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Abstract. We study the connectivity of the coset poset and the subgroup poset of a group,
focusing in particular on simple connectivity. The coset poset was recently introduced by K. S.
Brown in connection with the probabilistic zeta function of a group. We take Brown’s study of
the homotopy type of the coset poset further, and in particular generalize his results on direct
products and classify direct products with simply connected coset posets.

The homotopy type of the subgroup poset LðGÞ has been examined previously by Kratzer,
Thévenaz, and Shareshian. We generalize some results of Kratzer and Thévenaz, and deter-
mine p1ðLðGÞÞ in nearly all cases.

1 Introduction

One may apply topological concepts to any poset (partially ordered set) P by means
of the simplicial complex DðPÞ consisting of all finite chains in P. The basic topo-
logical theory of posets is described in [2] and in [22], and the topology of posets
arising from groups has been studied extensively (see [1], [6], [16], [21], [26], [31]). We
will often use P to denote both DðPÞ and its geometric realization jDðPÞj ¼ jPj.

The coset poset CðGÞ of a finite group G (the poset of all left cosets of all proper
subgroups of G, ordered by inclusion) was introduced by Brown [6] in connection
with the probabilistic zeta function PðG; sÞ. (The choice of left cosets over right cosets
is irrelevant since each left coset is a right coset (xH ¼ ðxHx�1Þx) and vice-versa.)
Brown showed that PðG;�1Þ ¼ �~wwðDðCðGÞÞÞ, the reduced Euler characteristic of
CðGÞ, and used this relationship to prove certain divisibility results about PðG;�1Þ.
The connection between PðG;�1Þ and ~wwðCðGÞÞ motivates the study of the homotopy
type of CðGÞ. In this paper we study the connectivity of CðGÞ and further Brown’s
study of the homotopy type of CðGÞ in terms of normal subgroups and quotients.
Brown has asked, in [6, Question 3], ‘For which finite groups G is CðGÞ simply con-
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nected?’ One of the main goals of this paper is to study this question (for both finite
and infinite groups). Our main results on the problem are as follows.

(1) If G is not a 2-generated group (i.e. G is not generated by two elements), then
CðGÞ is simply connected (Corollary 2.5).

(2) If G ¼ H � K with H, K non-trivial, then p1ðCðGÞÞ0 1 if and only if both H

and K are cyclic of prime-power order (Theorem 3.6).

(3) If G ¼ HzK with H, K non-trivial and if K is not finite cyclic or H is not K-
cyclic (we say that H is K-cyclic if there is an element h A H which is not con-
tained in any proper K-invariant subgroup of H), then CðGÞ is simply connected
(Proposition 3.5).

(4) If the subgroup poset LðGÞ is disconnected, or if G has a maximal subgroup iso-
morphic to Z=pn (with p prime), then CðGÞ is not simply connected (Propositions
3.11 and 6.2).

(5) The simple groups A5, PSL2ðF7Þ and A6 have simply connected coset posets
(Propositions 4.9, 4.14 and 4.15).

Further results appear in Propositions 3.5, 3.8, and 3.10.
Brown gave the following description of the homotopy type of CðGÞ for any finite

solvable group G in [6, Proposition 11]. (Recall that a chief series in a group G is a
maximal chain in the lattice of normal subgroups of G.)

Theorem 1.1 (Brown). Let G be a finite solvable group, let f1g ¼ N0 p � � �pNk ¼ G

be a chief series for G and let ci be the number of complements of Ni=Ni�1 in

G=Ni�1 ð1c ic kÞ. Then CðGÞ is homotopy-equivalent to a bouquet of spheres, each
of dimension d � 1, where d is the number of indices i such that ci 0 0. The number of

spheres is given by ����
Yk
i¼1

ci
jNij
jNi�1j

� 1

� �����:
The number of spheres may be calculated by induction, using [6, Corollary 3]. We
remark that when G is solvable, the number d of complemented factors in a chief
series for G is bounded below by jpðGÞj, the number of distinct primes dividing oðGÞ.
Indeed, any solvable group G may be built up by a series of extensions with kernel
of prime-power order. In this process, each time we add a new prime the kernel P
and quotient Q of the extension are relatively prime, and hence H 2ðQ;PÞ ¼ 0 by [5,
Chapter 3, Proposition 10.1] so that the extension splits. In light of the above theo-
rem, this shows that if G is a finite solvable group, CðGÞ is k-connected whenever
jpðGÞjd k þ 2.

The paper is structured as follows. In Section 2, we introduce the notion of an
atomized poset, which generalizes the coset poset of a group and the subgroup poset
of a torsion group. The main theorem of this section gives conditions under which
such posets are k-connected. The main results on the simple connectivity of CðGÞ
appear in Section 3, along with generalizations of some results from [6]. In Section 4,
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we prove that the first three non-abelian simple groups have simply connected coset
posets.

In Section 5 we discuss the connectivity of LðGÞ, the subgroup poset. This is
the poset of all proper non-trivial subgroups of G, ordered by inclusion; it has been
studied previously in [16], [18], [31]. Using the homotopy complementation formula
of Björner and Walker [3], we generalize results from [16] and determine p1ðLðGÞÞ for
nearly all finite groups.

The final section of the paper discusses a relationship between CðGÞ and LðGÞ for
certain groups G. Kratzer and Thévenaz [16] have proven an analogue of Theorem
1.1 for the subgroup poset (Theorem 5.1). The striking similarity between these two
results motivates our discussion.

We now make some remarks on notation and conventions. The k-skeleton of a
simplicial complex D is denoted by Dck. In a poset P, a chain p0 < p1 < � � � < pn is
said to have length n. A wedge-sum of empty spaces, or a wedge-sum over an empty
index set, is defined to be a point. For any space X , we set X �q ¼ X , where � de-
notes the join. We say that X is (�1)-connected if and only if X 0q, and any space
is (�2)-connected. In addition, X is called 0-connected if and only if it has exactly
one path component, and X is k-connected (for kd 1) if and only if it is 0-connected
and pnðX Þ ¼ 1 for 1c nc k (so that the empty space is k-connected only for
k ¼ �2). Finally, HnðDÞ will denote the (simplicial) homology of D with coe‰cients
in Z, and ~HHnðDÞ will denote the reduced simplicial homology of D (again over Z).

2 Connectivity of atomized posets

In this section we introduce atomized posets. For any group G, CðGÞ is atomized, and
if G is a torsion group then LðGÞ is atomized as well. The main result of this section is
Theorem 2.3, which gives conditions under which an atomized poset is k-connected.

Definition 2.1. We call a poset P atomized if every element of P lies above some mini-
mal element and every finite set of minimal elements with an upper bound has a join.

We call the minimal elements of P atoms, and denote the set of atoms of P by
AðPÞ. If SHAðPÞ is finite, we say that S generates its join (or that S generates P if
PdS is empty), and we write hSi for the object generated by S.

The proper part of any finite length lattice is atomized, but the converse is not true.
(Consider, for example, the five-element poset f0̂0 < a; b < c; dg.) The subgroup poset
of Z has no minimal elements and so it is not atomized, and in fact if a group G has
an element of infinite order then LðGÞ is not atomized.

In the coset poset of any group or the subgroup poset of any torsion group,
the definition of generation coincides with the standard group-theoretic definitions,
where the coset generated by elements x1; x2; . . . A G is x1hx�1

1 x2; x
�1
1 x3; . . .i.

The following lemma shows that, up to homotopy, we can replace any atomized
poset P with a smaller simplicial complex MðPÞ. This complex has many fewer ver-
tices but much higher dimension; it will play an important role in our analysis of the
coset poset.
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Lemma 2.2. Let P be an atomized poset and let MðPÞ denote the simplicial complex

with vertex set AðPÞ and with a simplex for each finite set SHAðPÞ with hSi0P.
Then DðPÞFMðPÞ.

Proof. We use the Nerve Theorem [2, (10.6)]. Consider the cones Pdx with x A AðPÞ.
Since P is atomized, 6

x AAðPÞ DðPdxÞ ¼ DðPÞ. If SHAðPÞ is finite and hSi0P,

then 7
s AS Pds ¼ PdhSi F �. So each finite intersection is either empty or contrac-

tible, and the Nerve Theorem tells us that DðPÞFMðPÞ, as MðPÞ is the nerve of this
cover. r

We call MðPÞ the minimal cover of P. When P ¼ CðGÞ for some group G, we
denote MðCðGÞÞ by MðGÞ. This complex has vertex set G and a simplex for each
finite subset of G contained in a proper coset.

Theorem 2.3. Let P be an atomized poset such that no k atoms generate P. Then P is

ðk � 2Þ-connected. In particular, for any group G,

(a) if G is not k-generated, then CðGÞ is ðk � 1Þ-connected;

(b) if G is a torsion group in which any k elements of prime order generate a proper

subgroup, then LðGÞ is ðk � 2Þ-connected.

