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We investigate the topological properties of the poset of proper cosets xH in
a finite group G. Of particular interest is the reduced Euler characteristic, which
is closely related to the value at −1 of the probabilistic zeta function of G. Our
main result gives divisibility properties of this reduced Euler characteristic. © 2000

Academic Press

1. INTRODUCTION

For a finite group G and a non-negative integer s, let P�G; s� be the
probability that a randomly chosen ordered s-tuple from G generates G.
Hall [17] gave an explicit formula for P�G; s�, exhibiting the latter as a finite
Dirichlet series

∑
n ann

−s, with an ∈ � and an = 0 unless n divides |G|. For
example,

P�A5; s� = 1− 5
5s
− 6

6s
− 10

10s
+ 20

20s
+ 60

30s
− 60

60s
:

In view of Hall’s formula, we can speak of P�G; s� for an arbitrary complex
number s. The reciprocal of this function of s is sometimes called the zeta
function of G; see [6, 21].

The present paper arose from an attempt to understand the value of
the zeta function at s = −1. More precisely, I wanted to explain some

1 Research supported in part by NSF Grant DMS-9971607.

989

0021-8693/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



990 kenneth s. brown

surprising divisibility properties of P�G;−1�, which is an integer, that I
observed empirically. For example,

P�A5;−1� = 1− 25− 36− 100+ 400+ 1800− 3600 = −1560;

which is divisible by 60 = ∣∣A5

∣∣. Similarly, P�A6;−1� is divisible by
∣∣A6

∣∣,
while P�A7;−1� is divisible by

∣∣A7

∣∣ /3.
The main theorem of this paper is a general divisibility result of this

sort. The theorem specifies, for each prime p, a power pa that divides
P�G;−1�; the exponent a is defined in terms of the p-local structure of G.
See Section 4 for the precise statement, which is somewhat technical. See
Section 6 for some easily stated special cases.

Perhaps more interesting than the result itself is the nature of the proof,
which is topological. The starting point is an observation of S. Bouc [private
communication], giving a topological interpretation of P�G;−1�. Consider
the coset poset C�G�, consisting of proper cosets xH (H < G, x ∈ G),
ordered by inclusion. Recall that we can apply topological concepts to a
poset P by using the simplicial complex 1�P� whose simplices are the finite
chains in P . In particular, we can speak of the Euler characteristic χ�P� x=
χ�1�P�� and the reduced Euler characteristic χ̃�P� x= χ�P� − 1. Bouc’s
observation, then, is that

P�G;−1� = −χ̃�C�G��: (1)

This makes it possible to study divisibility properties of P�G;−1� by using
group actions on C�G� and proving the contractibility of certain fixed-point
sets. This technique goes back to [10] and was studied further in [11, 22].
The group we use is G, acting by conjugation, or �G×G�o �2, acting by
translation and inversion.

The remainder of the paper is organized as follows. In Section 2 we recall
Hall’s formula for P�G; s� and a generalization of it due to Gaschütz [15].
In Section 3 we prove Bouc’s result (1). We state and prove our main
theorem in Section 4. The statement involves subgroups N∗�P� for any p-
subgroup P ≤ G. We make some remarks about N∗�P� in Section 5, in
order to facilitate applications of the theorem. We are then able to give, in
Section 6, several special cases and examples. The proof of the theorem,
as we have already noted, makes use of an action of G or �G ×G� o �2
on C�G�. There is a bigger group that acts on C�G�, called the biholomorph
of G. In Section 7 we indicate briefly how the use of this bigger group can
sometimes yield sharper results.

Having studied the Euler characteristic of the coset poset, one natu-
rally wants to go further and study its homotopy type. Our results here are
meager, but we show in Section 8 that C�G� has the homotopy type of a
bouquet of spheres if G is solvable. The spheres all have the same dimen-
sion (which may be less than the dimension of the coset poset). And the
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number of spheres is
∣∣P�G;−1�∣∣. Our results and methods here are closely

related to those of Gaschütz [16] and Bouc [7].
Given that P�G;−1� can be computed in terms of the coset poset, it

is natural to ask whether the function P�G; s� itself can be obtained from
the coset poset. We show that this is the case in Section 9. More precisely,
we define an analogue of P�G; s� for an arbitrary finite lattice; when the
lattice is taken to be the coset lattice of G (obtained by adjoining a largest
and smallest element to the coset poset), we recover P�G; s�.

This paper raises more questions than it answers. Several such questions
are stated in Sections 2.3 and 8.4.

Serge Bouc was extremely helpful; he told me about the topological in-
terpretation (1) of P�G;−1�, without which this work could not have been
done, and he made numerous other suggestions. Nigel Boston gave me the
computation of P�A7;−1�, so that I could stop trying to prove my origi-
nal guess that P�G;−1� is divisible by |G| if G is simple. Jacques Thévenaz
made several helpful comments and suggestions. John Shareshian provided
answers to two questions I had asked in a preliminary version of this paper.
Finally, I benefited greatly from the interest, questions, and encouragement
of Keith Dennis.

2. HALL’S FORMULA AND GASCHÜTZ’S GENERALIZATION

2.1. Hall’s Formula

Hall [17] did not actually discuss the probabilistic function P�G; s�, but
rather the closely related “Eulerian function” φ�G; s�. This is defined, for
a non-negative integer s, to be the number of ordered s-tuples �x1; : : : ; xs�
such that G = �x1; : : : ; xs�. Thus P�G; s� = φ�G; s�/ |G|s. Hall introduced
Möbius inversion on posets in order to compute φ�G; s�. The resulting
formula is

φ�G; s� = ∑
H≤G

µ�H;G� |H|s ; (2)

where µ is the Möbius function of the lattice of subgroups of G. We recall
the proof:

For any subgroup K ≤ G, we have∑
H≤K

φ�H; s� = |K|s ;

since every s-tuple generates some subgroup. Möbius inversion now yields

φ�K; s� = ∑
H≤K

µ�H;K� |H|s y

setting K = G, we obtain (2).
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We can now divide both sides of (2) by |G|s to obtain the expression for
P�G; s� as a finite Dirichlet series mentioned in Section 1:

P�G; s� = ∑
H≤G

µ�H;G�
|G x H|s : (3)

In particular,

P�G;−1� = ∑
H≤G

µ�H;G� |G x H| : (4)

