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Abstract. We study the commuting complex associated to the set of all non-trivial elements
of a finite group. In particular we treat the case of metanilpotent groups, proving a wedge-
decomposition formula for this simplicial complex and necessary and su‰cient conditions for
its contractibility.

Introduction

Given a non-empty subset U of a finite group G, the commuting complex GðUÞ as-
sociated to U is defined as the simplicial complex with vertex set U and whose sim-
plices are all finite non-empty subsets of U with elements that commute pairwise.
Commuting complexes of various subsets U have been investigated (see for instance
[2], [13] and [11]). We analyze the case in which U is the set of all non-trivial elements
of G (namely Ga :¼ Gnf1g). In this situation we consider an alternative way of
looking at GðGaÞ, by using the fact (Proposition 5) that this complex is, up to ho-
motopy equivalence, the same as the order complex of the poset NðGÞ consisting of
all non-trivial nilpotent subgroups of G ordered by inclusion. (We remind the reader
that if P is any partially ordered set (‘poset’ for short), then the order complex DðPÞ
associated to P is the simplicial complex whose simplices are the totally ordered
subsets of P). The aim of this work is to establish some results concerning the topol-
ogy, and more specifically the homotopy type, of DðNðGÞÞ.

After some introductory results, in Section 2 we treat the case of finite meta-
nilpotent groups in detail. Our main theorem is the following result:

Theorem 14. If G is a finite metanilpotent group, then DðNðGÞÞ has the same homo-

topy type as the wedge

4
jF j

SðDðCðFÞÞÞ;

where F ¼ F ðGÞ is the Fitting subgroup of G and



CðF Þ ¼ fX cC jX 0 1;CF ðX Þ0 1g;

where C is a fixed Carter subgroup of G. (The symbol S denotes the suspension

operator.)

Recall that a Carter subgroup of a group G is a self-normalizing nilpotent sub-
group of G (see Proposition 8 for some properties of Carter subgroups). Thus the
homotopy type of the order complex of NðGÞ is determined by DðCðF ÞÞ and jF j. We
obtain a complete result regarding the homotopy type of NðGÞ in the case when a
Carter subgroup is a p-group (and hence a Sylow p-subgroup) of G. The results that
we obtain (Propositions 15 and 17) resemble those concerning the Quillen complex at
p for the same types of groups (see [12] and [3]). Our analysis allows us to answer a
question in [11] (see Remark 11). Finally, in Section 3 we study the contractibility of
NðGÞ for metanilpotent groups whose Carter subgroups are p-groups.

Notation. Our basic references are [4] for group theory and [15] for topology. The
notation of the paper follows these books. For a poset ðP;dÞ and an element r A P

we denote by Pdr the subposet fq A P j qd rg; the subposets P>r, Pcr, P<r are de-
fined similarly. A map f : P ! Q between posets is said to be order-preserving if
f ðxÞc f ðyÞ whenever xc y in P. We denote by DðPÞ the order complex associated
to the poset P, but, in order not to overburden the notation, we often use the same
symbol P to denote both the poset and the associated simplicial complex. We reserve
the symbol F to denote homotopy equivalence between topological spaces. The to-
pological spaces that we are dealing with are always simplicial complexes, and in
particular CW-complexes; the basic facts concerning these are taken for granted. For
two simplicial complexes D1, D2, we define the join D1 � D2 and the wedge D14D2 as
in [15]; in particular, D �q ¼ q � D ¼ D, and D1 � D2 is a contractible space if and
only if at least one of the two complexes is. The wedge operator is unambiguously
defined if and only if the spaces involved are path-connected; otherwise we have to
specify the points at which the two complexes are wedged. This will be crucial in
our wedge-decomposition formulas (for instance formula (1) in Lemma 3). As usual,
S k denotes the k-dimensional sphere; we take S�1 to be the empty set and S0 the set
consisting of two disjoint points. The suspension SðDÞ of a space D is defined to be
S0 � D and the cone CðDÞ of D is defined to be f1g � D.

