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Entropy waves, the zig-zag graph product, 
and new constant-degree expanders 

By OMER REINGOLD, SALIL VADHAN, and Avi WIGDERSON* 

Abstract 

The main contribution of this work is a new type of graph product, which 
we call the zig-zag product. Taking a product of a large graph with a small 

graph, the resulting graph inherits (roughly) its size from the large one, its 

degree from the small one, and its expansion properties from both! Iteration 

yields simple explicit constructions of constant-degree expanders of arbitrary 
size, starting from one constant-size expander. 

Crucial to our intuition (and simple analysis) of the properties of this 

graph product is the view of expanders as functions which act as "entropy 
wave" propagators -they transform probability distributions in which en- 

tropy is concentrated in one area to distributions where that concentration is 

dissipated. In these terms, the graph product affords the constructive interfer- 
ence of two such waves. 

Subsequent work [ALWO1], [MWO1] relates the zig-zag product of graphs 
to the standard semidirect product of groups, leading to new results and con- 
structions on expanding Cayley graphs. 
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2. Preliminaries 
2.1. Graphs and rotations 
2.2. Eigenvalues and expansions 
2.3. Squaring and tensoring 

3. The zig-zag product and the expander construction 
3.1. The zig-zag graph product 
3.2. The recursion 

4. Analysis of the zig-zag product 
4.1. The basic eigenvalue bound 
4.2. Improved analysis of the eigenvalue 

5. The base graph 
5.1. The affine plane 
5.2. Low-degree polynomials 

6. Variants on the zig-zag theme 
6.1. A "derandomized" zig-zag product 
6.2. The replacement product 

1. Introduction 

1.1. Expander graphs. Expanders are graphs which are sparse but never- 
theless highly connected. A precise definition will be given in the next section, 
but here we informally list some properties of such graphs (which are equivalent 
when formally stated and can serve as alternate definitions) 

* The graph satisfies "strong" isoperimetric inequalities. 

* Every set of vertices has "many" neighbors. 

* Every cut has "many" edges crossing it. 

* A random walk on the graph converges quickly to the stationary distri- 
bution. 

Expander graphs have been used to address many fundamental prob- 
lems in computer science, on topics including network design (e.g. [Pip87], 
[PY82], [AKS83]), complexity theory ([Val77], [Sip88], [Urq87]), derandomiza- 
tion ([NN93], [INW94], [IW97]), coding theory ([SS96], [Spi96]), and cryptog- 
raphy ([GILVZ90]). Expander graphs have also found some applications in 
various areas of pure mathematics [KR83], [Lub94], [GroOO], [LPO1]. 

Standard probabilistic arguments ([Pin73]) show that almost every constant- 

degree (> 3) graph is an expander. However, explicit and efficient construction 
of such graphs (which is required by most of the computer science applications 
above) seems to be much harder. This problem leads to an exciting and exten- 
sive body of research, developed mainly by mathematicians intrigued by this 

computer science challenge. 
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Most of this work was guided by the algebraic characterization of ex- 

panders, developed in [Tan84], [AM85], [Alo86a]. They showed the intimate 
relation of (appropriate quantitative versions of) all the properties above to the 

spectral gap in the adjacency matrix (or, almost equivalently, the Laplacian) 
of the graph. Using it, expanders can be defined as follows: An infinite family 
G, of D-regular graphs is an expander family if for all n the second largest 
(in absolute value) eigenvalue of the adjacency matrix of Gn is bounded uni- 

formly from above by the same A < D. (Note that the degree D is independent 
of n; this is what we mean by "constant degree.")1 

This algebraic definition naturally led researchers to consider algebraic 
constructions, where this eigenvalue can be estimated. The celebrated sequence 
of papers [Mar73], [GG81], [AM85], [AGM87], [JM87], [LPS88], [Mar88], 
[Mor94] provided such constant-degree expanders. All these graphs are very 
simple to describe: given the name of a vertex (in binary), its neighbors can 
be computed in polynomial time (or even logarithmic space). This level of 

explicitness is essential for many of the applications. However, the analysis 
bounding the eigenvalue is quite sophisticated (and often based on deep math- 
ematical results). Thus, it is hard to intuitively understand why these graphs 
are expanders. 

A deviation from this path was taken in [Ajt94], where a combinatorial 
construction of cubic expanders was proposed. It starts with an arbitrary cubic 
N-vertex graph and applies a sequence of polynomially many local operations 
which gradually increase the girth and turn it into an expander. However, 
the resulting graphs do not have any simply described form, and they lack 
the explicitness level (and hence applicability) of the algebraic constructions 
mentioned above. 

