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On the commuting complex of finite metanilpotent groups

Francesco Fumagalli

(Communicated by C. W. Parker)

Abstract. We study the commuting complex associated to the set of all non-trivial elements
of a finite group. In particular we treat the case of metanilpotent groups, proving a wedge-
decomposition formula for this simplicial complex and necessary and sufficient conditions for
its contractibility.

Introduction

Given a non-empty subset U of a finite group G, the commuting complex T(U) as-
sociated to U is defined as the simplicial complex with vertex set U and whose sim-
plices are all finite non-empty subsets of U with elements that commute pairwise.
Commuting complexes of various subsets U have been investigated (see for instance
[2], [13] and [11]). We analyze the case in which U is the set of all non-trivial elements
of G (namely G#:= G\{1}). In this situation we consider an alternative way of
looking at I'(G#), by using the fact (Proposition 5) that this complex is, up to ho-
motopy equivalence, the same as the order complex of the poset ./(G) consisting of
all non-trivial nilpotent subgroups of G ordered by inclusion. (We remind the reader
that if P is any partially ordered set (‘poset’ for short), then the order complex A(P)
associated to P is the simplicial complex whose simplices are the totally ordered
subsets of P). The aim of this work is to establish some results concerning the topol-
ogy, and more specifically the homotopy type, of A(A(G)).

After some introductory results, in Section 2 we treat the case of finite meta-
nilpotent groups in detail. Our main theorem is the following result:

Theorem 14. If G is a finite metanilpotent group, then A(N"(G)) has the same homo-
topy type as the wedge

V S(A(Cir)),

IF|

where F = F(G) is the Fitting subgroup of G and
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Ciry = {X < C|X #1,Ce(X) # 1},

where C is a fixed Carter subgroup of G. (The symbol S denotes the suspension
operator.)

Recall that a Carter subgroup of a group G is a self-normalizing nilpotent sub-
group of G (see Proposition 8 for some properties of Carter subgroups). Thus the
homotopy type of the order complex of ./"(G) is determined by A(C(f)) and |F|. We
obtain a complete result regarding the homotopy type of .4(G) in the case when a
Carter subgroup is a p-group (and hence a Sylow p-subgroup) of G. The results that
we obtain (Propositions 15 and 17) resemble those concerning the Quillen complex at
p for the same types of groups (see [12] and [3]). Our analysis allows us to answer a
question in [11] (see Remark 11). Finally, in Section 3 we study the contractibility of
A7(G) for metanilpotent groups whose Carter subgroups are p-groups.

Notation. Our basic references are [4] for group theory and [15] for topology. The
notation of the paper follows these books. For a poset (P,>) and an element r € P
we denote by P, the subposet {q € P|q > r}; the subposets P-,, P<,, P, are de-
fined similarly. A map f : P — Q between posets is said to be order-preserving if
f(x) < f(y) whenever x < y in P. We denote by A(P) the order complex associated
to the poset P, but, in order not to overburden the notation, we often use the same
symbol P to denote both the poset and the associated simplicial complex. We reserve
the symbol ~ to denote homotopy equivalence between topological spaces. The to-
pological spaces that we are dealing with are always simplicial complexes, and in
particular CW-complexes; the basic facts concerning these are taken for granted. For
two simplicial complexes A, A,, we define the join A; x A, and the wedge A; v A; as
in [15]; in particular, Ax &J = ¢« A = A, and A; = A, is a contractible space if and
only if at least one of the two complexes is. The wedge operator is unambiguously
defined if and only if the spaces involved are path-connected; otherwise we have to
specify the points at which the two complexes are wedged. This will be crucial in
our wedge-decomposition formulas (for instance formula (1) in Lemma 3). As usual,
Sk denotes the k-dimensional sphere; we take S~! to be the empty set and S° the set
consisting of two disjoint points. The suspension S(A) of a space A is defined to be
S% % A and the cone C(A) of A is defined to be {1} * A.

For any finite group G, we denote by .A"(G), .«/(G), 6(G) and .«Z,(G) respectively
the posets of all non-trivial nilpotent subgroups of G, all non-trivial abelian sub-
groups of G, all non-trivial direct products of elementary abelian subgroups of G,
and all non-trivial elementary abelian p-subgroups of G (if p is a prime divisor of |G|).