For any finite group G, we denote by NðGÞ, AðGÞ, EðGÞ and ApðGÞ respectively
the posets of all non-trivial nilpotent subgroups of G, all non-trivial abelian sub-
groups of G, all non-trivial direct products of elementary abelian subgroups of G,
and all non-trivial elementary abelian p-subgroups of G (if p is a prime divisor of jGj).

1 Preliminaries

In this section we collect some topological techniques and some basic facts about the
complex NðGÞ.

Lemma 1 (Fiber Lemma [12, (1.6)]). Let f : P ! Q be an order-preserving map be-

tween the finite posets P and Q. Suppose that for all x A Q the upper (resp. lower) fiber
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f �1ðQdxÞ (resp. f �1ðQcxÞÞ is contractible as a topological space. Then f induces a

homotopy equivalence between the order complexes DðPÞ and DðQÞ.

A conjunctive (resp. subjunctive) element of a poset P is, by definition, an element
x of P such that for all y A P a least upper bound x4y exists in P (resp. a greatest
lower bound x5y exists in P).

Lemma 2 ([12, (1.5)]). If a poset P has a conjunctive or a subjunctive element, then the

order complex of P is contractible.

Lemma 3 ([3, Corollary 5]). Let f : P ! Q be an order-preserving map between the

two finite posets P and Q. Assume that

(1) Q is a meet semi-lattice with unique least element 0̂0;

(2) every minimal element in Q>0̂0 is in the image of f ;

(3) for every q A Q>0̂0, the complex Dð f �1ðQcqÞÞ is either contractible or a wedge of

ðnqÞ-dimensional spheres, with 0c nq < nr if q < r in Q.

Then the order complex DðPÞ is homotopy-equivalent to the wedge

ðDð f �1f0̂0gÞ � DðQ>0̂0ÞÞ4 4
q AQ>0̂0

ðDð f �1ðQcqÞÞ � DðQ>qÞÞ ð1Þ

where for q A Q>0̂0 a fixed point cq A Dð f �1ðQcqÞJDð f �1ðQcqÞÞ � DðQ>qÞ is identi-

fied with q A Dð f �1f0̂0gÞ � DðQ>0̂0Þ.

Let Q be a subposet of the poset P. We say that P is an extension of Q by minimal

elements if the following conditions hold:

(1) Qop is an ideal of the opposite poset Pop;

(2) for every p A P, Qdp 0q;

(3) for every p A P, either p A Q or p is a minimal element of P.

The following is a corollary of [14, Theorem 2.4].

Lemma 4. Let P be an extension of Q by minimal elements and assume that DðQÞ is

contractible. Then DðPÞ has the same homotopy type as the wedge of suspensions

4
m APnQ

SðDðP>mÞÞ:

Proof. In [14, Theorem 2.4] it is proved that the wedge 4
m APnQ

SðDðP>mÞÞ is

homotopy-equivalent to DðPQÞ where PQ is the poset given by P with the adjunction
of an extra element 0Q that lies under all minimal elements of Q. Therefore
DðPQÞ ¼ DðPÞUDðQQÞ, and both DðQQÞ and DðPÞVDðQQÞ ¼ DðQÞ are contractible.
By the so-called ‘Gluing Lemma’ ([1, Lemma 10.3]), it follows that DðPQÞFDðPÞ.

r
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In the sequel we do not distinguish in our notation between a poset and the asso-
ciated order complex; we simply write P for both, and the correct interpretation will
always be clear from the context.

Proposition 5 ([9, (1.2)]). The order complexes NðGÞ, EðGÞ, AðGÞ defined in the In-

troduction and the commuting complex GðGaÞ are all G-homotopy-equivalent.

Proposition 6 ([9, (2.2)]). Let G be a finite group. If G has non-trivial center ZðGÞ then

NðGÞ is contractible.