In this work, we give a simple, combinatorial construction of constant- 

degree expander graphs. Moreover, the analysis proving expansion (via the 
second eigenvalue) is as simple and follows a clear intuition. The construction 
is iterative, and needs as a basic building block a single, almost arbitrary ex- 

pander of constant size. The parameters required from it can be easily obtained 
explicitly, but exhaustive search is an equally good solution since it requires 
only constant time. Simple operations applied to this graph generate another 
whose size is increased but whose degree and expansion remain unchanged. 
This process continues, yielding arbitrarily large expanders. 

10n an intuitive level, the connection between the spectral gap and the combinatorial and 

probabilistic properties of expanders listed above should not be surprising. For example, it is well 
known that the standard random walk on the graph converges exponentially with base A/D to the 

stationary uniform distribution. Moreover, equal partitions of the vertices of a graph, thought of 
as il-vectors, are orthogonal to the uniform distribution, and so the bilinear form representing the 
number of edges in the cut can be bounded in terms of the gap between D and A. 
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The heart of the iteration is our new "zig-zag" graph product. Informally, 
taking a product of a large graph with a small graph, the resulting graph 
inherits (roughly) its size from the large one, its degree from the small one, 
and its expansion properties from both! (That is, the composed graph has good 
expansion properties as long as the two original graphs have good expansion 
properties.) 

In the next subsections we give high level descriptions of the iterative con- 
struction, the new graph product, the intuition behind it, various extensions. 
We then mention subsequent work on the relation of the zig-zag product in 

graphs to the semidirect product in groups and its applications to expanding 
Cayley graphs. 

1.2. Overview of expander construction. In this section, we describe a sim- 

plified, but less efficient, version of our expander construction and omit formal 
proofs. Our full construction is described in detail in Section 3. Throughout 
this section, all graphs are regular, undirected, and may have loops and parallel 
edges. The adjacency matrix of an N-vertex graph G is the matrix M whose 

(u, v)th entry is the number of edges between vertices u and v. If the graph is 

D-regular, then the normalized adjacency matrix is simply M/D. Note that 
this stochastic matrix is the transition probability matrix of the natural ran- 
dom walk on G, every step of which moves a "token" from a current vertex 

along a uniformly chosen edge to a neighboring vertex. It is easy to see that 
this matrix has an eigenvalue of 1, corresponding to the constant eigenvector, 
and it turns out that all other eigenvalues have absolute value less than 1. 
Our primary interest will be the second largest (in absolute value) eigenvalue 
(which is known to govern the convergence rate of the random walk, and as 
mentioned above is the essence of expansion). 

Thus, three essential parameters play a role in an expander - size, degree 
and expansion. We classify graphs accordingly. 

Definition 1.1. An (N,D, X)-graph is any D-regular graph on N ver- 

tices, whose normalized adjacency matrix has second largest (in absolute value) 
eigenvalue at most A. 

The basic operations. We use two operations on (the adjacency matrices 

of) graphs - the standard matrix squaring, and our new zig-zag graph product. 
Here is their effect on these three parameters. 

SQUARING: Let G2 denote the square of G. Then 

Fact 1.2. (n, d, )2 _ (n, d2, A2). 

THE ZIG-ZAG PRODUCT: Let G1 (G2 denote the new graph product of 

G1 and G2. Then 
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random edge. We insist on keeping track of that edge name, and consider the 

joint distribution! In a good expander, if the edge is indeed random, the en- 

tropy propagates from it to the vertex. This reduces the (conditional) entropy 
in the edge. Thus the "entropy wave" in Step 2, in which no fresh randomness 
enters the distribution on vertices of G1 ()G2, is what facilitates entropy in- 
crease in Steps 1 or 3. Either the "zig" step does it, if there is room for more 

entropy in k, or if not (which may be viewed as destructive interference of the 

large and small waves in Step 1), Step 2 guarantees constructive interference 
in Step 3. Moreover, Step 1 is not redundant as, if there is no or little ini- 
tial entropy in k, the wave of Step 2 (being a permutation) may flood k with 

entropy, destroying the effect of Step 3. 
The formal proof of Theorem 1.3 follows this intuition quite closely, and 

separately analyzes these two extreme cases. Indeed, since it becomes linear 

algebra, these two cases are very natural to define, and the only ones to worry 
about -all intermediate cases follow by linearity! Moreover, the variational 
definition of the second eigenvalue better captures the symmetry of the zig 
and zag steps (and gives a better bound than what can be obtained from this 

asymmetric intuition). 