2.2. A Relative Version

Let N be a normal subgroup of G and let G = G/N . Fix a non-negative
integer s such that G admits s generators, let y = �y1; : : : ; ys� be a gener-
ating s-tuple of G, and let P�G;N; s� be the probability that a random lift
of y to an s-tuple in G generates G; thus P�G;N; s� = φ�G;N; s�/ |N|s,
where φ�G;N; s� is the number of generating s-tuples of G lying over y.
Gaschütz [15] proved that this number is independent of the choice of y, so
we are justified in omitting y from the notation. More precisely, Gaschütz
gave a formula for φ�G;N; s�, generalizing Hall’s formula (2), in which y
plays no role. Although he avoided explicit mention of the Möbius function,
his formula can be written as

φ�G;N; s� = ∑
H≤G
HN=G

µ�H;G� |H ∩N|s : (5)

This reduces to (2) if N = G. Dividing (5) by |N|s, we obtain

P�G;N; s� = ∑
HN=G

µ�H;G�
|G x H|s (6)

since |N x H ∩N| = |G x H| if HN = G.
We recall the proof of (5): For any K ≤ G let α�K� be the number of lifts

of y to K and let β�K� be the number of such lifts that generate K. Then
α�K� = ∑H≤K β�H�, hence β�K� = ∑H≤K µ�H;K�α�H�. Equation (5) is
now obtained by setting K = G and noting that

α�H� =
{ �H ∩N�s if HN = G

0 otherwise.

Note further that φ�G; s� = φ�G; s�φ�G;N; s� [16, Satz 1], since there
are φ�G; s� generating s-tuples of G, each of which lifts to φ�G;N; s� gen-
erating s-tuples of G. Hence

P�G; s� = P�G; s�P�G;N; s�: (7)
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We know this initially for sufficiently large positive integers s, but it remains
valid as an identity in the ring of Dirichlet series [16, p. 475]. In particular,
we can set s = −1 to get

P�G;−1� = P�G;−1�P�G;N;−1�; (8)

with

P�G;N;−1� = ∑
HN=G

µ�H;G� |G x H| : (9)

2.3. Consequences

We call attention to three corollaries of the results of Section 2.2. First,
there is a striking consequence of the fact that φ�G;N; s� is independent
of the generating s-tuple y of G. Although this was stated by Gaschütz [15]
in 1955, it does not seem to be as widely known as it ought to be:

Corollary 1. Let G be a finite group and let G be an arbitrary quotient.
Let s be an integer such that G admits s generators. Then every generating
s-tuple of G lifts to a generating s-tuple of G.

Proof. By hypothesis there is some generating s-tuple y of G that lifts to
a generating s-tuple of G, so φ�G;N; s� > 0. The result now follows from
the fact that φ�G;N; s� counts the number of lifts of an arbitrary y.

The assumption that G is finite is crucial here; the corollary is false, for
instance, if G = �.

Next, we specialize to the case where N is a p-group for some prime p.
Then |G x H| = |N x H ∩N| is a nontrivial power of p if HN = G, H < G.
So the sum in (9) is congruent to 1 mod p. Equation (8) therefore yields:

Corollary 2. If the normal subgroup N is a p-group, then the p-part
of P�G;−1� is the same as that of P�G;−1�.

Finally, we specialize further to the case of a minimal normal subgroup.

Corollary 3. Let N be a minimal normal subgroup of G that is abelian
(hence an elementary abelian p-group for some prime p). Then

P�G; s� = P�G; s�
(

1− c

|N|s
)
; (10)

where c is the number of complements of N in G ( possibly 0).

Proof. Any H < G such that HN = G must map isomorphically onto G,
i.e., must be a complement of N . (H ∩N is a proper G-submodule of N ,
hence it is trivial.) In particular there cannot be any inclusion relations
among such subgroups H, so they are all maximal and have µ�H;G� = −1.
The result now follows from (6) and (7).
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By repeated use of (10), Gaschütz [16] obtains an Euler product expan-
sion for the Dirichlet series P�G; s� if G is solvable. See also Bouc [7]. Very
briefly, if

1 = N0 < N1 < · · · < Nk = G
is a chief series, then there is a factor of the form 1 − ciq−si for each in-
dex i = 1; : : : ; k such that Ni/Ni−1 has a complement in G/Ni−1. Here ci
is the number of complements, which is worked out explicitly by Gaschütz,
and qi =

∣∣Ni x Ni−1

∣∣ is a prime power. Bouc [private communication] has
asked whether there is a converse to this result:

Question 1. If G is a finite group such that P�G; s� has an Euler product
expansion with factors of the form 1− ciq−si , is G solvable?

Remark. Bouc [8, 9] has associated to any finite group G a polynomial
P̃�G� in infinitely many variables XS , one for each finite simple group S.
One recovers Hall’s function φ�G; s� by making the substitution XS = |S|s.
Question 1 is motivated, in part, by the fact that G is solvable if and only
if P̃�G� has a particular type of factorization. Bouc’s polynomial also has
the property that it is irreducible if (and only if) G is simple. Thus one
might be tempted to ask whether P�G; s� is irreducible in the ring of finite
Dirichlet series if G is simple. But this is already known to be false for the
simple group of order 168; see Boston [6, p. 161].

2.4. Direct Products

Bouc [8, 9] has given a detailed analysis of the behavior of his polyno-
mial P̃�G�, hence also φ�G; s� and P�G; s�, with respect to direct products.
We confine ourselves here to recording one easy observation, for later ref-
erence.

We say that two groups G and H are coprime if they have no nontriv-
ial isomorphic quotients. Equivalently, G and H are coprime if no proper
subgroup K ≤ G ×H surjects onto both factors. This is a special case of
the analysis of subgroups of a direct product given in [26, Chap. 2, (4.19)]
or [27, Lemma 1.1], but we recall the proof: If θ:G/G′ → H/H ′ is an iso-
morphism between nontrivial finite quotients, then K x= ��x; y� ∈ G×H x
θ�xG′� = yH ′� is a proper subgroup that surjects onto both factors. Con-
versely, if K ≤ G×H surjects onto both factors, then there are canonical
isomorphisms

G/G′
∼=←− K/�G′ ×H ′� ∼=−→ H/H ′;

where G′ = �x ∈ G x �x; 1� ∈ K� and H ′ = �y ∈ H x �1; y� ∈ K�; the
quotients are nontrivial if K is a proper subgroup.
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Proposition 1. Let G and H be coprime finite groups. Then

P�G×H; s� = P�G; s�P�H; s�: (11)

In particular,

P�G×H;−1� = P�G;−1�P�H;−1�: (12)

Proof. Using the second definition of “coprime,” one sees that an
s-tuple from G × H generates G × H if and only if its projections onto
the factors generate G and H. Equation (11) follows at once for positive
integers s. As in Section 2.2, the equation then holds as an identity in the
ring of finite Dirichlet series, whence (12).

