(n+1) x (n+1) matrices of the form x v | where x@SL,yck"
| o 1 |

"SA_ is generéfgﬁgb  t E}K,u$;%uj1§iiéﬁi}2?if;;ﬁf“—

Ij. —12’00- n+l PR _:'_.
(1) 1f tne relssion

o, mgle

is"addédiﬁéiihé'}éigﬁiéﬁéﬂka”énd'(B)~ofIheorém“14;5aﬂTﬁ°§?”_
complete set of relations for . SA 1is obtained.

(2} If x 1s finite, (C) may be omitted.

(3) If n is large enough, the group defined by (4) and (B)

is a u.c.e.u for . SA .

(l;,) '''' Otner analogues of results for SL 0 e
We remark tnat SA (G)) is the unlversal covering group of the
inhomogeneous: I.orentz group, hence is of interest in quantum
Mechanics.




§ 8, Variants of the Bruhat lemma., Let G be a Chevalley group,

k, B ... as usual. We recall (Theorems L;. and 1+ )

= U BwB , a disjcin’c' union.. T e
weW : .

{v) For each we W ' BwB BWU wi‘c.h...uniqueness' of___e-xp_ression-_

on the righ’t Our purpose is to present some analogues of (b) wzth

appllcat ions.

For each s:.mple root o we set G “<¥ ){_a o, &
:El‘oup of rank 1, Ba = BﬂGa , and assume that the representative

of w, in N/H , also denoted w  , is chosen in G, .

‘Theorem 15: Fcr each 51mple root a let ¥, be a system. of .

Tepresentatives for B\G - B ) or more, generally for B Bw B.,-.-,;,_ri,.‘.__

or each w e W ~choose a minimal express:.@n W wawg” WS' as
a product of reflectlons relat::.ve to s1.mple roots @, B ... . Then

'.;B wB=BY Yy ... Yq w1th_ uniqueness of expressn_on nn the right.

o G oo o

“Proof: Since G. - B, = B_wW B ,'- '- the second case e.borve really

1S more general than the first. We have |
BuB = B, Buw, wB (by Lemma 25)

= Bw BY., ... ¥
[«

8 5 (by induction)

= BYC:.YB veo Ig (by the choice of YC_:)
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Now assume byayB .;IWY§y8 =D yayB“.;;“yYyS'"with b, b ‘e B,

 ete. Then - ”Hifﬂe have y yﬁl € B “j_;fm“-

or BwoB « The second case can'ﬁot 0 cur_81nce then the left Slde

would be in waﬁB and the rlght 51de 1n BwB (by Lemma 25)

Theorem 15

Lemma 43: Let 9, * SL, = G, be the canonical homomorphism
(see Theorem 4 , Cor. 6}. Then Ya satisfies the conditions of

Theorem lShinveacgmothheifollewing:Caeee.w%,_ R

() kf==€:(reSpJHQ)m-and',Yd-jis.the,image,underffma S

~of the elements of SU, (resp. 50,) (standard compact forms) of

_| with b> 0.

(ej. If:eis a principal ideal domaiﬁﬁﬁ(éommﬁtetifee'
With 1), o™ -is the group of units, k is the quotient field,
and T, is the imege,pnder o, - of the. elements of. - SL2( o) fdféﬁ@é“*
the form li._g}- with ¢ running through a set of representatlves fé;ffg

£ s ‘_
0T (e-0)/e" , and for each ¢ , a running over a set of
T . . '
epresentatlves for the residue classes of e mod ¢ .
“Broor:

We have (a) by Theorem 4L applied to G... To verify.
(b) '

and (c) we.may assume that G, is SL, and B, the



superdiagonal subgroup___B2 since _ker'n C B2 . Any element of

!SLZ(Q) can be converted to one of SU, by adding a multlple of -

" the second row to the:first and normallzlng-t_e~-"{ the of

rows. Thus SLZ(Qﬂ —-Bz(Eﬂ SU . Then B (@3 \§L2(¢J

R A W s S ¢ | I
2&[_(“)SU2)\eU2 ?* whence (b) New essume ,[ffstle SLz(k) o

“w1th 'k as in (c)' Jejehoosei?'% 'T%i, rel t;vely prlme and7

. such that pa + qc —-O (u31ng unlque factorlzatlon),_and”then B
b, d in e so that ad ~ bc =1 . Multiplying the preceding
matrix on the right by [- <]'we get an element of B (k) -

. Thus SLz(k) = Bz(k)SLz(e) ,_:_,anq (c) fo_;;o,we, L ) "

'Remarks: (ej“ The case (a) above i essentlally THEEFEm 4 sinee}aprmg;e
.WUW =.Wd)ga . WBBEB_... wﬁ}f ‘in the notatlon of Theoren 15, byf

~ Appendix IT 25, or.else by induction on the length of the expre551on,
(b} In (c) above the ch01ce can be made preC1se 1n “the follow1ng |
cases: | e S PR
1) o =Z; chocss'a; ¢ sothar 0Ea<e
() o = F[ﬁ] (F a field);' chooeerse:that- ¢ is menic
and d4dg a < dg .c ;'”'”" & | .
(B)e e =JZP (p;adieeintegens)}mcheose-'en;a-éewen?of;,p"_"

and a an integer such that O <a<c.,



In what follo'ws we will give ._'separat,e,_‘but "parallel;__;,_4_,_;;_

eveloPments of the consequences of (b) and (c) ‘above.u In (b} 3 '

‘Wlll treat the case = _&{for d.ef:Ln:Lteness' the_._wcase

"X-a and o;Ha = - Ha for every rcot o« .

{b) On fthe form {X, Y} defined by (X, _G;Y) in

foof: This basic result’is proved, e.g., in Jacobson, Tie

. %16:_ Let G be a Chcvalley group over C Vlewed as a

- '(a)" There exlsts an analytlc autnmorphlsm o of G e
t su°h that o x_(t) = x_(E) and ony(t) =h(E T1) - for all’ ozand
(b) The group K Gd“ of leed po:Lnts o:f' o 1s a
maxlmﬂ compact subgroup of G and the decomposn:.on G K e
ho : ’
s (Iwasawa decomposition).

be o in Lemma 4k composed with complex

E b
R0f: peg oy

Lon s . .
- WUgation, and P the representation of f used to define G .



piying Theorem h?, Cor. 5 to the Chevalley groups (both equal to

) constructed from the representaulons © and Jon 71  of ;i

hence composed ww+h congugatlon

tleleS the equatlons of {a),

atlsfles these equations. From Theorem 7 adapted toethe“presentjg-r

analytlc,:whence (a) :Ne observe that if -G -is deflned b.:the

oint representatlon of ;Z? then o- is effected by conJugatlon

Let. K=0G_, K, = KNG, for each simple root < .

(global weights)}

= ‘TT (t;) (see Lemma 28) | ltil =1}
= maximal torus in. K . H

~9of: ‘The kernel of ¢, : SL2 > G, is contained j_n"-.i'“‘{"i 1}y

5

N

5 . Since the equation 0p X' = - X has no solutlons L

2£8) =h (T, 2in,(6)) = e#{ )

g and [ are corresponding weights on fii and H) ,




'ﬁ%and the (t) generate H , we have ﬁko‘h) =

ﬂ(h) for all
“’h € H, so that o-h' = h if and dniy if” |ﬂ | % 1 for all

.;fwelghts 7. If~‘h =T

13p";-ve Dee that i

= 1 for Some -

n >.0 ,.whence

orus. Now if h € Hd_ is general enough, so that the numbers
(h) (@ & ) are distinct and different from 1 , then G, , the
émralizer of h in G , is H by the uniqueness in Theorem

» 50 that-"H isin. fact e maximal abelian: subgroup -of G o P

:ngﬁzgigg: Check out the;e$i§tenpe of h- and the property G, = H -
1 sore. e R

) Now we consider part (b} of Theorem 16. By Theorem 15 and
mems 43(b) and hs(a) we have G = BK . By the same results
WWBLTCZB ...K(5 ;. an compact set since-each factor is”(the:

a

% Onlpactness of tori and” “SU,- is being used). Thus K= G_ 'is
¢
%Mact, (This also follows easily from Lemna bh(b)}). Let Ky