1 Preliminaries
In this section we collect some topological techniques and some basic facts about the
complex A(G).

Lemma 1 (Fiber Lemma [12, (1.6)]). Let f : P — Q be an order-preserving map be-
tween the finite posets P and Q. Suppose that for all x € Q the upper (resp. lower) fiber
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Q=) (resp. f~1(Q«.)) is contractible as a topological space. Then f induces a
homotopy equivalence between the order complexes A(P) and A(Q).

A conjunctive (resp. subjunctive) element of a poset P is, by definition, an element
x of P such that for all y € P a least upper bound x v y exists in P (resp. a greatest
lower bound x A y exists in P).

Lemma 2 ([12, (1.5)]). If a poset P has a conjunctive or a subjunctive element, then the
order complex of P is contractible.

Lemma 3 ([3, Corollary 5]). Let f: P — Q be an order-preserving map between the
two finite posets P and Q. Assume that
(1) Q is a meet semi-lattice with unique least element 0;

(2) every minimal element in Q_j is in the image of f;

(3) for every q € Q_, the complex A(f~'(Q<,)) is either contractible or a wedge of
(nq)-dimensional spheres, with 0 < n, <n, if ¢ < rin Q.

Then the order complex A(P) is homotopy-equivalent to the wedge

(AUTHOD *AQ.0)) vV (AT (Q<)) * A(Q) (1)

q€Q>6

where for q € Q_; a fixed point ¢, € A(f 7 (Q<q) S A(f 71 (Q<y)) * A(Qsy) is identi-
fied with q € A(f~{0}) * A(Q_p)-

Let Q be a subposet of the poset P. We say that P is an extension of Q by minimal
elements if the following conditions hold:

(1) Q°P is an ideal of the opposite poset P°P;
(2) forevery pe P, Ox, # &;
(3) for every p € P, either p € Q or p is a minimal element of P.

The following is a corollary of [14, Theorem 2.4].

Lemma 4. Let P be an extension of Q by minimal elements and assume that A(Q) is
contractible. Then A(P) has the same homotopy type as the wedge of suspensions

V' S(A(Pom)).

meP\Q

Proof. In [14, Theorem 2.4] it is proved that the wedge \/ _ poSAPsm)) is
homotopy-equivalent to A(Py) where Py is the poset given by P with the adjunction
of an extra element Oy that lies under all minimal elements of Q. Therefore
A(Pg) = A(P)UA(Qyp), and both A(Qp) and A(P) NA(Qg) = A(Q) are contractible.
By the so-called ‘Gluing Lemma’ ([1, Lemma 10.3]), it follows that A(Pg) ~ A(P).

O
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In the sequel we do not distinguish in our notation between a poset and the asso-
ciated order complex; we simply write P for both, and the correct interpretation will
always be clear from the context.

Proposition 5 ([9, (1.2)]). The order complexes N (G), &(G), oA (G) defined in the In-
troduction and the commuting complex T'(G?#) are all G-homotopy-equivalent.

Proposition 6 ([9, (2.2)]). Let G be a finite group. If G has non-trivial center Z(G) then
N (G) is contractible.

Proof. Since for every nilpotent subgroup X of G the subgroup Z(G)X is again nil-
potent, Z(G) is a conjunctive element of ./°(G), and hence /(@) is contractible by
Lemma 2. []

Recall that the ‘join’ (P; * P, <) of two posets (P, <) and (P,, <) is a new poset
whose underlying set is the disjoint union of the underlying sets P, and P, and whose
order relation is defined as follows: for x, y € P; * P, we have

x <,y if both x,ye Py
x< yifandonlyif { x <,y if bothx,ye P,
XEP],yEPQ.

Proposition 7. If G is the direct product G| x Gy, then A" (G) is homotopy-equivalent
to N(Gy) x N (Gr).

