,+I , g, 
are isomorphisms (onto) for every n, so if f n  ,by (7.5) on p. 435 of 1171. There- 
fore (C, A) is a combinatorial realization of Z'. 

We now construct (C, A) inductively, starting with C1 = A0 = 0. Let r 2 1 
and assume that we have constructed the groups and homomorphisms, 

P j P PCr *A,-1 -+C,-1 + ..- --+ A0 , 
likewise 1:+1, k:, , so as to satisfy (4.1) for n = 0, ... , r - 1. Let r, ,B, be 
any groups which are isomorphic to r: ,@T1(0) and let g,: r, 3 I': ,u: PT1(0) x B ,  
be any isomorphisms. We define A, and j, bylo 

A , = r , + B , ,  j , ( y + b ) = u - l b  ( y ~ r , , b e B , ) .  

Then r, = 271(0) and j,A, = PT'(O). Since C ,  is a free Abelian group so are 
fly1(0) and B, . Let (h}be a set of free generators of B, . I t  follows from (4.la), 

10 If X, Y are any (additive) groups X + Y will always denote their direct sum. It is 
always to  be assumed that  x E X, y e Y are identified with (x, O), (0, y) e X + Y .  
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with n = r - 1, that b,l:j, = gr-drjr = 0. Therefore l:j,h = i&,for some 
x: e II: by the exactness of Z'. We define k : : ~ ,--t II: by 

Then i,k:y = 0 = 1:jn and j,k:h = l:j,h . Also k:i, = ilg,. Therefore 

Let {y,] be a set of elements which generate H:+l . Let Z,+l be a free Abelian 
group with a set of free generators, (z,], in a (1-1) correspondence, z, 4 y, , 
with (y,) . Let 1:+1:~,+1--) H:+I be defined by l:+lz, = y, .Then 1:+12,+1= H:+I . 
Let P,+l be any group such that v:P,+l x 1:-'(0) C Z, and let C,+l = 
Z,+I + P,+l. Since C, is free Abelian so are 1:-'(0), P,+1and hence C,+1 . Let 
(p.) be a set of free generators of P,+1. Since vP,+l = 1:-'(0) it follows from 
(4.la)) with n = r - 1, that 

Since j,A, = it follows that up. = j,a. for some a, o ~ ~ ( 0 )  e A, and from (4.3) 
that i,k:a, = 1: j,a, = l:vpu = 0. Therefore there is a y: e I': such that kfa. = 
6-f: = k:y., where y, = gyly:. Also it follows from (4.3) and the exactness 
of I;' that 

We define P,+I by 

Then d.+l(z + p.) = j.BTtl(z + p.) = jcc = vp., whence ~; : I (o)  = Z,+I and 
d,+lC,+l = 1:-'(0). Also k,Pr+l = 0 and g,P,+lz = b,+ll:+lz. Therefore (4.1) are 
satisfied when n = r and the induction is complete. 

ADDENDUM.The combinatorial realization, (C, A),  of Z' may be constructed 
so that 
(a) l::Z, x H: if H: is free Abelian. 
(b) The rank of C, is finite if both H: , H),-1 have finite sets of generators. 

To prove this we assume, as part of the inductive hypothesis, that these 
conditions are satisfied for n 5 r and also that the rank of Z, is finite if H: is 
finitely generated. We insist that the generators (y,] of H:+I shall be free if 
Hicl is free Abelian, in which case l:+l:~r+l % H:+I , and finite in number if 
H:+l is finitely generated. In the latter case the rank of Z,+l is finite. If H: , 
and hence Z,, are finitely generated, so are 1:-'(0) and P,+l.Therefore the 
rank of C,+] is finite if both H: are finitely generated. This proves the 
addendum. 

Let I; = Z(C, A),  2' = I;(C1,A'), where (C, A) and (C', A') are composite 
chain systems. If a given homomorphism F : 2  --t 2' is the one induced by a ho- 
momorphism (h, f ):(C, A) 4 (C', A') we shall call (h, f)  a combinatorial realiza- 
tion of F. 
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THEOREM3. Any homomorphism, F : Z  4 Z' has a combinatorial realization 
(C, A )  4 (C', A'). 

Let F = ($, g, f). As in the proof of Theorem 2 we have 

where Pn+lw dCn+l, B, NN jAn . Let { b ~ ] ,( ~ ~ 1 ,(pa) be sets of free generators 
of Bn Zn+l, P n + l .  

Let z,', e ~1$,+11~+~z,  and let h \+ l :~ ,+ l - -+  z:+~be defined by hOz, = z:C 

for every n 2 1. Then 

Let a: e k,'fnk,bx C A: . Then it follows from (1.3)) (3.1) and (4.4), since 
jAn C Zn , that 

~ja: = = i fkh = QjkbA 

= Ijljbx = lh3h . 
Therefore ja: = hOjbx+ dc: ,for some c: e c:+~.Let f :  An -+ A: be defined by 

f i = i g  f h = a : - P C : .  

Then icffi = 1;ig = ig = fi = f k i  and kjbA = ka: = fkbh .Therefore 

(4.5) $2 = lh0, i g  = fi, f 1 ~= 1;f. 

Since lcf = fk and kp = 0 we have ?@pa = fkpp = 0. Therefore fop, = PC:, 
for some c: e c:+~. Let h:Cn+l 4 ~ b be defined by hz + ~ = hOz, hp, = c: . Then 
php,, = fop, . Since /3z = blz it follows from (4.5) and (4.4) that 

= bthz = phz. 

Therefore fP = Ph. Also jfi = j i g  = 0 = hji, jjh = ja: - dc: = hjh . There-
fore jf = hj. Thus (h, f )  is a homomorphism. Since hz = hoz it follows from 
(4.5) that (h, f )  is a combinatorial realization of (6, g, f )  and the proof is complete. 

5. Definition of r (A)  

Let A be any additive, Abelian group. We shall define r(A), additively, by 
means of symbolic generators and relations. The symbolic generators shall be 
the elements of A. We emphasize the fact that an element a c A is not an ele- 
ment of r(A). The elements of r(A) are equivalence classes of words, written 
as sums, in the pairs (+,a), (-, a) for every a e A. We write ( f ,  a) as f w(a) 
and, frequently, +w(a) as w(a). We shall use the symbol s to denote equiva- 
lence between words and = to indicate that two symbols, in any context, stand 
for the same thing. In  defining F(A), or any other group, by this means we 
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always assume that the "trivial relations", x - x = 0, are satisfied as a matter 
of course. 

The relations for r(A) are 

for all elements a, b, c e A. I t  follows from (5.lb), with a = b = c = 0, that 

Hence it follows from (5.lb), with b = 0, a + c = d, that 

(5.3) w(d) - w(c) - w(d) + w(c) = 0. 

Therefore r (A)  is Xbelian. I t  follows from (5.la), (5.2) and (5.lb), witfh a = 


b = -c, that 

w(a) - w(2a) + 3w(a) = 0, 

whence w(2a) =- 4w(a). Let 

(5.4) W(a, b) = w(a + b) - w(a) - w(b). 

Then W(a, b) = W(b, a) since A and r(A) are Abelian. Since w(2a) = 4w(a) 
we have 

(5.5) W(a, a )  = 2w(a). 

Given that addition is commutative, i t  is easily verified that (5.lb) is equiva- 
lent to 

(5.6) W(a, b + c) = W(a, b) + W(a, c). 

It follows from (5.4), (5.6) and induction on n that 

(5.7) w(a1 + . . . + a,) z C w ( a i )  + W(a,, aj).  
I i< j  

On taking al = . . . = a, it follows from (5.5) and (5.7) that 

Let r(a)  e r (A)  be the element which corresponds to w(a) and [a, b] e I'(A) 
the element corresponding to W(a, b). Then 

r (a + b) = r(a)  + Y (b) + [a, bl, 

in consequence of (5.4). Therefore -[a, b] is a factor set which measures the 
error made in supposing the map 7:A -+ r (A)  to be a homomorphism. We shall 
deal with the generators (i.e., generating elements) y(a) in preference to t'he 
symbols w (a). 

Let g be a mapu of the set of generators -y(a), indexed to A by the map 

11 We admit the pomibility that gy(a) # gy(b) if a # b,  even if y(a)  = y(b) . But the map 
gy:A -4 G shall be single-valued. 
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a + -y(a),into an (additive) group G. We shall say that g is consistent with a 
relation 

if, and only if, 

If g is consistent with all the relations (5.1) i t  determines a homomorphism 
r ( A )+G. 

We give some examples of groups r ( A ) .  First let A be free Abelian and let 
{ a i }be a set of free generators of A, indexed in (1-1) fashion to a set {i} .  

(A) r ( A )  i s  free Abelian and i s  freely generated by the set of elements ?(a;),  
[ a j ,  ak], for every i e { i )and every pair j, k e { i ]such that12 j < k .  


~ e t ' ~ 
be a free Abelian group, which is freely generated by a set of elements, 
( g i  , g j k } ,  indexed in (1-1) fashion to the union of { i ]and the totality of pairs 
(j,k) such that j < k. Let 4 : G  + r ( A )  be the homomorphism which is defined 
by 4gi = r (a i ) ,  4gjt = [ a j ,  ak]. Let a(x )  = B xiai where { x i }  is a set of in- 
tegers, almost alli4 of which are zero. Let 

Then g(-x) = g(x), where -x  = { - x i ) .  Since 

i t  follows that 

where y = { y i } ,  x + y = { x i  + y i } .  Since this is bilinear in x,  y and since 
g(-x)  = g(x) it follows that the correspondence y { a ( x ) }+ g(x) is consistent 
with (5.la) and with (5.6), and hence with (5.lb). Therefore i t  determines a 
homomorphism 4' :I' ( A )  +G. Obviously 4'y(ai) = g i  and it follows from (5.4) 
and (5.9) that q ' [ a j ,  ak] = g j k  if j < k. Therefore 4'4 = 1. Also it follows from 
(5.7) and (5.8), with ai in (5.7) replaced by xis; , that +$' = 1. Therefore 
4 : G  m r (A),which proves the assertion. 

(B)  Let A be cyclic of Cfinite) order m and let al be a generator of A .  Then r (A)  
i s  cyclic of order m or 2m, according as m i s  odd or even, and i s  generated 
by r (a,). 

This is a corollary of Theorem 5 below. 

'2 We postulate a simple ordering of the set {ij ( j  # k and k Q: j if j < k )  as a conveni- 
ent method of indicating a summation over all unordered pairs j ,  k (j# k ) .  I t  is to  be as-
sumed, when the context requires i t ,  that  any such store of indices is simply ordered. 

l8This proof of (A) and its use in simplifying an earlier proof of Theorem 7 below were 
suggested by M. G. Barratt. 

l4 By almost all we mean all but a finite number. 
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(C) If every element in A is of finite order and also divisible by its order, 
then r (A)  	= 0. 

Let a E A be of order m and let a = mb. Then 

2y(a) = [a, a] = [a, mb] = [ma, b] = 0. 

Therefore 2y(x) = 0 for every x E A .  In particular 2y(b) = 0. If m is even it 
follows that 

Since m2y(a) = y(ma) = 0 and 2y(a) = 0 we also have y (a) = 0 if m is odd. 
This proves (C). 

I t  follows from (C) that r(R1) = 0 if R1is the group of rationals, mod. 1. 
(D) If A is the additive group of rationals, then r (A)  x A. 
First let A be the additive group of any commutative ring, R. Then a homo- 

morphism, g:r(A) -+ A, is defined by gy(a) = a2. h'ow let R be the ring of 
rationals. Then it may be verified that a homomorphism, f :A -+ r (A), is de- 
fined by1' f(pjq) = pqy(ljq), where p, q are any integers, and that fg = 1, gf = 1. 

Let A be a free Abelian group and let {ai] be a set of free generators of A. 
Then the following expression for r (A)  is suggested by [19]. Let I. be the group 
of integers and let A* be the group of homomorphisms a*:A -+ 10,which are 
restricted by the condition that a*ai = 0 for almost all values of i. Then A* is 
a free Abelian group, which is freely generated by f a t ] ,  where a t a j  = 1 or 0 
according as j = i or j # i .  We describe a homomorphism f :  A* --t A as admis- 
sible if, and only if, f a t  = 0 for almost all values of i and as symmetric if, and 
only if, 

for every pair a*, b* E A*. Let 

(5.11) 	 fa: = Zifijaj = Zj(a:fa?)aj. 

Then (5.10) is equivalent to the condition f i j  = fji . 
Let S be the additive group of all admissible, symmetric homomorphisms, 

f :  A* +A, and let A:  S --t r(A) be given by 

where eii = y (ai), eij = [ai , aj] if i < j. I t  follows from (A) and (5.11) that 
A-'(0) = 0. An arbitrary element a! e: r(A) is given by 

for integral values of y,j , which are zero for almost all values of i, j. Therefore 
a! = Xf, where f is given by (5.11), with f i j  = yij if i 5 j. Therefore 

(5.13) 	 X:S w r (A) .  

l6 Since pqkay(l/kq)= pqy(l/q) we need not insist that (p, q)  = 1. 
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6. Induced homomorphisms of r (A)  

Let f :A -+ A' be a homomorphism of A into an additive Abelian group A'. 
Let r(A') be defined in t,he same way as r(A) and let y(al) e r(A') be defined 
in the same way as y (a). Then t,he correspondence y (a) -+ (fa) obviously deter- 
mines a homomorphism 

g:I'(A) --t I'(A1). 

We describe g as the homomorphism induced by f. It is given by gy = yf. Ob- 
~ ious ly  

(6.1) g[a, bl = [fa,fbI (a, b E ti). 

I t  is also obvious that gr (A)  = r(A1) if fA = A' and that g = 1 if A =8' 
and j = 1. Let g': r(A1) + r(A") be induced by f':A1 +A". Then it is obvious 
that g'g: r (A)  + r(A1') is induced by f'f: A --t A ". Hence it follows that 

g : r ( ~ )w ~ ( A I )  
iff :.4 w A'. 

Let A admit a (multiplicitive) group, W, as a group of operators. Then so 
does r(A),  according to the rule 

(6.2) ur (a )  = r(wa) (We W). 

That is to say, w:r(A) + r(A) is the automorphism induced by w:A + 9. 
Let f :A -+ A' be an operator homomorphism into a group, A', which also admits 
U: as a group of operators. Then it is easily verified that the induced homo- 
morphism, g: r ( A ) 4 F(A1), is also an operator homomorphism. 

On taking A to be cyclic infinite and A' = A me see that a given automorphism, 
r (A)  --t r (A)  (e.g. y (a) + -y (a)), is not necessarily induced by any endo- 
morphism A + A; also that distinct automorphisms of -4 (e.g. a -+ f a )  may 
induce the same sutomorphism of I' (A). 

Letg:r(A) + r(A1) beinducedbyf:A+ A'. Let {a,) C - 4  beasetof  genera- 
tors of -4 and let ( b x j  C f'(0) be a set of elements which generate fl(0). Then 

n ( h )  = g[ai, bxl = 0. 

THEOREM = A'. Then g-l(0) is generatedt6b l ~the elements 4. Let fA 

(6.3) -dm), Ia i ,h l ,  
for all values of A, i. 

Let roC g-l(0) be the sub-group generated by the elements (6.3). I say 
that, if a e A, b e f'(o), then 

(6.4) r ( a  + b) - r (a )  e ro . 