Proof. Since for every nilpotent subgroup X of G the subgroup ZðGÞX is again nil-
potent, ZðGÞ is a conjunctive element of NðGÞ, and hence NðGÞ is contractible by
Lemma 2. r

Recall that the ‘join’ ðP1 � P2;cÞ of two posets ðP1;c1Þ and ðP2;c2Þ is a new poset
whose underlying set is the disjoint union of the underlying sets P1 and P2 and whose
order relation is defined as follows: for x; y A P1 � P2 we have

xc y if and only if

xc1 y if both x; y A P1

xc2 y if both x; y A P2

x A P1; y A P2:

8<
:

Proposition 7. If G is the direct product G1 � G2, then NðGÞ is homotopy-equivalent

to NðG1Þ �NðG2Þ:

Proof. By [12, Proposition 1.9] the order complex of the join poset NðG1Þ �NðG2Þ
is homotopy-equivalent to the order complex of

P :¼ CðNðG1ÞÞ � CðNðG2ÞÞnfð1; 1Þg:

This latter poset consists of the collection of all non-trivial nilpotent subgroups of the
form K1 � K2 with Ki A NðGiÞU f1g for i ¼ 1; 2. We prove that the inclusion map

j : P ! NðG1 � G2Þ

induces a homotopy equivalence between order complexes. For i ¼ 1; 2, let
pi : G1 � G2 ! Gi be the projection map onto Gi, and note that if K is a non-trivial
nilpotent subgroup of G1 � G2 then p1ðKÞ � p2ðKÞ is again a nilpotent subgroup of
G1 � G2 containing K. Thus the upper fiber j�1

dK contains p1ðKÞ � p2ðKÞ as its unique
minimal element, and so it is a conically contractible space. By Fiber Lemma 1, the
map j induces a homotopy equivalence. r

The problem of establishing which groups G have a connected commuting com-
plex has already been dealt with satisfactory. In [9], S. Lucido proves that NðGÞ is
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connected if and only if the ‘prime graph’ of G is connected (this is the graph having
as vertices the prime divisors of jGj and with two vertices p and q joined by an edge
if and only if G has an element of order pq). The structure of finite groups whose
prime graph is not connected was determined by K. Gruenberg and O. Kegel in un-
published work (see [6], [7], [8], [10] and [16]).

We end this section by recalling basic facts about Carter subgroups (i.e. nilpotent
and self-normalizing subgroups of a group).

In finite soluble groups the Carter subgroups are exactly the N-projectors of the
group (here N denotes the Schunck class of nilpotent groups); in other words, C is a
Carter subgroup of G if and only if for every endomorphism j of G, jðCÞ is a maxi-
mal nilpotent subgroup of jðGÞ.

Proposition 8 ([4, (VI 12.1), (VI 12.4)]). Suppose that G is a finite soluble group. Then

(1) G has Carter subgroups,

(2) all Carter subgroups are conjugate in G, and

(3) if N is a nilpotent normal subgroup of G, D=N a Carter subgroup of G=N and C a

maximal nilpotent subgroup of D such that D ¼ NC, then C is a Carter subgroup

of G.

2 The homotopy type of the complex N (G ) for metanilpotent groups

Throughout this section (and the rest of the paper) let G be a finite metanilpotent
group. It is well known (see for example [4, Theorem 12.4]) that G ¼ FC, where
F :¼ FðGÞ is the Fitting subgroup of G and C is any Carter subgroup C of G. We
consider the case in which F VC 0 1.

Proposition 9. If F VC 0 1, then NðGÞ is contractible.

Proof. The hypotheses imply that every nilpotent subgroup of G has a non-
trivial centralizer in F . In fact, assume by contradiction that there exists a non-
trivial nilpotent subgroup A of G such that CF ðAÞ ¼ 1. Then A is a maximal nilpo-
tent subgroup of FA and, since F VA ¼ 1, A is a Carter subgroup of FA. As
F ðC V ðFAÞÞ ¼ FA, any maximal nilpotent subgroup of FA that contains C VFA is a
Carter subgroup of FA (for example by Proposition 8(3)); if D is any such subgroup,
then D and A are conjugate under some element g that can be taken to be in F . We
obtain that

F VD ¼ F VAg ¼ ðF VAÞg ¼ 1;

which contradicts the fact that F VD contains the non-trivial subgroup F VC.
Therefore the map

f : NðGÞ ! NðFÞ; A 7! CF ðAÞ
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is well defined. This map f is an order-reversing map between posets, and we claim
that its upper fibers are contractible. Given any non-trivial subgroup L of F , the
upper fiber over L is

f �1
dL :¼ fX A NðGÞ jCF ðXÞdLg:

Since L is nilpotent, ZðLÞ is non-trivial, and thus it is an element of f �1
dL. Now for

X A f �1
dL the subgroup XZðLÞ is again nilpotent, as L centralizes X , and we have

CF ðXZðLÞÞdCF ðX ÞVCF ðZðLÞÞdL;

so that XZðLÞ A f �1
dL. This shows that ZðLÞ is a conjunctive element of f �1

dL, and so
by Corollary 2 this fiber is contractible. Hence, by Lemma 1, f induces a homotopy
equivalence between the complexes NðGÞ and NðFÞ; since the latter is a cone we
conclude that NðGÞF 1. r

Corollary 10. If CF ðCÞ0 1, then NðGÞ is contractible.

Proof. Since C equals its normalizer, CF ðCÞJF VC, and thus F VC 0 1 so that we
can apply Proposition 9. r

Remark 11. Proposition 9 implies in particular that there exist finite groups with
trivial center and contractible complex NðGÞ. For instance, an extension of the ex-
traspecial group of order 27 and exponent 3 by the group generated by an involution
fixing one of the two standard generators and inverting the other is of this type. This
negatively answers [11, Question 2.9].

We treat now the case in which G ¼ F zC is a split extension of its Fitting sub-
group F by a Carter subgroup C. Note that this assumption implies that G has trivial
center.

Our starting point is the following

Lemma 12. If X is a nilpotent subgroup of G ¼ F zC such that CF ðXÞ is trivial, then

X is contained in one and only one Carter subgroup of G.

Proof. Let X be as in the statement and let D be a maximal nilpotent subgroup of
G containing X . Then DVF ¼ 1, since otherwise DVF is a non-trivial normal
subgroup of D and therefore, since D is nilpotent, 10ZðDÞVF , contradicting the
fact that ZðDÞVF cCF ðX Þ ¼ 1. In particular NF ðDÞ ¼ CF ðDÞcCF ðXÞ ¼ 1, i.e.
NGðDÞ has trivial intersection with F . Therefore NGðDÞ, being isomorphic to a sub-
group of G=F , is nilpotent. The maximality of D implies NGðDÞ ¼ D, and this is a
Carter subgroup containing X .

Suppose now that X is contained in two Carter subgroups of G, say D1 and D2. As
these subgroups are conjugate (by Proposition 8(2)), we may write D1 ¼ D

g
2 for some

g that can be taken to be in F . But then X and X g both lie in FX VD1, and, by re-
peated use of Dedekind’s modular law ([4, (12.12)]), we have
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X g ¼ X gðF VD1Þ ¼ FX g VD1 ¼ FX VD1 ¼ XðF VD1Þ ¼ X :

Therefore g is an element of F normalizing X . But CF ðXÞ ¼ 1, and so g is trivial and
D1 ¼ D2. r

The previous observation permits us to deform the complex NðGÞ by, roughly
speaking, contracting any subgroup X with trivial centralizer in F into the single
Carter subgroup containing it. This operation does not a¤ect the homotopy type of
the complex NðGÞ:

Lemma 13. If G ¼ F zC, then NðGÞ is homotopy-equivalent to BUC, where

B :¼ fX A NðGÞ jCF ðXÞ0 1g and C is the set of Carter subgroups of G.

Proof. Consider the inclusion map i : BUC ! NðGÞ and choose an arbitrary ele-
ment Y A NðGÞ. We claim that the upper fiber i�1

dY has a unique minimal element. If
CF ðYÞ ¼ 1, then this happens also for every subgroup containing Y , and thus by
Lemma 12, the fiber i�1

dY consists of a unique element of G (which is a Carter sub-
group of G). Let CF ðY Þ0 1, so that Y lies in B and is the unique minimal element
of i�1

dY . Therefore every upper fiber is contractible. Fiber Lemma 1 completes the
proof. r

For every Carter subgroup C of G let

CðFÞ :¼ fX cC jX 0 1;CF ðXÞ0 1g:

The homotopy type of NðGÞ can be completely described in terms of that of CðFÞ.