Proof. By [12, Proposition 1.9] the order complex of the join poset A (G1) * A (G?)
is homotopy-equivalent to the order complex of

P = C(A(G1)) x C(A(G2))\{(1, 1)}

This latter poset consists of the collection of all non-trivial nilpotent subgroups of the
form K; x K, with K; € A°(G;) U {1} for i = 1,2. We prove that the inclusion map

Jj:P— N(G) x Gy)

induces a homotopy equivalence between order complexes. For i= 1,2 let
7; : G1 X Gy — G be the projection map onto G;, and note that if K is a non-trivial
nilpotent subgroup of G| x G, then 7;(K) x 7m,(K) is again a nilpotent subgroup of
G\ x G, containing K. Thus the upper fiber jZY contains 7 (K) x 7(K) as its unique
minimal element, and so it is a conically contractible space. By Fiber Lemma 1, the
map j induces a homotopy equivalence. []

The problem of establishing which groups G have a connected commuting com-
plex has already been dealt with satisfactory. In [9], S. Lucido proves that A"(G) is
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connected if and only if the ‘prime graph’ of G is connected (this is the graph having
as vertices the prime divisors of |G| and with two vertices p and ¢ joined by an edge
if and only if G has an element of order pq). The structure of finite groups whose
prime graph is not connected was determined by K. Gruenberg and O. Kegel in un-
published work (see [6], [7], [8], [10] and [16]).

We end this section by recalling basic facts about Carter subgroups (i.e. nilpotent
and self-normalizing subgroups of a group).

In finite soluble groups the Carter subgroups are exactly the .4 -projectors of the
group (here ./ denotes the Schunck class of nilpotent groups); in other words, C is a
Carter subgroup of G if and only if for every endomorphism ¢ of G, ¢(C) is a maxi-
mal nilpotent subgroup of ¢(G).

Proposition 8 ([4, (VI 12.1), (VI 12.4)]). Suppose that G is a finite soluble group. Then
(1) G has Carter subgroups,
(2) all Carter subgroups are conjugate in G, and

(3) if N is a nilpotent normal subgroup of G, D/N a Carter subgroup of G/N and C a
maximal nilpotent subgroup of D such that D = NC, then C is a Carter subgroup
of G.

2 The homotopy type of the complex .4'(G) for metanilpotent groups

Throughout this section (and the rest of the paper) let G be a finite metanilpotent
group. It is well known (see for example [4, Theorem 12.4]) that G = FC, where
F := F(G) is the Fitting subgroup of G and C is any Carter subgroup C of G. We
consider the case in which FNC # 1.

Proposition 9. If FN C # 1, then A (G) is contractible.

Proof. The hypotheses imply that every nilpotent subgroup of G has a non-
trivial centralizer in F. In fact, assume by contradiction that there exists a non-
trivial nilpotent subgroup 4 of G such that Cr(4) = 1. Then 4 is a maximal nilpo-
tent subgroup of FA and, since FNA =1, A is a Carter subgroup of FA. As
F(CN(FA)) = FA, any maximal nilpotent subgroup of FA that contains CN FA4 is a
Carter subgroup of FA (for example by Proposition 8(3)); if D is any such subgroup,
then D and A are conjugate under some element g that can be taken to be in F. We
obtain that

FND=FNAY=(FNA)’ =1,

which contradicts the fact that F N D contains the non-trivial subgroup F N C.
Therefore the map

[ AN(G)—= N(F); Ar Cp(A)
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is well defined. This map f is an order-reversing map between posets, and we claim
that its upper fibers are contractible. Given any non-trivial subgroup L of F, the
upper fiber over L is

fol ={X e N(G)|Cr(X) = L}.

Since L is nilpotent, Z(L) is non-trivial, and thus it is an element of /2. Now for
X € f2] the subgroup XZ(L) is again nilpotent, as L centralizes X, and we have

Cr(XZ(L)) > Cr(X) N CR(Z(L)) > L.

so that XZ(L) € f<}. This shows that Z(L) is a conjunctive element of fZ}, and so
by Corollary 2 this fiber is contractible. Hence, by Lemma 1, f induces a homotopy
equivalence between the complexes .4°(G) and 4 (F); since the latter is a cone we
conclude that /7 (G) ~ 1. [J

Corollary 10. If Cr(C) # 1, then A (G) is contractible.

Proof. Since C equals its normalizer, Cr(C) < FN C, and thus F N C # 1 so that we
can apply Proposition 9. [

Remark 11. Proposition 9 implies in particular that there exist finite groups with
trivial center and contractible complex ./°(G). For instance, an extension of the ex-
traspecial group of order 27 and exponent 3 by the group generated by an involution
fixing one of the two standard generators and inverting the other is of this type. This
negatively answers [11, Question 2.9].

We treat now the case in which G = F > C is a split extension of its Fitting sub-
group F by a Carter subgroup C. Note that this assumption implies that G has trivial
center.