For let b = bx, + . . . + b ~ ,, Then it follows from (5.7) that 


Cf. Theorem 6 in [20]. 
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Each h, is a sum of generators in the set ( a ; ) .Therefore [h,, h,]is a sum of 
elements of the form [ai, h,].Therefore r ( b )  e TO. Let a = ail + . . . + ai,. 

Then 

Therefore 

which proves (6.4). 
Let r *  = r(A)/I 'o  and let a* c r *  be the coset containing a given element 

cu e I'(A). Since ro C g-l(0) it follows that g induces a homomorphism, 

g* :r* -+ r (A') ,  

which is given by 

(6.5) s*r(a>*= gr(a>= rCfa). 

Then g*-'(0) = g-'(0)/I', and we have to prove that g*-'(0) = 0 .  
Let u(a l ) e f'a' C A be a "representative" of a', for each a' e A'. Then 

whence 

where b(a) e f' ( 0 ) .Therefore i t  follows from (6.4) that 

(6.6) 

Similarly 

r ( u ( - a ' ) ) *  = r ( - u ( a ' ) ] *  = r ( u ( a r ) ) *  
7 [ 

r (u(a:+ . - + a',)]* = y (u(a:)  + . . . + u(a1)I * 
Let g':  { y ( a f ) ]--t I?* be the correspondence which is given by 

(6.8) g'r (a'> = r ( u  (a') I *. 
Then i t  follows from (6.7) that g' is consistent with the relations (5.1), for I'(A1). 
Therefore it determines a homomorphism g': r ( A 1 )-+ r*.  It follows from (6.5), 
(6.8) and (6.6) that 

Therefore g'g* = 1,whence g*-'(0) = 0 and the theorem is proved. 
Let A' = A / B ,  where B C A is generated by ( h ] ,and let g: r ( A )  4 I'(AJ) 

be induced by the natural homomorphism A -+ A'. Let A be a free Abelian 
group, which is freely generated by ( a i l . Then A' is defined by ( a , ) ,treated as 
symbolic generators, and the relations bx = 0 ,  when bx is expressed as a sum of 
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the generators ai and their negatives. It follows from (A) in $5 and from Theorem 
4 that I'* = F ( A ) / ~ - ' ( o )  is similarly defined by the symbolic generators y(ai), 
[aj, ak]G< k )  and the relations 

(6.9) y ( h ) = O ,  [ a i , b x ] ~ O ,  

when y ( b ~ ), [ai , bh] are expressed in terms of fy(ai),f[a , ak].Let us identify 
each element a* e r* with g*a* E r(A1),where g*: r* w r(A1)is given by (6.5) 
(obviously g* is onto). Then Theorem 4 can be restated in the form: 

THEOREM5. Let A' be defined by symbolic generators (a;] and relations ( b ~= 01. 
Then I'(A1) is defined by the set of symbolic generators r(ai), [ a j ,  ak](j < k )  and 
the relations (6.9). 

Let A be generated by al ,subject to the single relation mal 0,where m > 0. 
Since ~ ( m a l )= m$(al) and [al, mal] = m[al, all = 2m-y (al) i t  follows from 
Theorem 5 that I'(A) is generated by y (a1),subject to the relations m$(al) = 0, 
2mr(al) = 0, which reduce to the single relation (m2, 2m)y(al) = 0. This proves 
(B)in 55 since (m" 2m) = m or 2m according as m is odd or even. 

Theorem 4 is not necessarily true if f is into, but not onto A'. For example, 
let A' be cyclic of order m2,where ?n is odd. Let al be a generator of A' and let 
A C A' be the sub-group generated by mal. Then A and likewise r ( A )are of 
order m. Also r(A ' )is of order m" Let g :  r ( A )-+ r(A1)be the homomorphism 
induced by the identical map f :  A -+ A'. Since 

r (mall = nz2r(al)= 0,. 

in consequence of the relations for I'(A1),it follows that gr(A) = 0, though 
f-'(o) = 0. 

As another example let A' be the group of rationals mod. 1 and let A C A' 
by the cyclic sub-group, which is generated by l / m  (m > 1 ) .  Let g :  I'(A)+r(A')  
be induced by the identical map A 4 A'. In this case I'(A1)= 0, according to 
( C )  in 55. Therefore Theorem 4 may break down even if g ,  but not f ,  is onto. 

THEOREM be such that l7 ~ ( A ' I A ; )  each proper sub-group 6. Let A' # 0, for 
A: C A'. Then a homomorphism, f :  A -+ A', is onto A' i f  the induced homomorph- 
ism, g :  r (A)4 (A'),  is onto I'(A'). 

Let gI'(A) = I'(A1)and let A; = fA. Then 

f = ifo:A +A1,  

where fo:A --t A: is defined by foa = fa(a E A) and i:A: -+ A' is the identical 
map. Therefore 

g = jgo :r (A)-+ I'(A'), 

where go:I'(A)-+ I ' (A;) ,  j :  I ' ( A ~ )+ r(A1)are induced by f o  , i. Since g is onto 
so is j. Let g': r (A ' )  --t r(A1/Ao)be the homomorphism induced by the natural 
map fl:A' + A1/Ao.Then f' is onto and so therefore are g' and 

g'j :r (A:)--t I'(A'IA;). 

l 7  In $8below we shall see that this condition is always satisfied if A' is finitely generated. 
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But g'j is induced by f ' i : ~ ;-+ A'IA; . Since f ' i ~ ;= 0 it follows, obviously. 
that g ' j I ' ( ~ ; )= 0. Therefore ~ ( A ' / A ; )= 0 and i t  follows from the condition 
on A' that A; = A'. This proves the theorem. 

7. Relation to Tensor products 

Let A be a weak direct sum," Z,A, ,where ( A , }  is any set of additive Abelian 
groups. Let r be the weak direct sum 

r = Bpr (Ap)+ C A,  A , ,  
Q <r 

where A,  A,  is the tensor product of A,  and -4,. Since [ a , ,  a,] e r ( A )  is0 


bilinear in a, E A,  and a, r A, it follows that a homomorphism, f:r -+ r ( A ) ,  
is defined by the correspondences 

(7.1) ?,(a,) -+ yl(a,), a ,  . a, -+ [a, , a,], 

where y (a,) r r ( A , )  and yl(a) E I' ( A ) means the same as y (a)  in $5. 
THEOREM 7 .f:r x r ( A ) .  
Let A,  be defined by a set of symbolic generators, a,i ,and relations b,x = 0. 

We assume that each a,i is distinct from each aqj if p # q. Then A is defined by 
the combined set of generators (a , ; ) and the combined set of relations (b,x = 0).  
Therefore it follows from Theorem 5 that r ( A ) is defined by the union, 

, s i r ) ,  
of all the generators and all the relations in the sets 

But r ( A , )  is defined by S, and A ,  A,  by l9 S,, ,where S, , S,, are obtained 0 


from S:  , ,Sir by writing y instead of y' in S: and x.y instead of [x, y] through-
out sir (x = aqj or b,, ,y = arkor b,,). Therefore r is defined by the combined 
system { S , , Sqr)and (7.1) transforms this system into I S ; ,  s ~ , J .  This proves 
the theorem. 

8. "A" finitely generated 

Let A have a finite number of generators. Then i t  is a direct sum 

where XA is of finite order, ax, and Y, is cyclic infinite. Moreover we may take 

l8 An element in A is a set of elements ( a , ) ,with a, e A,  ,almost all of which are zero. 
If a, = 0 except when p = pl , ... ,p ,  we write {a,]  = a,, + ... -k a,, . 

19 This follows from two successive applications of Theorem 6 in  1201. 
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a1 , - - , at to be the invariant factors of A, so that a1 > 1, CA 1 ax+, . Let this 
be so and let pl , .. , p,  be those among al , . - , at which are distinct. That  
is to say 

for X = 1, . - . ,p .  Let n~ = k ~ , . ~- IGA .Then we denote (al , . - ,at)  by 

(8.2) ( P I  ,nl),  ... , ( P ,  ,n,). 

Let {A,) = ( X A, Y,], in $7, and let r be identified with I' ( A )  by means of 
the isomorphism f in Theorem 7. Then it is clear that the rank of r ( A )  is 

Let px be odd. Then it also follows that px occurs sx times in I'(A), where SA is 
calculated as follows Let 

Then ph occurs nA(nA .t 1)/2 times in the summand 

and nANA+l times in 

where p = h+l+ 1, .. . , t, a = I ,  - .. , r .  Therefore SA = MA. 
In general let ph-1 be odd and ph even, where 1 5 h 5 p + 1 and h = 1, 

h = p + 1have the obvious meanings. If ui = pA and X 2 h then r ( X i )  is of 
order 2 p ~. Hence it follows that px occurs MA - nA times in r ( A )  if X = h or if 
X > h and px > 2 p ~ - I .In  the latter case PA-^ occurs n ~ - ~times. If px = 2px-1 
and X > h then px occurs MA - nA + nA-~times. Also 2pp occurs n, times if 
h 5 p. Therefore the invariant factors of I'(A), written in the form (8.2), are 

together with 

for every p such that h 5 p 5 p and either 2p, < P,+~ or p = p, where 

(a) sl = M1I i f l S l < h  

(b) sh = Mh - n,+ 

(d) (sA= MA - n~ + 721-1 if X > h, px = 2h--1 . 
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Notice that I'(A) cannot be an arbitrary group. For example its rank must 
be a binomial coefficient or zero. Suppose however that a given group, I', is 
known to be of the form I'(A), where A is finitely generated. Suppose further 
that the rank and invariant factors of I' are known. 

THEOREM8. The rank and invariant factors of A are uniquely determined by 
those of I'. 

Let r' be the rank of I?. Then the rank, r, of A is the (unique) non-negative 
solution of the quadratic equation 

Let the invariant factors of I', written in the form (8.2) be 
I I 

(P: 1 s:), ' ' - 1 (Pq , sq). 

We proceed to determine the sequence (8.2) for A .  If pi is odd it follows from 
(8.3) that p, = pi . Since 

it follows from (8.5a) that n, is the non-negative root of the quadratic 

x2+ (2r + 1)x - 23-91 = 0. 

If piis even then p, = p,1/2, n, = si , according to (8.4), with p = p. 
Assume that (PA , n ~ )  . , (P, , n,) have been uniquely determined, wherez0 

X 5 p, and let px = pi. . If j = 1 the sequence (8.2) is determined and we number 
(p, , n,) so that X = 1. If either j = 2 or if j > 2 and pi-2 is odd it follows from 
(8.3), (8.4) and (8.5a, b) that a-1= pi-1 and that n~-1 is the non-negative root of 

where a = f 1 according as pi.-l is odd or even. ~ N A  

If j > 2 and pi-2 is even we consider the cases 


In case (a) it follows from (8.4) and (8.5~) that PA-1 = p;-1/2, ~ A - I  = si-1 . 
In case (b) it follows from (8.5d) that 

Therefore a-1, ~ A - I  are uniquely determined in each case and the theorem fol- 
lows by induction on j. 

Let g:I'(A) --t I'(Af) be the homomorphism induced by a homomorphism 
f:A --t A'. If A' is finitely generated so is A'IA;, where A: C A' is any sub- 
group. Therefore I'(A'/A~) # 0 unless A; = A'. Therefore it follows from 

$0 The value of p is not determined till the induction is complete. Therefore we allow 
x 4 0. 
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Theorem 6 that, if A' is finitely generated and gI'(A) = r (A1) ,then fA = A'. 
We prove a kind of dual of this. 

THEOREM9. If A i s  finitely generated, A' being arbitrary, then g-'(0) = 0 
implies f' (0) = 0. 

Since g[ao , a] = 0 for any a e A, a0 E f'(0)this follows from: 
THEOREM10. If A i s  finitely generated and [ao, a] = 0 for every a e A, then 

ao = 0. 
Let A be given by (8.1)and let X i  , y~ be generators of X i  , YA. Let [ao ,a] = 0 

for every a e A, where 

First assume that r > 0. Then 

But [xi , y,] generates the cyclic summand, Xio Y , ,  of I'(A), whose order is 
a, .Also [a,yr] is a non-zero element in the free cyclic group YAo Y ,  or I'(Yr), 
according as X < r or X = r. Therefore kt = O(at),  6 = 0, whence a. = 0. 

Let r = 0. Then a similar argument, with y, replaced by xt , shows that 
kixi = 0 if i < t and that 

Therefore a 1 2kt,  where a is the order of y(xt).But a = at or 2at according as 
at  is odd or even. In  either case at I kt . Therefore a. = 0 and the theorem follows. 

As a corollary of this and Theorem 8 we have: 
THEOREM A' i f ,  and11. Let both A and A' be finitely generated. Then f:A w 

only i f ,  g :  r ( A )  w r (A1) ,where g is induced by f .  
Notice that, in consequence of Theorem 10, a finitely generated group, A, 

is orthogonal to itself by the pairing (A ,A)  + r ( A ) ,in which (a,b) = [a,b]. 

9. Direct systems 

Let 3 be the category of all (additive) Abelian groups, with all homomorphisms 
as mappings. Then a functor2' I':8 -+ 8 is obviously defined by the correspond- 
ences A + I'(A),f + rf ,where I ' f:  r ( A )+ I'(A1)is the homomorphism induced 
by j:A 4 A'. Let D = Dir be the category of direct systems of Abelian groups, 
defined as in [lo],except that the groups are to be Abelian. Let 

be the functor defined by lifting I'([lO],$24) and the direct limit functor. Let 
(D, T )  be a given system in 9,with groups T(d)(d e D) and projections T(d2,d l )  

21 See [lo].There are obvious generalizations of Theorem 12 below to non-Abelian groups. 
The partial ordering in D, below, is not t o  be confused with the simple ordering of indices, 
which was introduced in 95 and which is not needed here. 
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(dl < dz). Then I'z(D, T) consists of the groups I'T(d) and the projectio~~s 
I'T(dz , dl). Let 

X(d): T(d) -+ L(D, T), ~ ( d ) :  I'T(d) +LI'l(D, T) 

be the injections in (D, T) and I'z(D, T). Then a homomorphism 

1s given by 

where ta e T(d). We recall from [lo] that the transformation w:Lrl + I'L, whic.11 
is thus defined, is natural and that I' is said to commute with L if, and only if, w is 
an equivalence, meaning that w(D, T) is an isomorphism for each system (D, T). 
TEEOREM
12. The functor r commutes with L. 

Using the same notation as before we have 


Therefore a single-valued map, 9,of the generators, y (X(d)td) e I'L(D, T), into 
LrZ(D, T) is defined by 

Let a, b, c E L(D, T). Then there is a d t D such that a, b, c have representa- 
tives r, s, t t T(d). Therefore 

Similarly +y(b + c) = p(d)y(s + t) etc. and it follows that 4 is consistent wit,h 
the relations (5.1). Therefore it determines a homomorphism 

I t  follows from (9.1) and (9.2) t,hat +w(D, T) = 1, w(D, T)@ = 1, which.proves 
the theorem. 

In this chapter a complex will mean a pair (K, eO), where K is a connected CW-
complex and e0 e KO is a 0-cell, which is to be taken as base point for all the 
homotopy groups which we associate with K. Nevertheless we shall denote 
complexes by K, K' etc., remembering that, if Kt stands for (K, e:) (i = 1, 2) 
and e! # ei , then K1 # K2 . A cellular map, 4: K --t K', will mean one which, 
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in addition to 4Kn C K'" for every ~t 2 0, satisfies the condition +eO = el0, 
where eO,el0 are the base points of K, K'. 