Theorem 14. Let G be any finite metanilpotent group, F its Fitting subgroup and C a

Carter subgroup of G. Then the complex NðGÞ has the same homotopy type as the

wedge of jF j copies of the suspension of CðFÞ, namely

NðGÞF 4
jF j

SðCðFÞÞ: ð2Þ

Proof. Assume first that F VC 0 1. Then 10ZðCÞVF cCF ðCÞ, and C is the
unique maximal element of CðFÞ, so that CðFÞ is contractible. Since wedges and

suspensions of contractible spaces are contractible,

4
jF j

SðCðFÞÞF 1FNðGÞ;

where the last equivalence comes from Proposition 9.
Let F VC ¼ 1. We set P :¼ BUC and D :¼ 6

C AC PcC . Then B and D are sub-
posets of P such that P ¼ BUD. Note that B is an ideal of P. Moreover we claim
that B, considered as a complex, is contractible. Let f be the map from B to NðF Þ
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sending any element X to its centralizer in F . This is a well-defined order-reversing
map. We show that its upper fibers are all contractible. For any non-trivial subgroup
Y of F , we have 10ZðYÞcCF ðYÞ, and thus ZðY Þ is an element of the upper fiber
f�1ðNðF Þ

dY Þ :¼ fX A B jCF ðXÞdYg. Let X be an arbitrary element of this fiber.
Since Y centralizes X the subgroup XZðY Þ is nilpotent and satisfies

CF ðXZðYÞÞ ¼ CF ðX ÞVCF ðZðY ÞÞdY :

This means that ZðYÞ is a conjunctive element of the fiber, and therefore the fiber
is contractible by Lemma 2. Fiber Lemma 1 implies then that B and NðFÞ are
homotopy-equivalent. Since NðF Þ is a cone we conclude that B is contractible. Now
if C A C then PcC , regarded as a set, is the union fCgUCðFÞ. Since all Carter sub-
groups are isomorphic (by Proposition 8) the posets PcC are all isomorphic. In par-
ticular, if for some Carter subgroup C the poset CðFÞ is empty, then all are empty and
thus D ¼ C. In this case, BVD ¼ q and P is therefore homotopy-equivalent to
an antichain of 1 þ jCj points. Since jCj ¼ jF j, NðGÞ is homotopy-equivalent to a
wedge of jF j 0-spheres, and so to

4
jF j

SðCðFÞÞ;

since CðFÞ is empty and SðqÞFS0. Therefore we assume now that CðFÞ 0q for all
C A C. We can apply Lemma 4 to the opposite poset P 0 :¼ Pop and with Q :¼ Bop.
In fact, we have already seen that Q is an ideal of P and that DðQÞ is contractible.
Moreover the set PnQ is exactly C, and so it consists of minimal elements of P 0. Fi-
nally, if p A P 0, then either Bcp contains p, or p ¼ C A C and Bcp ¼ CðFÞ 0q. All
the hypotheses of Lemma 4 are thus satisfied. This yields the following homotopy
equivalences:

NðGÞFBUCF 4
x AF

SððBUCÞ<C xÞF 4
x AF

SðC x
ðFÞÞF 4

jF j
SðCðF ÞÞ;

and the result follows. r

In the case when the Carter subgroups are elementary abelian p-subgroups, the
structure of CðFÞ is rather simple. The next result on the complex of nilpotent sub-
groups is similar to what happens for the Quillen complex (see [12, Theorem 11.2]).

Proposition 15. Let G be a finite metanilpotent group and assume that G has an ele-

mentary abelian p-subgroup A as a Carter subgroup. Then the complex NðGÞ is either

contractible or spherical of dimension rkðAÞ � 1, and it is contractible if and only if

CF ðAÞ0 1.

Proof. According to Theorem 14, we have to examine the homotopy type of AðFÞ.
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Assume first that CAðFÞ0 1. Since CAðFÞcF , we have AVF 0 1. Proposition
9 implies NðGÞ is contractible. The same conclusion holds, by Corollary 10, if
CF ðAÞ0 1.