We will give a topological explanation of (12) in Section 8.3; see Propo-
sition 12.

3. TOPOLOGICAL INTERPRETATION OF P�G;−1�

We prove here Bouc’s formula (1) and a relative version of it. Recall that
µ�H;G� can be computed by counting chains of subgroups

H = H0 < H1 < · · · < Hl = G;
where a chain of length l is counted with the sign �−1�l; see Hall [17,
(2.21)]. It follows that the term µ�H;G� |G x H| in (4) is a similar signed
count of chains of cosets

C0 < C1 < · · · < Cl = G;
where C0 = xH for some x ∈ G. (Use the fact that xH ⊆ yK if and only
if H ≤ K and yK = xK.) The sum in (4) is therefore the signed count of
chains of cosets

C0 < C1 < · · · < Cl = G
with C0 arbitrary. Such chains are in 1–1 correspondence with chains

C0 < C1 < · · · < Cl−1

of proper cosets, i.e., with simplices in the simplicial complex 1�C�G��, but
we are counting them with the opposite of the usual sign. This proves (1).
Note that we get the reduced Euler characteristic because we have counted
the empty simplex; this is the case l = 0 above.

The proof of (1) extends with virtually no change to the relative situation
considered in Section 2.2. Starting from (9), one obtains

P�G;N;−1� = −χ̃�C�G;N��; (13)
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where C�G;N� is the poset of proper cosets xH such that HN = G. Thus
Eq. (8) can be written as

χ̃�C�G�� = −χ̃�C�G��χ̃�C�G;N��: (14)

We will give a topological explanation of this in Section 8.1; see Proposi-
tion 10.

4. THE MAIN THEOREM

4.1. Statement of the Theorem

Fix a prime p. For any p-group P ≤ G, let N∗�P� be the subgroup gener-
ated by the elements x ∈ G such that P and Px generate a p-group, where
Px = x−1Px. (See Section 5.1 for other descriptions of N∗�P�.) Roughly
speaking, we will show that we get good divisibility results for P�G;−1�
if there are lots of p-subgroups P with N∗�P� < G. We should therefore
think of these P as the “good” p-subgroups. Note that if P is “bad” (i.e.,
N∗�P� = G), then so is any subgroup of P . The number q in the following
theorem is a measure of how bad a p-subgroup can be.

Main theorem. Let G be a finite group, p a prime, and q the maximal
order of a p-subgroup P such that N∗�P� = G. Then χ̃�C�G��, hence also
P�G;−1�, is divisible by |G|p /q, where �G�p is the p-part of the order of G. If
p = 2 and G is not a 2-group, this can be improved by a factor of 2: χ̃�C�G��
is divisible by 2 |G|2 /q.

Remark. If p is odd, the theorem is vacuous unless p divides |G|. If
p = 2, however, the theorem implies that χ̃�C�G�� is divisible by 2 if G is
not a 2-group, even if |G| is odd.

We will give two proofs of the first assertion of the theorem. The first
proof is slightly more straightforward, but the second one is more easily
extended to give the second assertion, i.e., the improvement when p = 2.

4.2. Proof of the First Assertion; Method 1

The conjugation action of G on itself permutes the cosets xH and hence
induces an action of G on C = C�G�.

Lemma 1. An element y ∈ G stabilizes the coset xH if and only if y and
yx are in the normalizer N�H� and yx ≡ y mod H.

Proof. We have y�xH�y−1 = yxy−1�yHy−1�. This equals xH if and only
if (a) y ∈ N�H� and (b) x−1yxy−1 ∈ H. Note that (b) can also be written
as (c) yxy−1 ∈ H. The lemma now follows at once since (a) and (c) imply
yx ∈ Hy ⊆ N�H�.
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Lemma 2. Let P be a p-subgroup of G. Then any coset fixed by P
meets N∗�P�.

Proof. If xH is fixed by P , then Lemma 1 implies that P and Px nor-
malize H and that PxH = PH. Call this group K. Then K has a Sylow
p-subgroup containing P and a K-conjugate of Px, hence an H-conjugate
of Px. Thus there is an h ∈ H such that �P; Pxh� is a p-group, i.e., xh ∈
N∗�P�.

Proposition 2. Let P be a p-subgroup of G such that N∗�P� < G. Then
the fixed-point set CP is contractible.

Proof. Since P ≤ N∗�P� < G, N∗�P� is an element of CP . Lemma 2
now gives us a conical contraction xH ⊇ xH ∩N∗�P� ⊆ N∗�P� of CP (see
[22, Section 1.5]); we have used here the fact that an intersection of two
cosets, if nonempty, is again a coset.

We can now prove that χ̃�C� is divisible by |G|p /q, where q is the maxi-
mal order of a p-subgroup P such that N∗�P� = G. The method of proof is
spelled out in Brown-Thévenaz [11, Section 2] and Quillen [22, Section 4],
so we will be brief. Let 1 = 1�C�, and consider the action of S on 1, where
S is a Sylow p-subgroup of G. Let

1′ = ⋃
P≤S
|P|>q

1P:

The family of subcomplexes 1P is closed under intersection, and each is
contractible by Proposition 2; hence the union 1′ is contractible. So if
we compute χ�C� = χ�1� by counting simplices, the simplices in 1′ con-
tribute 1. On the other hand, the stabilizer in S of any simplex not in 1′ has
order dividing q, so each S-orbit of such simplices contributes a multiple of
|S| /q = |G|p /q to χ�C�. Hence χ�C� ≡ 1 mod |G|p /q.

4.3. Proof of the First Assertion; Method 2

Although we defined C�G� to be the set of proper left cosets, it is also
the set of proper right cosets, since Hx = xHx. So G acts on C by both
left and right translation. We therefore get a (left) action of G×G on C,
with �y; z� acting by xH 7→ yxHz−1. (The conjugation action that we used
above is obtained by restricting this action to the diagonal.) We have the
following analogue of Lemma 1, whose proof is left to the reader:

Lemma 3. An element �y; z� ∈ G×G stabilizes the coset xH if and only
if yx and z are in the normalizer N�H� and yx ≡ z mod H.
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Given p-subgroups P;Q ≤ G, let N∗�P;Q� be the group generated by
the elements x ∈ G such that �Px;Q� is a p-group. If P = Q, this reduces
to N∗�P�. The analogue of Lemma 2 is:

Lemma 4. Let R be a p-subgroup of G×G. Let P (resp. Q) be the pro-
jection of R on the first (resp. second) factor. Then any coset xH fixed by R
meets N∗�P;Q�.