Let K be a given complex, let p2 = ?r2(K2, K1), 

Cn+l = T~+I(K"+',Kn), A, = rn(Kn) (n 2 2) 

and let @:Cn+l + A ,  , j:A, --+ C, be the boundary and injection operators, 
where C2 = jA2 C p2. Let P :p2 --+ a l ( ~ ' )  be the boundary homomorphism. 
Then @C2 = 1 and, as proved in CH 11,p2 = C2 + B*, where 22 B* is the image 
of Pp2 in an isomorphism, P*:BP2 m B*, such that @@* = 1. We can imbed C2 
isomorphically in made Abelian, which is a free ?rl(K)-module. Also C, is a 
free rl(K)-module if n > 2. Therefore, ignoring the operators in .rrl(K), Cn(n 2 2) 
is a free Abelian group. Also jnAn = ~:'(0). Therefore the family of groups 
Cn+l, A,, related by 0, j with PC2 = 0, is a composite chain system (C, A )  = 

(C, A) (K), as defined in $4 above. We define 2(K) = Z(C, A ) .  
Let r, = rn(K) etc. be the groups in I: = I:(K). I t  follows from CH I1 that 

there are natural isomorphisms r, m ?rn(K), H, xH,(X) (n 2 2), where H,(@ 
is the nth integral homology group of the universal covering complex, X,  of K. 
The homomorphisms in, inin 2 are equivalent under these isomorphisms to 
ii 1 I?, where --+ nn(K) is the injection, and to the resultant of the lifting 
isomorphism ?r,(K) m *,(I?), followed by the natural homomorphism ?r,(X)+ 

Hn(a).Also r, = i,?r,(~"-'), where i,:r,(~"-') --+ A, is the injection. There- 
fore r2 = 0 and 2 terminates with 

- - + I T 3 + H 3 - + O + & + H 2 - + O .  

An element w e rl(K), operating in the usual way23 on Cn+l , A, , obviously 
determines an automorphism, w: (C, A )  x (C, A), which induces an automor- 
phism, w:Z m 2. More generally, let 2 be any algebraic sequence, of the kind 
considered in $4. Then the totality of automorphisms of Z is obviously a group 
G(Z). Let A: W + G(2) be a homomorphism of a given (multiplicative) group 
W into G(Z). Let 2', W', X' be similarly defined. Then a homomorphism 

(10.1) (F, m) :(2, W, X) -+ (2', W', A') 

will mean a pair of homomorphisms, F : 2 Z', m :W +W', such that FX(w)= 

A1(m(w)J F for each w e W. Since 

i t  follows that (X(wo), lwo]) is sr. homomorphism, where [WO] is the inner auto- 
morphism, w +wourwol, of W. We shall use X(K) :rl(K) +G(2) to denote the 
homomorphism which describes how m(K) operates on L: = Z(K). 

We shall say that homomorphisms (F, m), (F*, m*), of the form (10.1), are in 

z2 In  defining Z(K)we ignore B* and hence lose sight of the invariant ka(K) (Cf. [ll], 
D31, W1). 

fl 11.. through the inverses of the injection isomorphisms s l ( K n )= n ( K )  (n 2 2). 
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the same operator class, ( F, k~ 1, if, and only if, 

(F, m) = (A'(w:), [w:I)(F*, m*) = (A'(w;)F*, [w~I~D*), 

for some w; c W'. Let 

(10.2) (F', m') :(Z', W', A') + (ZN,Wn,An) 

be a homomorphism. Then, writing ml(w:) = won, we have 

Hence it follows that a single-valued product of operator classes is defined by 

(F', m') (F ,  b )  = (F'F, m'm), 

for all pairs of homomorphisms of the form (10.1), (10.2). It may be verified that 
all triples (2,W, A) (the objects), together with all operator classes of homo- 
morphisms (the mappings), constitute a category, Gw. 

The usefulness of Z(K) is limited by our ignorance concerning rn(K) for large 
values of n. Therefore we shall often want to confine ourselves to a finite part of 
Z. I t  will be convenient to start with H ,  ,and 2,  will denote the part 

of 2. We write Z, = 2,  thus defining 2 ,  for q 5 m.A homomorphism or iso- 
morphism 

(61 Q, f) :2, z: (q < m)+ 

will mean the same as when q = w ,except that , g, , f, will only be defined 
forn = 1, , q  - 1. 

11. The invariance of Z(K) 

Let K = (K, eO), K' = (Kt, el0) be given complexes. I t  follows from proposition 
(J)in 55 of CH I, on homotopy extension, that any map K -+Kt is homotopic 
to one in which e0 --+ el0. Hence it follows from (L) in 55 of CH I1 that 

a) any map, K --+ Kt, is homotopic to a cellular ?nap. 
(11.1) 

b) if 40 = 41:K + K', where &I , 41 are cellular, then &I , are related by a 
cellular homotopy, 4,: K -+ K' (i.e. 4 s "  C K'""). 

Therefore, in discussing the invariance of Z(K), we may confine ourselves to 
cellular maps and homotopies. 

A cellular map, 4: K +K', induces a family of homomorphismsz4 

(11.2) hr+l:~r+l(K)+ pr+l(K1), fr:*r(K) +ur(Klr) (r 2 I), 

such that ,8h. = f,8, jf = hj. Since h2j2 = jjzz we have hzC2 C C: = C2(K1). The 
induced homomorphism hz: C2 -+ C: together with h,+l , f, for n = 2, 3, . . . , 
obviously constitute a homomorphism 

(h, f )  :(C, A )  + (C', A') = (C, A) (K'). 

" S e e  [17] in CH 11. pn(L) = r,(Ln, Ln-1) (n 2 2) ,  pl(L) = n ( L 1 ) .  
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This induces a homomorphism F:Z(K) + F(K1). Let b: ?rl(K) -+ ?rl(K1)be the 
homomorphism, which is induced by 9 and is given by b ~ l= ~ l f l,where i1:7rl(~') 
+7rl(L) is the injection (L = K or Kt). Then hn+l ,fn , h2:Cz +C: are operator 
homomorphisms when al(K) operates on (C', A') through b. Hence i t  follows 
that (F, b )  is a homomorphism of the form (10.1) where Z = Z(K), W = 7rl(K), 
X = X(K), 2' = 2(K1), etc. We describe (F, tu) as the homomorphism induced 
by 9. 

Let 9 $*:K +K' and let (h, f), (h*, f*) be the families of homomorphisms 
of the form (11.2), which are induced by +,9*. hen^* 

where xi E T ~ ( K ' ~ ) ,  , A:which operates on through the injection 7rl(~") -+ 

al(K1"), and .$:p(K) --t p(K1) is a deformation operator as defined in $4 of CH 11. 
The homomorphisms [a I Cz , t4, [S , - . constitute a deformation operator in+ 

the sense of $3 above. Also dC2 = 0 and df& C C: ,since d ~ :  C C: .Therefore 

(h, f )  -- (wih*, wif*): (C, A )  -+ (C', A'), 

in the sense of $3, where wi is the image of xi in the injection ? r l ( ~ " )  + W'. 
Hence it follows that F = x'(w~)F*, where F ,  F*:Z --t 2' are induced by (h,f), 
(h*,f*). Moreover tu = [wi] b*  in consequence of the relation 

which is included, additively, in (11.3). Therefore (F, tu) and (F*, b*) are in the 
same operator class, where (F, b) ,  (F*,b*) are induced by 9, +*. Therefore a 
homotopy class, a : K  + K', of maps induces a unique operator class, Za = 
{ F, b J , of homomorphisms. 

Let R be the homotopy category of all complexes (i.e. connected, CW-corn- 
plexes with base points). Then i t  may be verified that the correspondences 

determine a functor Z:.Q -+Gw.We express this by saying that (Z(K), ?rl(K), 
X(K)), or simply that Z(K) is a homotopy invariant of K.  

Similarly Z,(K) is a homotopy invariant of K,  for any q < a.Also, for a par- 
ticular value of n, the secondary modular boundary homomorphism 

is a homotopy invariant within the cat,egory of complexes such that every (n- 1)-
cycle in K is spherical. Notice that b4 (m) is defined for every complex. 

The definition of Z(K) can be generalized as follows. Let r 2 0, let A, = C, = 0 
i f n  5 r + 1a n d i f n  > r + 1 let 

Let /3:Cn+2 -+ A, , j:A, --t C,(C,+2 = jA,+2) be the boundary and injection 
operators. Then the groups Cn+l ,A, ,related by 0,j, constitute a system, (C, A), 
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of the sort introduced in $1.We define Zr(K) = Z(C, A ) .  Then it may be verified, 
in consequence of $3 and (11.1)) that Z7(K) is a homotopy invariant of K. 

The groups which appear in Zr(K) are naturally isomorphic to groups which 
belong to a larger class of "injected" invariants. Let 0 5 p 5 q < r ,  with q > p 
if p > 0, let m < n and let 

?r,(Kn,Kq;m, p) = irr(K", Kp), 

where i:?r,(K"', KP) -f r7(Kn,Kq) is the injection and rr(K" ,) = rT(K8) 
(s = m or n). Then it follows from (11.1)'~that r7(Kn,Kq; m, p) is a homo-
topy invariant, and indeed an invariant of the n-type of K. In Chapter V below 
we shall see how these invariants may be defined for any arcwise connected 
space. 

12. The sufficiency of Z(K) 
Let K, K' be given complexes, whose dimensionalities do not exceed q, where 

q 5 ". 
THEOREM13. I j  a map 4:K --+ K' induces isomorphisms Zq(K)w Zq(Kf)and 

rl(K) rl(Kf), thenz64: K = K'. 
Since the homomorphisms H, w H,(K) are natural this follows from Theorem 

3 in Chapter I. 
This is what we call a su5ciencyZ7theorem. We shall prove the corresponding 

realizability theorem, subject to the restrictions q = 4 and m(K) = 1. But first 
we must prove a theorem concerning I'3 . 

13. Expression for r3(K) 
Let u:S3 4 SZbe a fixed map, which represents a generator of T,(S~).Let 

v: SZ-f K' be a map which represents a given elementz8x e 112 .Then vu: S34K' 
represents an element u(x) e r3. We have 29 

(13.1) 4. f Y) - 4x1  - U(Y)= [x, YI*, 
where [x, y]* is the product, or commutator (cf. [22]),of x, y e I I 2  .Also u(-x) = 

u(x) and [x, y]* is bilinear in x, y. Therefore the map r(x) --+ u(x) is consistent 
with the relations (5.la) and (5.6), for ~ ( I I z ) .Therefore it determines a homo-
morphism, 0: r(II2) 4 r3, and O[x, y] = [x, yl*. ~ b v i o u s l ~ ~ ~0 is an operator 
homomorphism with respect to the operators in srl(K). 

z6 Cf. p. 220 in  CH I. 
+:K = K' means that + is a homotopy equivalence. 

2 7  Cf. $14 below and $5 in [9]. 
28 112 = IIz(K), r3 = ra(K)  and, in the following paragraph, I I ;  = II2(K)', = r 3 ( K 1 ) ,  

where r , ( L )  etc. are the groups in  B(L) .  
2 9  See (7.6) in [21].Alternatively let P = S: u Si be formed from S2by pinching a n  

equator into a point. Let +:S2-+ P be the identification map and fi:P +K a map such that  
$ I S: , rC. / Si represent x, y, when S: , Si take their orientations from S2.Let v = &. 
Then (13.1) follows from (11.5) in [3].Similarly u( -x )  = u ( x ) .  

This is obvious if the operators are defined by means of homotopies +i:Sn-+ K ,  in 
which+lp, varies, where p ,  Snis the base point. If the operators are defined by means of 
the covering transformations, I? + I?, i t  may be deduced from (13.2)below. 
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Let (b, g, f):I;(K) -+ I;(Kt) be the homomorphism which is induced by a 
cellular map, 4:K +Kt, into a complex Kt. Since +(vu) = (&)u we have Q~U(X) = 
u(f2x). Let g :1'(112)4 r (II:) be the homomorphism induced by f~ :I T 2  -+ II: and 
let 8 mean the same in Kt as in K. Since &(x) = u(x), 03u(x) Y (f2x) == ~ ( f ~ x ) ,  
Q ~ ( x )we have 

eab(x) = g3u(x) = u(f2x) = h(f2x) = ~QT(x). 

Therefore 8 is natural, in the sense that 

THEOREM 14.0: r (nz)  w r3. 
Let a be theuniversal covering complex of K and let p :a-+ K be the covering 

map. Then it follows from the standard lifting theorems that 

where f2  ,g3 are induced by p. Therefore 0 :r (IIz(R)) w r (112), where 0 is induced 
by f2 ,and the theorem follows from (13.2) if it is true when K is replaced by a. 
therefore we may assume that ?rl(K) = 1. 

Let ?rl(K) = 1 and let {a;) be a set of free generators of A2 , which is free 
Abelian since j:A2 w Cz .Let {e:) be the 3-cells in K and let CA e C3 be the element 
which is represented by a characteristic map3' for e: . Then {cx) is a set of free 
generators of C3 and 112is defined by the generators ai and the relations b~ = 0, 
where h = / 3 ~. By Theorem 5, I'(II2) is defined by the generators y(a;), [aj , ak] 
0'< k) and the relations 

Let K: = e0 "{e?), where {e?) is a set of 2-cells in a (1-1) correspondence, e? --t 
a; , with (a;). Thus K; = eO and 5: = eOv e? is a 2-sphere. Moreover r2(K:) is 
freely generated by the set of elements {a:) ,where a9 is represented by a homeo- 
morphism &: S2+ 9: . Let #: K: +K2 be a map such that (# I 8)+;represents 
a; and let #z:T~(K:) -+ Az be the homomorphism induced by #. Then #zaq = a; . 
Therefore#z:112(~:)w A2 and it follows from Theorem 1in CHI that $2: K: = K2. 
By (D) in 55 of CH I any compact subset of K: is contained in a finite sub-, 
complex. Therefore it follows from arguments similar to those used in the proof 
of Theorem 2 in [4] that ?r3(K;) is freely generated by u(aO), [a: , a!]* ( j  < k). 
Therefore T~(K') is freely generated by 

Notice that &(a;) = ~ ( a i ) ,  B[aj ,ah] = [aj ,akl*. 
Since any compact subset of K3 is contained in a finite sub-complex it follows 

from the proof of Lemma 4 on p. 418 of [4] that F3 is defined by the generators 
(13.4) and the relations ~ ( h )  = 0, [ai , h]* = 0. It follows from (13.1) and (5.4) 
and the bilinearity of [a, b], [a, b]* that these relations, when expressed in terms of 

1.e. a map, + : I S  -+ 8: ,such that +laC Kg and+ I I s  - fa is a homeomorphism onto e: . 
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the generators (13.4), are the images under 0 of the relations (13.3). Therefore 
0 :r (E2) M r3 and the theorem is proved. 

14.Geometrical realizability 

Let q < a and let 

be a sequence in which the (Abelian) groups are arbitrary except that r2= 0, 
if q > 2, and 

if q > 3. In this case 0, like b, i, i is to be a component part of Z, . Let 2: be a 
sequence which also satisfies these conditions. We shall describe ($, 0,. f) :2,  +2: 
as a proper homomorphism if, and only if, either q 5 3 or q > 3 and 

where gf r(IIz) + is induced by fz . We shall describe a complex K as a 
geometrical realization of 2,' if, and only if, Z,(K) is properly isomorphic to 
2: . 