Proof. By Lemma 2.2, it su‰ces to check that MðPÞ is ðk � 2Þ-connected. Since
no k atoms generate P, any k atoms form a simplex in MðPÞ. So MðPÞck�1 is the
ðk � 1Þ-skeleton of the full simplex with vertex set AðPÞ, and thus MðPÞ is ðk � 2Þ-
connected. (If AðPÞ is infinite the ‘full simplex’ on the set AðPÞ is the simplicial
complex whose simplices are all the finite subsets of AðPÞ.) r

Remark 2.4. Brown has asked in [6] whether there exist (finite) groups G with CðGÞ
contractible. Theorem 2.3 shows that if G is not finitely generated, then CðGÞ is
contractible.

Theorem 2.3 specializes to the following result.

Corollary 2.5. If G is not 2-generated (respectively P is an atomized poset not gen-

erated by three atoms), then CðGÞ (respectively PÞ is simply connected.

Corollary 2.5 does not characterize finite groups with simply connected coset
posets. In fact, A5 a¤ords a counter-example (see Proposition 4.9). Also, one can
prove Corollary 2.5 without the use of MðPÞ. Any loop in jDðPÞj is easily seen to be
homotopic to an edge cycle

ða1 c ha1; a2id a2 c ha2; a3id � � �d an c han; a1id a1Þ;

where each ai is an atom. One can successively shorten this cycle by replacing a
segment ðai c � � �d aiþ2Þ by ðai c hai; aiþ2id aiþ2Þ, since both lie in the cone under
hai; aiþ1; aiþ2i and hence are homotopic. Details are left to the reader.
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3 Connectivity of the coset poset

This section contains the main results on the connectivity of CðGÞ. We begin by
considering the coset poset of a (non-simple) group G in terms of an extension
1 ! N ! G ! G=N ! 1.

Definition 3.1. For any semi-direct product G ¼ HzK (with H and K arbitrary
groups), let f : G ! H be the function f ðh; kÞ ¼ h, and let p : G ! K be the map
pðh; kÞ ¼ k. We call a coset gT A CðGÞ saturating if pðTÞ ¼ K and the only K-
invariant subgroup of H that contains f ðTÞ is H itself (a subgroup I cH is called
K-invariant if KcNGðIÞ).

The direct product P�Q of posets P and Q is the Cartesian product of P and
Q, together with the ordering defined by ðp; qÞc ðp 0; q 0Þ if and only if pc p 0 and
qc q 0. The join P �Q of P and Q is the disjoint union of P and Q, together with
the ordering that induces the original orderings on P and Q and satisfies p < q for
all p A P, q A Q. There are canonical homeomorphisms jP�QjG jPj � jQj and
jP �QjG jPj � jQj, so long as one takes the associated compactly generated topology
on the right-hand side when P and Q are not locally countable (see [33]).

Lemma 3.2. Let G ¼ HzK , with H and K non-trivial groups. Let C0ðGÞ be the poset
of all non-saturating cosets and let CKðHÞ denote the poset of all cosets of proper K-
invariant subgroups of H. Then C0ðGÞ is homotopy-equivalent to CKðHÞ � CðKÞ.

Proof. Let CþðKÞ denote the set of all cosets in K (including K itself ) and let
Cþ
K ðHÞ ¼ CKðHÞU fHg. If C00ðHzKÞ denotes the set of all proper cosets of the

form ðx; yÞðI z JÞ, with I a K-invariant subgroup of H and JcK , then the map

ðx; yÞðI z JÞ 7! ðxI ; yJÞ

is easily checked to be a well-defined poset isomorphism

C00ðHzKÞ !G Cþ
K ðHÞ � CþðKÞ � fðH;KÞg:

The latter is homeomorphic to CKðHÞ � CðKÞ (see [21, Proposition 1.9] or the proof
of [16, Proposition 2.5]). Finally, we have an increasing poset map F from
C0ðHzKÞ onto C00ðHzKÞ given by

Fððx; yÞTÞ ¼ ðx; yÞð f̂f ðTÞz pðTÞÞ

where f̂f ðTÞ is the smallest K-invariant subgroup containing f ðTÞ (i.e. the intersec-
tion of all invariant subgroups containing f ðTÞ). This map is a homotopy equiva-
lence by [2, Corollary 10.12]. r

In the case where the action of K on H is trivial, f becomes the quotient map
H � K !! H and all subgroups of H are K-invariant. In this case C0ðH � KÞ is the
poset of all cosets which do not surject onto both factors, and we obtain the following
result from [6, Section 8].
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Proposition 3.3 (Brown). For any finite groups H and K , C0ðH � KÞFCðHÞ � CðKÞ.
If H and K have no non-trivial isomorphic quotients then CðH � KÞFCðHÞ � CðKÞ.

The condition on quotients implies that there are no saturating subgroups (and
hence no saturating cosets); see [6, Section 2.4].

We will now use Lemma 3.2 to show that most semi-direct products have simply
connected coset posets. First we need the following simple lemma, which appears (for
finite groups) as [6, Proposition 14]. The result extends, with the same proof, to infi-
nite groups (the argument for Z requires a simple modification).

Lemma 3.4. Let G be a non-trivial group. Then CðGÞ is connected unless G is cyclic of

prime-power order.

Given a semi-direct product G ¼ HzK , recall that H is K-cyclic if H has an
element h that is not contained in any proper K-invariant subgroup of H.

Proposition 3.5. Let G ¼ HzK with H and K non-trivial groups. If K is not finite

cyclic, or if H is not K-cyclic, then CðGÞ is simply connected. Furthermore, if G is a

torsion group and K is not cyclic of prime-power order, then CðGÞ is simply connected.

Proof. By Lemma 3.2, we have C0ðGÞFCKðHÞ � CðKÞ. We claim that in each of the
above cases, C0ðGÞ is simply connected. The join of a connected space and a non-
empty space is always simply connected (see [19]), and both CKðHÞ and CðKÞ are
always non-empty (since f1g A CKðHÞ) and so it su‰ces to show that one or the other
is connected. If H is not K-cyclic, then for every element h A H there is a K-invariant
subgroup Ih < H containing h, and thus we have a path hT d fhgc Ih d f1g joining
any coset hT A CKðHÞ to the trivial subgroup. In the other cases, Lemma 3.4 shows
that CðKÞ is connected. Thus p1ðC0ðGÞÞ ¼ 1 in each case.

We now show that every loop in CðGÞ is null-homotopic. As mentioned after
Corollary 2.5 it su‰ces to consider edge cycles of the form

C ¼ ðfx1g; x1T1; fx2g; x2T2; . . . ; fxng; xnTn; fx1gÞ;

where each Ti is cyclic. If H is not K-cyclic, then every cyclic subgroup of G lies in
C0ðGÞ and hence C lies in jC0ðGÞj and must be null-homotopic.

Next assume that K is not a finite cyclic group. If none of the vertices of C are
saturating cosets, we are done, so assume that some coset xiTi saturates. Since Ti is
cyclic and K is not finite cyclic, we must have Ti GKGZ. So no subgroup of Ti

surjects onto K , and hence no subcoset of xiTi saturates. Now

DðC0ðGÞU fxiTigÞ ¼ DðC0ðGÞÞUDðCðGÞ
cxiTi

Þ;

and CðGÞ
cxiTi

is contractible since it has a maximal element. So we have written
jC0ðGÞU fxiTigj as the union of two simply connected spaces whose intersection
is jCðGÞ<xiTi

jG jCðTiÞj. By Lemma 3.4, this intersection is connected, and the Van
Kampen theorem now shows that C0ðGÞU fxiTig is simply connected. Repeating the
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process eventually shows that C lies in a simply connected poset, and hence is null-
homotopic.

If K is not cyclic of prime-power order and G is a torsion group, then each Ti is
finite. Thus there are finitely many cosets in the set

S ¼ fxT : xT H xiTi for some ig � C0ðGÞ:

If xT is a minimum element of S, then

DðC0ðGÞU fxTgÞ ¼ DðC0ðGÞÞUDðCðGÞ
cxT Þ;

and we proceed as above, noting that the intersection of these two pieces is the order
complex of CðGÞ<xT GCðTÞ, which is connected (because T surjects onto K , which
is not cyclic of prime-power order). This process may be repeated until we have
added all of S, and hence the poset S UC0ðGÞ is simply connected. The cycle C lies in
this poset and is thus null-homotopic. r

Theorem 3.6. Let H and K be non-trivial groups. Then p1ðCðH � KÞÞ0 1 if and only

if both H and K are cyclic of prime-power order.

Proof. It is easy to check that if both groups are cyclic of prime-power order then
there are just two complemented factors in any chief series for H � K (in the sense of
Theorem 1.1) and the desired result follows from that theorem. In the other direction,
we apply Proposition 3.5. r

The question of simple connectivity for the coset poset of a finite (non-trivial) semi-
direct product is now reduced to the case of products HzZ=pn, where p is prime
and H is ðZ=pnÞ-cyclic. When H is solvable, Theorem 1.1 applies, and so we are most
interested in the case where H is a non-solvable group. The simplest example, then, is
S5 GA5 zZ=2. In this case the coset poset is still simply connected. For the proof we
will need the following result of Brown [6, Proposition 10], which we note extends
(with the same proof ) to infinite groups.