Proof. If xH is fixed by R, then Lemma 3 implies that Px and Q
normalize H and that PxH = QH. Call this group K. Then K has a
Sylow p-subgroup containing Q and a K-conjugate of Px, hence an H-
conjugate of Px. Thus there is an h ∈ H such that �Pxh;Q� is a p-group,
i.e., xh ∈ N∗�P;Q�.

Recall that q is the maximal order of a p-subgroup of G such that
N∗�P� = G.

Proposition 3. Let S be a Sylow p-subgroup of G, let R be a subgroup
of S × S, and let P;Q be the projections of R on the factors as in Lemma 4.

1. If N∗�P;Q� < G, then CR is contractible.
2. If N∗�P;Q� = G, then |R| ≤ q |S|; hence |S × S x R| ≥ |S| /q.

Proof. If N∗�P;Q� < G, then N∗�P;Q� is an element of CR, and
Lemma 4 gives us a conical contraction of CR, whence 1. To prove 2, note
first that N∗�P;Q� ≤ N∗�P ∩ Q�. So if N∗�P;Q� = G, then |P ∩Q| ≤ q.
Hence

|R| ≤ |P| · |Q| = |P ∩Q| · |PQ| ≤ q |S| :

The proof of the first assertion of the main theorem is now completed
exactly as in Section 4.2, by letting S × S act on 1 and considering

1′ = ⋃
R≤S×S
|R|>q|S|

1R:

4.4. Proof of the Second Assertion

Assume now that p = 2 and that G is not a 2-group. We continue to
denote by S a fixed Sylow 2-subgroup of G and by q the maximal order of
a 2-subgroup P such that N∗�P� = G. Since the elements of C are both left
cosets and right cosets, the inversion permutation x 7→ x−1 of G induces
an automorphism of C. The action of G×G on C therefore extends to an
action of �G×G�o�2, with the generator τ of �2 acting on C by inversion
and on G×G by interchanging the factors. In particular, we have an action
of the 2-group �S × S�o �2 on C.
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The second assertion of the main theorem follows from the next propo-
sition, via the same methods we have been using:

Proposition 4. Let T ≤ �S× S�o�2 be a subgroup such that |T | > q |S|.
Then CT is contractible.

Proof. Let R = T ∩ �S × S� and let P and Q be the projections of R
on the factors. If R = T , we are done by Proposition 3. So we may assume
that T is generated by R and an element w = �y; z�τ that normalizes R.
Now R = Rw has projections Qz; Py , so we must have P = Qz and Q = Py .
Replacing T by its conjugate T �1;y

−1�, we are reduced to the case where
Q = P .

If N∗�P� < G, we get a conical contraction of CT as in the proof of
Proposition 3. (Note that N∗�P�, if proper, is in CT ; in fact, it is a subgroup
containing S and hence is fixed by the whole group �S × S� o �2.) So we
may assume that N∗�P� = G. Then |P| ≤ q, and we have

|T | = 2 |R| ≤ 2 |P|2 ≤ 2q2 ≤ 2q |S| : (15)

On the other hand, |T | ≥ 2q |S| by hypothesis, so the inequalities in (15)
must be equalities. Thus R = P × P and |P| = q = |S|, whence T =
�S × S� o �2. In this case, I claim that CT is the set of proper subgroups
H ≥ S. Since G is not a 2-group, this implies that CT has a smallest element
and is therefore contractible.

To prove the claim, suppose xH is fixed by T . Since xH is fixed by S × S,
we have S; Sx ≤ H. And since xH is fixed by τ, we have xH = Hx−1 =
x−1Hx−1

, so x ∈ N�H� and x2 ∈ H. It follows that x ∈ H, for otherwise
H would have index 2 in �H;x�, contradicting the fact that H contains a
Sylow 2-subgroup of G. Thus xH = H, and the claim follows.

5. REMARKS ON N∗�P�

5.1. Alternate Definitions

In order to apply the main theorem, one needs to be able to compute
N∗�P� for a p-subgroup P ≤ G. Recall that N∗�P� is defined to be the
group generated by the set

C�P� = �x ∈ G x �P; Px� is ap-group�:
We begin by giving two reformulations of this definition, the first of which
explains the notation N∗�P�.

Proposition 5. Let P be a p-subgroup of G.
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(a) N∗�P� is generated by the set

A�P� =⋃
H

N�H�;

where H ranges over the p-subgroups of G containing P .
(b) Fix a Sylow p-subgroup S of G containing P . Then N∗�P� is gen-

erated by the set

B�P� = �x ∈ G x Px ≤ S�:
Proof. Trivially B�P� ⊆ C�P�, so �B�P�� ≤ N∗�P�. For the opposite

inclusion, suppose x ∈ C�P�. Then there is an element y ∈ G such that
�P; Px�y ≤ S. We now have y ∈ B�P� and xy ∈ B�P�, so x ∈ �B�P��. This
proves (b). For (a), we trivially have A�P� ⊆ C�P�, so �A�P�� ≤ N∗�P�. To
prove the opposite inclusion, we use Alperin’s fusion theorem [1]; see also
Barker [4] for a short proof of Alperin’s theorem. Suppose x ∈ C�P�. Then
there is a Sylow subgroup S containing P and Px. According to the fusion
theorem, the conjugation map cx:P → Px can be factored as a composite
of conjugation isomorphisms

P = P0 → P1 → · · · → Pn = Px

with the following property: For each i = 1; : : : ; n, there is a subgroup Hi,
with Pi−1; Pi ≤ Hi ≤ S, such that the map Pi−1 → Pi is conjugation by an
element xi ∈ N�Hi�. Hence x = x0x1 · · ·xn with x0 ∈ N�P� ⊆ A�P�, so
it suffices to show xi ∈ �A�P�� for i = 1; : : : ; n. Let yi = x1 · · ·xi, so that
Pi = Pyi . Assume inductively that x1; : : : ; xi−1 ∈ �A�P��. Since Pyi−1 ≤ Hi,
we then have xi ∈ A�Pyi−1� = A�P�yi−1 ⊆ �A�P��.

5.2. Examples

Example 1. If S is a Sylow p-subgroup of G, then N∗�S� = N�S�.
The next two examples will make use of Burnside’s fusion theorem [12,

Sect. 123], which says the following. Let S be a Sylow subgroup of G; if P
and Q are normal subgroups of S that are conjugate in G, then P and Q
are conjugate in N�S�. We recall the proof: If Q = Px, then S and Sx are
Sylow subgroups of N�Q�, and hence S = Sxy for some y ∈ N�Q�; then
Q = Pxy with xy ∈ N�S�.