The symbol (C, A), will denote a composite chain system, with the groups 
C, ,A,-1 discarded if r > q and 8: I'(II2) x r3 if q > 3, where II2 = A2//3C3 . 
A proper homomorphism (isomorphism), (h, f), ,between two such systems, will 
consist of homomorphisms, (isomorphisms) hl , . . ,h, and fl , . . ,f,-1 , such 
that f@ = Bh, hj  = jf and (14.2) is satisfied if q > 3, where g3is the homomorphism 
induced by f3 . That is to say i303 = f3i3, as in (3.4). We describe (C, A), as a 
combinatorial realization32 of 2: if, and only if, there are homomorphisms (onto) 

for n = 1, .. . ,q - 1, such that k:-'(0) = @Cn+i, I~-'(O) = dCn+l , 

and (14.2) is satisfied if q > 3. If (C, A), is a combinatorial realization of 2: so, 
obviously, is any system (C', A'), which is properly isomorphic to (C, A), . The 
existence of a combinatorial realization of 2,' follows from the proof of Theorem 2, 
with 03 chosen so as to satisfy (14.2) if q > 3. 

Let n 5 q and let 2: be the part of 2: which begins with H: .We shall say 
that (C, A), is part of (C', A'), if, and only if, C,+1 = c:+~,A, = A: and &+I , 
j, are the same in both systems, for every r < n. By an n-dimensional partial 
realization of 2; we shall mean a complex, Kn,  of a t  most n dimensions, such that 
the part, (C, A), ,of (C, A) (Kn) is a combinatorial realization of 2: . Notice 
that a q-dimensional partial realization, Kg, is a geometrical realization of 2: if, 
and only if, 2: : 2, H: . 

32 We take 2; to  consist of a single homomorphism, 0 -+0, and we admit that  (C, A ) I  
(C1 = A ,  = 0 ) is a combinatorial realization of 2; . 
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LEMMA1. Let n < q and let K n  be a simply connected, n-dimensional partial 
realization of 2; . If I',(Kn) m I", the complex Kncan be imbedded in an (n + 1)-
dimensional partial realization of 2; . 

Let (C, A), be part of (C, A)(Kn) and let (C, A), be extended by the construc- 
tion in the proof of Theorem 2 to a combinatorial realization, (C', A'),+' , 
of z:+,,. In  order to simplify the notation we take I 'L  in A: to be the same as 
I'L in 2, and the isomorphism I", m I", ,analogous to the one in (14.3)) to be the 
identity. Let g,: I?, x I", ,where I?, = I',(Kn) and g, is defined by (14.2) if n = 3. 
Then 

A , =  I',+B,, A ' , =  I",+B',, 

as in the proofs of Theorems 2 and 3, where u:jA, m B, , u':jAk E B', and 
ju = 1, ju' = 1. Since p, is the same in (C', A'),+' and in (C, A),  we have 
jA, = /3i1(0) = j ~ ' ,. Therefore an isomorphism, f:A, m A', , is defined by 

Sincej~= 0, jgn-y = 0, ju' = 1 we have j, f = j, . 
Let {c:) be a set of free generators of c',+'. Let 

where the (n + 1)-cellex"+' is attached to K n  bya map, 6:E:+' +Kn,such that 
+ADA :in+' -+ Kn represents f'PC: , where vx :f "+'-+ Ex"+'is a homeomorphism. 
Then ef" has a characteristic map, J.~:I"+'+ ex0+l which agrees with $JAVA in 
f n f l  . Let (C, A),+' be part of (C, A)(Knf1) and let cx E Cn+l be the element 
which is represented by 1C.x . Then {cx) is a set of free generators of Cn+l and an 
isomorphism, h:C,+' m c:+' , is defined by h a  = c: . Moreover represents 
both Pcx and f'pc:. Therefore fp = Ph. Also j, f = j, ,f r  = gny and Q, satisfies 
(14.2) if n = 3. Therefore the identical maps of C,+' , A, (r < n), together with 
h, f, constitute a proper isomorphism (C, A),+' M (C', A'),+' .Therefore (C, A),+I 
is a combinatorial realization of 2:+1 and the lemma is proved. 

THEOREM15. I;: has a (simply connected) geometrical realization K, which is 
a) at most 4-dimensional if H: is free Abelian, 
b) ajinite complex if each of H: ,H: ,H: isjinitely generated. 
Let K' consist of a single 0-cell. Then K' is a partial realization of 2: . Since 

Fl(K) = 0, I'z(K) = 0 and F3(K) m I'{I12(K)), where K is any complex, it 
follows from three successive applications of Lemma 1 that 2: has a 4-dimen- 
sional partial realization, K4. 

Let (C, A)g be part of (C, A) (K4) and let 1', Q mean the same as in (14.3). 
Let z E I:-' (0). Then pz = g3'61:z = 0. Therefore z e j47r4(K4).Let {z,) be a set 
of elements which generate 1:-'(0) and let a, e j;'z, . Let K5 = K4u (e:), where 
ei is attached to K4 by a map which represents a, ,and let (c,) be the correspond- 
ing basis for Cb = 7rb(K5,p).Then pc, = a, and dc, = z, . Therefore dCb = 

1:-'(0) and it follows that 1: induces an isomorphism f34: H4(K5)M H: .Therefore 
K6 is a full realization of 2: . 
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If H: is free Abelian we may assume that 1:-'(0) = 0, as in the addendum to 
Theorem 2. In this case 2: is realized by K4.Also we may assume that, if H; , 
H: , H: are finitely generated, so are C2, C8, C4 and hence ~ ' ( 0 )and Cs . In 
this case K5is a finite complex and the theorem is proved. 

We now consider the realizability of a proper homomorphism, F,:Z, + 2,' , 
by a map 4 :Kq+K',, where K, K' are given complexes and Z = Z(K), 2' = 

2(K'). Let (C, A), , (C', A'), be parts of (C, A) (K), (C, A) (K'). Then it follows 
from the proof of Theorem 3 that F, can be realized combinatorially, in the same 
way as when q = a,by a (proper) homomorphism (h, f),: (C, A), + (C', A'), . 
We shall describe a cellular map, 4: Kq - Kfq as a (geometrical) realization of 
both (h,f), and F, if, and only if, the homomorphisms h, f are those induced by 
4 Notice that h,&~:+~C d ~ i + l,since Z,h, = b,l, ;also that a given map, 4 :Kq+ 

K',, induces a homomorphism 2, + 2; if, and only if, h,:C, +c,'satisfies this 
condition, where h, is induced by 4. This is certainly the case if K = Kq,for then 
Cq+l= 0. 

Let (h, f), be a combinatorial realization of a given proper homomorphism 
F,: 2, +2,' . Let 1 5 n < q, let (C, A), , (C', A'), be parts of (C, A), , (C', A'), 
and let (h, f), consist of the homomorphisms hl , . . . , h, and fl , . . . , f,-1 . 
Let Fn:2, -+ 2: be the homomorphism which is similarly induced by F, . 
Then F, is obviously a proper homomorphism and (h, f), is a combinatorial 
realization of F, . Let 4 : :~"  +K'" be a realization of (h, f), . We assume that 
K, but not necessarily K', is simply connected and also that +\K1 = el0,the base 
point in K'. Let g\ , 8,: I?, + I?: be the homomorphisms induced by cp\ and by 
f" in (h,f),  -

LEMMA2. If Q$ = Q, and if j,A, is a direct summand of C, , then 4; I K"-' can 
be extended to a realization,Knfl-+ K' "+'of (h,f )*+I.1 

First let n = 1 and let p2 = a2(K2,K'). Then p2 = Cz + B*, as in $10, where 
P*:PP2w B* and PP* = 1.Also pp2 = nl(K1),since nl(K) = 1.If a r p2 ,b* r B* we 
have @a)b*= a + b* - a, by (2.1~)in CH 11,and a + b* - a r B* since pz is the 
direct sum of C2 and B*. Therefore B* is invariant under the operators in n l ( ~ ' ) .  
Also Pp2 operates identically on C2 . Therefore hz:C2 -+ C; can be extended to an 
operator homomorphism, h*:p2 -+ K"), by taking h*B* =n z ( ~ ' ~ ,  0. Since 
PC: = 1 and 4:K1 = e" we have Ph*pz = f0Pp2= 1, where f 0  :nl(K1) -+ nl(K") 
is induced by 4: . Therefore it follows from Lemma 4 in CH I1 that 4: can be 
extended to a realization, K2+K ' ~ ,of (h, f )2. 

Let n > 1 and let f : : ~ ,  -+ A: be the homomorphism induced by 4: . If 
f: = fn we have f : ~ , + ~= P,+~h,+l, since (h,f),+l is a homomorphism. Therefore 
it follows from33Lemma 4 in CH I1 that 4; can be extended to a realization,
Kn+l -- Kt"+' , of (h, f),+l . Therefore the lemma will follow when me have 
extended 4; I K"-' to another realization, 4,: K" -+ K'", of (h, f), , which induces 
f n  	. 

Sincef,0 , h, are both induced by 4; we have j,f; = hnjn= jnf, .Sincejyl(0) = 
\ 

33 If m ( K )  # 1 this argument fails unless hn+l ,fn are operator homomorphisms asso-
ciated with the homomorphism, T ~ ( K )+ x l ( K 1 ) ,which is induced by &, . 
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0 it follows that f: = f, if n = 2. Let n > 2, let g\ = g, and let C, = A* + B*, 
where A* = j,A, . Let ?&:A* -+ A, be a right inverse of j, . Then a homo-
morphism, A :C, -+ A: , or cochain A e Cn(Kn, A:), is defined by 

A(a* + b*) = Cf, - f:)ua* (a* E A*, b* E B*). 

Sincej,(f: - f,) = 0we have j,A = 0, whence AC, C I'k . 
Let 4,: Kn -+ K'" be an extension of 4; I K"-!, which the separation 

cochain d(4, ,4\)  = A. ~ e t  -+ A: and h f , : ~ ,  C: be the homomorphisms f :: A, -+ 

induced by 4, . hen^' 

Therefore 4, is a realization of (h, f), , because h', = h, . Also 

Cff, - fi)ua* = Ajnua* = Aa* = Cf, - f0,)ua". 

Therefore fkua* = f,ua*. Also fo,r = gh= gny = f a ,  if y E I'n ,and f',r =,fly 
since 4, / K"-' = 4; / P"-'. Therefore f b  = fny. Since jnu = 1 we have A. = 

r, + uA*. Therefore f,  = fn and the proof is complete. 
THEOREM.16. If rl(K) = 1and q 5 4 any proper homomorphism, F,: Z,(K) --+ 

B,(K'), has a geometrical realization Kq +KIP. 
Let (h, f),: (C, A), -+ (C', A'), be a combinatorial realization of F,  , where 

(C, A), , (C', A'), are parts of (C, A) (K), (C, A) (Kt). Since rz= 0 the theorem 
follows from two successive applications of Lemma 2 if q 5 3. Let q = 4 and 
let 4 : : ~ ~  + K ' ~be a geometrical realization of (h, f)3 . Then 4: induces the 
homomorphism fz:IIz -+ lIi in F4, and it follows from (14.2) that Q: = ga ,where 
g; , g3 are induced by 4: ,f3 .  Therefore the theorem follows from another applica- 
tion of Lemma 2. 

Let $3 be any category. We describe two objects in $3 as equivalent if, and only 
if, they are related by an equivalence in $3. Let T:U -+ 23 be a given functor, 
where U is any category. By the sufiiency and the realizability conditions, with 
respect to T, we mean the following, 
Sufiiency :if Ta is an equivalence, so is a, where a is a given mapping in U. 
Realizability: a) any object in $3 is equivalent to the image, TU, of some object in 
U, and 

b) any mapping. T U -+ TU', in 93, is the image, Ta, of at least one 
mapping, a: U -+ U', for every pair of objects, U, U', in U. 

Let ft; be the homotopy category of all simply connected complexes of at  most 
four dimensions. Then a mapping (i.e. homotopy class), a:K -+ K', in 8: induces 
a unique homomorphism 24a:&(K) + &(Kt), because rl(K1) = 1. Let be 
the category in which the objects are all sequences X4 , which satisfy the condi- 
tions I'z = 0 and (14.1), and in which H4 is free Abelian, with all proper homo- 
morphisms as mappings. Then a functor, 24: K: +G4 is obviously determined 
by the correspondences K -+ 24(K), a -+ &a. 

See [15].In order to apply the existence theorem (10.5) in [15] we can take +, = +: in 
e? - u: ,where uy C e: is an n-simplex, for each n-cell e l  s K. 

a6 See Appendix B below. 
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THEOREM and the realizability 17. The functor Z4 satisfies both the su$iciency 
conditions. 

This follows from Theorems 13, 15, 16. 
As pointed out in the introduction, both homotopy classes of maps s4-+ S' 

induce the same homomorphism z4(s4)  + Z4(s3). Therefore the function a -+ 

Z4a is not (1-1). By taking N = s3u S4, where s3n S4= eO, we see that Zr does 
not even induce an isomorphism of the group of equivalences a:K = K. 

Sequences of the form Z4(K) can be simplified algebraically by identifying 
r3, H3 ,H2 with I'(II2), I13/ir3 , 112SO as to make 8 = 1, it the natural homo- 
morphism and iz = 1. When Z4 is thus simplified i t  is completely determined by 
ITz and 

Let IIz be finitely generated. Then i t  follows from Theorem 8 that IIt is deter- 
mined, up to an isomorphism, by I'(I12). Let F4:Z4 + Z: be a proper homomor- 
phism which determines an ismorphism of the sequence (14.4). Then it follows 
from Theorem 11 that F4:Z4 w 2: (obviously b3:H3 M H; if g3 , f3 are isomor- 
phisms, where F4= (b, g, f)). 

Theorem 16 is analogous to Theorems 1, 2, 3 in [5], concerning (n-1)-con- 
nected complexes (i.e. those with n,(K) = 0 for r = 1, - . ,n - 1) when n > 2. 
Let Z = Z(K), where K is (n - 1)-connected (n > 2), and if x e 11, let u(x) E rn+l 
be defined in the same way as u(x) c I'3, in $13 above, when x e IIt . Then 
u: II, 3 I',+I is a homomorphism since n > 2. I t  is shown in 151 that 8: IInn2 M F,+I 
where II,,z = IIn/211n and 8 is induced by u. The argument leading to (13.2), 
with y :II2 -+ I'(II2) replaced by the natural homomorphism II, -+ IT, ,2  , shows 
that 8 is natural. Therefore Lemmas 1 and 2 yield realizability theorems for 
Z,+Z , with I', = II, = H, = 0 if r < n and (14.1) replaced by 8:IIn,z M I',+I , 
which are analogous to Theorems 15, 16. 

Many of these facts have been recorded by G. W. Whitehead in {23]. In  
particular his results may be used to show that, if Z = Z(K), where K is (n - 1)-
connected, then Zn+2 is internally exact (n > 2) and that the sequence 20,+2 , 
which is defined in $15 below, is exact if n > 3. 

Theorem 16 is also analogous to Theorems 1, 2, 3 in [9], concerning the 3-type 
of an arbitrary (connected) CW-complex. In  the following section we prove a 
theorem which leads to analogous results concerning the 4-type of a simply 
connected complex. 

16. q-types 

Let 2 -1 q < a.We recall from CH I that complexes K, Kt are of the same 
q-type if, and only if, there are maps, 

such that 4'4 I Kq-' _v I, / Kt'-' 1. If, and only if, these conditions are 
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satisfied, we write 4 :  Kq = q-lK'q. By Theorem 2 in CH I this is so if, and only 
if, 4 induces isomorphisms rr,(I!) w rr,(K1) for n = 1, - . - , q - 1. Obviously 
K and Kq have the same q-type. Therefore, when studying q-types, we may con- 
fine ourselves to complexes of a t  most q dimensions. 