Proposition 3.7 (Brown). For any group G and normal subgroup N, there is a homo-

topy equivalence CðGÞFCðG=NÞ � CðG;NÞ, where the latter poset is the collection of

all cosets xH A CðGÞ which surject onto G=N under the quotient map.

Proposition 3.8. For n > 3, the coset poset of Sn is simply connected.

Proof. We have An pSn with Sn=An GZ=2, and so Proposition 3.7 gives

CðSnÞFCðZ=2Þ � CðSn;AnÞG SuspðCðSn;AnÞÞ:

Therefore it will su‰ce to show that CðSn;AnÞ is connected.
Since An has index 2 in Sn, the elements of CðSn;AnÞ are exactly the cosets xH

where H is not contained in An. Letting S denote the set of proper subgroups of Sn

not contained in An, we have CðSn;AnÞ ¼ 6
x ASn

fxH : H A Sg.
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First we show that for each x the poset fxH : H A Sg is connected. Each such poset
is isomorphic to S, and so it su‰ces to consider this case. Consider the action of Sn

on the set f1; . . . ; ng. We have StabðiÞGSn�1 for each i, and StabðiÞV Stabð jÞGSn�2

for all i, j. These groups are all in S (since n > 3), and hence for each pair i, j there is
a path in S between StabðiÞ and Stabð jÞ.

We now show that for each K A S there exists i such that we have a path (in S)
from K to StabðiÞ. Since K is not contained in An, there is an element k A K such that
k B An. First assume that k is not an n-cycle. Then if the orbits of hki have orders
a1; . . . ; am, there is a path of the form

Kd hkicSa1
� � � � � Sam dSa1

cSn�1

connecting K to the stabilizer of some point. If k is an n-cycle, we consider two cases,
depending on the parity of n=2; note that n must be even since the n-cycle k is not in
An. If n=2 is odd, then kn=2 B An and replacing k by kn=2 reduces to the above case.
When n=2 is even, assume without loss of generality that k ¼ ð1 2 . . . nÞ. It is easy to
check that (for m ¼ n=2) the element t ¼ ðm mþ 2Þðm� 1 mþ 3Þ . . . ð2 2mÞ lies in
the normalizer of hð1 2 . . . nÞi. This element fixes 1, and hence we have

K d hkicNðhkiÞd hticSn�1:

To finish the proof, we must find a path in CðSn;AnÞ from Cx ¼ fxH : H A Sg to
Cy ¼ fyH : H A Sg for each pair x; y A Sn. If x�1y B An then xhx�1yi lies in Cx VCy

and we are done. If x�1y A An, then either x; y A An or x; y B An. In the first case, take
z B An. Then x�1z; z�1y B An and hence Cx VCz 0q and Cz VCy 0q. Since Cz is
connected, this yields a path joining Cx to Cy. If x; y B An, then choosing z A An we
may complete the proof in a similar manner. r

Remark 3.9. Similarly, CðZÞ and CðZzZ=2Þ, where Z=2 acts by inversion, are
simply connected (again the normal subgroup of index 2 plays a crucial role).

We note a simple consequence of Proposition 3.7 for a general group extension.
For the proof, one uses the fact that if X is k-connected then X � Y is k-connected for
any Y ; see [19].

Proposition 3.10. Let G be a group with quotient G, and suppose that CðGÞ is k-
connected. Then CðGÞ is k-connected as well.

We conclude this section by discussing several cases in which CðGÞ is not simply
connected. First, recall that CðGÞ is connected unless G is cyclic of prime-power
order. Also, Theorem 3.6 tells us that p1ðZ=pn � Z=qmÞ0 1 when p, q are prime and
m; n0 0. Our next result gives a general condition under which CðGÞ is not simply
connected. Recall that ~HHnðX Þ denotes reduced simplicial homology with coe‰cients
in Z.
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Proposition 3.11. Let G be a non-cyclic group with a cyclic maximal subgroup M of

prime-power order. Then H1ðCðGÞÞ0 1.

Proof. Let fxigi A I be a set of left coset representatives for M. Let X ¼ DðCðGÞÞ,
Y ¼ DðCðGÞ � fxiMgi A I Þ, and Z ¼ Dð6

i A I CðGÞcxiM
Þ. Then we have X ¼ Y UZ,

yielding a Mayer–Vietoris sequence

� � � ! ~HH1ðX Þ !q ~HH0ðY VZÞ !h ~HH0ðY Þl ~HH0ðZÞ ! ~HH0ðXÞ:

Now Im q ¼ Ker h contains all homology classes of the form ½xM 0 � yM 0� where
M 0 < M is the unique maximal subgroup of M and xM ¼ yM. (The image of
½xM 0 � yM 0� in ~HH0ðY Þ is trivial because, as we will show, Y is connected, and its
image in Z is trivial because the simplicial boundary of ðyM 0; xMÞ þ ðxM; xM 0Þ is
xM 0 � yM 0.) If xM 0 0 yM 0, then xM 0 and yM 0 lie in di¤erent connected compo-
nents of Y VZ and hence ½xM 0 � yM 0�0 0 in ~HH0ðY VZÞ. So ~HH1ðXÞ0 1.

To complete the proof we must show that Y is connected. Consider a coset xH,
where H0M. If hxi0M, then we have a path

xHd fxgc hxid f1g

connecting xH to the identity. If hxi ¼ M then choose some g A G, g B M. We now
have a path

xHd fxgc xhgid fxggc hxgid f1g

in Y connecting xH to the identity. r

The class of finite groups to which Proposition 3.11 applies is rather small. The p-
groups with a cyclic maximal subgroup have been classified (see [5]), and there are
only a few types. Any other finite group with a maximal subgroup MGZ=pn (p
prime) is either a semi-direct product AzZ=pn, where A is elementary abelian, or of
the form Z=pn zZ=q where q is prime. This can be shown as follows. If MpG, then
clearly GGZ=pn zZ=q. Suppose that MrG. Herstein [13] proved (by elegant and
elementary methods) that a group with an abelian maximal subgroup is solvable.
Now M is a Sylow p-subgroup of G and we have NGðMÞ ¼ M, so that M lies in the
center of its normalizer and must have a complement (by Burnside’s theorem [23,
p. 289]). Hence G ¼ T zM for some T < G, and maximality of M implies that T is
a minimal normal subgroup. Finally, a minimal normal subgroup of a solvable group
is elementary abelian (by Lemma 5.12). The simplest interesting example of such a
group is A4 G ðZ=2Þ2

zZ=3, and other examples may be constructed by letting a
generator of the multiplicative group F�

pn (with p a prime) act by multiplication on
the additive group of Fpn (of course one needs the highly restrictive assumption that
pn � 1 is a prime power).

We note that there exist infinite groups with maximal subgroups isomorphic to
Z=pZ, for p a large enough prime. Specifically there are the Tarski Monsters, in
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which every proper non-trivial subgroup has order p; see [20, Chapter 9]. (For such
a group, CðGÞ is 1-dimensional and it is easy to construct loops of any length ex-
plicitly.) There is another family of infinite groups for which CðGÞ is not simply
connected, as discussed after Proposition 6.2. We close this section with an open
question.

Question 3.12. Does there exist a finite non-solvable group G with CðGÞ not simply
connected?

4 2-transitive covers and simple groups

In this section, we will examine the coset posets of the finite simple groups A5,
PSL2ðF7Þ, and A6 utilizing the notion of a 2-transitive cover. Some computational
details are omitted, and a complete presentation of the results in the first two cases
(and all the necessary background information on PSL2ðF7Þ) may be found in [22].
First we examine the notion of a 2-transitive cover.

4.1 2-transitive covers.

Definition 4.1. Let G be a group. We call a collection of subgroups SHLðGÞ a cover

of G if every element of G lies in some subgroup H A S. We call S 2-transitive if for
each H A S, the action of G on the left cosets of H is 2-transitive.

In addition, we say that a 2-transitive cover S is n-regular if for each H A S there is
an element g A G with oðgÞ ¼ n whose action on G=H is non-trivial. (This is equiva-
lent to requiring that no subgroup H A S contains all elements of G of order n.)

Remark 4.2. A group G has a 2-transitive cover if and only if for every element g A G

there is a 2-transitive action of G in which g fixes a point.
If G is a simple group, then any cover is automatically n-regular (for any n > 1

such that G contains elements of order n) because every action of G is faithful.

We need the following standard result (see [29]).

Lemma 4.3. Let D be a simplicial complex, and let T HDc1 be a maximal tree.
Then p1ðDÞ has a presentation with a generator for each (ordered ) edge ðu; vÞ with

fu; vg A Dc1, and with the following relations:

(i) ðu; vÞ ¼ 1 if fu; vg A T ;

(ii) ðu; vÞðv; uÞ ¼ 1 if fu; vg A Dc1;

(iii) ðu; vÞðv;wÞðw; uÞ ¼ 1 if fu; v;wg A Dc2.