Consider therefore the case in which A acts faithfully and fixed-point freely on
Fnf1g. In particular p does not divide jF j, since otherwise P :¼ OpðFÞA will be a
Sylow p-subgroup of G, and ZðPÞVOpðF Þ will be non-trivial; but then CF ðAÞ0 1.
Thus p does not divide jF j, and F VA ¼ 1. We prove by induction on rkðAÞ that
NðGÞ is ðrkðAÞ � 1Þ-spherical (which means that it is homotopy-equivalent to a
wedge of spheres each of dimension rkðAÞ � 1). By formula (2) of Theorem 14 and
the fact that in making the suspension the dimensions of the spheres increase by 1 (see
[12, Example 8.1]), it is enough to show that the subposet AðFÞ is contractible or
ðrkðAÞ � 2Þ-spherical.

If rkðAÞ ¼ 1 then, as CF ðAÞ ¼ 1, AðFÞ is empty and so ð�1Þ-spherical, and the
statement is true. Suppose that rkðAÞd 2. By the ‘Generation Lemma’ ([5, (1.9)]) we
know that F can be generated by the centralizers in F of the maximal subgroups of
A. In particular, there exists a maximal subgroup, say M, of A such that CF ðMÞ0 1.
Set P :¼ AðFÞ and Q :¼ fX A P jX VM 0 1g. Notice that Q ¼ fX mA jX VM 0 1g
and that Qop is an ideal of Pop. Moreover each element Y of PnQ is a complement to
M in A, and so a minimal element of P. The map sending each X A Q to X VM

establishes a homotopy equivalence between the complex Q and the complex of all
non-trivial subgroups of M; the latter, having a unique maximal element, is con-
tractible, and so Q is contractible. Let Y A P. If QdY ¼ q this forces that Y is a
complement of M and M has order p. Thus, in this case, AðFÞ is an antichain and
Theorem 14 implies that NðGÞ is homotopy-equivalent to a wedge of spheres of
dimension 1 ¼ rkðAÞ � 1. We can therefore suppose that for all Y A P we have
QdY 0q. All hypotheses of Lemma 4 are therefore satisfied; by applying it we
obtain

AðFÞ F4SððAðFÞÞ>X Þ; ð3Þ

where the wedge is taken over all the complements X of M in P. Now note that
ðAðFÞÞ>X ¼ fY A AðFÞ jX < Yg is isomorphic to the poset

MðCF ðXÞÞ :¼ fRcM j 10R; CCF ðX ÞðRÞ0 1g:

In fact, by the modular law each Y A ðAðFÞÞ>X can be written in the form
Y ¼ ðY VMÞX , and thus

10CF ðY Þ ¼ CF ðY VMÞVCF ðX Þ ¼ CCF ðX ÞðY VMÞ:

A routine argument shows that the map sending Y A ðAðFÞÞ>X to Y VM establishes
an isomorphism between the posets ðAðFÞÞ>X and MðCF ðXÞÞ. By the inductive hy-
pothesis we may assume that ðAðFÞÞ>X is, if not contractible, spherical of dimension

rkðMÞ � 2 i.e. of dimension rkðAÞ � 3. Thus the suspension SððAðFÞÞ>X Þ is either
contractible (if ðAðFÞÞ>X is contractible) or ðrkðAÞ � 2Þ-spherical. Formula (3) yields
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that AðFÞ is either contractible or a spherical complex of dimension rkðAÞ � 2 as
claimed. r

Remark 16. The above result is no longer true if the Carter subgroups of G are not
elementary abelian p-groups; in fact even if they are products of two elementary
abelian groups of coprime orders, spheres of di¤erent dimensions can appear in the
complex NðGÞ. For example, let a be a cube root of unity in the field F7 of 7 ele-
ments. Take C to be the abelian group ha; b; c; diFC3 � C3 � C2 � C2 and let C act
on a 5-dimensional vector space V over F7 as follows:

a ¼ diagða; a; 1; 1; aÞ; c ¼ diagð1;�1; 1;�1;�1Þ;

b ¼ diagð1; 1; a; a; a2Þ; d ¼ diagð�1; 1;�1; 1;�1Þ:

Set G :¼ V zC. Drawing the poset CðVÞ of all non-trivial subgroups of C with non-
trivial centralizer in V , one sees that CðVÞ has the same homotopy type as the wedge
of a 1-dimensional sphere and a 0-sphere, i.e. as S14S0. Therefore by formula (2) of
Theorem 14, NðGÞ is homotopy-equivalent to the wedge of jF j ¼ 35 copies of the
space SðS14S0Þ ¼ S24S1.

