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In this paper we describe the connected components of L(G), the partially ordered set
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1. Introduction

There is a covariant functor from the category of finite posets to the category of
finite simplicial complexes. In finite group theory, this procedure has been applied
to the study of posets of subgroups ordered by inclusion (see [4, 5, 1, 2]).

The coset poset C(G) of a finite groupG is the poset of all left cosets of all proper
subgroups of G, ordered by inclusion. It was first introduced by K. S. Brown [2] in
connection with the probabilistic zeta function P (G, s). The question of the simply
connectivity of C(G) is still open, but there are some results in [6]. In particular
in [6] some relations between the coset poset and the poset L(G) of all non-trivial
proper subgroups of G have been proved.

In this paper we answer question 6.9 of [6], namely when a simple group has a
connected subgroup poset. We characterize the finite groups in which L(G) is not
connected, describe its connected components L1, . . . ,Lr and the action of G by
conjugation on these components. In particular we prove that every simple group
has a connected subgroup poset.

We denote by p, q two prime numbers. We denote by Cp the cyclic group of
order p.
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Proposition 1.1. If G is a finite group, then L(G) is not connected if and only if
G is isomorphic to one of the following :

(i) G ∼= Cp × Cq, L1 = {Cp} and L2 = {Cq}, p 6= q;
(ii) G ∼= Cp × Cp and Li = {Wi}, i = 1, . . . , p+ 1 where Wi are the subgroups of

order p of G; or
(iii) G has a unique minimal normal subgroup N, G is a Frobenius group, with

Frobenius kernel N and a cyclic Frobenius complement H of order p. The
connected components of L(G) are L1 = L(N) ∪ {N} and Li = {Hg} for
g ∈ N, i = 2, . . . , |N |+ 1.

Moreover G acts by conjugation on the connected components of L(G). The
action is trivial in cases (i) and (ii), while in case (iii), G fixes L1 and transitively
permutes the other components.

2. The Proof

Let L(G) be the set of all proper non-trivial subgroups of a finite group G, ordered
by inclusion. We define the following relation in L(G): R ∼ S if, for some n ∈ N,
there exist R0, R1, . . . , Rn such that R0 = R, Rn = S and either Ri ≤ Ri+1 or
Ri ≥ Ri+1. This is an equivalence relation. A connected component of L(G) is
an equivalence class for the relation ∼. We denote by L1, . . . ,Lr the connected
components of L(G). We observe that G acts by conjugation on L(G).

We consider separately the cases in which G is simple or not. We first consider
the case in which G is not a simple group, showing that G has exactly the structure
described in Proposition 1.1. Then we prove that if G is a simple group, then L(G)
is connected.

Lemma 2.1. If G is a finite non-simple group, then one of the three conclusions
of Proposition 1.1 holds.

Proof. If G is one of the groups described in (i), (ii), (iii), then it is easily seen
that L(G) is not connected.

We suppose that L(G) is not connected. Let L1 and L2 be two distinct connected
components of L(G). Let N be a proper normal subgroup of G. We can suppose
that N is in L1. Then every H ∈ L2 is a complement for N in G. It follows that
H is cyclic of prime order, for any H ∈ L2. Since L2 is connected, this implies that
L2 = {H}. We observe that H acts on N and every proper H-invariant subgroup
of N is trivial. Since H fixes a q-Sylow subgroup of N , N is an elementary abelian
q-group, with q a prime. Moreover we have either CN (H) = {1} or CN (H) = N . If
CN (H) = N , then G is abelian and N is also a cyclic group of order q, q a prime
not necessarily distinct from p. Therefore G ∼= Cp × Cq and we obtain case (i) or
(ii), according to whether p = q or p 6= q. Finally suppose that CN (H) = {1}. Then
G is a Frobenius group, and we get (iii).
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We can now suppose that G is a simple group, but first we begin with a general
lemma concerning the 2-subgroups of G.

Lemma 2.2. Let G be a finite group of even order. If there exist two 2-subgroups
which are not connected in L(G), then G is isomorphic to D2q, the dihedral group
of order 2q, with q a prime. In particular, G is not a simple group.