¢ a COmpact subgrouo of G Kljj K °- Assume x € K Write

1
"% with beB,ye X, end then b = ur with u e U,
eR

: h
:_(

Since hl is compact, all elgenvalues 'ﬂkh )
hx
0 *l,ﬁz,...) are bounded, whence h £ K by Lemma 45(b),

the
R aly coeff1c1ents of all u" are bounded so that u = 1 .,



Thus x € K , so that K is maximal compact

Remark: It can be shown also that K is SEfllSZLI“lple and that a

. Proof: This follows from the fact proved in Lemma 45 that K

~ig ‘generated by the groups cpa_SU2 .

il

Exemples: (a) If G

SL_(C) , then K = SU_ .-
80, (C)

“and” Z‘xlx ~=-~~h-ence-:equalﬁ-"

the forms E RISt .
pact form) after a change of coordinates. Prove this.
(¢} If G = szn((]:) , then K fixes the forms
E( Yoneies ~ Xppe1oi¥y) and X% ,‘and is 1somorphlc to
- SU () (compact form, I+ = quaternions). For this see Chevalley,
Lie groups, ». 22. | ' i

~(d) We have 1somorphlsms and central extensions,

HA - svl\;H) SLIZ(L) — so (R)

S0 0R) ~> 50, (R) , SU2(C)2_ i SOLP(YR)

SUL(([) —> 806(\R) (comﬁact forms).

This follows from {a), (b), (c); Corollary 1 and the equivalences

= 2.... ) .
l ":“1 Bl, —Bz, Jkl_Dzs AB—DB .



9,50, .:L$1need
Corollary 32
is homeomorphlc o B\Q under the natural map.-

Proof ..

nected.

106

'Goro;;ary 2: The group K is connected.

rProof As alreaaj remarked 'K is generated by the grou?s

DU

The ‘map :

?T\K into B\g whlch is' l - L and onto since  T Bfﬁ K and

G =BK . Since T\g is compact, the'map is a homeomorphism.

-Corollary Li (a) VG is contractibie to K .

If G 1s unlversal then

. (b)

imply. con=.

Proof: Let A= 1{he H[ﬁ(h) > O for all :y_e_L}_: _Then we have

iH = AT , so that G = BK UAK . On the right tnere is unlaue_

ness of expression. Since K is compact it easily follows that

the natural mao UAri;K —> Q._is"a,hemeomdrphiSm;w Since Ui
is contractible to a p01nt, dGV'is.eohtrectibleftogeﬁﬁ < If also Lol
G is unlversal,'then *G_‘lS 81mply connected. by Theorem 13,

hence so is ¥ .

Corollarx 53 Fbr W e W &eet'”(BWB}f BwaW K &wf,'and let:

%B5...,8 be as in. Theorem 15 Then K= L)I{ e and‘**>~:~'“'

Kw = TY@...Yé , with unlqueness of expre531on on the right.-

Proof: This follows from Theorem 15 and Lemma 43(b).



Remark: Observe that KW- is essentially a cell since eaeh__Ym
is homeomorphic to ¢ (consider the values of a in Lemma 43{b))}.

A true cellular decom0051t10n is. obtalned bytwrltlng‘_T as a

Corollary 6%
ZN(W)

Tt
Wdﬂ

Proof: We have E\@wB homeomorphlc to' wU y a'cell of reel

dimension A (w) . Slnce each dimension is even, it follows that

the cells represent independent elements of the homoclogy group
and that there is no torsioh (eSsentially because the boundary

Perator lowers dlﬂen31ons by exactly 1), when.co Cor."6.  Alter~".

tely one nay use “the fact that each Y '1s.home6ﬁ6rphieiféyiﬁf

'E&QQEE' The above serlee will be summed in the next sectlon, :

‘Where it arises in connectlon with the orders of the finite |

hevalley groups. e

F&n@llarz 7 Fof W € W let CW =:W§...W6' be a minimel expres;  . ' “;_ﬁ
Slon as before and let. S denote the set of elements of W _ each.

of which is a product of some subsequence of tne_expre531on for

* Then K (topological closure) = ‘?)A'K ;o o o
T : w'el w R

-%EQQ: £ Ta = T,W-Kafg we have R TaYa\J-Td by Lemma L45(a) )
‘and TQIQ =K, by the corresponding result in SU, . ~ Now

! _ _

. WB..Bqu_Y&...T‘SY6 by Lemma 43(b). Hence K, = T.T Y ...Ts¥s ,

S -
ﬂothat ijj TK@...Ké , and we have equality since each factor

-~



l"’

-on the right is compact, so that the rlght side is. <6iipact , hence

closed. Since K "K CjK ﬂLJ K ;'w' if W _£/W _and o is sim-
w W W, g
“follows.

"ple by Lemma 25 ?Corm‘

Corollary 8:

Corollary Q1 ‘Q;' .

'the mlnlmal expresslo

Proof: Because Kﬁ doesn't depeﬁdton.the expression.
‘Lemmg 46: Let w_  be the element of W which makes all positive
roots negative. Then S(WO).=.W .

Proof- “Assume wE W 73éﬂd lété’w~;ﬂﬁflffﬁb“””“”qTa

| wo wm+l“an .r;Thon _Wol m“h"fﬁhf"wn is one- for W,
‘8ince if N is the number of positive rootS‘then' m N(w),
=N -N(w) , and m+n=2X =_N(WOI_.pTlooking_apﬂtheIinitial

Segment of W, we see that w e:.-.S'(w e P

Corollary 1G: If lwo '1s as’ above and w #'waﬁb...ﬁgfﬁisiém”m

minimal expreb51on then

(a) K=F, .

O
{(b) K K K

il

I

grrKg

Eroof: (a) By Cor. 7 and Lemmauﬁé: “

(b) By (a) K = TK K We may write 'T = TT TX

B... -
(Y simple), then absorb the Ty s in appropriate K 's to

¥
get (b)),




(b), the1 everythlng-ab;

accordance W1th Lemma_hB

xcept for Cor. k4, Gor 6 and the fact that T ‘s ﬁo:iohgef ai- N

' aoh K

L i A e i s

'torus. In thlS case;

analogy with the cla881cal case?

= SLB(IR), K = 503(\'1%)

{rotations around the 2z-axls, x-axis} ,

riski t opol-—

: Ogy is used, the sama formula holds. 3o as not to 1nterrupt the
{ ' opresent development , We give the proof later, at the end of this

section. LT R e
T:,.ﬁﬁngm 17: (Caftaﬁ)i Agalq Tet - @ Tbeal Ghevalley group over .
= C R k= G- as;above, and a4 = {h € H[y(h > 0 for a1l
A N o L -

RN : .
(a} G =.KAK (Cartan decompoaltlon)

(b} In (a) the A~-component is- determined- unlquely up o

Conjugacy under the Weyl group.



Proof: (a) Jdssume x & G . By the decompositions™ H = AT and

G = Bk (Theorem lé);nfﬁere*exist eiements iﬁ KxK N U4

~Given such an elemeﬁ

'Y"iua ‘—we wrlte*¥'”

uniquely det rmlned by 'a) ..... " the, set lul [H] "theigilliﬁé;ﬁeif*

norm in Jiﬂ{. This norm is 1nvar1ant under W “'We now. chooee

{z

'y to maxlmlze ﬁTa"* recall that

.;K] is. comaact)__ We must show

5 that 7u = l ThlS

can be increased. We w;l¢ Yedice (r) to the rank

=

= TT' ug (u E:-% } . We may zssume. u, F1 for some simple
g>0 _ _ _
6.: choose a of minimum height, say n , such that U, + 1,

then if n > 1 ., choose 8 51mp1e so that (u B) >0 and

ht WBQ.< n, then. replace ¥y w (l‘yw (l) =and:. proceed by

P is the set of p031t1ve roots). Then we write a =

thoose ¢ so that H = H e_eHa is:orthogonal to Hae,-set~
t t t t

4, = exp cH, _A.f?G a =expH 4, a=2aa . Then a

Commut es with G, eLementw1se and 1s_orthog9nalrto_a'L relatlve o
“to the bljlnear form corresnondung to the norn 1ntroduced above.;A

By (4) for o‘:f'ov.ps of ranh 1, thue exist y, i e~K- such ‘that -
. . § \ 1 ?
?uaamz = aa g A!”\Garrand‘”}a&|_> la,l - Then yuaz = yuua.a z

=

LS S S SRS . : .
yu Y_lagaf .- Since G, nowmelizes }EP (@] (since. }éa and
*ﬁﬂ, do), . yuiy Ley » Since 'a a ] -[aa]?;+ la |
>|au|2 + [a1|2 = ]aﬁai[2 = |ai2 . Wwe have (%) , modulo the
fank 1 case. This case, essentially G = 3L, , will be left as

© A0 exercige.