Let 2, = Zq(K) ,where, to begin with, dim K may exceed q. Let 

Thus H: s H q ( K ) / S q ( K ) ,where K is the universal covering complex of K and 
S q ( K ) consists of the "spherical" homology classes. Since jIIq = bil(0) an 
isomorphism 

is induced by bq . Let 2: = z:(K) be the exact sequence 

Since lqZq= Hq , lqjqAq= iqIIq,H:(Kq) = Zq/jqAqit follows that 1, induces an 
isomorphism H : ( K ~ )m H: ,by means of which we identify 2:(Kq)with Z:(K).  
From the purely algebraic point of view Z: may be regarded as a sequence 8, 
in which every group preceding Hq is zero. Therefore we need not redefine the 
terms homomorphism etc. 

Let 2; = 2,(K1) and let (@,Q ,  f )  :Zq -+ 2; be any homomorphism. Since 
bqbq= gq-lb, it follows that 

Therefore @,induces a homomorphism 

Obviously b:b: = ~ ~ . Therefore a homomorphism, - ~ b ~ F:: 2: -+ 2io,which con- 
sists of @: 2, - - - , q - 1, is induced by (@,g ,  f ) .I fand of Q ,  , f , @, , for n = 

(@,g ,  f) is induced by a map 4 :  Kq  -+ KIPwe shall say that 4 induces, or realizes, 
n o  
P q  . 

THEOREM w r l (K1)and F::2: m 8:18. a) If c#~~:?r~(K) , where 41 and F: are 
induced by 4 :  Kq  +KIP,then 4 :  Kq  = ,-lKrq. 

b) Any proper homomorphism. F ~ : Z :-+ 2: has a realization 
-+ K ' ~ .  

Part (a) follows from Theorem 2 in CH I. 
Let {z,] be a set of free generators of H4(K4).Let 

where Q ~ :r3+ I'i is in F: , and let b4: H4(K4) +H4(Kt4)be the homomorphism 
which is defined by @&,,= Z: . Then b4@4= ~3b4and it follows that $4 induces a 
homomorphism @f :H ; ( K ~ )-+ H : ( K ' ~ ) ,such that b:I$ = gsb; = b;@4. Since 
(b!)-' (0) = @: it follows that 0 = @:. by @4 we have a proper On replacing @! 
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homomorphism, F4:Z4-+ 2: , which induces F: .Part (b) now follows from Theo- 
rem 16. 

An algebraic sequence 2: is a special kind of 24 , namely one such that byl(0)= 

0. Therefore Theorem 15 applies unchanged to the geometrical realization of 
2: . Notice, however, that any sequence 2: is realized by a complex K ~ ,since 
2 : ( ~ )  = z:(@), even if dim K > 4. 

Notice that, by analogy with (14.4), 2: may be replaced by a pair of arbitrary 
Abelian groups, 112, 113, and a homomorphism i:r(I12) -+ IT3 , which may be 
arbitrary. Therefore the "algebraic 4-type" of a simply connected complex is a 
comparatively simple affair. The algebraic (n + 2)-type of an (n - 1)-connected 
complex (n > 2) may be similarly defined, with 1'(112) replaced by II,,2 . 

CHAPTERIV. THE PONTRJAGIN SQUARES 

16.The main theorem 
We give the following definition of a net of finite, simplicial complexes, which 

differs slightly from the one in [18]. Let {K(d)) be a set of such complexes, which 
is indexed to a directed set D. Instead of taking a projection, K(d2) -+ K(dl), 
to be a single map, where dl < d2,we take it to be a homotopy class of simplicial 
maps. We then assume that, if dl < d2, there is a single projection, 

K(di , d2) :K(d2) +K ( ~ I ) ,  

such that K(d, d) = 1 and K(dl , d2)K(d2, d3) = K(d1 ;d3) if dl < d2 < ds. 
Let (Dl K) denote this net and let (Dl, Kt) be a similar net. By a homomorphism, 

(16.1) (R*, P): (D,K) -+ (Dl, Kt), 

we shall mean an order preserving map, R*:Dt + D, together with a family of 
homotopy classes, 

p(dt):K (R*dt) -+ K1(d'), 

where p(dr) is defined for every d' e D' and 

p (d : )~(~*d :, ~ * d : )= ~ ' ( d :, d:)~(di) (a: 5 a:). 
It is easily versed that all nets, with all homomorphisms as mappings, is a 
category X. We shall sometimes denote nets by X, X' etc. 

Let 8 and Z9 mean the same as in $9 above and let (X, 8 )  be the Cartesian 
product of X and $, in which the mappings, (El a) ,  are pairs of homomorphisms, 
5: X -+ X', a:A -+ A'. Let (8, , 3)be similarly defined, where 8,is the homotopy 
category of finite, simplicial complexes. Let P: (9,, 8 )  -+ B be a functor, which 
is contravariant in 8, and covariant in 3.Let (p, a): (K, A) --, (Kt, A') be any 
mapping in (9,, 3).Then P(p, a )  is a homomorphism 

P(p, a):P(Kt, A) +P(K, A'). 

Let (Dl K) be a given net and let P{K,  A)  denote the family of groups 

P(K(d), A), 
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for every d e D. Then it follows without difficulty that (D, P { K ,A ) ) ,with the 
homomorphisms36 

(16.2) T(dz , d l )  = PK(di , dz) :P(K(di), A )  -+ P(K(dz), A) ,  

is a direct system of groups; also that a "lifted" functor, 

is defined by 

(16.3) 	 Pl((D1 K ) ,  A )  = (Dl P ( K ,  AJ) 
P1((R*,P I ,  a )  = (R*, P ( P ,  a ) ) ,  

where (R*, p )  means the same as in (16.1) and P(p,  a ]  denotes the family of 
homomorphisms 

P ( p(d l ) ,a ):P (Kt (dl), A )  -+ P (K (R*dt) , A'). 

Therefore LPl is a functor, 

LPl: (3,%) 4 %, 

where L:D -+ W is the direct limit functor. 
Let T : P-+ Q be a natural transformation, where Q :(R, , 8)4 8 is a functor 

of the same variance as P. Let Q I :( X ,  8)4D be defined in the same way as P I . 
Let ( X ,  A )  mean the same as before and let T ( K ,  A j denote the family of homo- 
morphisms 

7(K(d),  A) :P(K(d) ,  A )  -+ &(K(d),  A) .  

Since T is natural, and since P,  Q are contravariant in R, , we have 

T(K(dz) , A)PK(di , dz) = A )QK(di , d2)~ ( K ( d l ) ,  

or 
~ ( K ( d z ) ,  = 	 A ) ,A)T(dz,d l )  U(dz, d i )~(K(d i ) ,  

where T(dz, d S  is given by (16.2)and U(d2, d l )  = QK(dl  , dz) . 
Therefore a homomorphism, 

71(X, -4): Pl(X, A )  -+ Ql(X, A ) ,  

is defined by T ~ ( X ,A )  = ( 1 ,  T ( K ,  A ] ) .  
Let (R*,p )  and a mean the same as in (16.3)and let S = P or Q. Then 

S(P(dl), a )  
is a homomorphism 

S ( P ( ~ ' ) ,a ):S(K'(dl) ,  A )  4 S(K(R*dl), A'). 

Since 7 is natural we have 

T(K (R*dt), A 1 ) P ( ~ ( d ' ) ,  a )  = & ( p ( d r ) ,  a )  7(K'(d1), A ) .  


36 PK(dl , d l )  stands for P(K(d1, dg), 1)  
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Therefore, writing ,$ = (R*, p), it follows from (16.3) that 

(16.4) = &I(€, a)rz(X1, A). 


Therefore T Z  is natural. Let LTZ:LPZ 4 LQz be the transformation which is 

defined by 

(Lrl)(X, A') = L(T~(X,A'). 

On applying the functor L to both sides of (16.4) we see that L T ~  is naturaL3' 
The rth cohomology functor iT:(R, , 8) -+ PI is contravariant in & and 

covariant in 8.We define Hi in the same way as PIand write 

F = LH:: (X, a )  -+ a. 
Then P is the Cech cohomology functor. We define the cup-product, 

of elements y, z c Hn(X,A ) ,  by means of the pairing (a, b) = [a, b] e r(A), where 

I t  is obvious that a covariant functor 

r :(x, 3)-+ (x, %) 

is defined by l'(X, A) = (X, I'(A)), r ( f ,  a )  = ( E ,  ra) .  
Thus we have functors 

(16.5) r x ,  i ~ r :(x, a) -+ %, 

which are contravariant in X and covariant in PI. 
THEOREM19. Let n be even. Then there is a natural transformation,38 

such that 

(16.7) dx,ANY,zI = Y u z-

for every pairy,z c Hn(X,A). 

Assume that the analogous theorem has been proved for the category (9. , U) 

a7 Cf. the concluding remarks in 69 of [lo]. 
a8 We do not assert that s is uniquely determined by naturalness and (16.7). When this 

theorem is quoted it is to be understood that s is the transformation which is defined in the 
course of the proof. 



and let 7:I'W +H2"r be a natural transformation which satisfies (16.7), where 
I'P,XI':(R,  , 3)-+ 8 are defined in the same way as rK, iTI' in (16.5). 
I t  follows from (16.3) and the definitions of r l : b+b and r :  (R,  , 8)+ (R,  ,8) 
that 

( r x l l= r l z ,  ( r r l 1= ~ ; r .  
Therefore 

L 7 ~ : L r a ;--+ L H ; " ~  

is a natural transformation. I t  follows from Theorem 12 that w-': I'L --+ LI'l is 
a natural equivalence, where w is defined by (9.1). ~here f01 -e~~  

w - ' ~ ; :~ L H ;+L r a ;  

is a natural transformation. Therefore, writing LH;  = H',it follows that 

is a natural transformation. 
We now verify (16.7.).Let X = (D,  K ) .  Then i t  follows from (16.3) that 

H ; ( X ,  A )  = (D,  F ( K ,  A ] ) ,  r a ; ( X ,  A )  = (D,r r { K ,  A } ) .  

Let 
X(d) : H n ( K ( d ) ,  A )  --+ H n ( X ,  A )  

p ( d ) : r H n ( K ( d ) ,  A )  --+ L r S I ; ( X ,  A )  

V ( ~ ) : H ~ " ( K ( ~ ) ,  A)A)  --+ H ~ " ( X ,  

be the injections. Let (1, P ) :  I '& ' (X ,  A )  --+ H21"(x, A )  be a homomorphism of 
the direct system I ' J I ; (X ,  A )  into the direct system H;"(x, A ) .  Then 

~ ( 1 ,  A) -+ H ~ " ( X ,p ) : ~ r , l j T Z ( ~ ,  A) 
is given by 

L O ,  p)p(d)g(d) = v(d)p(d)g(d), 

where g(d) E r H n ( K ( d ) ,  A ) .  
Let 

Y = X(d)y(d), = X(d)z(d), 

where y(d) ,  z(d) E Hn(K(d) ,  A ) .  Since 

[ ~ ( d ) ,  - y(z(d))z(d)l = r ( y ( d )+ z(d))  r ( y ( d ) )-

it follows from (9.1) that 

w(Hi'(X, A ) ) P ( ~ ) [ Y ( ~ ) ,  z(d)l = b,21. 

Therefore 
(w-'He) ( X ,  A ) b ,  z] = 4 H i '  ( X ,  ~))- 'b ,zl 

= cr(d)[y(d), z(d)l. 
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By hypothesis 7(K(d), A)[y(d), z(d)] = y(d) u z(d). Therefore 

v(X, A)tY, zl = (L71)(X, A) i (o-lH;)(X, A)tY,zIl 

= L(1, 7(K, A l ) ~ ( d ) [ ~ ( d ) ,z(d)l 

= v(d).r(K(d),A)[y(d), 

= v(d)(y(d) u dd))  

= yuz. 

Therefore it only remains to prove the theorem for the category (R, ,a). 
Let K be a finite simplicia1 complex, let C = C(K) be the group of integral, 

r-dimensional cochains in K and let cl , .. , c, be a canonical basis for Cn. 
Then 

(16.8) 6ci = ai di (i = 1, - . . , q ;  ui 1 ~ i + l ) ,  

where ai di = 0 if i > 1 and (dl , . - . ,dt) is part of a canonical basis for c"". 
We recall from [3] the definition of the Pontrjagin Square 

The cochain group, Cn(A),is the tensor product, 

Cn(A) = A o C, 

and the group of cocycles, Zn(A) C Cn(A), consists of those, and only those, 
cochains, 

x = al-cl + + a,.c,, 

such that alaz = .- - = a,a, = 0, where ui = 0 if i > t. The cup-product of 
cocycles, 

is defined by 
Y u z = Cj[ai , bjI ci u cj . 

Ifi < j then a; 1 a jand, since n is even, 

ci u c j ~C j  u C; mod. a; . 
Also a;ai = a,bi = 0. Therefore 

(16.11) y u z C [a;, bi1.c; u C; + C ([ai 2 bjl + [aj, biI).ci u cj.
i i< i  

I say that a homomorphism 

(16.12) V:r (z"(A)) -t z Z n ( r ( ~ ) )  

is defined by 
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where y E Z n ( A ) is given by (16.10). For since ciai = 0 we have 
2a,r(a;) = y(aiai) = 0 

2a,y(a;) = ai[ai ,  ail = [aiai, a;] = 0.  

Therefore (a: ,  2ai)7(a,) = 0 .  That is to say ~ , ~ ( a ; )  0 if a; is= odd 
and 2a;y(ai) = 0 if a, is even. Obviously 6pc; = 0 ,  mod. a; ,and it is proved in 
[3] that 6pc; = 0 ,  mod. 2ai , if a; is even. Therefore, and since u,[ai , a j ]  = 

a j [ a i ,  a j ]  = 0 ,  it follows that 6uy(y) = 0 .  That is to say, ~ ( y )z ' " ( ~ ( A ) ) .E 

Obviously w(-y) = ~ ( y ) .Therefore v is consistent with (2.la). Let z E Z n ( A )  
be given by (16.10). Then 

Y + z = (a1 + bl).cl + + (a,  + b,).c,. 

Since y (a; + b;) - y (a;) - y (bi) = [ai,b;]and 

[a;+ b i ,  a ,  + bj] - [ a ; ,  aj] - [ b i ,  bj] = [ a ; ,  bjl + [ a j , bil 

we have 

The right hand side of (16.14) is bilinear with respect to ( a l ,  ,a,) and 
(bl , . - . ,b,). Therefore u is consistent with (5.6). Therefore (16.12) is a homo- 
morphism. 

Since a,[a;, b;] = [a;ai,  bi] = 0 it follows from (16.8) and (16.9) that 

[ai,bil PC; = [ai,bi] .ci u C ;  + u;[a;,bi].ci ul di 

= [ai , bi]-ciu c i  . 
Therefore it follows from (16.14) and (16.11) that 

Let y = 6w where w E c"-'(A). Let 

where ( F 1  , . - . , E,)  is part of a canonical basis for c"-'and 6 t h  = T A C ~ + A  . Then 

y = ZAaA . ~ E A= X AT A  ax - ct+x. 