We make the following

Conjecture. The homotopy type of the complex of non-trivial nilpotent subgroups
of a finite metanilpotent group is that of a wedge of spheres, possibly of di¤erent
dimensions.

Some motivation is given by the following extension of Proposition 15.

Proposition 17. Let G be a finite metanilpotent group and assume that the Carter

subgroups of G are Sylow p-subgroups, for some prime p0 2 dividing the order of

G. Then NðGÞ is either contractible or a wedge of spheres ( possibly of di¤erent

dimensions).

Proof. By [4, Theorem 12.4] we have G ¼ FP, where P A SylpðGÞ and F ¼ FðGÞ is the
Fitting subgroup. Hence since P is a Carter subgroup CF ðPÞ ¼ 1 and since F ¼ FðGÞ
we have CPðFÞ ¼ 1. Moreover, by Proposition 15 we may assume that P is not ele-
mentary abelian. Under these assumptions we work with the complex EðGÞ of non-
trivial direct products of elementary abelian subgroups of G, which is homotopy-
equivalent to NðGÞ, by Lemma 5.

Consider the map

f : EðGÞ ! cApApðGÞ :¼ ApðG=FÞU f1G=Fg; A 7! A

induced by the projection to the quotient group. Note that the lower fiber of some
Y A cApApðGÞ is
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f �1
cY

¼ EðFYÞ;

which by Proposition 15 is either contractible (if CF ðYÞ0 1), or spherical of dimen-
sion rkðYÞ � 1. Lemma 3 yields the formula

NðGÞF 4
X AApðPÞ

ðEðFX Þ �ApðPÞ>X Þ: ð4Þ

Note that the first term of formula (1) in Lemma 3 has disappeared here; this is be-
cause this term is equal to the join of two spaces one of which is EðFÞ, and so con-
tractible. Since the join of a contractible space and any other (non-empty) space is
contractible, this first term isF1 and so it can be omitted. We analyze the homotopy
type of the non-contractible terms in formula (4). Note that if EðFX Þ �ApðPÞ>X is
any of these, using Proposition 15, it is homotopy-equivalent to

ð4S rkðXÞ�1Þ �ApðPÞ>X F ð4ðS rkðXÞ�2 � S0ÞÞ �ApðPÞ>X

F4S rkðX Þ�2 � SðApðPÞ>X Þ:

Finally, in [3, Proposition 20] the homotopy type of the upper intervals ApðGÞ>X

(when G is a finite soluble group and p0 2) is described. In particular, it is proved
that the suspensions of these spaces are wedges of spheres (possibly of di¤erent di-
mensions). Therefore, by the previous equivalence, every non-contractible term in
formula (4) is a wedge of spheres (possibly of di¤erent dimensions), and hence by (4)
the whole space NðGÞ is a wedge of spheres. r

3 Contractibility of N (G )

It is interesting to investigate whether the contractibility of the complex NðGÞ is
equivalent to some specific group-theoretic property of G (as for instance happens for
the p-subgroups complex, where it is conjectured by Quillen that its contractibility is
equivalent to the fact that the group has a non-trivial normal p-subgroup; see [12]).

In Remark 16 we saw that the non-triviality of the center of the group is not a
necessary condition for NðGÞ to be contractible, and indeed we have not identified
any group-theoretic property that seems likely to be equivalent to the contractibility
of NðGÞ.

For metanilpotent groups we can give another su‰cient condition. It is contained
in the following result.

Proposition 18. Let G ¼ FC, with F the Fitting subgroup and C a Carter subgroup of

G. If every direct product of elementary abelian subgroups of C has a non-trivial cen-

tralizer in F then NðGÞ is contractible. Moreover if C is a Sylow p-subgroup of G then

the reverse implication holds.