)" Assume X € G, x =

-1y so that xr X = k azkil .. Here o a = a™>

remma L7: Lf elements of™ ™ ars

group), they are conJugate under the'Weyl groua

ThlS ea51l
s quare~rosts.

in A are unique,
Remark: We can get unijueness in {b) by replacing A by

A A e
A= fa € A[a(a) > 1 for all 4 > 0} .7 This follows from Appen- .

'dlx III 33

_COI‘ollarX . et P -

- . - )
_ox = x and have all elgenvalues pOSIthe.

{al ACP .
(b) Bvery. p &P

K to some‘ a e A,

1s oonjugafe under

gaoy under N

(¢} G =KP, W1fh unﬂﬂueneqs on. uhe rldht (nolar decom-I"'

uniquely determined up to_conju (goectral theorem);

Position).
2299£= (a) ThlS hasg been noted in- \b) above. -
(LY We can assu:s p = ka a KA by the Lheorem Apply_

-1, -
T op o= ak"l Thus k commubes W1th a2 hence also Wlth o

(Since a is diagonal (reIaulve-to a ba51s of welght vec—

a have & certain

Yors) and positive, the matrices commubing with
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block structure which does not change when it is replaced by_‘az

s
Then k° = 1 and k = a 2pa 2 ep , 5o that k 4is unipotent by

the. deflnltlon ox'"

=3 , The uniQuénggsulnj(Bf;foiiﬁwéfggibéfé§e
(¢) If 3 §_Gf, thenﬂ~x = klak

that X = klk . I\.
with k; g K. and p

Sk,

Then p; = K 1L2p2 . s in (b Wwe conclude that K
Whence the uniqueness in (c). |
Examgle: If G = (@) , 80 that K = SUH¢$) ,

A = {positive diagonal matrlces}

Pr= {p081t1ve»def1n1te Herm:tean matrlces}

then (b) and (éj';educe to cla551cal resilts,




We now consider the case {c) of Lemma L3. The development

is strikingly parallel to that for case (b) just”completed al-

in the other

Lemma 43(c) and that the Chevalley group G under dlscu551on 1s '_ ':

based on k . We wrlte G_. for the subgroup of elements of G

‘ .
¢, is as in Theorem & , Cor. 5, then
cPu_SLz(e) g G, -
Proof: If o is a Euclidean domain then SLZ(e) is generated

by its ‘unipotent superdiagonal- and subdlagonal elements, sowthat.

fthe lemma follows from the ‘fact that x (t) 'acts BTN

integral polynomial in t . In the general case it follows that
if p is a prime in e and °s is the localization of e at
p (all a/b & k such that a,b e e with b prime to p) then

¢QSL2(e) Q;Ge . Since [\@p =eo , e.8. by unlque factorlzatlon, .
D D - P
& w

Remark: A version of Lemma L8 is true if e 1is any eemmﬁtetive"”
a b+

a[c -

in a,b,c,d with integral coefficients (proof omitted), The "

ring since @ is generically expressible as a polynomial
PPOOf just given works if e is any integral domaln for which
= [\ep (p = maximal ideel}, which includes most of the inter-

esting cases.



Lemma 49: Write ]K =_Gé,.Kd =G N K .
(a} BNK ”(UﬂK)(H"h K) .-

(b)) UN K=l T

to a basis of M ‘made up of weight vectors (see Lemma 18, Cor.

3), must be in K , hence u must also.

(b} If u=TT x, (t ) e UMK, then by induction on
heights, the equatlon X (t) 1+ tX o and the pr1m1t1v1ty N
fOf,.Xa in En -

Theorem 2= Cor“"2)-we get all t é*'* Rl

_ (c ) If ‘h e H/”\K :'1n dlagonal forn as above, then o

oY
#(h) must be in e for each weight ﬂ of the representatlonfgm

definlng G , in fact in e  since the sum of these weights is

- (the sum is 1nvarlant under. W) . .If we write h =TT hy (%)

e

and use what has Just been proved we get -t s e for some’

n>o, wheneei:tife'e by unique factorization.

(d) set s, cp"SLz(e) . By Lemma 48, S, CK, . Since

’ G =

o BQ\J BQYG by Lemma- 43(c) and Y’ C:Sa,’ the reverse inclu—

- Sion follows from. mB N K C:S - Now if x = x (t) (t ) € B fWK,

then ¢ ¢ e and: t :e.e’ by (ay, (b), (e) aaplled to 'Gd

, 80

that X g <XQ‘.(S)" X (e)> = 8 ,mwhence (d)

.
&&%= Let e,k,G and K =G_ be as above., Then G = BK
( T

Twasawa decomposition).



Proof: By Lemmas 43(c) and 49(d), - BwB = BY ....Y5 C BK for
every wW e W , so that G = BK . |

Corollary 1: -Write =K = BwB./) K.~

(b) K, = (BﬂK) ““Yé , with B('\K glven by Lemma 49,

'and on’ the rlgh‘c there SR un:l.queness of express:.on

Remark' : Th:_s norma

whereas the usual one obtalned by 1mbedd1ng G- in G doesn't

Corollary 2: K is generated by the groups K, .

G
- Proof: By Lemma 14-9 and Cor. 1.
. Gorollary 3¢ . LL: 1s A Euclldean domaln, then K :|.s__‘ generated '

by {x (t)]o. € E: t e e} e SR —————

;-Proof. 3ince the corresponding result. holds for SLz(e) ~ this
follows from Lenma 1+9(d) and ‘Cor. 2. |

Bxample: Asswme o= Z, k=& . We get that- Gy i is genereted

by ,{qu‘.(l)} The uormal form in Cor. 1 can be used to extend’ |
Nlelsents ‘theoren (see {1) on p. 96) from 5L, (Z_) to. GrZ whenever
I has rank > 2 , is indecomposable, and has all roots" of equal

~ length (uw, Wardlaw, Thesis, U..C: L. A. 1966). It would be.mice

lf the form couj_d be used $0 handle L. (Z) - J.tself since Nlelsen‘s .

3
- Proof is quite involved. The case of unequal root lengths 1s at .

~Present in poor shape. In analogy with the fact that in the
e s
arlier development K is 'a simple compact group if X 1s in-

de L
SComposable, we have here Every normal subgroup of G'ZL is
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-finite or of finite index if 'Y . is 1ndecomposable and has -

~rank > 2 . The proof 1sn?t easy. | o | _

,Exerc1se. Proyegﬁ 

bove, a prinéipal ideal domain and its quotient field, S a

inite set of inequivalent primes in e , and for each p €S,

=k . Then,for"anY‘ € > 0 there exists

We may assume every tp £e . To see thls write

=p a/b as above. By ch0081ng s > o and ¢ and d so that

—

= CP + db and replac1ng a/b by 'd ; we may “assume b 1.0 T

Lt We then multlply by a sufflclently_hlgh power 01 the product

“of the elements of ”S', we achleve qrfé [ _for all. pE S . If;

"¢ now choose n so that 27" < s, e '='TTS s e = e/p ; then
_ _ L peES . : .
! gp 30 that f Pt gpep = 1 ¥ and flnal*? | E gpeptp )

¢ achieve the reqplrements of the theorem. ;"f

Now given a matrix X =7(aij}' over k , We deflne

ijlp . The folloW1ng propertles are easily verified.



e L e T 7R more

{Approximation theoren for $plit groups)i™ Let.

0,k,3,& be as in 'Theor.em; 19,..G .a-Chevalley group. over. .k ,. and

x. €G for

'Proof- Assume first that all xp are contained in some’

X
p

= j = 1
xd.(tp) with tp ek . If x xa.(t), t £ k , then
|x|q < max ]th, 1 Dbecause xm(t) is an integral polynomial in

t and similarly |xxpl - ll-p < lt. -t I ; 20 that

by (1) and (2) above,” Thﬁs-"'-:'csiir‘?'""r‘esiiit%’f""”‘

.follows from Theorem'lQ in this*case.  In’ ‘the" general case We T n S
hoose a sequence of Yoots Uy,d5,... SO that X =;xP1XP2'“'. |

ith X5 € ch :E‘or all p &€ S .. By the first case there exists

i € %Q,“ S0 that e W S SRS

;pllﬁwaand : xpllp/ixpllp[Kleﬁ“"

ﬂlf pes and |x|qm<l-1f q{ss . W’e set x=xlx2... .