If Sc = 0 we have pc = c u c. Therefore 

Y ( n u d e  pct+x = y(ax). T:(c~+A u c~+A) 

= ~ ( ~ A ) . G E Au 6 h  

= 6{y(ax) .hU 6 2 ~ )  


[ n u A, ~,a,]- c +A u c cl +A = [ax, a,] ~ E Au 6E,, = 6 ([ax ,a,] .EA u 6E,,). 
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Therefore i t  follows from (16.13) that vy(6w) - 0. Also it follows from 
(16.15) that 

v [ h ,  z] (6w)u z - 0. 

Therefore i t  follows from Theorem 4 in $6 above that the kernel of thc homo-
morphism 

r ( Z n ( A ) )  I"(Hn(K, A ) ) ,  -+ 

which is induced by the natural homomorphism, Z n ( A )-+ H n ( K ,  A ) ,  is carried 
by v into the group of coboundaries in Z 2 " ( I ' ( ~ ) ) .Therefore v induces a homo- 
morphism 

T ( K ,  A ) :  I ' (Hn(K,  A ) ) -+ H ' ~ ( K ,r ( A ) ) .  

Also i t  follows from (16.15) that 

T ( K ,  A)[y*, z*] = y* u z*, 

where y*, z*aHn(K, A ) .  
Let (p, a):( K ,  A )  -+ (K',  A ' )  be any mapping in the category (9,,a). Then 

(p, a) is the resultant of (1, a ) ,  followed by (p ,  I), where each 1 denotes the 
appropriate identity. I t  is obvious that not only T ,  but even v is natural with 
respect to the homomorphisms a : A  -+ A'. It remains to prove that T is natural 
with respect to maps K -+ Kt .  

Let 
jn: Z"(K1,  A )  -+ Z n ( K ,  A )  

be the homomorphisms induced by a simplicia1 map 4 : K  -4 Kt .  Let 

g n :  I'(Zn(K', A ) )  -+ I ' (Zn(K,  A ) )  

be the homomorphism induced by jn and let 

v': I"(Zn(K', A ) )  -+ z'"(K', I"(A)) 

be defined in the same way as v, by means of a canonical basis? (c: , - - - , c:,), 
for Cn(K). We have to prove that 

f2"v'y (YO - v'gn7(y') = V'Y (SY'), 
for any y' a Zn(K' ,  A ) .  

Let 6c: = u: d:(i = 1, . . . ,t'), 6 4  = 00' = t' f 1, . . - ,p'), where (d: , . . .,d:,) 
is part of a basis for c"+'(K'). Then Zn(K' ,  A )  is generated by cocycles of the 
form a-c: , where ala = 0 and u: = 0 if i > t'. Therefore it follows from The- 
orem 5 that I'(Zn(K', A)) is generated by the elements y ( ~ - c l ) ,where a:a = 0,  
together with [y', z'], for every pair y', z' a Zn(K' ,  A ) .  Since 

j2nv'[y', z'] --j2"(y' U 2') -fly' U jnzl 

vlfny', fnz'] = vgn[y',z'] 

Poasibly K' = K. In this case the following argument shows that r is independent of 
the choice of the canonical basis (cl , . .. ,c, ) .  
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it only remains to prove that, if o'ia = 0,then 

(16.16) fZnv1-y(a.c~)-- zq(lf.(a.c:)) = zq(a.rjnc:), 

where +':C'(K1) + C ( K )  is the (integral) cochain mapping induced by +. 
Let 4"c: = nlcl + ... + nd, for a fixed, but arbitrary value of i.Let cia = 0. 

Then it follows from one of the preceding arguments that 

(16.17) (a:" 2 ~ : ) ~(a) = 0. 

If a: is odd, then 

g'pc: = 42n(~:U c:)-4%: U g c :  

mod. a: 

= p$lnc:. 
If a: is even then 

(16.18) Cpznpc:- p$lnc: mod. 2a: , 
as shown in [3]. I n  either case 

(16.19) $ J ~ " ~ C :- p$lnc:= p(nlcl + .. + n,c,) mod. (a:, 2~:) .  

Since 6c: = 0, mod. a: , and since 6c.  - a j  d j  , where (dl , ... ,dr) is part' ,-
of a basis for c""(K), it follows that a; 1 njaj.. Therefore njcj is a cocycle, 
mod. a: ,for each j = 1, .. , q .  Let a: be even. Then it follows from (16.17,) 
(16.19) and (4.7) in [3] that 

fZnv1-y(a.c:)= fZn(-y(a)pc:) = -y(a).42np~:  

-y(a). (~ip(nici)+ 2 nici U n ~ j )  
i< i  

= xzn:y(a) .pci + x [a, a].n,ci u njcj 
i< j  

= xi-y (nia).PC; + [ma, nja]-c,u c j  
i< j  

If a: is odd we have the same result on replacing each Pontrjagin square, pc, 
by c u c. This proves (16.16) and hence the theorem. 

Let n be even, let y e Hn(X,A) and let 

PY = rl(X, A)T(Y). 

We call py the Pontrjagin square of y. It follows from (16.7) that 



A CERTAIN EXACT SEQUENCE 91 

Thus -y u z appears as a factor set, which measures the error made in supposing 

p:Hn(X, A) +H'"(x, r(A)) 

to be a homomorphism. We also have p(ry) = r2py, where r is any integer. 
Therefore (16.20), with y = z, gives 

Let (E, a)  :(X, A) -t (XI, A') be any mapping in the category ( X ,  8).Since q 
is natural we have 

pHn(£, = s(X, A')r(Hn(E, 

= 7 0 ,  A')rHn(E, a ) r  (Y) 

= H2"I'(E, a)9(X1, A)Y(Y) 

= H2"(E, I '~ )PY 
or, writing f = Hn(E, a), g = H~"([, I'a), 

(16.22) pf = gp: Hn(X',A) --t H~"(x, I'(A1)). 

Let I X I be an arbitrary topological space and let D be the directed set, 
which consists of all finite coverings of I X I by open4' sets. Let K(d) be the 
nerve of the covering d. Then (D, K) is a net. Let (Dl, K') be similarly defined 
in terms of a space I X' I. Then a map 4: I X I --t I X' I induces the homomorphism. 

in which R* d' is the covering {$I-'U'}, where d' = { U') , and p(dl) is determined 
by the transformation, 4-'u' --t U', of the vertices of K(R* dl) into those of 
K1(d'). Therefore q, and likewise p, are topological invariants of I X I .  

Let K be a finite cell complex, which need not be a polyhedron. We take 

Cr(K) = Hr(K", K'-') 

C(K) = Hom {C,(K), 101 

to be the groups of r-dimensional, integral chains and cochains in K, where I 0  

is the group of integers. By Theorem 13 in CH I there is a finite, simplicia1 
complex, L, which is of the same homotopy type as K. Let 4:K -t L, #:L --t K 
be cellular maps such that $4 N 1,I$# N 1.Let 

( L )  --t ( K )  #':C(K) --t C(L) 

be the cochain equivalences induced by 4, #. We define 

where c, c' are any elements of Cn(K). If c, c' are cocycles mod. a, so are #"c, 
#"cl and 

2n 2n@"(c u c') = # 4 (#"c u #"cl) - u #"cl, mod. u.# n ~  

40 We could equally well take closed sets 
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Similarly $t2"pr * pJlnc, mod. 20, if a is even. Notice that this relation is analo- 
gous to (16.18). 

Let X, Y be the nets which are defined by means of all the finite, ope? cover-
ings of the spaces, K,  L. Since K, L are compacta it follows from the Cech co- 
homology theory that 4:K --t L induces isomorphisms F ( Y ,  G)  m F ( X ,  G), 
for every r 2 0 and every coefficient group G. Also the cohomology group 
K ( L ,  G), which is calculated in terms of cochains in C(L) ,  may be identified 
with K ( Y ,  G). When this is done T ( Y ,A) becomes the homomorphism, r(L, A), 
which is defined by means of (16.13). It follows from the final arguments in 
the proof of Theorem 18 that r ( X ,  G) and q(X, G) may be similarly identified 
with K ( K ,  G) and r(K, G), which are defined in terms of C'(K), when cup- 
products and Pontrjagin squares of cochains are given by (16.24). 

If K has a simplicia1 sub-division we take this to be L and, as in 131, we take 
4 :K -+ L to be the identity and #: L --t K to be such that #Lo C KO, for every 
subcomplex KO C K ,  where Lo is the subcomplex of L, which covers KO . 

17. Secondary boundary operators 
Let K be a finite cell complex, let C,(K), C ( K )  be defined by (16.23) and let 

cup-products and Pontrjagin squares of integral cochains be defined by (16.24). 
Let (cl , . . . , c,) be a canonical basis for Cn(K), with 6c; = aid;, where 
(dl , . . . , dt) is part of a basis for c"+'(K) and aidi = 0 if i > t. Let m >= 0 and 
let 

Hn(A) = Hn(K,A) ,  H,(m) = Hn(K, I,), 

where I, is the group of integers reduced m0d.m. Let 

y* E Hn(A), z* E Hn(m), a(m) E A ,  = A/mA 

be the cohomology, homology and residue classes of y E Zn(A), z E Zn(K, I,), 
a E A. Then a homomorphism41 

u, = G:Hn(A)  --,Hom {H,(m), A)  

is defined by 

where y = al.cl + . - - a,-c, , with aiai = 0. If K is without (n - 1)-dimen-
sional torsion, then 

uo:Hn(A)m Hom (H, , A), 

where Hn = Hn(0). 
Let K be simply connected. We make the natural identification &(K) = H2 

and we also identify r(IIz(K)) with r3= r3(K) by means of 8, in Theorem 14. 
Also K has no 1-dimensional torsion and we identify each y* E H 2 ( ~ )with 

41 Cf. (12.2) in [14]. 
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my*. Moreover we take A = H z ,  so that H 2 ( ~ z )is the additive group of the 
ring of endomorphisms of Hz.  Then we have maps 

Since m ( K )  = 1 the group Cn(K)(n 2 3 )  may be identified with Cn in the 
system (C, A ) ( K ) .Let b(m):H4(m) + l?3,, be the secondary modular boundary 
homomorphism. Let 1 e H~(Hz)be the identity 1:H2 --+ H2 . 

THEOREM20. b(m) = u,p(l). 
First let K be any finite cell complex, which need not be simply connected, 

and let the notations be the same as in (17.1). Let a e A and let a.c e Z n ( A ) ,  
where c = nlcl + . . . + nqcq. Then 

Let +:K -+ Kt  be a cellular map into a finite cell complex, K', and let 

a : A  -+A' 

be a given homomorphism. Let H: (m)  = H A  (K' ,  I,) and let 

be the homomorphisms induced by 4 and a. Consider the diagram 

a*
Hn(K',  A') 5 Hn(K ,  A t )  +H n ( K ,  A )  

{H:(m) ,A:} + 
f * (Hn(m) ,A:} 2 { I H ( m ) ,  Am} 

in which { H ,  A }  denotes Horn ( H ,  A )  and @*,fr,a* ,a* are induced by 4, j, a ,  5. 
Thus 

a*(a.c)* = (aa.c)*, G*h = ah, j*hr = h'f, 

where (a.c) E Z n ( K ,  A ) ,  h  e (H,(m),  A,), h' e (H: (m) ,A;}. Let ( c : ,  . . .  , c:,) 
be the canonical basis for Cn(K' ) ,in terms of which urn,operating on Hn(K' ,  A ) ,  
is defined and let j, +* etc. also denote the corresponding maps of chains and 
cochains. Let 

y' = a:.c: + . . + a:, .c:, e Zn(K' ,  A') .  
I ' Then +*yr = a:.+*c: + . . + aq,@*cq,. Let y = al.cl + .. a,.cq . Then it 

follows from (17.2) that 
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= (S*(urny*)}z* 
Therefore 

(17.3) urn+*= S u m ,  uma* = 

Now let K, K' be simply connected and, as before, let 

IT2=Hz, r ( H z ) = r 3 ,  H2(H2)= {Hz,HzJ,  

with the analogous identifications in Kt. Let +:K 4 Kt and a:A +A' mean the 
same as before and, returning to the notation used in Chapter I, let 

be the homomorphisms induced by 9.It follows from (17.3) and (16.22) that 
the diagram 

{H:, ~ i }7{IH,H ~ J+--- b* {HZ,HZ] 

is commutative, where Ij*e = Ije: Hz --t H; , b*e' = e'b for every e e { H Z ,Hz) 
e' e {Hi, H:} and the two bottom layers are the same as before, with n = 4, 
A = r3and a = a. Since b*(l) = Ij = $*(I) it follows that 

{umP(l))Ij(m) = Ij(m)*urnP(l) = umPIj*(l) 

= B(mhmP(1). 

We also have b(m)Ij(m) = o(m)b(m), according to (3.6) 
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Therefore 

(17.4) Ib(m) - umP(l>)b(m)= 0(m)(b(m) - umP(l)I. 

Let K' be any simply connected complex, let K = K ' ~and let +:K -+ K' 
be the identical map. Then Q(m) is onto and it follows from (17.4) that Theorem 
19 is true of K' if it is true of K. Therefore are need only consider complexes of 
a t  most four dimensions. 

Let K t  be any complex of the same homotopy type as K and let +: K -+ K' 
be a homotopy equivalence. Then ~ ( m )  is an isomorphism and it follows from 
(17.4) that Theorem 19 is true of K if it is true of Kt.  Therefore we may replace 
K by any complex of the same homotopy type. Therefore we may take K to be 
a reduced, 4-dimensional complex, as defined in [3]. 

Let K be a reduced, 4-dimensional complex. Then 
3 3 3K' = eOue iu  u e i ,  K~= ~ ? u e : u  u e , u e , + ~ u  u e , + l ,  

where e: (i = 1, . . . , t) is attached to K~by a map, S? -+ 84,  of degree a i ,  
and E!+A (A = 1, . . . , 1) is a 3-sphere attached to eO. Obviously ZZ(K) = Cz(K). 
Moreover we may assume that ai 1 ai+l in which case (c' . , cq) is a canonical 
basis for C2(K), where ci is represented by a homeomorphism sZ-+ E: . Let 
z e ZZ(K) and let (cl , . . , c,) be the basis for c'(K), which is dual to (c', . ,cq). 
Then 

z* = (c1z)ci + ' ' ' + (cqz)cQ*. 
Therefore i t  follows from (17.1), with m = 0,n = 2, H?(H?) = {HZ, H z ) , uo = 1 
and a; = c: , that 

(c:'cl+ "' + cP*.cq)*z*= Z* . 
Therefore (C:.CI + - . + cQ*.cq)*= 1. 

Since K is reduced we have pr = c u c for any c e c~(K), according to (10.1) 
in [3]. Therefore it follows from (16.13) that 

where e" = =(c:), e" = [c'; ,ci]. Also it)folloa~sfrom (14.1) in [3] and (17.2) above, 
with n = 4, A = r3 that 

b(m)z* = { (ci u cj)z}e"(m)
is1 

Therefore b(m) = urnp(l) and the proof is complete. 

Let K be without 2-dimensional torsion, so that HZ and Hz are free Abelian 
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groups of the same rank. Subject to this condition, G. Hirsch ([19]) has given 
a very elegant expression for the kernel, G, of the natural homomorphism 

Let S be the group of symmetric homomorphisms, f :  H' -+ H2 , which is defined 
a t  the end of 55 above, with A = = H'. Let z* e H4 and let f , : ~ ~H z , A* +HZ 
be given by 

f r ~ *  = C*n z* (c* e Hz) .  