When D ¼ MðGÞ for a non-cyclic group G, we always take T to be the collection
of edges f1; gg ðg A GÞ. (Since G is non-cyclic, all such edges exist.) The resulting pre-
sentation for p1ðMðGÞÞG p1ðCðGÞÞ is the standard presentation.
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Definition 4.4. Let G be a non-cyclic group. We say that MðGÞ is n-locally simply con-

nected if G contains elements of order n, and each generator ðg; hÞ (in the standard
presentation for p1ðMðGÞÞ) with oðgÞ ¼ n is trivial.

Proposition 4.5. Let G be a non-cyclic group containing elements of order n. If MðGÞ
is n-locally simply connected and G admits an n-regular 2-transitive cover, then MðGÞ
(and hence CðGÞ) is simply connected.

Proof. Let fg1; g2g be any edge of MðGÞ. We must show that the correspond-
ing generators in the standard presentation for p1ðMðGÞÞ are trivial. When
hg1; g2i0G, this is obvious, and so assume that hg1; g2i ¼ G. It will su‰ce to
show that we can find an element z of order n and a subgroup H A LðGÞ such that
g1 1 g2 1 z ðmodHÞ. (Then the set fg1; g2; zg forms a 2-simplex in MðGÞ and we
have ðg1; g2Þ ¼ ðg1; zÞðz; g2Þ ¼ 1 since MðGÞ is n-locally simply connected.)

Let S be an n-regular 2-transitive cover of G. Then there exists H A S with
g�1

1 g2 A H, and there is an element z A G with oðzÞ ¼ n which acts non-trivially on
the left cosets of H. Let H; x1H; . . . ; xkH denote these cosets. Since z acts non-
trivially on G=H and G acts 2-transitively, for each ic k some conjugate of z

sends H to xiH, so that there is an element of order n in fg A G : gH ¼ xiHg ¼ xiH.
So we have found an element za A g1H ¼ g2H, as desired; note that gi B H since
hg1; g2i ¼ G. r

We now examine the extent to which the above ideas may be applied to finite
simple groups. All 2-transitive actions of finite simple groups are known: see [8], [9],
[11]. A finite group cannot be the union of a single conjugacy class of proper
subgroups, and so any group with a 2-transitive cover has at least two distinct 2-
transitive actions. The finite simple groups with multiple 2-transitive actions are listed
below. This table is derived from [9, p. 197]; note that only an extension of PSL2ðF8Þ
acts 2-transitively on 28 points; see [10].

Group Degree No. of actions (resp.)

A5 GPSL2ðF5Þ 5, 6 1, 1
PSL2ðF7ÞGPSL3ðF2Þ 7, 8 2, 1
A6 GPSL2ðF9Þ 6, 10 2, 1
PSL2ðF11Þ 11, 12 2, 1
A7 7, 15 1, 2
M11 11, 12 1, 1
A8 GPSL4ðF2Þ 8, 15 1, 2
M12 12 2
HS 176 2

PSLnðFqÞ, nd 3
qd�1
q�1 2

Sp2nðF2Þ, nd 3 2n�1ð2n G 1Þ 1, 1
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We begin by considering the two infinite families, Sp2nðF2Þ and PSLnðFqÞ ðnd 3Þ.
In the first case, the stabilizers for the above two actions do form a cover. For a
proof, see [25, Lemma 4.1]. These actions can be described in terms of a set of qua-
dratic forms [11], and the cited proof explicitly constructs fixed points.

The groups PSLnðFqÞ for nd 3 do not admit 2-transitive covers. The 2-transitive
actions above are on lines and hyperplanes, respectively, in Fn

q , and since the stabil-
izers in a single action cannot form a cover, it will su‰ce to show that if an element
g A PSLnðFqÞ does not fix any line, then it also does not fix any hyperplane. To prove
this, let A A SLnðFqÞ represent g, and suppose that A fixes the hyperplane spanned by
v1; . . . ; vn�1. Then in a basis of the form v1; . . . ; vn�1; vn, the matrix of A has as its last
row the vector ð0; . . . ; 0; lÞ for some l A F�

q , and thus x� l divides the characteristic
polynomial of A. So A has an eigenvector, i.e. it fixes a line.

Remark 4.6. Except when n ¼ 6, p ¼ 2, Zsigmondy’s Theorem [4, p. 508] shows that
there is a prime dividing oðPSLnðFqÞÞ but not dividing the order of the stabilizers in
the above actions.

Although not isomorphic as actions, the actions of PSLnðFqÞ on lines and hyper-
planes do have the same permutation character. In fact, a simple duality argument
shows that for arbitrary elements A A GLnðFqÞ, the number of lines fixed by A equals
the number of hyperplanes fixed by A. The main point is that after choosing a basis
for ðFqÞn, the adjoint of A is represented in the dual basis by the transpose At, which
is conjugate to A (since they have the same characteristic polynomial). (This argu-
ment shows that the stabilizers of points and of hyperplanes are interchanged by the
transpose-inverse automorphism of GLnðFqÞ, which descends to an automorphism of
PSLnðFqÞ. Saxl [24] has shown that no finite simple group is the union of two con-
jugacy classes interchanged by an automorphism.)

Each of the remaining groups appears in the Atlas [10]. It is well known (see [27])
that a 2-transitive permutation character t always has the form 1 þ w where w is an
irreducible character. After identifying the irreducible characters corresponding to
our 2-transitive actions in the character table, it is a simple matter to check whether
the stabilizers form a cover (an element g has a fixed point if and only if tðgÞ0 0, i.e.
if and only if wðgÞ0�1). In each case, the ‘maximal subgroups’ section of the entry
for the group in question lists the stabilizers together with the decomposition of the
permutation representation into irreducible characters.

In summary, one obtains the following result:

Proposition 4.7. The only finite simple groups admitting 2-transitive covers are A5,
PSL2ðF7Þ, A6, M11, and Sp2nðF2Þ for nd 3.

Remark 4.8. Proposition 4.7 depends heavily on the correctness of the information in
[10]. We have made no attempt to verify this information, beyond checking that none
of the known errors (see [15]) a¤ect the problem at hand.

4.2 The coset poset of A5. We will establish the following result.
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Proposition 4.9. The coset poset of A5 GPSL2ðF5Þ has the homotopy type of a bouquet

of 1560 two-dimensional spheres.

It can be checked that there are 1018 proper cosets in A5, and hence CðA5Þ has
1018 vertices. Evidently CðA5Þ is far too large to admit direct analysis.

Shareshian has given (in an unpublished manuscript) a proof of this result using
the theory of shellability. The proof below is somewhat simpler than Shareshian’s
argument.

Following Shareshian, we will show that C ¼ CðA5Þ has the homotopy type of
a two-dimensional complex. For this portion of the proof we work directly with C.
We will show that C is simply connected by applying Proposition 4.5. To show that
CðA5Þ has the homotopy type of a bouquet of 2-spheres, we appeal to the general fact
that a k-dimensional complex which is ðk � 1Þ-connected is homotopy-equivalent to
a bouquet of k-spheres. The number of spheres in the bouquet can be calculated from
the Euler characteristic wðCðA5ÞÞ, computed in [6].

Claim 4.10. Let C� denote the poset C with all cosets of all copies of Z=2Z� Z=2Z
removed. Then DðC�Þ is two-dimensional and C� FC.

Proof (Shareshian). Quillen’s Theorem A (see [21, Theorem 1.6] or [2, Theorem 10.5])
shows that the inclusion C� ,! C is a homotopy equivalence (there is a unique sub-
group lying above any copy of Z=2 � Z=2, namely a copy of A4), and so it remains to
check that C� is two-dimensional. This follows easily from the fact that each maxi-
mal subgroup of A5 is isomorphic to A4;D10 GZ=5zZ=2, or S3. r

Claim 4.11. The coset poset of A5 is simply connected.

Sketch of proof. It su‰ces to check that MðA5Þ is 2-locally simply connected. This
may be proved by the following method. For every pair of elements t; x A A5 with
oðtÞ ¼ 2, there is an element z A A5 such that hz; ti; hz; xi; hz�1t; z�1xi0A5. (Up
to automorphism, there are only a few cases to check, because when ht; xi0A5 we
may set z ¼ 1.) The generators corresponding to the edge ft; xg are now trivial, be-
cause f1; x; zg, f1; t; zg, and ft; x; zg are simplices in MðA5Þ. r

4.3 The coset poset of PSL2(F7). We now consider the simple group G ¼ PSL2ðF7Þ,
and show that CðGÞ is simply connected. Other facts about the homotopy type of
CðGÞ are discussed at the end of the section.