_‘:.Then the conclusion of the theorem holds by_ _(3) above. -

With Theorem 20 available we can now prove:

; %39..13:.“1._2_}_: (Elementary div‘isor theorem): Assume e,k,Q_, K =**Ge
are as before. Let AY be the subset of H defined by:

“h) e 6 for all positive roots G .



(a) G = Kik (Cartan decompoéition).

At component in (a) is uniquely determined 4

is a multlple of a4y for .i = 152,ru.»."

such that al

Proof of theorem: First we reduce the theorem to the local case,

in which e has a single prime, modulo units,‘,{ssumé the result

Let S be'the flnlte set”

ture in this case. Assume X £ G

7 falls to be 1ntegralgw Fortrp s b yoWe
write ep for the local rlng at e in 'e " and deflne ‘Ké and

+ L
Ap in terms of e_-as K “and A" :-are defined for e .. By the .

P
] ' ' 't .
local case of the theorem we may write x = cpapc1 ~with
Sy c; ¢ K, and amé'apf for all’ peS. -8ince-we may choose - T Ll

% so that ﬁ(ap) - is always a pOWer of P. and then ‘replace. all'

3

P bY their pY oduct 3 & dJU_S f 1ng_-:;__“0he cls ~atcC Qrdl}_‘.’l_{:‘,ly’ ’ We may L qiul L
o + e s
assume that . ap is independent of p , is in A , and is inte~ -

gral outside of 3 . We have ‘cpacpx }-= i _ﬁith a.= é? ’fofi
Pes, By_Theorem~2O thereJEXlSpfic1 QT € G .50 uhat R
p < |c | for .p €3 -and__[c[q <1 for g $ s , the

Same equatlons nold for -¢'  and c; 3 and [cac A‘l - l[ <1 for

AL pes . By properties (1}, (2}, (3) of | |, , it is now

Sasily verified that j{c|p <1, |c;[ <1 and [cacjx"l - 1|p-§ i.r



whether p is in 8 or not. Thus c¢ &K, cf e X and

. t o - gy ) ]
cac x. 1 € K, sothat xe KA K as required. The uniqueness in

LTheorem 2L clearly-also"follows from that 1n the localmcase. _nninafT

We now con51der the 1ocal case, p belng “the ‘uniigue- prlme
in e . The proof to follow is: qulte close ‘to-that of .Theorem e

17. Le_t be the'"bubgroup o.f' all e He _such “that: a11 ,u(h)

Lemma 50: For each a e A there exists a uanique H € ﬁ#‘ ,'

the ]Zamodule generated by the elements Ha of the Lie algebra

1 &4
~ .

Eroof: erte ‘a- —g- :
A : "L(HCI. _ 7 7 ELEe T * T e
rla) = TT(cap e Since p(a) is a power of 'p ‘the ¢,
being units, may be omltted, 50 that u(a) = P*(H) with
§ H=3nH . If #' is a second poss1b111ty for H , then
| T . _ o ' 7 :
£ ulH) = g(H) ‘for all'fp ; SO that H ‘= H .

~If-a and H are as above, we' wrlte #ﬁ log a,'a = pH

-fthe Kllllng norm.: Thls norm

‘”.and introduce a norm-; [a[ [H[H .....
is invariant Uﬁder the Weyl group. Now assume x € G . We want
o show x € Ki'K . From the definitions if T = - ©MK then
H= pp | Thus by.Theo:em 18 there exists 'y = ua & KxK with
tel, a e A ;, There‘isfonly’a'finite"numoer of possibilities
for a: if a= pH , then  {g{H)|g a weight in the given rep-

r , . , .
®sentation} is bounded below {(by -n if n -is chosen so that

o

t . o H
e matrix of px is integral, because {p”‘H)} are the
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diagonal entries of y) , and alsoiabove éince the.sum.of-theV
weights is O ,ueo that H is conflned to a bounded reglon of _m
5 . '__the latt:x.ce TR e e T : i T

|a[ . If u:—‘TT'u

. and then mlnlnlze - supp u. subgect to a lexlcographlc orderlngjf;ﬁ@:“fji

_;of the supportsﬁbased on anmorderlng of the roots consistent -

We claim
wl

in one but not in the other‘lles in the seeond)
u=1, Suppose not. We claim (%) u, £ K and a u,2 ¢ K for
@ esupp u . If u, Were not in K , we could move it to the
extreme left in the expressmon for y and then remove 1t - The

new terms lntroduced by thls bhlft would by the relatlons (B)

‘borrespond to rootslhl Rer than " } so that supp T WouldBe
diminished, a contradiction. Similarly a shift to the right )
Yields the second.p;rtrof (#)' Now as in the proof of Theorem "

17 we may conjugate y by a product of w (l)fs (all 1n _K) to 7' L

get u, + 1 for some 81mple @ ; as well as: ( ):R We wrlte o

4= pH ,.choose 'é 50 that H - H - cH is orthogonal to H

¥ e e CHOL— A H! _ C é—"——:f R
Set 8, = P ,a =p ,a= a al “We only know that R

¢ = <H,H € 22, so that this may 1nvolve an. adJunctlon of

1 .
P /2 whloh must eventually be removed If we bear thls 1n mlnd,

_ then after_reduc;ng (%) to the rank 1 caee, exactly as in the

Proof of Theorem 17, what remains to be proved is this=+
e
L el ] |
=Emy 571 : Assume y = ua = , . with 2¢c ¢ Z, t ¢ k,

o)




"t e and tp"zc t e . Then c can be increased by an integer .

by multiplications by elements of K .

Proof ¢ Let t =

‘on the" left by-~i~,;413~

e Ifﬁwe;multlply”fY

that x & KAK . Thus G KAK . Finally every element of A 1is

conjugate to an element of At “under the Weyl group, which is

fully represented in. K (every' W, (l) e K} . Thus G = KA'K

+” ' :
;componenﬁ,_flﬁ__,n

natural homomorohlsm, 1t follows from Lemma h9(o) and Theorem 18

e
Cor. 2 that. nK' = K and from Lemma 49 that “] maps A iso-
morphically onto A¥ . Thus we may assume that G is universal. ' ﬁ
Then G is a direct product of its indecomposable factors so #

that we may also assume that-.G “iS:indecbmposable.iiLetw:x'w*be L
th ith fundamental ‘weight, :Vie:an l:-module with x
hlghest weight, Gi' the corresponding Chevalley group,
G ——> G; the correSpondlng homomorphlsm, and ﬂ thel"

=,Oz'res;)ondlng lowest welght 3Assume nowuthapo,x = cac € G g

o : -I:
With ¢, ¢ e X and a = AT . Set pl(a) = p.-;=. Each welght Hi

i
;
3
{
1
3
i
],

% V. is p; increased by a sum of positive roots, Thus D
3 _ o, _ :
s the smallest integer sucnwthat P nia 13“1ntegre§, i.e..such

| ! BT




1. r .
that »p 1nix is since- m; ¢ and ;¢ are integral, thus is

uniquely determined by x .- Since ”{ﬂi} is a baeie of the latw

_tlce of welghts (!

W Ny ) thls ylelds—the unlqueness 1n1the

1oca1 case and completes the proof of Theorem 21, ?effflswfgtﬁaf:"*“w"

Corollary 1l: If

properly

By the theorem there exlsts aeA fﬁ K s @ # X . Some entry of
‘the diagonal matrix a is nonlntegral so that by unique facto-

‘rization |K'/K| is infinite.

Qzﬁywana,nk~—%up L{pnadlc 1noegers and

Corollary 2=T7if”

;numbers) and the p—adlo topology is used, then K is a maximal

- Compact subgroup of G .

‘Proof: We will use the fact that ;2' is compact (The PTOOf

“is g good exerC1se ) We may assume that G 1s unlversal hLet*

-

k.