Proof. Let P , Q be two different 2-subgroups and x ∈ P , y ∈ Q be involutions.
We consider the subgroup D = 〈x, y〉. H is a dihedral group. If D < G, then

P ≥ 〈x〉 ≤ D ≥ 〈y〉 ≤ Q ,

which proves that P and Q lie in the same connected component of L(G). Hence
G = D is a dihedral group. Therefore by Lemma 2.1 either G is an elementary
abelian group of order 4, that is G ∼= D4, or G is a Frobenius group with kernel N
and complement H = 〈x〉 of order 2. Since G is dihedral and N is minimal normal
in G, N is cyclic of order q for some odd prime q, completing the proof.

We now restrict to the simple group case and refer to [3] for the notation on
simple groups of Lie type.

We define the graph Γ∗(G) as follows: the set of vertices of Γ∗(G) is the set
of primes dividing |G| and vertices p and q are joined when there exists a proper
subgroup of G of order divisible by pq.

Proposition 2.1. Let G be a finite simple group. Then L(G) is connected.

Proof. We may assume that G is a non-abelian simple group. It is enough to prove
that for any x, y ∈ G, x, y of prime order we have that 〈x〉 and 〈y〉 lie in the same
connected component of L(G). By Lemma 2.2, we can also reduce to the case in
which |x| = 2 and |y| = p, p an odd prime.

If Γ∗(G) is connected, then L(G) is connected. In fact if (2, p) is an edge in
Γ∗(G), then there exist a subgroup H of order divisible by 2p, a Sylow 2-subgroup
D, and a Sylow p-subgroup P such that H∩P and H∩D are non-trivial subgroups
of H . By Sylow’s Theorem, there exist g, h ∈ G with y ∈ P g and x ∈ Dh. Then by
Lemma 2.2, we have

〈y〉 ≤ P g ≥ (H ∩ P )g ≤ Hg ≥ (H ∩D)g ≤ Dg ∼ Dh ≥ 〈x〉 .

If p is connected to 2 in Γ∗(G), we can prove similarly that 〈x〉 ∼ 〈y〉, using induction
on the shortest chain connecting p to 2.

By the preceding remark, we may assume that Γ∗(G) is not connected and let
p be the smallest prime not connected to 2. Then p is not connected to r for any
prime r < p. Let P be a Sylow p-subgroup of G. If P is cyclic, by Burnside’s
Transfer Theorem, NG(P ) > CG(P ) and therefore there must exist a prime r

dividing |NG(P )/CG(P )| with r < p, a contradiction. Hence P is not cyclic.
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If G is a sporadic group, then [3, Tables 5.3] shows that whenever p2 divides
|G|, p divides |CG(z)| for some involution z of G. Hence p is connected to 2, a
contradiction.

If G = An, then G has a proper subgroup isomorphic to A4. Hence p is not
connected to 3 and so p ≥ n− 2. But then P is cyclic, a contradiction.

Finally suppose that G is a simple group of Lie type in characteristic r of level rm

(see [3, definition 2.1.9]) If G = PSL(2, rm), then Γ∗(G) is connected by Dickson’s
Theorem ([3, 6.5.1]). If G is not a Suzuki group, then G has a subgroup isomorphic
to PSL(2, rm) or SL(2, rm). Therefore any prime divisor of r(r2m−1) is connected
to 2. In particular, p is not connected to r and p does not divide rm − 1 or rm + 1.
Hence p does not divide the canonical part of the Schur multiplier of G ([3, Table
6.1.2]).

We now argue that G contains an element of order pr, which will contradict the
fact that p is not connected to r. For this argument, by the above, we may replace
G by Ĝ, where Z(Ĝ) is the canonical part of the Schur multiplier of G, and then
regard Ĝ as a subgroup of Ḡ, the simply connected algebraic group associated with
Ĝ. Since P is not cyclic, Ḡ contains an elementary abelian subgroup E of order p2.
By Steinberg [3, 4.1.16], E lies in a maximal torus of Ĝ. Then by [3, 4.2.5], there
exists a non-identity element x of E such that r divides |CG(x)|, completing the
proof.
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[4] C. Kratzer and J. Thévenaz, Type d’homotopie des treillis et treillis des sous-groupes
d’un groupe fini, Comm. Math. Helv. 60 (1985) 85–106.

[5] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group,
Adv. in Math. 28 (1978) 101–128.

[6] D. Ramras, Connectivity of the coset poset and the subgroup poset of a group,
preprint.