1.5. Expanders and extractors. Here we attempt an intuitive explanation 
of how we stumbled on the definition of the zig-zag product, and the intuition 
that it does what it should. While this subsection may not be self-contained, 
it will at least lead the interested reader to discover more of the fascinating 
world of extractors. 

The current paper is part of research described in our conference paper 
[RVWOO] which deals with constructions of both expanders and extractors. 
Extractors are combinatorial objects, defined by [NZ96], which, roughly speak- 
ing, "purify" arbitrary nonuniform probability distributions into uniform ones. 
These objects are as fascinating and as applicable as expanders (see, e.g., the 

survey papers [Nis96], [NT99]). Like expanders, their applications demand 

explicit construction. Like with expanders, the quest for such constructions 
has been extremely fruitful and illuminating for complexity theory. Unlike ex- 
panders, the construction of optimal extractors is still a challenge, although 
the best existing ones are quite close to optimal (see the current state of the 
art, as well as a survey of previous constructions, in [RSWOO], [TUZO1]). 

Expander graphs were ingredients in some previous extractor construc- 
tions (as extractors may be viewed as graphs as well). Here the situation is 
reversed. The expander construction of this paper followed our discovery of 
nearly optimal high min-entropy extractors, which handle the "purification" of 
distributions which are already not too far from being uniform. A key idea in 

approaching optimality (following [RR99]) was preserving the unused entropy 
in a random step on an extractor. This lead to a (more complex) type of zig-zag 
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product, and from it, iterative constructions of such extractors. Translating 
this idea to the expander world turned out to be cleaner and more natural 
than in the extractor world. It led to our understanding of the role of the 

edge-name as a keeper of the unused entropy in a step of a standard random 

walk, and to the zig-zag product defined above. 

1.6. Extensions to the expander construction. The list below details the 
extensions and refinements we obtain to the basic expander construction out- 
lined above. All these will be part of the formal sections which follow. 

More explicit graphs. As mentioned above, this construction is not as effi- 
cient as we would like - computing neighborhoods in Gi takes time polynomial 
in Ni rather than in log Ni. As we show in Section 3, this is easily overcome 

by augmenting the iterations with another standard graph operation, namely 
taking tensor powers of the adjacency matrix. 

Describing graphs by "rotation maps." Another explicitness problem in 
the simple construction above is the assumption that the our D-regular graphs 
are given together with a proper D-coloring of the edges. This property is 
not preserved by the zig-zag product. To avoid it, we describe graphs more 

generally by their "rotation maps," and show how this description is explicitly 
preserved by all graph operations in our construction. 

Smaller degree. A naive and direct implementation of our graph product 
yields expanders whose degree is reasonable, but not that small (something 
under 1000). In Section 3.2, we show how to combine this construction, to- 

gether with one, constant-size cycle, to obtain an infinite family of explicit 
degree 4 expanders. Again, this combination uses the zig-zag product. In fact, 
using the replacement product described below, we obtain explicit degree 3 

expanders (which is the smallest possible). 

Choice of the base graph. Our expander construction requires an initial 
"constant size" base graph H as a building block. While exhaustive search 
can be used to find such an H (since it is constant size), for completeness we 
include two elementary explicit constructions (from [Alo86b, AR94]) which can 
be used instead. 

Better degree vs. eigenvalue relation. The best relationship between de- 

gree and second largest eigenvalue is obtained by Ramanujan graphs, in which 
the second eigenvalue is 2/D - 1/D. This equals the first eigenvalue of the 

D-regular infinite tree, and it is known that no finite D-regular graph can have 
a smaller second largest eigenvalue (cf., [Alo86a], [LPS88], [Nil91]). Remark- 
able graphs achieving this optimal bound were first constructed independently 
by [LPS88] (who coined the term Ramanujan graphs) and by [Mar88]. 

164 



THE ZIG-ZAG GRAPH PRODUCT 

Our constructions do not achieve this tight relationship. The zig-zag prod- 
uct, applied recursively to one fixed Ramanujan graph, will yield D-regular ex- 
panders of second largest eigenvalue 0(1/D1/4). A "partially derandomized" 
variant of our zig-zag product, given in Section 6, improves this relation and 
achieves second eigenvalue O(1/D1/3). 

A simpler product. Perhaps the most natural way to combine G1 with 
G2 when the size of G2 is the degree of G1 is simply replace every vertex of 
G1 with a copy of G2 in the natural way, keeping the edges of both graphs. 
This replacement product, which was often used for degree-reduction purposes 
(e.g., when G2 is a cycle the resulting graph has degree 3) turns out to enjoy 
similar properties of the zig-zag product: if both G1 and G2 are expanders, 
then so is their replacement product. Moreover, the proof is by a reduction- 
the zig-zag product is a subgraph of the cube (3rd power) of the replacement 
product, immediately giving an eigenvalue bound. 