‘be_the aloebralc ‘closure of k" and” T the’ oorrespondlng

ChEValley group. rihen G = G f7oL(§mEj"_(Theorem 7 Cor 3}, so
that K = TN SL(V,e) . Since o is compact, so is End(v,e)
hence also is K | the set of solutlons of a systen of polynomlal N

“*Wations since § ‘is an algebralo group, by Theorem 6 : If:jK'_fj~' i

18 subgroup of G contalnlng K properly, there eX1sts
QAeatn ¢! y a £ K, by the theorem. Then {{a" [p In & Z} is | i

Rt bounded so that K" is not ‘compact,
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BK

Remark: We-observe that in this case the decompositions G

and G = KA+K are relative to a maximai compact subgroup jﬁst

it e L T S PP

as_in ‘Theorems-16 and 17.:. Also in this case the closure formula

of Theorem 16, Cor. 7 holds.”

Exercise - (optional)}: Assume that G is a Chevalley groupﬁ0ver;;3;;m_tg
(E,WR or Qp and that K is the correspondlng max1mal compactAi
subgroup dlscussed above.  Prove the commutat1v1tyﬂunder .conv -
tion of the al'eora of functlons on G which are complex—valued,
continuous, with compact support, and invariant under left and
‘right multiplications by elements of K . {Such functions are
Sometimes called zonal functions and are ofyimportance in the

armonlc analy51s of "G .) Hinti prove that there ex1sts an’ -

;antlautomorphlsm '@3 of G such that Px, (t) ﬁyé(t) -for-. a1l e

a and t , that preserves every double coset relative to

-

-y and that ¥ preserves Haar measure. 4 much harder ‘exercise
18 to determine the exact structure of the algebra.
Next we consider a double coset decomposition of K = Gé o -

’itself in the local case. We will use the fél;dﬂiﬂgrresultwiﬁhet;,

first step in the ﬁroof'of Theorem 7.

kﬂg@-ﬁ%‘ Let L be the Lie algebra of G (the original Lie -
dlgebra of S1° with 1te coefficients transferred to. k) y N the
fmmmer of positive roots, and {Y Yz:...,Y } a basis of ;/@1[:2
'-m?de_' UP of products of X 's and H's with ¥y C{>\OX . - For
lx.ECi Write"xYl =3 pj(x)Yj . Thea X € UTHU if and only if
¢y {x) $o. ] |

O )



Theorem 22: Assume thaﬁ o is a local prihcipalAidea'l‘ domain,

that »p 'is its unlque prlme, and that k- and ‘G are as before.

(a)_’
(b) ¢ - U BB

©  weW . I IV
,W in G are chooen 1n

f-o.f‘

U H U' i “18"a subgroup

the

denote the residue class field s/pe, G-;'
.Chev'alley group of the same type as G over o , and B—,H—-,.. .
the usual subgroups. By Theorem 18, Cor. 3 reduction mod p

yields g homomorphlsm T of G onto G-—- S

l”'r_:ons:r.dergﬁG actlng on /\ ﬁuﬁa_rs__
“in Le_mma 52. As 15_ easily seen G acts 1ntegrally relative to ..
-the basis of “¥'s . Now assume mx & UgH«e-U-é- . Then c¢y(nx) ¢ O
bY the lemma applled to Gz , whence cl(xj + 0 and x & UTHU

‘_agaln by the lemma.

(2) Corollarj_(_: “kerim: C UTHY

(3) 5o n"lB;; i.ssume ‘Xxe n lB— . Then x & UTBU 'OY (1) .

Tom th:Ls and x ¢ Ge it follows as in the proof of Theorem 7(b)
that y ¢ UTH U. - and ‘then that - x € By .

e's o
| Z-L) Sompletion of proof: By (3) we have (a). - To get (b) we

Sim - . . . . )

W ply APply = L to the decomposition in -~ G-» relative to Bg .
¥ e '
fieed only rﬂ:nark that a choice as indicated is always possible

lnc
® each y w(1) £G_ . From (b) the equation in (c) easily



, i‘ollows. (Check this.} .&eeooe _ blwul = b'zwuz w_i_;h _ bi c 'BI" L
. -l - - —’l —l o . — p—
uw; € Uy o . Then bI7by = wujuyw - e BIO U, = U , whence .

i
1 |
e Uypp- andlo)

Supuy follows.

-I-ﬂ‘-aﬁa've;:'is_;'cé'niéfd-a-‘a‘r_i.'Iﬁahaﬁ- “subgroup:
. It was introduced in an: 1nterest1ng; paper by Iwahorl and Matsumoto

 Remark: The -Subgroup

(Ptlbl Math. I. H E S. 25 (1965)) There aﬂdecomposn.tlonﬁ" S

The present development :15 completely dlfferent f‘rom thelrs.

There is an 1nterest1ng; connection Petween the decomposition
G, = UBITA_.'BI above and the one, G = \_}(Bw:\rB)(5 , that G_ inherits

as a subgroup of G , namely:. .

;Corollarz Assume wE W “that S(w) “is-as in ~-The0r'em 3-16"'"'Gor';'-f"'-:-‘i-fif

:*.'9 ‘and that :m-'” G --—> G-—' 1s, as’ above, the natural proJectlon.

,U ng B— . Hence
w e3(w) :

if T is a topological field, e.g. O, R or -Qp , then n(BwB)

Then n(BwByr) = EW_B'@'.." and n(BwB} =

- 1s the topological closure of '-‘E(BIWEI)

-';‘P.._rp_p_{? The fZLI’St equatlon follows from ”'n: lB-“ = BIl: proved

- above, VWrite -w- = W Mg ~as 11’1 Lemma 25,lGor. Then = |

| (%) (BWB)e = (Bw_B] (Bw B), by Theorem 18, Cor 1. Now‘
‘_.(BWQ_B) Jx (p) and W, (l) _and is a unlon of B double cosets
“Thyg 7 (Bw B, D B J B= W, B-— = B, G, ,e .. The. rever_qe me@d—""
ity also holds since (Bw B) C BeGa e bﬁr Theorem 18, Cor 1.

From thls, (%), the definition of S(w) , and Lemma 25, the re~

‘I'U.lred expression for ‘JT(BWB)e now follows.
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ippendix. Our purpose is to prove Theorem 23 below which gives

the closure of BwB under very general condltlons. We W1ll

e"'w-'__<_' W

. . ot
i1.e, if w

is a subexpression of some minimal expression
, it is a subexpression of all of then.

b} In (a) the subexpressions for w'  can all be taken to

')7 The relatlon <?’ ;tran51t1ve.

If W E W and u is a 81mple root such that'_wa > O

wle >0) , then:,WwQ >w (resp. ww>wW) . .

w, 2w for all W E w .

: :Which Will»bebproved*in?a*later sectioni :thefequallty Of'”"

?mnnmal expre581ons for (as a product of 81mple reflec-
o, S
) s a consequence of the relatlons:_w1 2-.f_= 2 l"'

Y2 distinet simple. reflectlons, n terms on. each 51de,

" Order Wlw2) :

(b) 1f W' (Wy...w, is an expression'eS'in (b) and

8
not minimal, then two,_ of the terms on the rlght can be

'n(‘.e
Hed by Appendix IT 21.



By (a) and (b).

Tf wa >0 and

{c)
(d)

for W, then - Wy ...

.WW

that WW, >W,and

(e)

Theorem 23

G as a matric group over k

. | 4
tions on w,W
(a)
(b)___;"*' |

: .
W _B C BwB .

=

""°0€fflc.1ent of Yw

wivalent t.o : |

}3_3 not identically O

Y= @.

™ximal then w = w% ’

Wy W

is used.

" are eauivalent.