Our starting point is the following

Lemma 12. If X is a nilpotent subgroup of G = F X C such that Cr(X) is trivial, then
X is contained in one and only one Carter subgroup of G.

Proof. Let X be as in the statement and let D be a maximal nilpotent subgroup of
G containing X. Then DNF =1, since otherwise DN F is a non-trivial normal
subgroup of D and therefore, since D is nilpotent, 1 # Z(D) N F, contradicting the
fact that Z(D)NF < Cr(X) = 1. In particular Np(D) = Cp(D) < Cr(X) =1, ie.
Ng(D) has trivial intersection with F. Therefore Ng(D), being isomorphic to a sub-
group of G/F, is nilpotent. The maximality of D implies Ng(D) = D, and this is a
Carter subgroup containing X.

Suppose now that X is contained in two Carter subgroups of G, say D; and D,. As
these subgroups are conjugate (by Proposition §(2)), we may write D; = Dj for some
g that can be taken to be in F. But then X and XY both liec in FX N D,, and, by re-
peated use of Dedekind’s modular law ([4, (12.12)]), we have
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X9=X9FND))=FX'ND;=FXND, =X(FND;)=X.

Therefore g is an element of F normalizing X. But Cr(X) = 1, and so ¢ is trivial and
Dy=D,. O

The previous observation permits us to deform the complex ./°(G) by, roughly
speaking, contracting any subgroup X with trivial centralizer in F into the single
Carter subgroup containing it. This operation does not affect the homotopy type of
the complex A"(G):

Lemma 13. If G=F X C, then A (G) is homotopy-equivalent to BU%E, where
B:={X € /(G)|Cr(X) # 1} and ¥ is the set of Carter subgroups of G.

Proof. Consider the inclusion map i : ZU% — A"(G) and choose an arbitrary ele-
ment Y € 4°(G). We claim that the upper fiber iZ} has a unique minimal element. If
Cr(Y) =1, then this happens also for every subgroup containing Y, and thus by
Lemma 12, the fiber iZ 1 consists of a unique element of G (which is a Carter sub-
group of G). Let Cr(Y) # 1, so that Y lies in 4 and is the unique minimal element
of ig L. Therefore every upper fiber is contractible. Fiber Lemma 1 completes the
proof. [

For every Carter subgroup C of G let
Cir={X <C|X #1,Cp(X) #1}.
The homotopy type of .4#"(G) can be completely described in terms of that of C(.

Theorem 14. Let G be any finite metanilpotent group, F its Fitting subgroup and C a
Carter subgroup of G. Then the complex N (G) has the same homotopy type as the
wedge of |F| copies of the suspension of C(r), namely

Proof. Assume first that FNC # 1. Then 1 # Z(C)NF < Cr(C), and C is the
unique maximal element of Cr), so that C(r) is contractible. Since wedges and
suspensions of contractible spaces are contractible,

|\}< S(C(F)) ~ ]~ JV(G),

where the last equivalence comes from Proposition 9.

Let FNC=1. Weset P:=#AU% and & := UCG%ch. Then # and & are sub-
posets of P such that P = #U 2. Note that 4 is an ideal of P. Moreover we claim
that 4, considered as a complex, is contractible. Let ¢ be the map from % to A"(F)



314 Francesco Fumagalli

sending any element X to its centralizer in F. This is a well-defined order-reversing
map. We show that its upper fibers are all contractible. For any non-trivial subgroup
Y of F, we have 1 # Z(Y) < Cp(Y), and thus Z(Y) is an element of the upper fiber
¢’1(JV(F)>Y) ={XeZ#|Cp(X) = Y}. Let X be an arbitrary element of this fiber.
Since Y centralizes X the subgroup XZ(Y) is nilpotent and satisfies

Cr(XZ(Y)) = CF(X)N Cr(Z(Y)) = Y.