For basic facts about the groups PSL2ðFpÞ, we refer to [7] (see also [22] and [30]).
We write the elements of PSL2ðFpÞ as ‘Möbius transformations’

f : Fp U fyg ! Fp U fyg; x 7! axþ b

cxþ d
;

where a; b; c; d A Fp, detð f Þ ¼ ad � bc ¼ 1, and y is dealt with in the usual manner.
The action of PSL2ðFpÞ on Fp U fyg is 2-transitive. For a proof of the following
result, see [7] or [22].
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Lemma 4.12. Any maximal subgroup of G is either the stabilizer of a point in

F7 U fyg (and is isomorphic to Z=7zZ=3Þ or is isomorphic to S4. The two conjugacy

classes of subgroups isomorphic to S4 are interchanged by the transpose-inverse auto-

morphism of GL3ðF2ÞGG.

The following lemma will help to minimize the amount of computation in the
proof of simple connectivity.

Lemma 4.13. Let

a ¼ axþ b

cxþ d

be a non-trivial element of PSL2ðF7Þ. Define the trace-squared of a to be

tr2ðaÞ ¼ ðaþ dÞ2. (Being the square of the trace of each representative of a in

SL2ðF7Þ, it is well defined.) The order and trace-squared of a are related as follows:

oðaÞ ¼

2; tr2ðaÞ ¼ 0

3; tr2ðaÞ ¼ 1

4; tr2ðaÞ ¼ 2

7; tr2ðaÞ ¼ 4:

8>>><
>>>:

Proof. The group G ¼ PSL2ðF7Þ contains just one conjugacy class of elements of
order n for n ¼ 2; 3; 4, and tr2 is preserved under conjugation. So in these cases the
result follows from checking, for example, that the elements

�1

x
;

x� 1

x
and

4x� 1

x

have orders 2, 3 and 4, respectively.
The elements of order 7 in G are exactly those with one fixed point in F7 Uy.

Thus if

a ¼ axþ b

cxþ d
A G � StabðyÞ

and oðaÞ ¼ 7, then the equation

axþ b

cxþ d
¼ x

has exactly one solution in F7 and hence its discriminant ðd � aÞ2 þ 4bc ¼ tr2ðaÞ � 4
is zero. So tr2ðaÞ ¼ 4 in this case, and any element of order 7 in StabðyÞ is conjugate
to an element of order 7 outside of StabðyÞ. r
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Proposition 4.14. The coset poset of PSL2ðF7Þ is simply connected.

Proof. As in the case of A5 GPSL2ðF5Þ, we show that MðGÞ is 2-locally simply con-
nected, i.e. we check that each generator ðg; hÞ with oðgÞ ¼ 2 in the standard presen-
tation for p1ðMðGÞÞ is trivial.

Recall that ðg; hÞ ¼ 1 if hg; hi0G. An automorphism class of generating pairs of
a group H is a set of the form fðfðxÞ; fðyÞÞ : f A AutðHÞ and hx; yi ¼ Hg. To show
that each generator ðg; hÞ with oðgÞ ¼ 2 is trivial, it su‰ces to check one represen-
tative from each automorphism class of generating pairs. Letting Fa;b denote the
number of automorphism classes of generating pairs of G in which all representatives
ðx; yÞ satisfies oðxÞ ¼ a and oðyÞ ¼ b, Möbius inversion allows one to calculate Fa;b

using the Möbius function of G (as calculated in [12]). For these computations it is
also necessary to know that AutðGÞGPGL2ðF7Þ has order 336. The method of cal-
culation is described in [12, §§1, 3]. (One can avoid Möbius inversion as indicated in
the discussion following the proof below.)

Case 1. oðhÞ ¼ 3. Möbius inversion shows that F2;3 ¼ 1, and the pair ðg; hÞ, where

g ¼ x� 2

x� 1
; h ¼ 4x

2
;

represents the unique automorphism class of generators because oðghÞ ¼ 7 and no
proper subgroup contains elements of orders 2 and 7. Letting

z ¼ 3x� 2

�2x� 3

we have oðzÞ ¼ 2 and gð�1Þ ¼ hð�1Þ ¼ zð�1Þ ¼ �2, so that

hz�1g; z�1hic Stabð�1Þ:

Now two elements of order 2 cannot generate a simple group, so that hg; zi0G, and
since oðhzÞ ¼ 3, the pair ðh; zÞ does not fall into the unique automorphism class of
generators with orders 2 and 3. Thus fz; g; hg is a 2-simplex in MðGÞ and we have the
relations ðg; hÞ ¼ ðg; zÞðz; hÞ ¼ 1.

Case 2. oðhÞ ¼ 4. Möbius inversion shows that F2;4ðGÞ ¼ 1. Define

g ¼ �1

x
; h ¼ 4xþ 1

�x
and z ¼ �2

4x
:

The argument is now similar to Case 1 (note that gð0Þ ¼ hð0Þ ¼ zð0Þ ¼ y).

Case 3. oðhÞ ¼ 7. In this case, there are three automorphism classes of generating
pairs. This does not require Möbius inversion: simply note that any pair of ele-
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ments with these orders generates G, and that there are 21 elements of order 2 and
48 of order 7. Since AutðGÞ acts without fixed points on these ordered pairs and
jAutðGÞj ¼ 336, we have F2;7ðGÞ ¼ ð21 � 48Þ=336 ¼ 3.

Let

h ¼ xþ 1 and g ¼ b

cx
;

(so that oðhÞ ¼ 7 and oðgÞ ¼ 2). We have

hg ¼ b

cx
þ 1 ¼ cxþ b

cx

and so tr2ðhgÞ ¼ c2, which implies that the pairs ðg1; hÞ, ðg2; hÞ and ðg3; hÞ, where

g1 ¼ �1

x
; g2 ¼ 2

3x
and g3 ¼ 3

2x
;

represent the three generating automorphism classes.
Next assume that there exist elements zi A StabðyÞ such that oðziÞ ¼ 3 and

fh; gi; zig forms a simplex in MðGÞ for i ¼ 1; 2; 3. Then we have hh; ziic StabðyÞ
and ðgi; ziÞ ¼ 1 because oðgiÞ ¼ 2 and oðziÞ ¼ 3. So ðgi; hÞ ¼ ðgi; ziÞðzi; hÞ ¼ 1. We
will now find such elements zi. Consider the equations hðxÞ ¼ giðxÞ, i.e.

xþ 1 ¼ b

�b�1x

where b ¼ �1; 2; 3. Equivalently (since y can never be a solution), we want to solve
the equation x2 þ xþ b2 ¼ 0, and by examining the discriminant we see that solu-
tions xi A F7 exist when b ¼ �1 or 3, but not when b ¼ 2. For i ¼ 1; 3 there is an
element zi A StabðyÞ with oðziÞ ¼ 3 and ziðxiÞ ¼ giðxiÞ ¼ hðxiÞ, namely

zi ¼
2xþ ð2xi þ 4Þ

4
:

Thus ðg1; hÞ ¼ ðg3; hÞ ¼ 1.
Finally, we must show that ðg2; hÞ ¼ 1 where

g2 ¼ 2

3x
:

Letting

z2 ¼ 2x

4
;

Daniel A. Ramras734



we have oðz2Þ ¼ 3 and z2 A StabðyÞ. So it su‰ces to show that these three elements
lie in a proper coset, i.e. that hz�1

2 g2; z
�1
2 hi0G. We have oðz�1

2 g2Þ ¼ 2, oðz�1
2 hÞ ¼ 3

and oðz�1
2 g2z

�1
2 hÞ ¼ 4, and so these elements do not lie in the unique automorphism

class found at the start of the proof. r

We now give a more elementary proof that F2;3ðGÞ ¼ F2;4ðGÞ ¼ 1. Choose
k1; k2 A G with oðk1Þ ¼ 3, oðk2Þ ¼ 4. Letting I denote the set of involutions in G,
we have jI j ¼ 21. Let Iki ¼ ft A I j hki; ti ¼ Gg. Since G has unique conjugacy classes
of elements of orders 3 and 4, it will su‰ce to show that CAutðGÞðkiÞ acts transitively
on Iki .

The above actions are semi-regular, i.e. no non-trivial elements act with fixed
points (since an automorphism fixing a generating set is trivial). Therefore we have
jCAutðGÞðk1Þj ¼ 6 and jCAutðGÞðk2Þj ¼ 8, since the group AutðGÞ has order 336 and
acts transitively on the 56 elements of order 3 and on the 42 elements of order 4.
When a group H acts semi-regularly on a set, each orbit has size jHj, so that jIk1

j is
either 6, 12 or 18 and jIk2

j is either 8 or 16. Now k1 lies in two distinct subgroups of G
isomorphic to S4 and since S4 contains nine involutions, we have more than nine ele-
ments in I � Ik1

. So jIk1
j ¼ 6 and the action is transitive. For k2, the nine involutions

in an S4 containing k2 force jIk2
j ¼ 8. (The fact that each of the 56 elements of order 3

in G lies in exactly two subgroups isomorphic to S4 follows from a standard counting
argument, using the fact that there are 14 copies of S4 in G; generally PSL2ðFpÞ
contains pðp2 � 1Þ=24 copies of S4 whenever p1G1 ðmod 8Þ; see [7], [22].)