A= -

2

on Bw B,

oW

S
a}i one for WW
::Lmllarly for the other case
ThlS is proved in Lemma Lt-6

Now e cone to our maln result.

nondlscrete topologlcal fleld and that the topolo
Then the following condi~

= :\ Xw“ :E'or weW . For x e G let
We will show that (a) and (b) are

. _
| ®rms in the orderlng glven by “stms of posibive Toots:’

We use downward induction on N(w ) .

the element of W

127

is a minimal expression .

by— Appendlx II 19, _so

NN

Let WC be’” a"'Chevalley gr'cupf: ASSUl
sy imherited by

-.E‘_Qgi Let Yl be as in Lemma ‘52 and more generally

Cy (x) denote the

(c_)- lS not 1dentlcally O .on” BWB o wTe D
el = (o). We have (t) CLE e n o0xg with Xy ofweight e
LO or a root) @ * -JB- and n X, _c WL (c % 0) if n, repre-
SWmts w oin W in - N/H Thus ) BW.BYi C"kﬁ"Y + 'higher'
. Thus . ¢!

nence also not on BwB , by {a)s

It ‘ohis is

making all positive
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roots negative, and then w = W by {c)} and (%) above. AaAssume

W LA Choose' @ simple so that wr Lo > 0, hence

'N(w w' > N(w j

“BwB \J Bw wB ,' We see that -
CL

r wa_w <, WC“W In the Airst. case. w W _

by Lemma 53(0) and* (_d) In the second case 1f w la. < O then

so that W, w < w._

waw < W byr"__'Le-ni{na 53(d) 'Whi:c -uts'"'us ba?:k; in. the flrst ’cas’e

while if ‘not we may 2 minimal expréession for™ 1_»_1 :_st'art'irig

with W, @and conclude that W < w.

{b)_ ==> (a). By the definitions and the usual calculus of double

Cosets, this is equiValent to: if « ‘is simple, then Bw B =

BY Bw,B . The left s:Lde is contalned in: the rlght an’ al'gebr_a_icj‘?li_'-:_f'"""":—""":‘

group, hence a closed- subsetﬁoi‘ G- Slnce Bw B “contains
% - 1 and the topology on k 1s not discrete, its _closure

Contains 1 , hence also B ) proving the reverse inequality and

completing the proof of ‘the theorem. o

Remark. Tn case k| above 1s G: [R or Q ', the theorem reduces o

to Tesults ootalned earller In case k _ :J.s 1nf1n1te and the :

CheValley (unpubllshed). Cur proof la qulte dlfferent i‘rom hlS. "

E}m\i_s__e,: (a) If 'w e W . and G 1s a EOSlthe root such that :

. ,

“>0, prove that wwa > W - (compare this with Lemma 53(d Y,

A4 conversely if w' < w then (%) there exists a sequ_e_n_ce_of 5

POsitiVe L K ' T Tk
roots G Gy aae 0 such th_at____l‘f ._ Wy = Wai _ the_r_l. . .




- ?.
w Wl“‘w' lu > 0 for all i and- W Wl*"wr'

and (*) . are equivalent.

(b) g also eeuive "
'there ex1sts a. .wpermutat:l.on 'n:
is a sum of p051t1ve roots: for every

alent tos - of the positive roots™

such that w‘nm n_waJ

>0 § or even tot _a_sum of p081t1ve roots.,




Thé'orders of the finite Chevéllegfgroups;'iPréséntlj weJﬁill

Theorem1241 Let W be a. flnlte reflectlon group on a real spacerll

V of . flnlte dlmen51onf

‘S'”the algebraio£ Polynom1als o~V
I(S) the subalgebra Of"anarlan : . B

(a) I(S) is generated by 4 hdﬁgéehggﬁéyéigéﬁraiéaily iﬁfﬂ%;;?“

. ,Jdependent elementsr*";"“m

.“(biuiThe degreeh_of che: l‘fi_

determined and satlsfy ' =(d

5'- l) = N.; the numberrof
J ,

positive roots.

(¢) For the irreducible Weyl groups the d;'s ‘are as follows:

'”"W:~Jlii;di'3- g

T Ager w2558, i ," #:L
Bys G| 24 hyevey2t

'Dé f 2, h,...,2£ - 2,4

Ee 2, .5,-6 8~.9 12

~*E7'- 2, 6, 8, 10 12, 1h 18 .
""_j;:“ ~E8 2, 8, 12 1h 18 20 2A, 30 - i
F, 2,6, 8 12
”Gé 2, 6

Our main-goal isd

-EEQEEE_EE_ {a) ‘Let G be a universal Chevalley group ovéf.é

field .k of q elements and the .di's as. in Theorem 24; _Theﬁ
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| d.
‘16| = " TT (@ * - 1) with N = Z(d, - 1) = the number of positive
‘roots. ' '

{b) If -G 1sls1mple»1nstead, then we: have:x"

RPN S
]

‘-.lHom(Ll/L.;'k*){74~g1Ven?as’followsrr

G-l Ay .l; B%’Cﬂ':‘;bTp@;i;l1;;;ﬁés_%“J S

o

ERemark: We see that'the'groups of type B, and” C, have the
%eme order. If 4 =2 the root systems are isomorphic so the
}groups are isomorphic. We will show later that if + >3 the

ﬁfoups are isomorphie ifmand“only if' q _is even.,

Theorem 26: Let W and the d;'s be as in Theorem 24 and t

: d .
n indeterminate. Then I tN(w) TT (l /(l - t) .
weW

We show first that Theorem 25 is.a consequence of Theorems

2L and 26.

)¢z qN(W’ .

Gl =q¥(q - 1 .
’ WE

S wew
-8nd Bup = UHWUw with unlqueness “of expre351on. Hence

jiGl |UllH] T IUW{ . Now by Corollary 1 to the proposition of =
‘ weW '

U} = qN and |U | = qN(W) . By Lemma 28, ]H[ (q - l) .

£
£
5
54
e
44
-y
‘?E
i
:
i
H

Llemma 54: If G is as in Theorem 25(a) them . = o

-23921_ Recall that by Theorems h and h y, G=\/ BWB (disjoint).

R

st




characteristic of k .

N(w)

Prccf p] ‘ unless

1f w—l,p{’z (W)

'A,i; Herew W =2 S&+1 permutlng

“functions Wy yeoosly,q -such that o = 2 () = 0 . 1In this case

the elementary symmetric polynomials o3,...,0;,; are invariant

g and generate all other polynomlals invariant. under W

~ Types B, C{. Here W acts relatlve to a sul‘cable baSlS

efitary symmetric polynomlals in W ]2_, ces ,wf are invariant and
genezc'awc,e all other polynomlals 1nvar1ant under WL

T ,
&i Here only an' even number of s:l.gn changes can occur

T

l*jl’--- W, by all permu’oat:.ons and sign- changes.? Here t.he ele-

% Type Ayt Here W= S,Hl and "N{(w) is the number

Corollary: U is a p-Sylow éﬁbgroup of G, if .p denotes the = -

“¥ 1 linear T

TR L e T

US we cap rep lace the last of the 1nvar1ants for Bw wf...wz L
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of inversions in the sequence (w(1l),...,w(¢ + 1)) .: If we write

o) = 2 N0 gnen by (t) = B (e)(L v+ F e 8T

WEW—S%+1
as- we -see- by con51der1ng separately the % + 2_mvalues that

(@ + 2) can take on. Hence the formula

follows by induction.

‘Exercise: Prove. the correspondlng formulaa for ty

‘D, .. Here-the Droof 1s 51m11ar the induction” ateo belng a: blt

‘more complicated.
Part (a) of Theorem 24 follows from:

heorem 27: Let G be a finite group of automorphisms of a real

ector space V of finite ‘dimension ¢ and I. thlralgebra of

°1ynom1als on 'V “invariant under . G o Then-‘—o

(a) If G is generated by reflections, then I is generated

(b) Conversely, if I is generated by +4 - algebraically

lndependent homogeneous elements (and 1) then G iis;generatedf

Let 4 =2 and V have coordinates x,y . If
¥ id.} , then G is not a reflection group. I is generated

and y2 and no smaller number of,elements suffices. - -

Po
lynomlals on V, s the ideal in S generated by the homoge—

8¢y
us Slements of I of positive degree, and Av stand for



average over G (i;e. ‘AVP==-[G]fl % gP)y .
S _ geG

of Math 1955. )

Proof of (a): (Chevalley,

Am. 48

(1) Assume Ilﬂ

is not in the ideal in I generated by the others and that m@:_m:li

Py Py,...  are homogeneous:. S-0f . 8. such that E P, ;I

: Ihal'?l £ Séf;i?

ideal in S generated byf‘IZ;:..
1= X RiI. Tor some R2,... £ S so that Il = AvIl
.)Ii belongs to the ideal in I generated by 12,...