Example 2. Suppose |P| = |G|p /p, and let S be a Sylow p-subgroup
containing P . Then N∗�P� = �N�P�;N�S��. We can see this, for instance,
using B�P�. Suppose x is an element of G such that Px ≤ S. Then P and Px

are normal in S, so we can apply Burnside’s theorem to find y ∈ N�S� such
that xy ∈ N�P�; hence x ∈ �N�P�;N�S��.
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Example 3. If S is abelian, then a similar use of Burnside’s theorem
shows that N∗�P� = �N�P�;N�S�� for any P ≤ S. (More generally, this
holds if every subgroup of S is normal.) If, in addition, the normalizer of S
equals its centralizer, then N�S� ≤ N�P� and N∗�P� = N�P�.

Example 4. Suppose that G has a cyclic or generalized quaternion Sy-
low p-subgroup i.e., that G has p-rank 1. If P ≤ G is a subgroup of order p,
then N∗�P� = N�P�. In fact, if �P; Px� is a p-group, then P is its unique
subgroup of order p, so Px = P and x ∈ N�P�.

Example 5. Suppose any two distinct Sylow p-subgroups have trivial
intersection. Then for any P ≤ G of order p, N∗�P� = N�S�, where S is
the unique Sylow subgroup containing P . To see this, note that, for any
x ∈ G, Sx is the unique Sylow subgroup containing Px. So if �P; Px� is a
p-group, we must have Sx = S, i.e., x ∈ N�S�.

Example 6. Suppose p = 2 and the Sylow 2-subgroups are dihedral. If
P ≤ G is cyclic of order at least 4, then N∗�P� = N�P�, by an argument
similar to that of Example 4. Similarly, if P ≤ G is dihedral of order at
least 8 and P ′ is its cyclic subgroup of order 4, then N∗�P� ≤ N�P ′�.

5.3. Connection with Connectivity of p-group Posets

Let pe be a power of p that divides |G|, and let Sp;e�G� be the poset of
p-subgroups of G of order > pe. For example, Sp;0�G� is the poset Sp�G�
of nontrivial p-subgroups introduced by Brown [10] and studied further by
Quillen [22].

Proposition 6. Suppose Sp;e�G� is disconnected. Then N∗�P� < G for
every p-subgroup P such that |P| > pe, i.e., the number q in the main theorem
satisfies q ≤ pe.

Proof. Let S = Sp;e�G�. Given P ∈ S and x ∈ G such that �P; Px� is a
p-group, P and Px are in the same connected component of S via the path
P ≤ �P; Px� ≥ Px. Hence N∗�P�, acting on S by conjugation, stabilizes the
component containing P . Since G is transitive on the maximal elements
of S , it is transitive on components, and we conclude that N∗�P� < G.

Remark. The estimate q ≤ pe is not sharp. In other words, it is not
true in general that q is the smallest power pe such that Sp;e�G� is dis-
connected. There are easy counterexamples involving direct products. John
Shareshian [private communication] has provided a more interesting coun-
terexample, with G = SL�3; 3� and p = 3. Shareshian has shown that q = 3
but that S3;1�G� is connected; the smallest power 3e such that S3;e�G� is
disconnected is 32 in this case.
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In case e = 0, the condition that Sp�G� be disconnected has been exten-
sively studied. Finite groups with this property are said to have a strongly
p-embedded subgroup. There are several characterizations of such groups;
see [2, Sect. 46] or [22, Sect. 5]. And there is also a classification of them;
see [3, (6.2)] for the list. The proofs in [22, Sect. 5] extend easily to the
case of general e and yield:

Proposition 7. Let S = Sp;e�G�, where pe is a proper divisor of |G|.
The following conditions on a subgroup M ≤ G are equivalent:

1. M contains the stabilizer of a component of S .
2. For some Sylow p-subgroup S of G, M contains N�P� for all P ∈ S

such that P ≤ S.
3. pe+1

∣∣ |M|, and M contains N�P� for all P ∈ S such that P ≤M .
4. M contains N�S� for some Sylow p-subgroup S, and for each P ∈ S

with P ≤M , M contains all p-subgroups ≥ P .
5. pe+1

∣∣ |M|, and for x /∈M , pe+1 6 ∣∣ |M ∩Mx|.
Corollary. The stabilizer of the component of S containing a Sylow

p-subgroup S is generated by the groups N�P� with P ∈ S , P ≤ S.

6. SPECIAL CASES AND EXAMPLES

6.1. Special Cases of the Theorem

Fix a prime p dividing |G|. Assume, for simplicity, that Op�G� = 1, i.e.,
that G has no nontrivial normal p-subgroups. (If this fails, we can replace
G by G/Op�G�; see Section 2.3, Corollary 2.) Let S be a Sylow p-subgroup
of G.

1. P�G;−1� is divisible by p; for p = 2, P�G;−1� is divisible by 4.
This follows from the fact that the number q in the main theorem satisfies

q < |S| (Section 5.2, Example 1).
2. If N∗�P� < G for every subgroup P of order p, then P�G;−1� is

divisible by |G|p (or 2 |G|2 if p = 2). This holds, in particular, if S is cyclic
or generalized quaternion, or if S is abelian and its normalizer equals its
centralizer, or if G has a strongly p-embedded subgroup.

Here we have q = 1, since the hypothesis implies that N∗�P� < G for
every nontrivial p-subgroup P . This explains the first sentence. For the sec-
ond sentence, see Section 5.2 (Examples 3 and 4) and Section 5.3 (Propo-
sition 6). Note that the case of a strongly p-embedded subgroup includes
the case where the Sylow subgroups have trivial intersection; here we have
an alternate proof that N∗�P� < G via Example 5 of Section 5.2.
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3. If p = 2 and S is dihedral, then P�G;−1� is divisible by |G|2 /2.
If N∗�V � < G for every subgroup V isomorphic to �2 × �2, then P�G;−1�
is divisible by |G|2. This holds, in particular, if S is dihedral of order 8 and
is self-normalizing.

This follows from Section 5.2, Example 6. For the case where |S| = 8,
see also Example 2.

6.2. Example: G = A7

The order of A7 is 23 · 32 · 5 · 7, so statement 1 in Section 6.1 gives
divisibility of P�A7;−1� by 22 · 3 · 5 · 7. One can check that the Sylow 2-
subgroup is dihedral of order 8 and is self-normalizing, so statement 3
gives us another factor of 2, i.e., P�A7;−1� is divisible by 23 · 3 · 5 · 7 =∣∣A7

∣∣ /3. Finally, one can check that N∗�P� = A7 if P is the group of order 3
generated by a 3-cycle. The main theorem therefore does not allow us to
do any better at the prime 3. Moreover, direct computation shows that
P�A7;−1�/ ∣∣A7

∣∣ = −1640/3, so one cannot do better at the prime 3.