Then 5, e S and a homomorphism, p:H4 -f 8, is defined by pz* = f, . Hirsch's 
theorem states that G = S / p H I  . We give an alternative proof of this. 

Let c: , . . . , c,* be a basis for fZ2.  Then it follows from (5.13) and (5.12) that 
X:S NN r 3 ,where * * i jxf = C (cifcj )e 

el 

and from (17.5),with ?n = 0, that 

= X f ,  = Xpz* 

Therefore b = Xp and i t  follows that X induces an isomorphism 

Therefore Hirsch's theorem follows from the exactness of Z ( K ) .  
Let us discard the condition that 7rI(K) = 1 but let K be without (n - 1)-

dimensional torsion for some n 2 2. We take A = Hn = Hn(0)  and use uo" to 
identify H n ( H n )with the additive group of the ring of endomorphisms of H n  . 
I t  follows from (17.1), with m = 0 and ai= zZ , that H n ( H n )operates on H ,  
according to the rule 

1ex* = (c~z)z*+ . . - + (cg)zQ+, 
where e = (2: .cl + . . + zP* .cq)*. Let a' :H n ( H n )+H n ( H n )be the endomorph- 
ism, which is induced by a given endomorphism e': Hn -+ H n  . Then 

Therefore d'e = e'e. Let g(e) be the endomorphism of H ' " { ~ ( H , )J which is in- 
duced by r e :  r ( H n )  + r ( H n ) .Then i t  follows from (16.22),with f = I?, g = g(e), 
tthat 

pe = PW)= g(e)p( l ) .  

Therefore p :  Hn(Hn)-,H ~ "{ r ( H n )} is determined by the correspondence 

together with p(1). 
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18. The calculation of Z4(K) 

We return to the sequence 

We make the same identifications, I I z  = Hz and I'(H2) = r3as before. We also 
identify each 9 E r3/bH4with iy E i3r3= G, say, where 

is the isomorphism induced by i 3 .Then i3becomes the natural homomorphism 
r3'G. 

The group 113is an extension of H3 by G. Let II: be an equivalent extension. 
Then there is a homomorphism, i: :I I :  -+ Ha , and an isomorphism, f :I I 3  w II: , 
such that 

f g  = 9, i j f  = i 3  , (B e GI, 

whence i:-'(0) = i:-'(0) = G. Let 2: be the sequence which is obtained from 2 4  
on replacing i3:113-+ H3by i: :II: -+ H3 .Then F :Z4 FZ 2: is a proper isomorph- 
ism, where F consists of f :  113 x II: and the identical automorphisms of the 
other groups. Therefore 24 is determined, up to a proper isomorphism, by the 
groups Hz , H3, H4 , the homomorphism b: H4 -+ r ( H z )and the cohomology 
class in H ' ( H ~ ,G) which determines the equivalence class of the extension I18. 

Now let ?rl(K)= 1and let K be a finite complex. Then H3 = T + B, where 
T is the torsion group and B is free Abelian. Let T1, . - . , T pbe cyclic summands 
of T ,  whose orders, T~ , - . . , T~ , are the coefficients of 3-dimensional torsion. 
Since B is free there is a homomorphism, i*:B -+ 113,such that i3i*b= b for each 
b c B. Therefore 113 is the direct sum 

where II;  = G'T. Thus II: is an extension of T by G and the equivalence class 
of 113is obviously determined by that of II: . 

Let (cl, . . . ,cP,yl, . . . , ?JI) be a canonical basis for C*such that dcA = nzA, 
d$ = 0where 13zAe H3 generates T A. let aAe j"'&, xA = k3aAcI I 3  . Then 

Therefore xA c II: and xAis a representative of &zA. 
Since j3(@ - nuA)= dcA- nk = 0we have 

Let g A = -i3rA e G. Then nxA = kanaA= -k3y A = $. Therefore the equivalence 
class of II;  is uniquely determined42 by g l ( ~ l ) ,. . . ,gP(7,),  where $(n)r G,, is 
the residue class containing $. 

See $16of [121. 
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I t  follows from the definition of b(m) that 

where cX* is the homology class, mod. .rx , which contains cX. Therefore 
X

g (Q) = ,- -~(Tx)~(TA)cX* 

where i3(n):  I'(H& + GrX is the homomorphism induced by i3 . Therefore the 
equivalence class of 1103 is determined by b, which determines G, and by 

b ( ~ l ) ,- - - , ~(TP) ,  
which determine g l ( ~ l ) ,  - . . , gP(7,). 

Since b(m) = u,p(l) the sequence &(K) is determined, up to a proper iso- 
morphism, by the groups 

H2,H3,H4(m), H ~ { ~ ( H ~ ) )( ~ = O , T I , ' . . , T ~ ) ,  

the element p(1) E H ~ {  . If K is I'(H2)) and the family of homomorphisms u, 
a (finite) simplicia1 complex all these items can, theoretically, be calculated by 
finite con~truct ions.~~ 

Let n > 2, let K = K " + ~be (n - 1)-connected and let us make the natural 
identifications 

rn+l= nn/2nn = Hn(2) 

so that 8 = 1at the end of $14 above. Then Theorem 19has an analogue, namely 
Theorem 4 in [5] ,which states that bn+*(2) is the dual of the Steenrod homo- 
morphism ([24]) 

SqnP2:H n  (2) -+ H""~(2). 

Further light is thrown on the calculation of Zn+2(K) in forthcoming papers by 
S. C. Chang and P. J. Hilton. Chang defines certain numerical invariants, called 
"secondary torsions", which can be calculated constructively if K is given as a 
simplicial complex. An analysis which is similar to, but rather simpler than the 
one above, shows that Zn+2(K) is determined, up to a "proper" isomorphism, by 
the Betti numbers and torsions of K, together with the secondary torsions de- 
fined by Chang. 

19. The Complex K(X) 

Let P be ally (geometric) simplicial complex, may be infinite but which 
has the weak topology. That is to say, every (closed) simplex in P has its natural 
topology and a sub-set of P is dosed provided it meets each simplex in a closed 
sub-set of the latter. By a local ordering of t,he vertices of P we shall mean an 
ordering, o(un), of the vertices of each simplex, un e P ,  such that, if un-I is a 
face of un, then o(un-') is the ordering induced by o(un). Let such an ordering 

43 This does not mean that we have found a finite algorithm for deciding whether or no 
Z4(K) = Z4(K').Some of the difficulties in this question, even when K ,  K' have no torsion, 
are indicated on p. 88 of [3]. 
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be given. Let the simplexes of P be divided into equivalences classes by an 
equivalence relation, =,such that 

a) a; = a; implies r = s, 

(19.1) b) if d = T,, where an = vo - . - v, , 7" = wo . . w, and the vertices 

v i  , wi are written in their correct order, then v;, .. . vi, = wio .. . w;, 

for each sub-set 0 5 i o  < i2< .- - ir 5 n. 
Let h ( ~ , ,un):an + T" be the order preserving barycentric map (onto) for every 
pair of simplexes on, 7" e P. Let p l ,  p2be points in P. We write p, = p2 if, and 
only if, there are equivalent simplexes, , a: e P, such that pi e a: - and 
p2 = h(a; , a;)pl . Obviously pl = p2 is an equivalence relation. Let K be the 
space whose points are these equivalence classes of points in P and which has 
the identification topology determined by the map k : P  -+ K, where kp is the 
class containing p. 

LEMMA3. K is a CW-complez, whose cells are the sets k(un - &"), for each 
simplex, an, of P. 

First assume that the following supplementary conditions are satisfied: 
a) v # v' if v, v' are distinct vertices of the same simplex of P 

(19.2) b) if an = vo ... v, ,? = wo ... w, and if v i  = wj,for each i = 0, . , 
n, then d = 7". 

Let a be the cardinal number of the aggregate of classes kv, for each vertex, 
v e P. Let kv --+ e(kv) be a (1 - 1) correspondence between.the aggregate {kv] 
and a set of basis vectors, {el,  in a non-topologized vector space, A, of rank 
a (Cf. [25]). Then a simplicial complex, L, with (eJ as the aggregate of its vertices, 
is defined as follows. Let eo, , en be any finite sub-set of (el .  Then the 
rectilinear simplex, eo .. . en C A, is a simplex of L if, and only if, there is a 
simplex vo .. . v, e P ,  such that ei = e(kvi) (i = 0, .. ,n). We give L the weak 
topology. 

Let an = vo .. . v, be a given simplex of P. Then it follows from the definition 
of L that e(kvo) .. e(kv,) is a simplex in L. Therefore a simplicia1 map, 1:P -+L, 
is defined by lv = e(kv), for each vertex v e P. Since P has the weak topology it 
follows that 1 is continuous. Notice that, in consequence of (19.2a), the map 
1 I an is non-degenerate. Let p = q, where p, q are points in P ,  and let 

be the simplexes of P ,  whose interiors contain p, q. Then an = 7" and it follows 
from (19.lb) that kui = kwi , for each i = 0, .. , n. Therefore I d  = 17". Also 
q = h(rn, an)p and the map h ( ~ ~ ,an), likewise 1 I an and 1 I T~ are barycentric. 
Therefore lp = lq. Therefore the map ll-':K --+ L is single-valued. Since K 
has the identification topology determined by k the map lk-' is continuous." 

Similarly it follows from (19.2) that kl-':L --+ K is single-valued. I t  is ob-
viously continuous in each simplex of L, and hence throughout L, since L has 

44 See $5 of [6]. 
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the weak topology clearly (Ur-')kl-' = 1, (kl-')lk-' = 1. Therefore kl-' is a 
homeomorphism onto K. Therefore K is a simplicial complex, with the weak 
topology, whose cells are the interiors of the simplexes kl-'(lan) = kan, for each 
simplex, an e P.This proves the lemma, subject to the conditions (19.2). 

Now assume that (19.2a) is satisfied and let P' be the derived complex of P, 
in which each new vertex is placed at  the centroid of its simplex. We define a 
local ordering in P' by placing the centroid of an after the centroid of am if 
m < n. The equivalence relation between the simplexes of P induces a similar 
relation between those of P', in such a way that the equivalence classes of 
points are unaltered. Also it may be verified that the equivalence relation in P' 
satisfies both (19.2a) and (19.2b). Therefore kP' is a simplicia1 complex and 
K = k P  is a "block complex", in which the blocks are the sub-complexes of 
kP',which cover the sets kcn. It may be verified that K is a CW-complex, with 
the combinatorial structure described in the lemma. 

Finally let P be general. Then the induced equivalence relation between the 
simplexes of the derived complex, P', obviously satisfies (19.2a). Therefore the 
induced equivalence relation between the simplexes of the second derived com- 
plex of P satisfies both (19.2a) and (19.2b). Again it is easily verified that K is a 
CW-complex, with the structure described in the lemma. This completes the 
proof. 

We now proceed to the definition of K(X). Let vo be the origin and v; the point 
(tl , tz , . . ) in Hilbert space, R", where ti  = 1and ti = 0 if j Zi.Let vo , v l  , . . 
be ordered so that vx < vx+l and let An C R" be the rectilinear simplex uo . . . vn . 
Let f: A" +X be a given map and let Cf, An) be the rectilinear n-simplex, whose 
points are the pairs Cf, r ) ,  for every point r E An, and whose topology and affine 
geometry are such that the map r + Cf, r) is a barycentric homeomorphism. If 
a' is any face of An we shall denote the corresponding face of d f ,  An) by (f, a'). 
We emphasize the fact that (f, r) # Cf', r) if f, f':An -+ X are different maps, even 
if fr =f 'r. Also Cf, r) # (g, r) if r e A ~ - '  and g = f I A"-'. Therefore no two of the 
simplexes Cf, An), (g, A") have a point in common. 

Let P(X) be the union of all the (disjoint) simplicial complexes Cf, An), for 
every n 2 0 and every map f :  an-+ X. We give P(X) the weak topology, which 
makes each (j,An) both open and closed in P(X). The simplexes of P(X) are the 
simplexes Cf, a'), where a' is any face of An. The ordering vo , VI , . . ,vn , for 
each n > 0, and the maps r --+ Cf, r) determine a local ordering in P(X). Let 
Cf, a') and (g, 7') be faces of Cf, A") and (g, An). We define Cf, cr') = (g, 7') if, 
and only if, i = j and4' 

f 1 a' = (g j a').T ' ) ~ ( T ~ ,  

It is easily verified that this is an equivalence relation and it obviously satisfies 
(19.1). Therefore a CW-complex, K(X) = kP(X), is defined as in Lemma 3. 
Notice that K(X) is uniquely determined by X. Notice also that f r  = f'r' if 
kCf, r) = kCf',r'), though the converse is not necessarily true. 

46 h(ri,ui) will always mean the order preserving, barycentric map, ui -+ ri, onto ri. 
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Let S(X) be the abstract singular complex of X, as defined in [16].Any n-cell, 
sn e S(X), has a unique representative map: f(sn) :An -+ X. I t  is obvious that 
the correspondence sn -t k(f (sn), An}  determines an isomorphic chain mapping 
of S(X) onto K(X), when the latter is treated as an abstract complex. 

Let +:X -+ Y be a given map into a space Y. Then a map, K+: K(X) -+ K(Y), 
is obviously defined by 

where k:P(Y) + K(Y) is defined in the same way as k:P(X) + K(X). More- 
over the correspondences X -+ K(X) and + -+ K+ determine a functor 5 -,5k , 
where 5 and Xk are the topological categories of all topological spaces and all 
c~ - c o m ~ l e x e s . ~ ~  

20. The maps K and Am 

I t  is obvious that a (single-valued and continuous) map, K:K(X) + X, is 
defined by KkCf, r) = fr. Let +:X -+ Y be a given map. Then 

where K:K(Y) + Y is defined in the same way as K:K(X) -+ X. Therefore 
K is natural in the sense that 

Let Q be any simplicia1 complex with the weak topolo.& and with a local 
ordering of its vertices. Let + :Q-+ X be a given map. Then a map, X+ :Q-+ K(X), 
is defined by 

for each point q e Q, where un is any simplex of Q, which contains q. Obviously 
KA+ = +. Moreover, if Q o  is a subcomplex of Q, with the local ordering induced 
by the one in Q, and if 40 = + ( Qo, then 

Let 8 :Q -+ L be an isomorphism of Q onto a simplicial complex, L, with the weak 
topology. Let L have the local ordering which makes 13 order preserving in each 
simplex of Q. Let J/:L -+X be a given map. Then it may be verified that 

46 Strictly speaking the unique representative of snis the pair Cf(sn),o,), where on is our 
fixed ordering of the vertices v, , . . . , v,. Eilenberg has communicated to  me a simplified 
definition of S(X),to be used in a forthcoming book with N. E.  Steenrod, in which a cell 
of S(X)is simply a map f :An 4 X and i ts  faces are the cells Cf I ui)h(ui,Ai) ,  for each face, 
ui, of An. 

'7 Notice that K+ maps each cell of K(X)homeomorphically onto a cell of K ( Y ) .There-
fore S + Sk maps 5 into the category of complexes in which the mappings are of this 
restricted sort. 
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Let Q* be any simplicial subdivision of Q and let a local ordering be defined 
in Q*, which is independent of the one in Q. Let +*:Q* -+ X be a given map and 
let A:* be defined in the same way as A+,but in terms of Q* and the local order-
ing in Q*. 