# contradiction. Hence -ii: does not belong to the 1deal 1n S

\--generated by 1‘2,

We now prove"(l) by 1nductlon on d = deg Pi CIf 4 = O,
=0 e Sé . Assume d > O and let g € G be a reflection in
F hyperplane L = 0 . Then for each i, L](P. - gP.) . - Hence
EHPi - gPi)fL)Il = 0,80 by -the 1nductlon assumptlon R Weeeew
Pl-gp €5, , i.er Py

i

lm, gPl (mod S ) Slnce,TGj is generated ,{;;1,;]

by reflection;,ﬁ.,.tjh_l *holds for.”all 8. 3. and hence
N

1= AVPl (mod So) . But AvPl.e S ‘so Pl £ So .

We choose a minimal finite basis I,...,I, for §  formed
:°f1kmmgeneous elements of I .. Such a basis exists by Hilbert's,

-Theorem
Himan s SR L - o -

(2) Theh-iifs are algebraically independent.

Pp ' .
”“4¥E; If the Ii are not algebraically independent, let

(Il"--,In) = 0 be a nontrivial relation with all monomials in



the Ii's of the same minimal degree 1n the urderlylng coordinates
KyseeesXy Let H; = bH(Il, ..,I /BI . By the choice of H

7:;Choose the notatloneso_that

not ell.___ _Hi
{H , . 4 ’H : X
I generated by ell the ; i”r'

j m+l,|.l’n

where Y, T I

we have 0= 5H/éxk ‘1 H 61 /bx
i=l
om n SN
= iEl Hi(in/blk_+ j=§%l Vg bIj/bxk) . By (1) cIl/ Xy
n ' ' ' : : o
+ V. 1 bI./bxk*e S . Multiplying by Xy summing_over k ,
_m+l b . B s
B u81ng BEuler's formula, and wrltlng dJ'— deg IJ' we-. get : |
SRS « S r""' R
o4 I, o+ E LS o z—~x I where*?f”““belongs to—the 1deal ;ff-
VL gemed 3’1‘ 57 i

in S generated by the X, .- By homogeneity 4y = 0 . Thus ';l
is in the ideal generated by I,...,I, , & contradiction.
(3) The I;'s 'generate .1 as an algebra.

'Ezgggi ASSﬁme P € I RE homogeneous of p051t1ve degree Then
P=7y PiIi’_Ei's-Szﬁ_ By averaglng we can assume. thau each |
P; eI, Each Pi“ is of degree less than the degree of P ;'se
by indﬁction on its degree P 1is a_polynom;al-ln the ‘Iiﬁs . i

() n=+4 ..

Ezeggi By (2} n < i . - By Galois ﬁheory [R(x) is of finite
Index in ﬁ%(xl, X550 s%,) 5 hence has transcendence degree *

~over R, whence n>+ .



By (2), (3) and (&) (a) holds.

- Proof of (b) (Todd

Let” I L

I of degrees dl

- AV det(l - gt) Loinas ,k,,',l i
"E'EL::' - : .

Proof: Let -ei;...;s£‘3bé”the eigénvalues of g and'"xl,...,x¢~7

-1

‘the corresponding eigenfunctions. Then det(l - gt)

TT (1 + €, ;0. 82 2. S The coefficient of "t is

X ,'1 e.” the trace of g actlng on, the L T
Space of homogeneous‘polynomlals“in,—iijlm.,x; ,Of degree _n PN

p p e . P
since the monomlals xil 22... form a basis for thls space. By

éVeraglng we get the:dimension of”the-spaceﬂof invariant'homogeneous
Polynomials of degree n . This dimension is the number'of mono-~

. Py P e B | I :
Mals 111122--o  of degree ‘n i e., _the number of-solutions of. =77

_ *1;8;5“thegcoefflciéntfof?ft?_ in

and _Z(di_— 1) =N = nﬁmber of refléctions.

det(l - gt) = (L-%) if g=1,

-]

11 - tlr (L++t) if g is a

reflection,

a polynomlal not lelSlble by

(1 - t)é -1 btherW1se.
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Substituting this in {5) and multiplying by (1 - t)%“,.we have
TT(@+t+ oo vt [Gl'l 1+ N(1-t)/(1+c) + (1-t)P(t))

where- P (t) - 1s.‘_f""" . _.;—,.l_n-, _Setting .t =1 --'vwe'-' ge.t»

TT d 1G| . ”leferentlatlng and. settlng t l We. get
(T d )2(=( ..1)/2) = [G["l(-~T/2) , so. % (d._...__l)._._

L !7) Let G befthe subgroup <:>fi-'~ G generated by.{tsiiéflec-~¥5?

. 1 S R = .1 -
tions. Thengggﬁ G and hence”;G 1s a reflectlon group*-

Proof: Let I;, d; , and N refer to G . The Ii can be-
-expressed as polynomials in the I; with the determinant of the

corresponding Jacoblan not O . Hence after a rearrangement of

the bI /az % O for all i . Hence d; > d B But
i, so, again by (6), 'l Gl TT d TT E' ___1_(_}_ r l 5 e T

'Corolla;y:' The degrees dy, dé;... above are uniquely determined

 and satisfy the equations (6).
Thus Theoren 2[;,(}3) holds . BRI T

Exercise:' For each reflectlon in -G 'choose,a.rOotj”a;;afTheng*

LT S g
3 TT(I up to multlpllcatlon by 3-nonzero number.;ﬁﬁ_
(Xl y XZ g v )

d

Remark: The theorem remains true if R is replaced by any field .
of characterlstlc .O and areflection" is replaced by “automorphlsm
of V with flxed p01nt set a hyperplane'

For the proof of Theorem 24{c) (determination of the. d;).

We use:
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Proposition: Let- G"and the;'di ‘be as in Thebfem-27 and

W o= Wi ..w% ) the oroduct of the 51mple reflectlons (relatlve to

{a) ,N
R

i(c) If the elgenvalues of_m_ - dl

then {mi + l}. [d .

Proof ¢ This was first proved by Coxeter (Duke Mégg; J. 1951},
case by case, using the cla851f1catlon theory.. For a proof not

u51ng the cla881flcatlon theory “see Stelnberg, oA MLS, 1959, fOr_.f -

(a) and~(b}ﬁand:Celeman—nggf__ : 1 ;}(60 u81ng (a)_ W‘”m;i
Cand (b).
This can be used to determlne the di"for-all the Chevalleyl
groups. As an example we determlne the d.i kfof' Eg'. Here
= g, N=120 , so. by (a) 30 Slnce - acts ratlonally

{ ](n, 30)- } are all elgenvalues .;olnce m(BO)

these are all the eigenvalues. ~ Hence" theikdiigare;:,ii;;it?.
1, 7,1, 13, 17, 19, 23, 29 all increased by 1, as llS'bed
Previously. The proofs for G2 .and Fh' are exactly the_same
E6 and ‘E7 req@ife further_argument._wrbxr " '

- Exercise: Argue further.

EE@QEE_ The d,'s also enter into the following results, related

Yo Theorem 24:



(a) Let li be the orlglnal Lle algebra, k a field of charac-.

teristic 0 , G the correspondlng ad301nt Chevalley group The

- algebra-of polynomlalsvon—Q};f 1nvar1ant under S

is. generated

'by < algebralcally 1ndependent elements of degree dl""’d%'

the d 's as above.

ThlS is: oroved by shOW1ng that under restrlctlon from Ji tq_“_

‘onto the W-lnvarlant polynomlals on k}F'? Thercorrespondlng

ﬂ$ the G—lnva_lant'polynomlals on,

result for the unlversal enveloping algebra of xc then follows
_eaolly ‘
(b) If G acts ‘on the exterior algebra on ,f_, the algebra of

1nvar1ants 1s an“exterlor-algebra generated by 4 independent__l.5

- homogeneous elements of degreesnv

This is more dlfflcult It 1mplles that the Poincaré polyno—

mial (whose coefflclents are the Bettl numbers) ‘of the correspond—

ing compact semlslmple Lie group (the group K constructed from
o 2d;-1 I L e -
G:1n§8)1s T—(l+tl).

"“”1—“_—~"Proof~ofmTheorem%-6v~~{Solomon: JournélTOf ALSEEEE 1966 )

~Let TT be the set of Slmple roots. 1f n(: TT let W
be the subgroup generated by all W, AR kR ”

(1) If W s,W . then' W permutes the p051t1ve roots with

Support not in w .

Proof: 1If B is a positive root and supp B m then

B = d§TT e&d with some e > 0, a g . Now:wp 1is B plus a
[ . .




vector with support in ‘n 5

(b)
(a)

1s mlnlmal.