Proof. By Theorem 14 it is enough to show that for every Carter subgroup C of G the
subcomplex CðFÞ is contractible.
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Note that CðFÞ is homotopy-equivalent to the subcomplex C 0
ðFÞ consisting of all

elements of CðFÞ that are non-trivial direct products of elementary abelian subgroups.
In fact, consider the inclusion map i : C 0

ðF Þ ! CðFÞ. We claim that this has con-
tractible fibers. Given any X A CðFÞ, since X is nilpotent it has non-trivial center
ZðX Þ. In particular the subgroup Z :¼ WðZðXÞÞ generated by the elements of ZðXÞ
of prime order is non-trivial. Thus Z lies in the lower fiber i�1

cX ¼ fT A C 0
ðFÞ jT cXg.

Now let T be an arbitrary element of i�1
cX ; then TZ is a product of elementary abe-

lian groups, and TZ cX . Moreover

CF ðTZÞ ¼ CF ðTÞVCF ðZÞcCF ðXÞ0 1;

which means that TZ lies itself in the fiber i�1
cX . Thus Z is a conjunctive element of

the fiber, which is contractible, by Proposition 2. Lemma 1 guarantees that there is a
homotopy equivalence between the order complexes of C 0

ðFÞ and CðFÞ. Since C is nil-
potent the subgroup WðZðCÞÞ is non-trivial. We claim this is a conjunctive element of
the poset C 0

ðFÞ. By our assumptions, it is trivial that WðZðCÞÞ A C 0
ðFÞ. Moreover, given

any X A C 0
ðFÞ, the subgroup XWðZðCÞÞ is again a direct product of elementary abe-

lian subgroups of C, and thus, since its centralizer in F non-trivial, it is an element of
C 0

ðFÞ. Therefore WðZðCÞÞ is a conjunctive element of C 0
ðFÞ, as claimed. By Lemma 2

we have that C 0
ðFÞ is contractible. By Theorem 14, NðGÞ is a wedge of suspensions of

C 0
ðFÞ, and so it is contractible.

Assume now that the Carter subgroups of G are Sylow p-subgroups. Then if
NðGÞ is contractible, in formula (4) of Proposition 17, every term of the form
EðFX Þ �ApðPÞ>X with X A ApðPÞ is contractible. In particular, if X is a maximal
elementary abelian subgroup of P, then ApðPÞ>X is empty and EðFX Þ must be con-
tractible. Proposition 15 implies that CF ðXÞ0 1, which completes the proof. r

Remark 19. We note that, in the setting of the previous proposition, if jpðCÞjd 2
then the condition that all direct products of elementary abelian subgroups of C

have non-trivial centralizer in F is not necessary to guarantee NðGÞF 1. Let a be a
cube root of unity in the field F7 of 7 elements and C the group ha; biFC3 � C2

acting on a 2-dimensional space V over F7 in the following way: a ¼ diagð1; aÞ,
b ¼ diagð�1;�1Þ. Let G be the semidirect product V zC. Then V and C are
respectively the Fitting subgroup and a Carter subgroup of G; moreover
CV ðCÞcCV ðhbiÞ ¼ 1. By Theorem 14, NðGÞ is homotopy-equivalent to a wedge
of suspensions of the subcomplex CV ; this consists of a single element hai, and
therefore it is contractible, and hence NðGÞ is contractible.

Remark 20. The condition that the (direct products of ) elementary abelian subgroups
of a Carter subgroup C of G have non-trivial centralizers in F does not imply that
CF ðCÞ0 1. Indeed, let p and q be odd primes such that p divides q � 1, and let P be
the extraspecial group of order p3 and exponent p. Let F be the direct product
A � B, where A and B are elementary abelian groups of orders respectively q2 and
qpþ1. We let P act on A faithfully and irreducibly, and on B in such a way that the
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p þ 1 direct factors of B are exactly the centralizers of the di¤erent maximal ele-
mentary abelian subgroups of P. Then the group G ¼ FP is such that CF ðPÞ ¼ 1 but
CF ðXÞ0 1 for every elementary abelian p-subgroup X of P.
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