LEI\IMA4. If 9cc9*then A+ N A:. . 
Let L = Q X I ,  let 00 , 8: be the maps of Q into Q X 0, Q X 1, which are 

given by Ooq = (q, 0), O1*q = (q, 1)and let Qo ,Q: be the triangulations of Q X 0, 
Q X 1which make 80 , 0: isomorphisms. Then L is a polyhedral complex, which 
consists of the simplexes in Qo , Q: and the convex prisims 6 X I, for every 
simplex, an E Q. Let u(an) = (q, +), where q is the centroid of an, and let L' be 
the triangulation of L, which is defined inductively by starring each an X I from 
v(an) as centre, taking amX I before an X I if m < n. We define a local ordering 
in L' by giving Qo , Q? the local orderings which make eo , 0: order preserving 
and placing v(an) after all the vertices of L', which lie on the boundary of an X I. 

Let $:Lt --t X be a map such that $(q, 0) = +q, $(q, 1) = +*q. Let A#: L' + 
K(X) be defined in the same way as A+. Then it follows from (20.3) that A+ 
determines a homotopy A+,eo e x&eT ,where $0 = $ 1 Qo, = $ I Q: .Since 
9 = $ 0 0 ~,+* = 0; the lemma follows from (20.4). 

Let p, pl:Q +K(X) be given maps. 
THEOREM21. If ~p CL ~ p ' ,then p CL p'. 

We first show that, in the presence of Lemma 4, this is equivalent to 

(20.5) P NXI, 

For ~p = KA,, .Therefore (20.5) follows from Theorem 21 with p' = A,, . Con-
versely, if ~p cc ~ p 'it follows from (20.5) and Lemma 4 that p cc A,, CL A,,* N p'. 
Therefore Theorem 21 is equivalent to (20.5). We shall prove (20.5). 

Let K = K (X). Though K is not a simplicial complex we shall describe p :Q + 

K as simplicial if, and only if, it can be defined as follows. Let a barycentric map 

onto a simplex of P(X),  be defined for each simplex an E Q in such a way that 
the (simplicial) map p:Q + K is single-valued, where pq = kO(an)q if q E an. 
Since p I an is continuous and Q has the weak topology it follows that p is con-
tinuous. 

Let the simplex O(an)anbe d(an)-dimensional, let j = d(an) and let 

where O'(U"):on --t O(an)anis the map induced by O(an). Let 

where a! C Ak, for some k 2 j, and let 

Let ambe any face of an and let p(an)am= af C A'. Since p:Q --t K is single-
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valued it may be verified that i = d(am) and that 

p(an) 1 am = ~ h ( a f, d')p(am) 

I af = f(am)h(~' ,  af),  

where r:af + A' is the identical map. Also (f(an), A? (g(an), a{), whence 

Conversely, given p(an) :an --t A', f(an):AJ  + X, satisfying (20.6), for each 
an e Q, a simplicial map p: Q --t K is defined48 by (20.7). 

We shall describe the simplicial map p as non-degenerate if, and only if, 
d(an) = n for each an E Q. Let this be so and let p(an), f(an) mean the same 
as in (20.6). Then we can order the vertices of each simplex an e Q so that p(an) 
preserves order. I t  follows from (20.6a) that we thus define a local ordering in 
Q and from Lemma 4, with Q* = Q, C#I* = = ~ p ,that we lose no generality in 
assuming this to be the one by means of which A,, is defined. Then 

in consequence of (20.7). Therefore i t  follows from (20.2) and (20.7) that p = 

A, . Therefore the theorem will follow when we have proved that a given map, 
Q -+ K, is homotopic to a non-degenerate, simplicial map Q* +K, where Q* 
is a simplicial sub-division of Q. 

Let PNbe the second derived complex of P(X).  Then K" = kP" is a simplicial 
sub-division of K, as shown in the proof of Lemma 3. Let at:P" +P(X)  be the 
canonical homotopy in which atv  = (1 - t)v + tSlv, where v is any vertex of 
P", atv is treated as a vector and 6 1 ~  is the last vertex of the simplex of P(X),  
which contains v in its interior. Obviously 6,p = atpt if p = p'. Therefore44 a 
homotopy, pt:  K" +K, is defined by ptk = kat. Clearly pl: K" --t K is simplicial. 

Let po:Q--t K be a given map. By Theorem 36 on p. 320 of [7]we have PON , 
where pl: Q +K is simplicial with respect to K" and some simplicial sub-division, 
Q*, of Q. Then po N plpl . The resultant of simplicial maps, Q + L + K, is 
obviously simplicial, where L is any simplicial complex with the weak topology. 
Therefore pfil is simplicial and it follows that we lose no generality by assuming 
that the given map p: Q +K is simplicial. 

Let p be simplicial and let p(an), f(an) mean the same as in (20.6). Let 

Let a? = p*(an)am where am is any face of an. Then 

where i:a? + An is the identical map. Let af = p(an)amC A'. 

a When p is thus defined it is to be understood that p(un)un = A i ( j  = d ( o n ) )and tha t  
i = d (urn)in (20.6). 
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Since h(an, An)a;" = amwe have 

f * (an)  1 a;" 	 = f(an)p(an)h(an, An) I a? 
= I f(an)pcL(an)1 am)h(am, 6') 

= i f (an)  I af lp'h(om, a?), 

where p' :am-+ a; is the map induced by p(an). I t  follows from (20.6a) that 

p' = h(a: ,Ai)p(um). 

Hence, and from (20.6b), we have 

f * (an)  1 a;" = f (am)h(A' ,  of)h(a: , A")p(am)h(am, ay) 

= f (am)~(am)h(am,07) 

= ~ ( u ~ ) ~ ( u ~ ) ~ ( u ~ ,A ~ ) ~ ( A ~ ,u?) 

= f*(am)h(Am, a;"). 

Therefore the families of maps p*(an), f*(an) satisfy (20.6) and a non-degenerate, 
simplicia1 map, p*:Q + K, is defined by 

~ * q= kCf*(an), cc*(an)q) 	 (q a Q"). 

Finally we prove that p -- p*. Let uo , . . . , un  be the vertices of an, written 
in their correct order. Let j = d(an)and let 

be the barycentric maps which are given by 

Let vt(un)q = (1 - t)va(an)q+ tvl(an)q, for each q a an, where 0 S t 5 1 and 
vt(un)qis treated as a vector in A'+"+'. Let p(an):Ajfn" +A' be the barycentric 
retraction which is given by 

and let F(an) = f ( ~ " ) ~ ( a " )  +X. Let 

be the homotopy which i s  given by 

(20.8) 	 et(an)q = ( ~ ( a " ) ,vt(an)q) (q E an). 

I say that a homotopy, p t :Q  -+ K, of PO = p into pl = p* is given by ptq = 
k8t(an)q.This will follow when we have proved that 

(20.9) 	 kei(an) = pi I an (i= 0, 1) 

and, since Q has the weak topology and k8,(on) is continuous throughout an,for 
each an t Q, that p; is single-valued. The fact that pt is single-valued will follow 
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when we have proved that 

(20.10) kOt(am) = kOt(an) I am 

where am is any face of an. 
Since vo(an)q= p(an)q (q E an)and F(an) ( A' = f(an) it follows from (20.7) and 

(20.8) that kOo(an) = p / an. Let A; = vj+l . . vj+,,+l . Then p(an)h(an, A?) 
and h(AT , an) are the maps induced by p(an) and vl(an).Therefore 

Hence it follows that kt91(an) = p* I an and we have proved (20.9). 
Let 

am = Ur,  . . . Ur," , a1i = . - . u a i  (ra < Ta+l ;si9 < si9+1) 
i+m+l 

' ' ' u84uj+l+ro' ' ' uj+l+r, = U1 . 
Then p(a")~f+"'~ = p(an)am = a1i . Let pl:af+"+' -+ a: be the map induced 
b y  p(an). Then it follows from (20.6a) that 

= p ( ( ~ ~ ) u i + l + ~p(urn)ur.= 

= h(Ai, af)p(an)ura = h(Ai, af)plvj+l+ra. 

Therefore 
h(A', a f )pl  = p(am)h(A i+m+l, .f+m+l) 

and it follows from (20.6b) that 

Therefore (F(an),  uf+*+') = (F(um),  A"""). Also 

h(af, Ai)vS = vag= +m+l, U S  @ S i).h(af  A ~ + ~ + ~  
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Therefore 

Therefore vt (an)q = h ( ~ f + ~ + ' ,  )vt(am)qif q e am. This proves (20.10) and 
hence the theorem. 

Let + N +':X+ Y , where Y is any space. Then it follows from (20.1) that 

Therefore K+ N K+', by Theorem 21. Therefore {K+) is a single-valued func- 
tion of (+),where (+) denotes the homotopy class of a map +. I t  may be verified 
that the correspondences K + K(X), (4) --+ (K+] determine a functor of the 
homotopy category of all spaces into the homotopy category of CW-complexes. 

21. The sequence E(X). 

There is a unique map, f :  A' +X, such that fAO is a given point in X. There- 
fore K ( P ( x )  is a (1-1) map onto X, whence KK(X) = X. Since K(X) is locally 
contractible, according to (M) in $5 of CH I, each of its components is arcwise 
connected. Therefore each component of K(X) is mapped by K into a single 
arc-component of X. Let Ko(X), Kl(X) be given components of K(X) and let 
e! e K:(x), xi = Kei0 (i = 0, 1). If xo,zl, are in the same arc component of X 
there is a map, f :  A' +X, such that fvi = xi .Then kCf, A') is a 1-cell in K(X), 
whose extremities are e: , et . Therefore Ke(X) = K1(X) and K maps precisely 
one component of K(X) onto a given arc-component of X. 

Let X be arcwise connected and let a 0-cell e0 r K'(x) and the point xo = K ~ O  

be chosen as base points in K(X) and X. 
THEOREM :T, {K (X) ) NN T,(X) for every n = 1, 2, . . - , where K, is in- 22. K, 

duced by K. 

Let +: (A"", A') + (X, xo) be a map which represents a given element 
a r a,(X). Since +A0 = xo we have e0 = k(+ ( A', AO) and X+AO = eO.Therefore 
A+ :An+' +K (X) represents an element ao e T, (K(X)1. Since + = KX+ we have 
a = Knao.Therefore K, is onto. 

Let p:An+' + K(X) be a map which represents a given element a0 e K;'(O) 
and let p' be the constant map An+' -+ eO.Since K,ao = 0 we have KP N ~p ' .  

Therefore p N p' by Theorem 21. Therefore a. = 0 and Theorem 22 is proved. 
I t  follows from (20.1) that the isomorphisms K, are natural with respect to 

the homomorphisms induced by maps +:X + Y and K+, where Y is any arcwise 
connected space. 

We recall from CH I that X is dominated by a CW-complex, L, if, and only if, 
there are maps +:X +L, +:L +X, such that ++ N 1. 

THEOREM = X.23. If X is dominated by a CW-complex then K:K(X) 

This follows from Theorem 22 and Theorem 1in CH I. 
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Let X be itself a CW-complex. Then it follows from Theorem 23 that K in-
duces a proper isomorphism 

which is natural in consequence of (20.1). If X is an arbitrary, arcwise connected 
space we choose base points eO E P ( X ) ,  KeO E X and define Z,(X) as Z,{K(X)). 

The complex K(X) can also be used to extend the domain of definition of 
other invariants from CW-complexes to arbitrary spaces. For example the n-type 
of X may be defined as the n-type of K(X). The same applies to the injected 
groups discussed at the end of $11. 

We have seen, in Theorem 23, that any arcwise connected space, X, which is 
dominated by a CW-complex, is of the same homotopy type as some CW- 
complex49 K. Let X:X = K and let K:K --t X be a homotopy inverse of A. Let 
AX C KO where KO is a sub-complex of K, let XO:X --t KO be the map induced by 
X and let KO = K ( KO. Then KOXO = KX N 1. Therefore X is dominated by KO . 
If X is compact, so is AX. Therefore AX C KO, where KO is a finite sub-complex 
of K, by (D) in $5 of CH I. Therefore X is dominated by a finite CW-complex. 

THEOREM24. An arcwise connected space, X, which is dominated by a CW-
complex with a countable aggregate of cells, is of the same homotopy type as some 
locally Jinite polyhedron. 

By Theorem 23, K :  K m X, where K = K(X). Let X:X -+ K be a homotopy 
inverse of K. Let 4:X --t L, +:L --t X be such that $4 N 1, where L is a count- 
able CW-complex. Then 

where p = X+:L --t K. Let en be any cell of L. Since is compact it is con- 
tained in a finite sub-complex of K. Since L is countable it follows that p L  
and hence &X, is contained in a countable sub-complex, KO C K. Since N X 
we have & : X  = K and we may replace X by &. Thus we assume to begin 
with that AX C KO. 

Let pt:  K --t K be a homotopy of po = XK into pl = 1. Then there is a count- 
able sub-complex, K1 C K, such that p t K ~  C K1,  for the same reason that 
pL C K O .  By repeating this argument we define a sequence of countable sub- 
complexes KO , K1, - . . , such that ptK, C K,+l . The union of the complexes 
K, is a countable sub-complex, K*, such that XX C K* and ptK* C K*. There- 
fore X*K* N 1 (in K*) and K*X* = KX N 1, where X*:X -+ K* is the map induced 
by X and K* = K / K*. Therefore X*:X = K*. But K* = P, where P is a locally 
finite polyhedron, by Theorem 13 in CH I. This proves Theorem 24. 

I t  follows from Theorem 24, and the remarks which precede it, that any 
compact space which is dominated by a CW-complex, and in particular any 
ANR compactum, is of the same homotopy type as some locally finite poly- 

49 This may be proved more directly by a construction of the sort used in [8]. 



hedron. We leave open the question whether or no it is of the same homotopy 
type as a polyhedron of finite dimensionality. 

Let X, X' and Y C X, Y' C X'be given topological spaces and let 

An = rn(X, YO), Cn = Y, YO) (n >= 2) 

where yo ,y; are base points in Y, Y'. Let 

j:An +C,, jf:A: +C: , 
be the injections and let 

be the homomorphisms induced by given maps 

4, 4O:(X, y, YO)--,(XI, Y'I Yi). 

Let 4 I Y = 4' ( Y: Then 4, 4' determine a separation hmnomorphim, 

which is defined in the same way as Eilenberg's separation co-chain, except 
that attention must be paid to the base points. The purpose of this section is to 
prove that 

a) jO=ih j-b) - h0 = Aj.j' A 

We recall the definition of A. Let E; , E; be "Northern" and "Southern" 
hemispheres on an n-sphere, Sn,and let s"-'be the "equatorial" (n - 1)-sphere. 
Let In C Rn be the n-cube, which is given by 0 S tl , ... , tn 4 1, 
where tl , - ., tn are Cartesian coordinates for Rn. Let 8i:E; + Inbe fixed 
homomorphisms (onto), such that 01 / 8"-' = 82 1 8%-'.Let Er be oriented by 

(i = 1,2) and let Sntake its orientation from E; .Thus, 
taking orientation into account, 

(B2) 8;= 8;= 8"-', sn= E," - E; . 
We shall use maps of Inand of the (oriented) n-elements E; ,Ez"to represent 
elements of homotopy groups, both absolute and relative. We shall also use 
maps of Sn to represent elements of absolute homotopy groups. Let 
po = (&,0, .. ,0) e fn.It will be convenient to take po and 8:'po as base points 
in Inand Sn. 

Let A:  (In,fn,po)-+ (X, Y, yo) be a map representing a given element c c C,  . 
Then Ac c A: is the element represented by A(4,+') :S" X', where -t 

8:'means of the map 
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