Remark. Further computations of P�G;−1�/ |G| for simple groups G
can be found in Table I. These computations were done with the aid of
the computer algebra system GAP [14], using programs kindly provided by
S. Bouc.

6.3. Example: G = PSL�2; l�
Let G be the simple group PSL�2; l�, where l is a prime ≥ 5. The

subgroup structure of G is well known; see, for instance, Burnside [12,
Chap. XX], Dickson [13, Chap. XII], or Huppert [18, Sect. II.8]. This makes
it easy to apply the results of Section 6.1.

We have |G| = 2lmn, where m = �l − 1�/2 and n = �l + 1�/2 = m + 1.
The odd Sylow subgroups of G are all cyclic, so P�G;−1� is divisible by |G|p
for each odd prime p (Section 6.1, statement 2). The only possible difficulty,
then, is at the prime 2, where the Sylow subgroup S is dihedral. Its order
is the largest power 2a such that l ≡ ±1 mod 2a. Equivalently, its order is
2b, where b is the 2-part of m or n, whichever is even.

If b = 2, then statement 1 in Section 6.1 gives divisibility of P�G;−1�
by 2b = 4, hence by |G|. If b = 4, then one checks from the list of subgroups
of G that S is self-normalizing, so we can apply statement 3 and we again
get divisibility of P�G;−1� by |G|. On the other hand, if b ≥ 8, i.e., if
l ≡ ±1 mod 16, then the main theorem only gives divisibility of P�G;−1�
by |G| /2. Indeed, if V ∼= �2 × �2, then N∗�V � contains N�V �, which is a
maximal subgroup isomorphic to S4, as well as a dihedral group of order at
least 16; hence N∗�V � = G. Thus the main theorem only gives divisibility of
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TABLE I
P�G;−1� for Some Simple Groups G

G |G| P�G;−1�/ |G|
A5 22 · 3 · 5 −26
A6 23 · 32 · 5 265
A7 23 · 32 · 5 · 7 −1640/3
A8 26 · 32 · 5 · 7 30401/22 · 3
A9 26 · 34 · 5 · 7 −760573/22 · 32

PSL�2; 7� 23 · 3 · 7 −17
PSL�2; 8� 23 · 32 · 7 −246
PSL�2; 11� 22 · 3 · 5 · 11 202
PSL�3; 3� 24 · 33 · 13 −3515/2 · 3
PSL�3; 4� 26 · 32 · 5 · 7 −81017/2
PSL�3; 5� 25 · 3 · 53 · 31 −16197/22 · 5
M11 24 · 32 · 5 · 11 −1756
M12 26 · 33 · 5 · 11 753371/23 · 3
M22 27 · 32 · 5 · 7 · 11 1474753/23

M23 27 · 32 · 5 · 7 · 11 · 23 2617621/3
Sz�8� 26 · 5 · 7 · 13 −17838
J1 23 · 3 · 5 · 7 · 11 · 19 5540
J2 27 · 33 · 52 · 7 40704809/23 · 3 · 5

P�G;−1� by |G| /2 in this case. Nevertheless, explicit computation, based
on the calculation of P�G; s� by Hall [17], shows that P�G;−1� is divisible
by |G|. We will give a topological explanation of this in Section 7.

7. THE BIHOLOMORPH

Our proof of the main theorem made use of the action of �G×G�o �2
on C�G�. We discuss here a bigger group that acts, namely the biholomorph
of G, which can sometimes be used to improve the divisibility result in the
main theorem.

Let S�G� be the group of permutations of the underlying set of G.
Let L;R ≤ S�G� be the groups of left and right translations. They are
isomorphic copies of G that commute with one another and are normal-
ized by Aut�G�. The product LRAut�G� ≤ S�G� is called the holomorph
of G, and denoted Hol�G�. It can also be described as the normalizer
in S�G� of L (or of R), and it is isomorphic to G o Aut�G�; see Burn-
side [12, Sect. 64]. Yet another description is that Hol�G� consists of all
h ∈ S�G� that preserve the ternary relation �x; y; z� 7→ xy−1z, i.e., that
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satisfy h�xy−1z� = h�x�h�y�−1h�z�; see Mac Lane [20, Sect. IV.1, Exer-
cise 1]. If G is centerless, then we can identify LR with G × G, so that
Hol�G� = �G ×G�Aut�G�; the intersection �G ×G� ∩ Aut�G� is G, em-
bedded in G×G as the diagonal subgroup and in Aut�G� as the group of
inner automorphisms.

The biholomorph Bi�G� is obtained from Hol�G� by adjoining the inver-
sion permutation τ:x 7→ x−1, which normalizes Hol�G�. If G is nonabelian,
then Bi�G� = Hol�G�o �2. If G is centerless, then

Bi�G� = �G×G�Aut�G��τ� ∼= �GoAut�G��o �2:

All elements of Bi�G� map cosets to cosets, hence we have an action of
Bi�G� on C�G�. In principle, then, we should be able to improve the main
theorem by using this action, provided we can prove the contractibility of
enough fixed-point sets.

To illustrate this, we continue the discussion begun in Section 6.3 of
the group G = PSL�2; l�, l ≡ ±1 mod 16. We have Aut�G� = PGL�2; l�,
which contains G with index 2. Thus Bi�G� = �G×G�Aut�G��τ� contains
�G × G� o �2 with index 2. If S is a Sylow 2-subgroup of G and T > S
is a Sylow 2-subgroup of PGL�2; l�, then Bi�G� has a Sylow 2-subgroup
U = �S × S�T �τ�. Consider the action of U on C�G�.

Using the methods of Section 4.4, one checks that the “bad” subgroups
of U (those whose fixed-point sets in C�G� are not known to be con-
tractible) are no bigger than the bad subgroups of �S× S�o�2. Their index
in U , however, is twice as big as the corresponding index in �S× S�o�2, so
we obtain an improvement of the main theorem by a factor of 2. Roughly
speaking, then, the outer automorphism of order 2 explains why P�G;−1�
is divisible by |G|, and not just |G| /2. Further details are left to the inter-
ested reader.

8. THE HOMOTOPY TYPE OF THE COSET POSET

We assume in this section that the reader is familiar with standard termi-
nology and results from the topological theory of posets, as in Quillen [22,
Sect. 1] or Björner [5, Sects. 9 and 10].