This means that Z(Y) is a conjunctive element of the fiber, and therefore the fiber
is contractible by Lemma 2. Fiber Lemma 1 implies then that # and A"(F) are
homotopy-equivalent. Since ./"(F) is a cone we conclude that % is contractible. Now
if C € % then P<c, regarded as a set, is the union {C} U C(¢). Since all Carter sub-
groups are isomorphic (by Proposition 8) the posets P<¢ are all isomorphic. In par-
ticular, if for some Carter subgroup C the poset Cr) is empty, then all are empty and
thus ¥ = %. In this case, #N % = (& and P is therefore homotopy-equivalent to
an antichain of 1+ |%| points. Since |%| = |F|, 4"(G) is homotopy-equivalent to a
wedge of |F| 0-spheres, and so to

\/ S(Cry),

|F|

since C(r) is empty and S(¥) ~ S°. Therefore we assume now that C(r) # & for all
C € €. We can apply Lemma 4 to the opposite poset P’ := P°P and with Q := #°P.
In fact, we have already seen that Q is an ideal of P and that A(Q) is contractible.
Moreover the set P\Q is exactly €, and so it consists of minimal elements of P’. Fi-
nally, if p € P’, then either %<, contains p, or p = C € ¢ and #<, = Cip)y # J. All
the hypotheses of Lemma 4 are thus satisfied. This yields the following homotopy
equivalences:

N(G) ~ BUE ~ \/FS((r@U(gka) o~ _\/FS(C(XF)) o M S(Cir)):

and the result follows. [

In the case when the Carter subgroups are elementary abelian p-subgroups, the
structure of C(r) is rather simple. The next result on the complex of nilpotent sub-
groups is similar to what happens for the Quillen complex (see [12, Theorem 11.2]).

Proposition 15. Let G be a finite metanilpotent group and assume that G has an ele-
mentary abelian p-subgroup A as a Carter subgroup. Then the complex A" (G) is either
contractible or spherical of dimension tk(A) — 1, and it is contractible if and only if
Cr(A4) # 1.

Proof. According to Theorem 14, we have to examine the homotopy type of 4r).
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Assume first that C4(F) # 1. Since C4(F) < F, we have ANF # 1. Proposition
9 implies .4°(G) is contractible. The same conclusion holds, by Corollary 10, if
Cr(A4) # 1.

Consider therefore the case in which A acts faithfully and fixed-point freely on
F\{1}. In particular p does not divide |F|, since otherwise P := O,(F)A4 will be a
Sylow p-subgroup of G, and Z(P)N O,(F) will be non-trivial; but then Cr(A4) # 1.
Thus p does not divide |F|, and FN A = 1. We prove by induction on rk(4) that
A(G) is (rk(A) — 1)-spherical (which means that it is homotopy-equivalent to a
wedge of spheres each of dimension rk(4) — 1). By formula (2) of Theorem 14 and
the fact that in making the suspension the dimensions of the spheres increase by 1 (see
[12, Example 8.1]), it is enough to show that the subposet A(r) is contractible or
(rk(A) — 2)-spherical.

If rk(A4) =1 then, as Cp(A4) =1, Ay is empty and so (—1)-spherical, and the
statement is true. Suppose that rk(4) = 2. By the ‘Generation Lemma’ ([5, (1.9)]) we
know that F can be generated by the centralizers in F' of the maximal subgroups of
A. In particular, there exists a maximal subgroup, say M, of A4 such that Cr(M) # 1.
Set P:= Apyand Q :={X e P|XNM # 1}. Notice that Q = {X £ A|XNM # 1}
and that Q°P is an ideal of P°P. Moreover each element Y of P\Q is a complement to
M in A4, and so a minimal element of P. The map sending each X € Q to XN M
establishes a homotopy equivalence between the complex Q and the complex of all
non-trivial subgroups of M; the latter, having a unique maximal element, is con-
tractible, and so Q is contractible. Let Y € P. If Q-y = (J this forces that Y is a
complement of M and M has order p. Thus, in this case, 4(r) is an antichain and
Theorem 14 implies that 47(G) is homotopy-equivalent to a wedge of spheres of
dimension 1 =r1k(4) — 1. We can therefore suppose that for all Y € P we have
O>y # . All hypotheses of Lemma 4 are therefore satisfied; by applying it we
obtain

A(F> :\/S((A(F))>X)a (3)

where the wedge is taken over all the complements X of M in P. Now note that
(Ar))oy ={Y € Apy | X < Y} is isomorphic to the poset

Mcpx)) ={R<M|1#R, Ccpx)(R) # 1}

In fact, by the modular law each Y € (A4(r)).y can be written in the form
Y =(YNM)X, and thus

1 # Cr(Y) = Cr(Y N M) N Cp(X) = Cepxy(Y N M).