1.7. Subsequent work: Connections with semidirect product in groups. 
Subsequent to this work, it was shown in [ALW01] that the zig-zag (and re- 

placement) products can be viewed as a generalization of the standard semidi- 
rect product of groups. This was used in [ALW01] to construct a family of 
groups which is expanding with one (constant size) set of generators, but is 
not expanding with another such set. The connection was further developed 
in [MW01] to produce new families of expanding Cayley graphs, via bounds 
on the number of irreducible representations of different dimensions in terms 
of the expansion. 

1.8. Organization of the paper. In Section 2, we give preliminary def- 
initions and basic facts. In Section 3, we define the zig-zag graph product, 
describe the construction of expanders, and state their properties. In particu- 
lar, it deals with the first four "extensions" listed in the previous subsection. 
In Section 4, we analyze the expansion of the zig-zag product. In Section 5, we 
discuss some ways to obtain the base graph used in our expander construction. 
In Section 6, we give two extensions to the basic zig-zag product. The first is 
a "derandomized" variant of our basic zig-zag product, which enjoys a better 
relationship between the degree and the expansion. The second is the simple, 
natural replacement product. 

2. Preliminaries 

2.1. Graphs and rotations. All graphs we discuss may have self-loops 
and parallel edges. They are best described by their (nonnegative, integral) 
adjacency matrix. Such a graph is undirected if and only if the adjacency 
matrix is symmetric. It is D-regular if the sum of entries in each row (and 
column) is D (so exactly D edges are incident to every vertex). 
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Let G be a D-regular undirected graph on N vertices. Suppose that the 
edges leaving each vertex of G are labeled from 1 to D in some arbitrary, but 
fixed, way. Then for v, w C [N] and i E [D], it makes sense (and is standard) 
to say "the ith neighbor of vertex v is w." In this work, we make a point to 
always keep track of the edge traversed to get from v to w. This is formalized 
as follows: 

Definition 2.1. For a D-regular undirected graph G, the rotation map 
RotG : [N] x [D] * [N] x [D] is defined as follows: RotG(v, i) = (w, j) if the 
ith edge incident to v leads to w, and this edge is the jth edge incident to w. 

This definition enables us to remove the simplifying assumption made 
in the introduction, which was that the label of an edge is the same from 
the perspective of both endpoints, i.e. RotG(v,i) = (w,j) =~ i = j. From 
Definition 2.1, it is clear that RotG is a permutation, and moreover RotG oRotG 
is the identity map. 

We will always view graphs as being specified by their rotation maps. 
Hence we call a family g of graphs explicit if for every G cE , RotG is com- 
putable in time poly(log N), where N is the number of vertices of G. That is, 
graphs in g are indexed by some parameters (such as the number of vertices 
and the degree, which may be required to satisfy some additional relations) 
and there should be a single algorithm which efficiently computes RotG for 
any G E G when given these parameters as an additional input. The notation 
poly() stands for a fixed (but unspecified) polynomial function in the given 
variables. We will often informally refer to an individual graph as explicit, as 
shorthand for saying that the graph comes from an explicit family. 

Our constructions will be iterative (or recursive), and will be based on 
a sequence of composition operations, constructing new graphs from given 
ones. The definition of these compositions (or products) will show how the 
rotation map of the new graph can be computed using "oracle access" to the 
rotation maps of the given graphs. (By giving an algorithm "oracle access" 
to a function f, we mean that the algorithm is given power to evaluate f on 
inputs of its choice at the cost of one time step per evaluation.) Given the 
time complexity of such a computation and the number of oracle calls made, 
it will be easy to compute the total time required by a recursive construction. 

2.2. Eigenvalues and expansions. The normalized adjacency matrix M of 
G is the adjacency matrix of G divided by D. In terms of the rotation map, 
we have: 

MU,V = {(i j) e [D]2 : RotG(U, i) = (, j)} 

M is simply the transition matrix of a random walk on G. By the D-regularity 
of G, the all-l's vector 1N = (1, 1,..., 1) E RN is an eigenvector of M of 
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t > 2. Solving this recurrence gives /ut < A + O(A2) for all t. For the efficiency, 
note that the depth of the recursion is at most log2 t and evaluating the rotation 
maps for Gt requires 4 evaluations of rotation maps for smaller graphs, so the 
total number of recursive calls is at most 410g2 t t2. 