We will now show that CðGÞ has the homotopy type of a three-dimensional com-
plex and that H2ðCðGÞÞ0 0. Any chain of length four (recall that a chain of length
four has five vertices) lies under a subgroup isomorphic to S4, and in fact must con-
tain a coset xH where HGZ=2 � Z=2 or Z=4. But cosets of copies of Z=2 � Z=2
and Z=4 may be removed from CðGÞ without changing the homotopy type (by ap-
plying Quillen’s Theorem A to the inclusion map). Since the reduced Euler charac-
teristic of CðGÞ is 17 � 168 from [6, Table I] and the only even dimension in which
CðGÞ has homology is dimension 2, it now follows that H2ðCðGÞÞ has rank at least
17 � 168.

This method does not seem to show that CðGÞ has the homotopy type of a two-
dimensional complex. In fact, we expect (see Question 6.1) that since H2ðLðGÞÞ is
non-zero, H3ðCðGÞÞ is non-zero as well. (One shows that H2ðLðGÞÞ0 0 as follows.
We have ~wwðLðGÞÞ ¼ mGðf1gÞ ¼ 0 from [12]. The above argument shows that LðGÞ
has the homotopy type of a two-dimensional complex, and hence

rankH1ðLðGÞÞ ¼ rankH2ðLðGÞÞ:

Shareshian [28, Lemma 3.11] has shown that H1ðLðGÞÞ0 0; his argument shows that
rankH1ðLðGÞÞd 21.)

4.4 The coset poset of A6. We will now sketch a proof that MðA6Þ is 2-locally
simply connected, and hence CðA6Þ is simply connected.
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Proposition 4.15. The coset poset of A6 is simply connected.

Sketch of proof. Let F2;n denote the number of automorphism classes of generating
pairs ðt; xÞ with oðtÞ ¼ 2 and oðxÞ ¼ n. Möbius inversion (see [12] for the inversion
formula) shows that F2;3 ¼ 0, F2;4 ¼ 1 and F2;5 ¼ 2. (Note that oðAutðA6ÞÞ ¼ 360 � 4
due to the outer automorphism of S6.)

The pair t ¼ ð15Þð34Þ, x ¼ ð1234Þð56Þ generates A6, because oðtxÞ ¼ 5, and no
maximal subgroup of A6 contains elements of orders 4 and 5; see [10]. Letting
z ¼ ð152Þ, we see that oðz�1tÞ ¼ 2, oðz�1xÞ ¼ 3 and hence

hz�1t; z�1xi0A6 ðF2;3 ¼ 0Þ:

Thus in the standard presentation, ðx; tÞ ¼ ðx; zÞðz; tÞ ¼ ðx; zÞ. Letting w ¼ ð12Þð34Þ
we have oðwxÞ ¼ oðwzÞ ¼ 2 so that hwx;wzi0A6, and also hw; xi; hw; zi0A6 (the
former lies in a copy of S4). Hence ðx; zÞ ¼ 1.

Next let x ¼ ð12345Þ, t1 ¼ ð16Þð23Þ, t2 ¼ ð16Þð24Þ. These represent distinct auto-
morphism classes of pairs, since oðxt1Þ0 oðxt2Þ. Also, each pair generates A6 (note
that oðx2t1Þ ¼ oðxt2Þ ¼ 4). Letting z1 ¼ ð45Þð23Þ, z2 ¼ ð24Þð15Þ one checks that
hzi; tii; hzi; xi; hzix; zitii0A6, completing the proof. r

We now give a direct calculuation of the numbers F2;n, similar to the calculation
after the proof of Proposition 4.14. To check that F2;3 ¼ 0, it su‰ces to check that
hð123Þ; ti0A6 for all involutions t (since all elements of order 3 in A6 are conjugate
in AutðA6Þ). If hð123Þ; ti ¼ A6 then t cannot fix 4, 5, or 6, and so up to inner auto-
morphisms of S6 we can assume that t ¼ ð34Þð56Þ. Then hð123Þ; ti lies in the copy of
S4 corresponding to f1; 2; 3; 4g.

Now let I be the set of involutions in A6, so that jI j ¼ 45, and let

Ix ¼ ft A I j hx; ti ¼ A6g

for any x A A6. Choose x4; x5 A A6 with oðx4Þ ¼ 4, oðx5Þ ¼ 5. Since S6 has a unique
conjugacy classes of elements of orders 4 and 5, F2;n is the number of orbits of
CAutðA6ÞðxnÞ on Ixn . Additionally, jCAutðA6ÞðxnÞj is just jAutðA6Þj ¼ 1440 divided by
the number of elements of order n, so that jCAutðA6Þðx4Þj ¼ 16 and jCAutðA6Þðx5Þj ¼ 10.

When n ¼ 4, x4 lies in two subgroups of the form ðZ=3Þ2
zZ=4. (This follows

from a simple counting argument, using the fact that these subgroups are maximal
and form a single conjugacy class; see [10].) Each of these subgroups contains nine
involutions and their intersection has order at most 12, and hence contains at most
three involutions. Hence jIx4

jc 45 � 15 ¼ 30, and since CAutðA6Þðx4Þ has order 16
and acts semi-regularly on Ix4

, the action must be transitive. When n ¼ 5, x5 lies in
two copies of A5; this follows as above, since these subgroups are maximal and
fall into 2 conjugacy classes. Since A5 contains 15 involutions, we have jIx5

j <
45 � 15 ¼ 30. Since jCAutðA6Þðx5Þj ¼ 10, it has at most two orbits on Ix5

, and the
classes exhibited in the proof of Proposition 4.15 show that F2;5 ¼ 2.
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5 Connectivity of the subgroup poset

In this section we will consider the connectivity of the subgroup poset, focusing in
particular on p1ðLðGÞÞ for finite groups G. Some of the results discussed here could
have been proven using the methods from earlier sections, but the present approach,
based on the homotopy complementation formula of Björner and Walker [3], is more
powerful.

Kratzer and Thévenaz [16] have proved the following theorem for finite solvable
groups, which is strikingly similar to Theorem 1.1. As mentioned in [31], this result
follows easily by induction from the homotopy complementation formula (Lemma
5.4).

Theorem 5.1 (Kratzer–Thévenaz). Let G be a finite solvable group, and let

1 ¼ N0 pN1 p � � �pNd ¼ G

be a chief series for G. Let ci denote the number of complements of Ni=Ni�1 in G=Ni�1.
Then LðGÞ is homotopy-equivalent to a bouquet of c1c2 . . . cd spheres of dimension

d � 2.

The number d in this theorem is at least jpðGÞj, the number of distinct primes di-
viding oðGÞ (this is immediate, since each factor Ni=Ni�1 is of prime-power order).
Note that if ci ¼ 0 for some i, then LðGÞ is in fact contractible. In fact, more is true.

Lemma 5.2. Let G be a group with a normal subgroup N. If N does not have a com-

plement in G, then LðGÞ is contractible.

Proof. This is an immediate consequence of [3, Theorem 3.2]. r

We will say that a group G is complemented if each normal subgroup N < G has
a complement. The above result then reduces the study of the homotopy type of the
subgroup poset to the case of complemented groups.

Definition 5.3. For any finite group G, let dðGÞ denote the length of a chief series for
G, i.e. the rank of the lattice of normal subgroups of G.

From Theorem 5.1 we see that if G is a non-trivial finite, solvable, complemented
group, then LðGÞ is k-connected if and only if dðGÞd k þ 3. Our next goal is to es-
tablish the ‘if ’ portion of this statement for any finite group; it is clearly true for any
non-complemented group.

We now state the homotopy complementation formula of [3], specialized to the
case of the proper part of a bounded lattice. Let L be a bounded lattice, and let

L ¼ L� f0̂0; 1̂1g be its proper part. We say that elements p, q in a poset P are com-

plements if p5q ¼ 0̂0 and p4q ¼ 1̂1, and we denote the set of complements of p A P

by p?. A subset AHP is an antichain if no two distinct elements of A are comparable.
We shall use the conventions on wedge-sums and joins stated in the Introduction.
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Lemma 5.4 (Björner–Walker). Let L be the proper part of a bounded lattice. If there is
an element x A L such that x? is an antichain, then L is homotopy-equivalent to

4
y A x?

SuspðL<y � L>yÞ:

The theorem of Björner and Walker is more general than this. In the present case
their proof becomes surprisingly simple.

For G finite and N abelian, the following result appears as [16, Corollaire 4.8].

Proposition 5.5. Let G be a group with a non-trivial proper normal subgroup N. Then
LðGÞ is homotopy-equivalent to 4

H AN? SuspðLðG=NÞ � LHðNÞÞ, where LHðNÞ de-

notes the poset of H-invariant subgroups in LðNÞ.

Proof. Note that when NpG, the lattice-theoretic and group-theoretic notions of
complement coincide. It is easy to check that the complements of N form an anti-
chain in LðGÞ; when G is finite, they all have the same order. The result now follows
easily from Lemma 5.4 and the observation that any subgroup T containing a com-
plement H A N? has the form T ¼ I zH where I ¼ T VN is H-invariant, and that
HGG=N implies that LðGÞ<H GLðG=NÞ. r

Note that the proposition implies that if G is non-simple then p1ðLðGÞÞ is free.
The following corollary generalizing [16, Proposition 4.4] will be used in the last

section.