8.1. Quotients

The main result of this subsection is Proposition 10, which arose from
a question asked by S. Bouc. We begin with two easy special cases, whose
proofs are more elementary than the proof in the general case. Let G be a
finite group, N a normal subgroup, and G the quotient group G/N .
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Proposition 8. If N is contained in the Frattini subgroup of G, then the
quotient map q:G�G induces a homotopy equivalence C�G� → C�G�.

Proof. The hypothesis implies that q�C� is a proper coset in G for any
C ∈ C�G�, so we do indeed get a map C�G� → C�G�. It is a homotopy
equivalence, with homotopy inverse given by q−1, since C ⊆ q−1�q�C�� for
C ∈ C�G� and D = q�q−1�D�� for D ∈ C�G�.

Note that, for general N , the same proof gives a homotopy equivalence
C0 → C�G�, where C0 is the set of cosets in G such that q�C� 6= G. So one
way to analyze C�G� is to start with C0, which is C�G� up to homotopy,
and then examine the effect of adjoining the proper cosets C such that
q�C� = G. Here is a case where that analysis is particularly easy:

Proposition 9. Suppose N is a minimal normal subgroup and is abelian.
Let c be the number of complements of N in G. Then 1�C�G�� is homotopy
equivalent to the join of 1�C�G�� with a discrete set of c |N| points.

Proof. If C = xH is a proper coset such that q�C� = G, then H is a
complement of N , as we noted in Section 2.3, proof of Corollary 3. So the
effect of adjoining C to C0 is to cone off an isomorphic copy of C�G�. Thus
we get 1�C� from 1�C0� by coning off c |N| copies of 1�C�G��. Moreover,
the inclusion of each of these copies into 1�C0� is a homotopy equivalence,
since q maps the set of strict predecessors of xH isomorphically onto C�G�.
Up to homotopy, then, we are starting with 1�C�G�� and coning it off c |N|
times, i.e., we are joining 1�C�G�� to a set of c |N| points.

Note that we might have c = 0. This is the case if and only if N is con-
tained in the Frattini subgroup of G, in which case we are in the situation
of Proposition 8.

Finally, we return to an arbitrary quotient and prove a general result
that includes the previous two as special cases. Recall from Section 3 that
C�G;N� denotes the set of proper cosets C such that q�C� = G, i.e.,
C�G;N� is the set-theoretic complement of C0 in C�G�. Recall also that
the join X ∗ Y of two posets X;Y is the disjoint union of X and Y ,
with the ordering that induces the given orderings on X and Y and sat-
isfies x < y for all x ∈ X and y ∈ Y . There is an order-preserving map
j: C�G� → C�G� ∗ C�G;N� such that j is the identity on C�G;N� and j
maps C0 to C�G� via q.

Proposition 10. The map j: C�G� → C�G� ∗ C�G;N� is a homotopy
equivalence.

Proof. We use Quillen’s “Theorem A” (see [22, Theorem 1.6, 5, The-
orem 10.5]). Thus we must show, for each D ∈ C�G� ∗ C�G;N�, that the
fiber F x= �C ∈ C�G� x j�C� ≤ D� is a contractible subposet of C�G�.
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This is trivial if D ∈ C�G�, since F then has a largest element q−1�D�;
so we may assume D ∈ C�G;N�, and, in fact, we may assume that D is a
subgroup H such that q�H� = G.

Then F = C0 ∪ C1, where C1 is the set of cosets contained in H. The
intersection C′0 = C0 ∩ C1 consists of the cosets in H that do not surject
onto G. The proof that q induces a homotopy equivalence C0 → C�G�
applies equally well to the surjection H �G, so q also induces a homo-
topy equivalence C′0 → C�G�. Thus the inclusion C′0 ¨ C0 is a homo-
topy equivalence. On the other hand, C1 has a largest element and so
is contractible. Passing now to associated simplicial complexes, one checks
that 1�F � = 1�C0� ∪1�C′0� 1�C1�, with 1�C′0� a strong deformation retract
of 1�C0�. Thus 1�F � admits a strong deformation retraction onto 1�C1�,
hence F is indeed contractible.

Remark. Proposition 10 provides a topological explanation for Eq. (14).

8.2. Solvable Groups

Using Proposition 9 and an obvious induction argument, we obtain:

Proposition 11. Let G be a finite solvable group and let

1 = N0 < N1 < · · · < Nk = G
be a chief series. Then C�G� has the homotopy type of a bouquet of �d − 1�-
spheres, where d is the number of indices i = 1; : : : ; k such that Ni/Ni−1
has a complement in G/Ni−1. The number of spheres is �−1�d−1χ̃�C�G�� =
�−1�dP�G;−1�.

The number d can also be described as the number of factors in the
Euler product expansion of P�G; s�; see Section 2.3.

It would be interesting to understand the nonzero homology group of
C�G� as a representation of the holomorph or biholomorph of G. Consider,
for example, the simplest case, where G is an elementary abelian p-group
for some prime p, i.e., G is the additive group of a vector space V = �rp.
Then the holomorph is the same as the biholomorph and is the affine group
A = V oGL�V �. The coset poset consists of proper affine subspaces of V ,
and it is homotopy equivalent to a bouquet of �pr − 1��pr−1 − 1� · · · �p− 1�
spheres of dimension r − 1. The resulting homology representation was
studied by Solomon [24, 25] and Lusztig [19]; its restriction to GL�V � is
the Gelfand–Graev representation.

8.3. Further Results

We give here a few easy observations about the homotopy type of the
coset poset.
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First we consider the direct product of two coprime groups (see Sec-
tion 2.4). The analysis of the coset poset for such a product follows closely
Quillen’s study of products in [22, Proposition 2.6], so we will be brief. We
call a coset C ⊆ G×H saturating if it surjects onto both factors.

Lemma 5. For any groups G;H, let C0�G × H� be the set of non-
saturating cosets in G ×H. Then C0�G ×H� is homotopy equivalent to the
join C�G� ∗ C�H�.

Proof. For any group G, let C+�G� be the set of all cosets in G, i.e.,
C+�G� = C�G� ∪ �G�. Let C00�G×H� be the set of proper cosets of the
form C1 ×C2 with C1 ∈ C+�G� and C2 ∈ C+�H�. Then C00�G×H� can be
identified with C+�G� × C+�H� − ��G;H��, whose geometric realization
is homeomorphic to that of C�G� ∗ C�H�; see [22, Proposition 1.9]. On
the other hand, we can deform C0�G × H� onto C00�G × H� via C ⊆
p�C� × q�C� for C ∈ C0�G�, where p:G ×H → G and q:G ×H → H
are the projections.