A routine argument shows that the map sending Y € (4(r)).y to Y N M establishes
an isomorphism between the posets (A(r)).y and M(c,(x). By the inductive hy-
pothesis we may assume that (4 g)). y is, if not contractible, spherical of dimension
tk(M) — 2 i.e. of dimension rk(4) — 3. Thus the suspension S((A4(r)).y) is either
contractible (if (4(r)). y is contractible) or (rk(4) — 2)-spherical. Formula (3) yields
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that Ap) is either contractible or a spherical complex of dimension rk(4) —2 as
claimed. [J

Remark 16. The above result is no longer true if the Carter subgroups of G are not
elementary abelian p-groups; in fact even if they are products of two elementary
abelian groups of coprime orders, spheres of different dimensions can appear in the
complex /'(G). For example, let « be a cube root of unity in the field IF; of 7 ele-
ments. Take C to be the abelian group <a,b,c,d) ~ C3 x C3 x C; x C; and let C act
on a 5-dimensional vector space V" over IF; as follows:

a =diag(o, o, 1,1,0), ¢ =diag(l,—1,1,—1,-1),
b =diag(l,1,0,0,0?), d=diag(—1,1,—1,1,-1).

Set G := V' > C. Drawing the poset C(y of all non-trivial subgroups of C with non-
trivial centralizer in V', one sees that C(y has the same homotopy type as the wedge
of a 1-dimensional sphere and a O-sphere, i.e. as S' v S°. Therefore by formula (2) of
Theorem 14, 4°(G) is homotopy-equivalent to the wedge of |F| = 35 copies of the
space S(S'v 8% = 5% v S

We make the following

Conjecture. The homotopy type of the complex of non-trivial nilpotent subgroups
of a finite metanilpotent group is that of a wedge of spheres, possibly of different
dimensions.

Some motivation is given by the following extension of Proposition 15.

Proposition 17. Let G be a finite metanilpotent group and assume that the Carter
subgroups of G are Sylow p-subgroups, for some prime p # 2 dividing the order of
G. Then N'(G) is either contractible or a wedge of spheres (possibly of different
dimensions).

Proof. By [4, Theorem 12.4] we have G = FP, where P € Syl,(G) and F = F(G) is the
Fitting subgroup. Hence since P is a Carter subgroup Cr(P) = 1 and since F = F(G)
we have Cp(F) = 1. Moreover, by Proposition 15 we may assume that P is not ele-
mentary abelian. Under these assumptions we work with the complex &(G) of non-
trivial direct products of elementary abelian subgroups of G, which is homotopy-
equivalent to /"(G), by Lemma 5.

Consider the map

f:6(G) = 4,(G) = A, (G/F)U{lg/r}; A A

induced by the projection to the quotient group. Note that the lower fiber of some

Y € o£,(G) is
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which by Proposition 15 is either contractible (if Cr(Y) # 1), or spherical of dimen-
sion rk(Y) — 1. Lemma 3 yields the formula

N(G) = \/ (E(FX)* ty(P).y) (4)
Xey(P)

Note that the first term of formula (1) in Lemma 3 has disappeared here; this is be-
cause this term is equal to the join of two spaces one of which is &(F), and so con-
tractible. Since the join of a contractible space and any other (non-empty) space is
contractible, this first term is ~ 1 and so it can be omitted. We analyze the homotopy
type of the non-contractible terms in formula (4). Note that if &(FX) * .<Z,(P). y is
any of these, using Proposition 15, it is homotopy-equivalent to

(\/ Srk(X)fl) % <%p(P)>X ~ (\/(Srk(X)*Z % SO)) % <Q/p(P)>X
~\/ ST 2 4 S(.et,(P).y).

Finally, in [3, Proposition 20] the homotopy type of the upper intervals .«7,(G).
(when G is a finite soluble group and p # 2) is described. In particular, it is proved
that the suspensions of these spaces are wedges of spheres (possibly of different di-
mensions). Therefore, by the previous equivalence, every non-contractible term in
formula (4) is a wedge of spheres (possibly of different dimensions), and hence by (4)
the whole space ./"(G) is a wedge of spheres. []

3 Contractibility of .A"(G)

It is interesting to investigate whether the contractibility of the complex A4'(G) is
equivalent to some specific group-theoretic property of G (as for instance happens for
the p-subgroups complex, where it is conjectured by Quillen that its contractibility is
equivalent to the fact that the group has a non-trivial normal p-subgroup; see [12]).