Corollary 5.6. If H and K have no isomorphic quotients other than the trivial group,
then LðH � KÞF SuspðLðHÞ � LðKÞÞ.

Proof. If H 0 0H is a complement to K in G and q1 : H � K ! K is the projection
map, then the condition on quotients implies that I c I � q1ðH 0Þd q1ðH 0Þ is a coni-
cal contraction of LH 0 ðKÞ. The corollary now follows from Proposition 5.5. r

Our next result strengthens and generalizes part of [16, Proposition 4.2]. We use
the conventions on connectivity established in the Introduction.

Lemma 5.7. Let G be a group with a non-trivial proper normal subgroup N. If LðG=NÞ
is k-connected then LðGÞ is ðk þ 1Þ-connected. In particular, if LðG=NÞ is contractible
then so is LðGÞ.

Proof. If LðG=NÞ is k-connected, then its join with any space X is k-connected and
Susp ðLðG=NÞ � X Þ is (k þ 1)-connected; see [19]. Thus Proposition 5.5 shows that
LðGÞ is (k þ 1)-connected. r

Theorem 5.8. For any non-trivial finite group G, the poset LðGÞ is ðdðGÞ � 3Þ-
connected.
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Proof. This follows immediately from Lemma 5.7 by induction. r

In order to improve on these results, it is necessary to understand which groups
have path-connected subgroup posets. For non-simple finite groups, the following
result was proven by Lucido [18] using the classification of the finite simple groups.
When G is not simple, the result follows easily from Proposition 5.5 and the discus-
sion after Proposition 3.11.

Proposition 5.9 (Lucido). If G is a finite group, then LðGÞ is disconnected if and only if

GGAzZ=p, where A0 f1g is elementary abelian, p is prime and LZ=pðAÞ is empty.

Definition 5.10. Write F for the collection of finite groups of the form AzZ=p, with
A elementary abelian, p prime and LZ=pðAÞ ¼ q, and F 0 for the collection of groups
in F with A0 1.

The following result is immediate from Proposition 5.9 and Lemma 5.7.

Proposition 5.11. If a finite group G has a proper, non-trivial quotient G which is not in

F, then LðGÞ is simply connected.

Of course, one can deduce results about higher connectivity as well.
We finish by examining those finite groups G for which we have yet to determine

whether or not LðGÞ is simply connected. Our results do not apply to non-abelian
simple groups, but Shareshian [28, Proposition 3.14] has shown that if G is a minimal
simple group (i.e. if G is a finite non-abelian simple group all of whose proper sub-
groups are solvable) then H1ðLðGÞÞ0 0.

Any non-simple (complemented) finite groups a for which we have not determined
simple connectivity of LðGÞ may be written as a (non-trivial) semi-direct product
HzK , where K A F. We break these groups down into two cases. First we consider
groups in which K A F 0, and then we consider groups in which every proper, non-
trivial quotient has prime order. The following lemma, a simple consequence of [14,
Theorem 7.8], will be useful.

Lemma 5.12. Each minimal normal subgroup of a finite group is a direct power of a

simple group. In particular, if G is a finite group whose only characteristic subgroups

are 1 and G, then G is a direct power of a simple group (since G is a minimal normal

subgroup of GzAutðGÞÞ.
If S is a non-abelian simple group then the n simple direct factors of the direct power

Sn are permuted by AutðSnÞ.

Let G ¼ HzK with K ¼ AzZ=p A F 0. We may also assume that G is not in F.
If H has a complement K 0 such that LK 0 ðHÞ ¼ q, then the wedge decomposition for
LðGÞ (see Proposition 5.5) contains the factor

SuspðLK 0 ðHÞ � LðK 0ÞÞ ¼ SuspðLðK 0ÞÞ;

and since K 0 GK we see that LðK 0Þ is disconnected and p1ðLðGÞÞ0 1.
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On the other hand, if LK 0 ðHÞ0q for each K 0 A H?, then every term in the wedge
decomposition for LðGÞ is simply connected, and so LðGÞ is simply connected. So in
this case (with K A F 0), we have p1ðLðGÞÞ0 1 if and only if some complement of H
a is maximal subgroup of G.

Remark 5.13. It is not di‰cult to check that, if k is the number of complements
K 0 A H? with LK 0 ðHÞ ¼ q, then p1ðLðGÞÞ is a free group on kð1 þ oðAÞÞ gen-
erators. The fact that p1ðLðGÞÞ is free follows from Proposition 5.5, which shows that
LðGÞ is a wedge of suspensions. To compute the number of generators, note that if
K 0 A H? and LK 0 ðHÞ0q, then the corresponding term SuspðLK 0 ðHÞ � LðK 0ÞÞ is
simply connected. On the other hand, if LK 0 ðHÞ ¼ q, i.e. if K 0 is maximal in G, then
p1ðSuspðLK 0 ðHÞ � LðK 0ÞÞÞ ¼ p1ðSuspðLðK 0ÞÞÞ. This is the free group on n� 1 gen-
erators, where n is the number of connected components in K 0 GK . As shown in
[18], this is exactly 1 þ oðAÞ.

Finally, we consider finite, non-simple (complemented) groups G in which every
proper, non-trivial quotient has prime order. Up to isomorphism, any such group has
the form G ¼ HzZ=p with H a minimal normal subgroup. Lemma 5.12 shows that
HGSn with S simple. Hence if G B F 0, then G ¼ SzZ=p or G ¼ Sp zZ=p, with
Z=p permuting the simple direct factors of Sp transitively. We now show that in the
latter case p1ðLðGÞÞ ¼ 1.

Proposition 5.14. Let S be a finite, non-abelian simple group and let p be a prime. If
G ¼ Sp zZ=p, with Z=p acting regularly on the simple direct factors of Sp, then LðGÞ
is simply connected.

Proof. Since LðZ=pÞ is empty, Proposition 5.5 shows that

LðGÞF 4
K A ðS pÞ?

SuspðLKðSpÞÞ:

Hence p1ðLðGÞÞ ¼ 1 if and only if LKðSpÞ is connected for all K A ðSpÞ?. Let
K A ðSpÞ?. Let K ¼ hki and let f be the automorphism of Sp induced by k. Let
S1; . . . ;Sp be the simple direct factors of Sp. We may assume without loss of gener-
ality that fðSiÞ ¼ Siþ1 for 1c ic p� 1 and fðSpÞ ¼ S1.

Let DK A LKðSpÞ denote the subgroup consisting of all elements fixed by f

(and hence by K). Note that DK 0 f1g by Thompson’s theorem on fixed-point
free automorphisms [32]. For each I A LKðSpÞ we will construct a path (in LKðSpÞ)
from I to DK . Let fi : S

p ! Si denote the ith projection map. It is not hard to
check that I A LKðSpÞ implies that ÎI ¼ f1ðIÞ � � � � � fpðIÞ A LKðSpÞ (assuming that
ÎI 0Sp). Now since I is non-trivial and K-invariant, there is a non-trivial element
s ¼ ðs1; 1; . . . ; 1Þ A f1ðIÞ < ÎI and since ÎI is also K-invariant, f iðsÞ A ÎI for each i.
Moreover, the product s 0 ¼

Qp�1
i¼0 f iðsÞ A ÎI is non-trivial and invariant under f. Thus

when ÎI 0Sp we have a path I c ÎI d hs 0i < DK .
If ÎI ¼ Sp, then I surjects onto Si for each i and in particular I is not nilpotent. The

automorphism f either fixes I pointwise or induces an automorphism of I of prime
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order. In the latter case, Thompson’s theorem implies that f fixes some non-trivial
element i A I . Hence we have a path I d hiicDK in LKðSpÞ, so that LKðSpÞ is con-
nected and the proof is complete. r

In summary, we have

Theorem 5.15. Let G be a finite group which is neither simple nor a semi-direct product

SzZ=p (with S simple and p prime), and assume further that LðGÞ is 0-connected (i.e.
G B FÞ. Then LðGÞ is simply connected unless GGHzK with K ¼ AzZ=p A F 0

and K maximal in G. In this case p1ðLðGÞÞ is a free group on kð1 þ oðAÞÞ generators,
where k is the number of complements of H which are maximal in G.

In particular, if G ¼ H � K with H, K non-trivial, then LðGÞ is simply connected

unless H A F and K has prime order (or vice versa).

6 The homology of C(G ) and L(G )

We end by discussing a relationship between the homology of the coset poset and the
homology of the subgroup poset which exists at least for certain groups. This discus-
sion is motivated by the striking similarity between Theorems 1.1 and 5.1.