If G and H are coprime, there are no saturating proper cosets, so
C0�G×H� = C�G×H�. Consequently:

Proposition 12. If G and H are coprime, then C�G ×H� is homotopy
equivalent to C�G� ∗ C�H�. In particular,

χ̃�C�G×H�� = −χ̃�C�G��χ̃�C�H��: (16)

This provides a topological explanation for Eq. (12).
One can still get interesting results about C�G × H� if G and H are

not coprime, by using Lemma 5 as a starting point; one must then ex-
amine the effect of adjoining the saturating cosets to C0�G × H�. If H
is simple, for example, every saturating proper subgroup K ≤ G × H is
the graph of a surjection G� H. In particular, every such K is maxi-
mal and isomorphic to G, so the adjunction of a coset zK simply cones
off a copy of C�G�. Moreover, this copy of C�G�, consisting of the strict
predecessors of zK, is null-homotopic in C0�G × H�; in fact, it maps to
the contractible poset C�G� × C+�H� under the homotopy equivalence
C0�G×H� → C00�G×H� constructed in the proof of Lemma 5. Thus
the adjunction is equivalent, up to homotopy, to wedging on a copy of the
suspension of C�G�. This proves:

Proposition 13. If H is simple, then C�G×H� is homotopy equivalent
to the wedge of C�G� ∗ C�H� and m |H| copies of the suspension of C�G�,
where m is the number of surjections G�H.

Finally, we consider the connectedness of C�G�.
Proposition 14. C�G� is connected unless G is cyclic of prime power

order.
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Proof. If G is not cyclic, then we can connect any coset xH to the single-
ton coset �1� by the path xH ⊇ �x� ⊆ �x� ⊇ �1�, so C�G� is connected. If
G is cyclic but not of prime power order, a variant of this argument, which
is left to the reader, again shows that C�G� is connected. Alternatively,
we can appeal to Proposition 11 or Proposition 12, each of which implies
that C�G� has the homotopy type of a bouquet of �d− 1�-spheres, where d
is the number of distinct prime divisors of |G|; so C�G� is connected if
d ≥ 2.

8.4. Questions

Aside from the results in the previous subsections, I know practically
nothing about the homotopy type of C�G�. For example, one can ask the
following, in the spirit of Bouc’s question in Section 2.3:

Question 2. Can one characterize finite solvable groups in terms of the
combinatorial topology of the coset poset?

What I have in mind here is an analogue of Shareshian’s theorem [23]
that a finite group is solvable if and only if its subgroup lattice is nonpure
shellable. For example, one might hope for some sort of converse to Propo-
sition 11. But it is not clear what form such a converse might take. Indeed,
Shareshian [private communication] has shown that the coset poset of the
simple group A5 is homotopy equivalent to a bouquet of 2-spheres. His
proof has led him to ask whether there is a connection, at least for simple
groups, between the homotopy properties of C�G� and those of the sub-
group lattice of G. At present there are not enough examples to enable
one to formulate the question more precisely.

Here are two questions that are even more basic:

Question 3. For which finite groups G is C�G� simply-connected?

Question 4. Are there any finite groups G for which C�G� is con-
tractible?

Finally, I remark that it would be interesting to investigate the p-local
analogue of C�G�, consisting of cosets xP with P a p-group.

9. P�G; s� DEPENDS ONLY ON THE COSET POSET

In this section we show how P�G; s�, not just P�G;−1�, can be computed
from the coset poset C�G�. To this end, we define an analogue of P�G; s�
for an arbitrary finite lattice. Taking the lattice to be the coset lattice of G
(defined below) and making a change of variable, we recover P�G; s�.
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Let L̂ be a finite lattice with smallest element 0̂ and largest element 1̂.
Let L be the proper part of L̂, i.e., L = L̂ − �0̂; 1̂�. Assume L 6= Z, and
let A ⊆ L be its set of minimal elements, i.e., the set of atoms of L̂. For
any strictly positive integer s, we say that an s-tuple of atoms �x1; : : : ; xs� is
generating if x1 ∨ · · · ∨ xs = 1̂, where ∨ denotes the join (least upper bound).
Equivalently, �x1; : : : ; xs� is generating if �x1; : : : ; xs� has no upper bound
in L. We can now define functions φ�L; s� and P�L; s� by asking how
many generating s-tuples there are or what is the probability that a random
s-tuple is generating. Arguing as in the derivation of Hall’s formula (2), we
obtain

φ�L; s� = ∑
x∈L̂

µ�x; 1̂� |x|s ; (17)

where |x| is the number of atoms ≤ x and µ is the Möbius function of L̂.
(Start with the equation �y�s = ∑

x≤y α�x�, where α�x� is the number of
s-tuples of atoms whose join is x.) We can omit the term corresponding to
x = 0̂ in (17), so that the right-hand side becomes a Dirichlet polynomial.
Notice that �1̂� is the total number of atoms, so we can divide by �1̂�s to get
a probability. Setting �1̂ x x� = �1̂�/ |x|, we obtain

P�L; s� = ∑
x>0̂

µ�x; 1̂�
�1̂ x x�s

: (18)

As before, the right-hand side can be used to define the left-hand side for
an arbitrary complex number s. In particular, we can set s = 0 and obtain
an integer

P�L; 0� = ∑
x>0̂

µ�x; 1̂� = −µ�0̂; 1̂� = −χ̃�L�: (19)

To recover P�G; s�, let L̂ be the coset lattice of G, consisting of all cosets
(including G itself) and the empty set. Thus the proper part L is the coset
poset C�G�. The atoms are the one-element cosets and hence can be iden-
tified with the elements of G. The meet (greatest lower bound) in L̂ is given
by set-theoretic intersection. The join of two cosets x1H1; x2H2 is given by

x1H1 ∨ x2H2 = x1H = x2H;

where H = �x−1
1 x2;H1;H2�, and similarly for more than two cosets. Apply-

ing this to one-element cosets (identified with group elements), we conclude
that an �s+ 1�-tuple �x0; x1; : : : ; xs� is generating in the coset lattice if and
only if the s-tuple �x−1

0 x1; x
−1
0 x2; : : : ; x

−1
0 xs� generates the group G. Hence

φ�C�G�; s + 1� = |G|φ�G; s�
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and

P�C�G�; s + 1� = P�G; s�:

The formulas (17), (18), and (19) in this case reduce to results about
φ�G; s� and P�G; s� that we have already seen in Sections 2 and 3.
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