In order for Theorem 3.3 to guarantee that graphs {Gt} are expanders, 
the second largest eigenvalue A of the building block H must be sufficiently 
small (say, A < 1/5). This forces the degree of H and hence the degree of 
the expander family to be rather large, though still constant. However, by 
zig-zagging the family {Gt} with a cycle, we can obtain a family of degree 
4 expanders. More generally, we can use this method convert any family of 
odd-degree expanders into a family of degree 4 expanders: 

COROLLARY 3.4. For every A < 1 and every odd D, there exists a A' < 1 
such that if G is an (N, D, A)-graph and C is the cycle on D vertices, then 
GOC is a (ND, 4,A')-graph. 

Proof. As with any connected and nonbipartite graph, A(C) is strictly less 
than 1 for an odd cycle C (though A(C) -- 1 as D -- oo). Thus, the corollary 
follows from Theorem 3.2. C1 

4. Analysis of the zig-zag product 

This section has two subsections. In the first, we give the basic (subop- 
timal) bound of Theorem 3.2. This bound uses only the intuitive ideas of the 
introduction, and suffices for the construction of the previous section. In the 
next, we state and prove a tighter eigenvalue bound. It uses extra information 
about the zig-zag product (which is less intuitive). It also gives more informa- 
tion about the worst interplay between the two extreme cases studied in the 
basic analysis, and may hopefully shed a bit of light on the structure of the 
eigenvectors of the zig-zag product. 

4.1. The basic eigenvalue bound. Now we prove Theorem 3.2. Recall the 
intuition behind the zig-zag product. We aim to show that for any (nonuni- 
form) initial probability distribution 7r on the vertices of G1 ( G2, taking a 
random step on G1 ()G2 results in a distribution that is more uniform. We 
argued this intuitively in the introduction, by considering two extreme cases, 
based on the conditional distributions induced by 7r on the N1 "clouds" of D1 
vertices each: one in which these conditional distributions are far from uni- 
form, and the second in which they are uniform. The actual linear algebra proof 
below will restrict itself to these two cases by decomposing any other vector 
into a linear combination of the two. Also, the argument in the introduction 
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LEMMA 5.1. APq is an (q2, , 1//q))-graph. Moreover, a rotation map for 
APq can be computed in time poly(log q) given a representation of the field Fq. 

Proof. The expansion of APq will follow from the fact the square of APq 
is almost the complete graph, which in turn is based on the fact that almost 
all pairs of lines in the plane F2 intersect. Let M be the q2 x q2 normalized 
adjacency matrix of APq; we will now calculate the entries of M2. The entry of 
M2 in row (a, b) and column (a', b') is exactly the number of common neighbors 
of (a, b) and (a', b') in APq divided by q2, i.e., ILa,b n La,b I/q2. If a 7 a', then 

La,b and La',b' intersect in exactly one point. If a = a' and b / b', then their 
intersection is empty, and if a = a' and b = b', then their intersection is of size 
q. Thus, if we let Iq denote the q x q identity matrix and Jq the q x q all-i's 
matrix, we have 

/qIq Jq ... Jq \ ( qlq Jq JqN 

M2 1 Jq qlq Jq Iq qIq + (Jq - Iq) 0 Jq 
2q2 q : . Jq q 

\ Jq Jq qlq I 

Now we can calculate the eigenvalues explicitly. Jq has eigenvalues q (multi- 
plicity 1) and 0 (multiplicity q - 1). So (Jq - Iq) 0 Jq has eigenvalues (q - 1) q, 
-1 q, and 0. Adding Iq 0 qlq increases all these eigenvalues by q, and then 
we divide by q2. Hence the eigenvalues of M2 are 1 (multiplicity 1), 0 (multi- 
plicity q - 1), and 1/q (multiplicity (q - 1) . q). Therefore, the second largest 
eigenvalue of M has absolute value 1//f. 

A rotation map for APq is given by 

((t/a,t - b),t) if a = andt 0, 
Rotq((a, b), t) = ((t,-b), ) a t O 

W I -b), a) if a = 0 or t = 0, 
where a, b, t E IFq. D 

Now, define the following graphs inductively: 

AP1 = APq APq 

APq1 = AP (APq. 

From Proposition 2.4 and Theorem 3.2, we immediately deduce: 

PROPOSITION 5.2. APq is a (q2(i+l),q2,0(i//F))-graph.3 Moreover, a 
rotation map for AP1 can be computed in time poly(i, log q) given a represen- 
tation of IFq. 

3The hidden constant in O(i/lJq) can be reduced to 1 using the improved analysis of the zig-zag 

product in Theorem 4.3. 
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