Question 6.1. If G is a group, then is it true that for any n > 0

rank ~HHnþ1ðCðGÞÞd rank ~HHnðLðGÞÞ? ð1Þ

All finite solvable groups satisfy (1). This follows from Theorems 1.1 and 5.1. It is
easy to check that the number of spheres in the coset poset is greater than the number
in the subgroup poset. In light of Lemma 5.2, any non-complemented group satisfies
(1) trivially, so that we may restrict attention to non-abelian simple groups and non-
trivial semi-direct products HzK with K simple. We provide an a‰rmative answer
to Question 6.1 in the case n ¼ 0. This result is closely related to [26, Theorem 2.5].

Proposition 6.2. For any group G, there is a surjection

~HH1ðCðGÞÞ !! ~HH0ðLðGÞÞ:

Proof. If G is cyclic then LðGÞ is connected, unless GGZ=pq with p, q prime, and the
result is trivial. When GGZ=pq, the result follows from Theorem 1.1.

We now assume that G is not cyclic. Let X ¼ DðCðGÞÞ, Y ¼ DðCðGÞ
df1gÞ, and

Z ¼ DðCðGÞ � f1gÞ. Then Y F � and Y VZGDðLðGÞÞ, and so assuming that Z is
connected the result follows from the Mayer–Vietoris sequence for the decomposi-
tion X ¼ Y UZ. To show that CðGÞ � f1g is connected, choose x A G � 1. Then any
vertex yH of CðGÞ � f1g is connected to fxg via the path

yHd fygc xhx�1yid fxg:

(We have yH0 f1g and so we may assume that y0 1.) r
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Remark 6.3. Proposition 6.2 shows that when LðGÞ is disconnected, CðGÞ is not
simply connected. For finite groups, this result is eclipsed by Proposition 3.11 (see
Proposition 5.9). There is, though, an interesting class of infinite groups to which
Proposition 6.2 applies. In [20, Chapter 9], it is shown that there is a continuum of
non-isomorphic infinite groups G all of whose non-trivial proper subgroups are infi-
nite cyclic. Furthermore, in each of these groups, any two maximal subgroups inter-
sect trivially (and any subgroup lies in a maximal subgroup) so that LðGÞ is discon-
nected in every case.

Our next goal is to show that if p1G3 ðmod 8Þ and pDG1 ðmod 5Þ then the
simple group PSL2ðFpÞ satisfies (1). First, we have the following result due to Share-
shian [28, Lemma 3.8].

Lemma 6.4 (Shareshian). Let p be an odd prime and let G be a simple group isomorphic

to one of the following:

(i) PSL2ðFpÞ with p1G3 ðmod 8Þ and pDG1 ðmod 5Þ;

(ii) PSL2ðF2 pÞ;

(iii) PSL2ðF3 pÞ;

(iv) Szð2pÞ.

Then LðGÞ has the homotopy type of a wedge of oðGÞ circles.

The proof of the next result is analogous to Shareshian’s proof of Lemma 6.4.

Lemma 6.5. If p1G3 ðmod 8Þ and pDG1 ðmod 5Þ then CðPSL2ðFpÞÞ has the homo-

topy type of a two-dimensional complex.

Sketch of proof. For p ¼ 5, this is just Claim 4.10. Let G ¼ PSL2ðFpÞ. We begin by
removing from CðGÞ all cosets xH which are not intersections of maximal cosets, i.e.
we remove all cosets xH for which H is not an intersection of maximal subgroups.
The resulting poset C0 is homotopy-equivalent to CðGÞ by [28, Corollary 2.5]. Simi-
larly, the poset L0 consisting of all subgroups in LðGÞ which are intersections of max-
imal subgroups is homotopy-equivalent to LðGÞ.

Now any maximal chain of length k in the coset poset corresponds to a chain of
length k � 1 in the subgroup poset (we simply take all underlying subgroups, except
for the identity). By [28, Lemma 3.4], any chain in L0 has length at most two, and
hence any chain in C0 has length at most three. Shareshian’s argument in the proof of
Lemma 6.4 that all 2-simplices in DðL0Þ can be removed without changing the ho-
motopy type also shows that all 3-simplices may be removed from C0 without chang-
ing the homotopy type: when removed in the correct order, each corresponds to an
‘elementary collapse’. r

The following computation of the Euler characteristic of CðPSL2ðFpÞÞ was com-
municated to us by K. S. Brown.
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Lemma 6.6. If p1G3 ðmod 8Þ and p1G2 ðmod 5Þ, then the Euler characteristic of

CðPSL2ðFpÞÞ is oðPSL2ðFpÞÞ 1
12 pðp� 1Þðpþ 1Þ � p� 4

� �
þ 1.

Proof. For any finite group G we have wðCðGÞÞ ¼ �PðG;�1Þ þ 1, where PðG; sÞ is
the probabilistic zeta function of G (see [6]). Möbius inversion allows one to compute
PðG;�1Þ from the Möbius function of G; see [6, Section 2.1]. For G ¼ PSL2ðFpÞ, the
Möbius function was calculated by Hall [12], and one easily derives the above result.

r

Proposition 6.7. If p1G3 ðmod 8Þ and pDG1 ðmod 5Þ then G ¼ PSL2ðFpÞ satisfies
(1).

Proof. By Lemmas 6.4 and 6.5, it su‰ces to check that H2ðCðGÞÞ has rank at least
oðGÞ, and for p ¼ 5 this follows from Proposition 4.9. Assume that p > 5. Since the
Euler characteristic of CðGÞ is simply rankH2ðCðGÞÞ � rankH1ðCðGÞÞ, Lemma 6.6
shows that H2ðCðGÞÞ has rank at least

oðGÞ p

12
ðp� 1Þðpþ 1Þ � p� 4

� �
þ 1:

The conditions of the proposition force pd 11, so that

p

12
ðp� 1Þðpþ 1Þ � p� 4d 95

(the left-hand side being an increasing function of p). Thus rankH2ðCðGÞÞd oðGÞ,
as desired. r

At least two other simple groups satisfy (1), namely PSL2ðF8Þ and Szð8Þ. The proof
is analogous to that given above, using [6, Table I] for the computation of PðG;�1Þ
and hence wðCðGÞÞ. Presumably Question 6.1 can be answered for all groups listed in
Lemma 6.4.

We now show that certain direct products satisfy (1). In particular, given any finite
collection of non-isomorphic non-abelian simple groups satisfying (1), their direct
product P also satisfies (1), and if G is a finite solvable group then G �P satisfies (1).

Proposition 6.8. If H, K are finite groups satisfying (1) and H, K have no non-trivial

isomorphic quotients, then G �H also satisfies (1).

Proof. Let G ¼ H � K. Recall that Proposition 3.3 and Corollary 5.6 show that
CðGÞFCðHÞ � CðKÞ and LðGÞF SuspðLðHÞ � LðKÞÞ. We need only consider the
case in which G is not solvable, and in light of Proposition 6.2 we need only check
condition (1) for nd 1.

If LðHÞ, LðKÞ are both empty then G is solvable and we are done. If LðHÞ is
empty but LðKÞ is not, then LðGÞF SuspLðKÞ and so ~HHiðLðGÞÞG ~HHi�1ðLðKÞÞ for
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id 1. Letting ~bbiðXÞ denote the rank of the ith (reduced) homology group of the space
X for id 0, we have (for nd 1)

~bbnðLðGÞÞ ¼ ~bbn�1ðLðKÞÞc ~bbnðCðKÞÞ

c
X
iþj¼n

~bbiðCðHÞÞ � ~bbjðCðKÞÞ ¼ ~bbnþ1ðCðGÞÞ;

the last equality following from [19, Lemma 2.1]. If LðKÞ is empty and LðHÞ is not,
the situation is symmetric.

Now assume that LðHÞ, LðKÞ are each non-empty. Then for any nd 1 we have

~bbnþ1ðCðGÞÞ ¼
X
iþj¼n

~bbiðCðHÞÞ � ~bbjðCðKÞÞ

and

~bbnðLðGÞÞ ¼ ~bbn�1ðLðHÞ � LðKÞÞ ¼
X

kþl¼n�2

~bbkðLðHÞÞ � ~bblðLðKÞÞ

by [19, Lemma 2.1] (note that LðGÞ is simply connected so that there is no problem
when n ¼ 1). By assumption

~bbi�1ðLðHÞÞc ~bbiðCðHÞÞ and ~bbi�1ðLðKÞÞc ~bbiðCðKÞÞ;

and so for each m ð0cmc n� 2Þ we have

~bbmðLðHÞÞ � ~bbn�2�mðLðKÞÞc ~bbmþ1ðCðHÞÞ � ~bbn�ðmþ1ÞðCðKÞÞ:

Thus ~bbnðLðGÞÞc ~bbnþ1ðCðGÞÞ as desired. r

Thévenaz [31] has ‘found’ the spheres in the subgroup poset of a solvable group,
that is, he has given a proof of Theorem 5.1 by analyzing a certain collection of
spherical subposets of LðGÞ. It would be interesting to explore similar ideas in the
coset poset. In particular, such a proof of Theorem 1.1 might allow one to construct
explicitly an injection from HnðLðGÞÞ into Hnþ1ðCðGÞÞ (for G finite and solvable),
and could shed further light on Question 6.1.
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