In Remark 16 we saw that the non-triviality of the center of the group is not a
necessary condition for /°(G) to be contractible, and indeed we have not identified
any group-theoretic property that seems likely to be equivalent to the contractibility
of /(G).

For metanilpotent groups we can give another sufficient condition. It is contained
in the following result.

Proposition 18. Let G = FC, with F the Fitting subgroup and C a Carter subgroup of
G. If every direct product of elementary abelian subgroups of C has a non-trivial cen-
tralizer in F then A (G) is contractible. Moreover if C is a Sylow p-subgroup of G then
the reverse implication holds.

Proof. By Theorem 14 it is enough to show that for every Carter subgroup C of G the
subcomplex Cr) is contractible.
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Note that C(r) is homotopy-equivalent to the subcomplex C(OF) consisting of all
elements of Cr that are non-trivial direct products of elementary abelian subgroups.
In fact, consider the inclusion map i : C — C(p). We claim that this has con-
tractible fibers. Given any X € Cp), smce X is mlpotent it has non-trivial center

Z(X). In particular the subgroup Z := Q(Z(X)) generated by the elements of Z(X)
of prime order is non-trivial. Thus Z lies i 1n the lower fiber iy = {T' e C ) |T < X}.
Now let T be an arbitrary element of i l< 'vs then TZ is a product of elementary abe-
lian groups, and 7Z < X. Moreover

Cr(TZ) = Cp(T)N Cp(Z) < Cp(X) # 1,

which means that 7Z lies itself in the fiber i_!y. Thus Z is a conjunctive element of
the fiber, which is contractible, by Proposition 2. Lemma 1 guarantees that there is a
homotopy equivalence between the order complexes of C(OF) and Cp. Since C is nil-
potent the subgroup Q(Z(C)) is non-trivial. We claim this is a conjunctive element of
the poset C 0 By our assumptions, it is trivial that Q(Z(C)) € C<0F). Moreover, given
any X € C the subgroup X Q( (Q)) is again a direct product of elementary abe-
lian subgroups of C, and thus, since its centralizer in F non-trivial, it is an element of
CO Therefore Q(Z(C)) is a conjunctive element of C< F)> as claimed. By Lemma 2
we have that C (}) is contractible. By Theorem 14, A"(G) is a wedge of suspensions of
Cir 0 , and so it is contractible.

Assume now that the Carter subgroups of G are Sylow p-subgroups. Then if
A'(G) is contractible, in formula (4) of Proposition 17, every term of the form
E(FX) * of,(P).y with X € oZ,(P) is contractible. In particular, if X is a maximal
elementary abehan subgroup of P, then .<Z,(P). , is empty and &(FX ) must be con-
tractible. Proposition 15 implies that Cr(X) # 1, which completes the proof. []

Remark 19. We note that, in the setting of the previous proposition, if |z(C)| = 2
then the condition that all direct products of elementary abelian subgroups of C
have non-trivial centralizer in F is not necessary to guarantee ./"(G) ~ 1. Let a be a
cube root of unity in the field IF; of 7 elements and C the group {a,b) ~ C3 x
acting on a 2-dimensional space V over IF; in the following way: a = diag(1, %),
b = diag(—1,—1). Let G be the semidirect product ¥ > C. Then ¥ and C are
respectively the Fitting subgroup and a Carter subgroup of G; moreover
Cy(C) < Cp(<{b)) = 1. By Theorem 14, 4°(G) is homotopy-equivalent to a wedge
of suspensions of the subcomplex Cy; this consists of a single element <{a), and
therefore it is contractible, and hence ./7(G) is contractible.

Remark 20. The condition that the (direct products of ) elementary abelian subgroups
of a Carter subgroup C of G have non-trivial centralizers in F does not imply that
Cr(C) # 1. Indeed, let p and g be odd primes such that p divides ¢ — 1, and let P be
the extraspecial group of order p? and exponent p. Let F be the direct product
A x B, where A and B are elementary abelian groups of orders respectively ¢ and
gP*!'. We let P act on A faithfully and irreducibly, and on B in such a way that the
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p+ 1 direct factors of B are exactly the centralizers of the different maximal ele-
mentary abelian subgroups of P. Then the group G = FP is such that Cr(P) = 1 but
Cr(X) # 1 for every elementary abelian p-subgroup X of P.
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