Proof: For any W €

1 1
Hence W € Wﬂ 80 that

In (@) New) =

hence its coefficient of a.

N(wr) + N(w“):}

W let w € W W be such that

WaWW

is positive, |

N(w

Then wa>0 for all ~a-en by Appendlx II 19(a )

Mﬂ)

,l;W1th w S u . ;i;“_and w~gmu”ws W~n-~Then~mw*w~u
Hence w w?u""ln'> 0. Now w (=m) <O s0 W uj" n  has support
in m . Hence wwu i Cn so by Appendix:iI.23 (applied to
W"u""1.= 1 . Hence w = ut,,w” =u .
{(b) foll&ws fiom“(a)*andf(l), L
(&) Let W(t) = § {{N(W),"n\rﬁ-(ﬁ)”? £ N(W)

3 (-:L “N(t)/u (t) = £V ’

nCTT

rSots and (-1)" = (-1)!™

Prooff We have, by (3},

the contribution of the te

Wh ere =
CW Y

vall
w0

(-1 .

W(e)/i(6) =

WEW
14

- tN(w)

weW :
rm for W to the sum in (4) is

If w keeps positive exactly _k elements:

-1s the number of p051t1ve

ct

Then " L amaTEE

fLTherefOreﬁ

N(w)




of T] then o= {a-1F- 0 if k£ O -

w o _ O
{H 1 1f k=0.

'Therefore the’ only contrlbutlon 13 made by W “,~the elementrof -

W Wthh makes all p051t1ve roots negatlve, 80" the Sum. 1n (h):1

equal to tN“ as requlred, ot

:'i‘_Corolléry.: z(-l |w[/{w |}[%;;""“":*'MT"JA"

- for. all B €. TTV

. Exercise: Deduce from (h) that 1f o and "B arejgompleﬁéutary?f”’i

subsets of [ then I (-1)“‘“/w (t) = & (—l)“"B/Wﬂ(t"l) .
e B
‘Set D= {ve V](v, a) >0 for all o € TT} , and for each

1tC:TT'set D ‘{v e V[(v a) 0 for all a € . (v, B} > O

;(5) The follOW1ng subgroups of W are equal_ffw“

(b) The stabilizer of D, . o
(c) The p01nt stablllzer of D

(d} The stablllzer of any. pomnt of D PRI

Proof : (a) C (b) because © is orthogonal to D . (b);Ci(c)' S

because D is a fundamental domaln for W by kppendlx III.33.

Clearly (c) C:(d) . (d)(: (a) by Appendlx III 32

(6) In the complex cut on real k~spaca by a flnlte number
of hyperplanes let n; Dbe ‘the number of i-cells. Then
g_i__k

(<1)*n; = ( 1)

Progf: This follows from Fulerts formula, but may be proved
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~directly by induction. In fact, if an extra_hy‘perp-lane_ H 1s

added to the conflguratlon, each or::.g;lnal i—cell cut in two by

tWo parts from each other, so° that Z(--l)in f"r.‘:eiﬁéirl'si;?ﬁnc'he'nge’dff
(7) In the complex : K cut_ “from V _by-f__the"‘"ﬁf.‘eﬁf_leéﬁin_g hyper-
i_':planes let n (w (n C -ﬂ-: i e W e number of cells W """ -

icongruent to _,“1?7; and '-;w—flxed . Then

Proof: Each cell of K "is“ W‘-c-ongruent to exactly one Dn: 'By
{5} every cell fixed by w lies in V_ (V, = {v e V|w = v}) .
,Applylng (6) to V... and u31ng dim D = L - [Tl'.l we get

_ Lok

(-1)"n_ (W) = ('-1)__.;
“omal, so that 1ts poss"lble elgen-values in . V are

R where _ k = d:Lm VW ‘But W

Pairs of conjugate complex numbers. Hence (-l)§ - = det W .
If K is a character on W e'subgreup of W § tlhlen_' '}(W-
denotes the induced character defined by (*) KW

= |’§!\T1|“':L 5 X(xwx l) . (See, .g., -W Felt ‘---Characters of
xel R : S _ L
”l Ta - - R - T w_, 7___":___:_—__“‘_’-—7_ T "‘,,.\':f,':ff’r'_'ﬁ:j'::-',f..‘..'_'fi"::-_-. o ‘-" -“f,'-':"".-'"-,--—"—‘—."
ety : | em e e R

flnlte grougs )
o (8) 'Let X vea chai‘agter on W and X (X!W (ﬂ c-n
-Then T ('l)nk-;(w) = X(W)., ‘dei: w for.all w e W ; e

Froof: Assume first that \/(5 1. Now 'xwx“l-;e_zw"n-. 'i_.f--a\nd‘ only -~
-1 ‘ '

£ xwx ."i"ixes D_ (by (5)) which happens if and only if w

vl
fixes x."lD,n_ . Therefore lﬂ(w) = nﬂ(w) by (%) . By (7) this

8ives the result for X=1 . If X is any character then




}an so {8) holds. |
(9) Let M be a finite dimensional real W-moduie, I, (Mi

}be the subsPace of W, -1nvar1ants, and I(M) be. the. space of .- ‘4:“555

W-skew—lnvarlants (1 e. I(M) {m & Mjwm =_(det w)m-~for all w s W})

Then Z:. (-1)"dim I_(M) = dim T(M) . L E i

Proof: In (8) take )( to be. the. characten{of

:__W g W ,'and use. (p) . Jf_u,,, ';"f__
'(lO) If p-= TTYL, the product of the p051t1ve roots, then

p is skew and p divides every skew polynomial on. V..

Proof: We have w,p = = (det'wa)p if a is a simple root by

Appendlx I ll . Slnce W is generated by 51mple reflectlons p m

is skew.  If ~f 'is skew and - a’-a root then g £is (det W, )f ;;f{?;ff
"so "ajf . By unigue factorlzatlon p]f .
(llj Let P(t) TT(ZL - t. )/(1 - t) ‘and for = g TT et

{dwi} and P be defined for WjT as {di} and P are for W . |

 Then -(-al)“P(t /P (£) =t . |
Proof: We must show (%) Z_ (-1 “TT(l t “l  ’Q:l;@ﬁTmm"
o 4. o1 m;TT o ;fuh=m¢;;”‘w
=t TT(]- -t l) . Let S = Z Sk be the algebra of po]_ynomla]_s
4 . =
on V , graded as usual. Ais in 5) of the proof of Theorem 27
the coefficient of tX on the left hand side of (= )

Z (-l)ndim Iﬂ(Sk) . S8imilarly, using (lO), the COfolClent of

tK on the-right hand side of (*) is dim I(Sk) . These are equal
by (9). - | '



o (12) Pr'oof“"o-f 'Theorf_er__nl_éé.i' .{fi-ﬁ.?eg-write (11) as .-
- Thee - 2 ‘("—l)’_‘/Pn(t_‘-), and (1) as

BE (-1)”)/W(t,),__. EAE
‘lm, - Ple)




§10 " Isomorphisms and automorphisms.V In this section we discuss

the 1somorphlsms and automorphlsms of Chevalley groups over per-

m:ffect fields. - ThlS assumptlon off es£ecﬁﬁésﬁjﬁ§%n9§s§;?ict}xg"'

' necessary but it s
We begin by prOV1ng the ex1stence of - certaln automorphlsms related .ml

the underlylng root systems.

~ to the;ex;spegge”of-symmetrles of

| Lemma : cee e . - B "
not all roots of one length Let & =

the abstract system obtained by inversion. Then:?

ale

(a) T is a root system.

(b) Under the map M%_ long roots are napped onto short roots

;wand vlce versa.} Further, angles and 31mple systems of

roots are preserved
(¢} If p =.(do,ao)/(ﬁo,ﬁo) W1th ao long, Forishort then
the map o -—> p&* if a 1is long, ' |

N e dif: a -is short, .. . _

extends to a homothety

. Proof: (a) ‘holds s1nee <d B > <ﬁ > (b) and ( )‘are clear.
The root system ¥ obtained in this way from Z is called
the root system dual to L -

Exercise: Let @ =T ni@i be a root exPressed in terms of ‘the

simple ones. Prove that & is long if and only if plng when~
ever a, 1is short.

Examples: (a) For n = 3, B, end c, are dual to each other.

e s s B



