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ON SUBNORMALITY CRITERIA FOR SUBGROUPS IN FINITE GROUPS

FRANCESCO FUMAGALLI

Abstract

Let H be a subgroup of a finite group G and let S1
G(H) be the set of all elements g of G such that H is

subnormal in 〈H, Hg〉. A result of Wielandt states that H is subnormal in G if and only if G = S1
G(H). In this Q1

paper, we let A be a subgroup of G contained in S1
G(H) and ask if this implies (and therefore is equivalent to)

the subnormality of H in 〈H, A〉. We show with an example that the answer is no, even for soluble groups
with Sylow subgroups of nilpotency class at most 2. However, we prove that the two conditions are equivalent
whenever either A is subnormal in G or it has p-power index in G (for p any prime number).

Introduction

Let G be a finite group and H a subgroup of G. Wielandt [9] proved the following criteria for
H to be subnormal in G.

Theorem A. The subgroup H is subnormal in G provided that one of the following holds.

(1) H is subnormal in 〈H, g〉 for every g ∈ G.
(2) H is subnormal in 〈H,Hg〉 for every g ∈ G.

This result suggests a study of the so-called subnormalizers of a subgroup H of G; as
introduced in [7], these are defined as

SG(H) := {g ∈ G | H sn 〈H, g〉} ,

S1
G(H) := {g ∈ G | H sn 〈H,Hg〉} .

In general, neither SG(H) nor S1
G(H) needs to be a subgroup of G (examples are in [7, 7.7;

10]). Wielandt’s criteria tell us, in particular, that if G is finite and SG(H) (or S1
G(H)) is a

subgroup of G, then this is the maximal subgroup of G in which H is subnormal. In particular,
H sn G if and only if G = SG(H) = S1

G(H).
Wielandt’s criteria have been generalized in various directions. In particular, Wielandt

himself [9] demonstrated the existence of ‘test sets’ T ⊂ G, with the property that T ⊂ S1
G(H)

is equivalent to H sn G.
In this paper, we analyse the special situation in which a proper non-trivial subgroup A of

G is entirely contained in S1
G(H). Using a result of Wielandt [8, Hilfssatz 2.2], it is easy to

see under the further assumption that H permutes with any conjugates Ha, a ∈ A, that H
is subnormal in 〈H,A〉. However, our first observation (Example 2) shows that the condition
A ⊆ S1

G(H) alone is not enough to guarantee the subnormality of H in 〈H,A〉, even if G is a
soluble group having abelian Sylow p-subgroups for all primes p except one. Thus, our interest
is focused in two directions. First, we look for some ‘easily definable’ classes of finite groups
satisfying ∀ H,A � G, A ⊆ S1

G(H) ⇒ H sn 〈H,A〉.
A satisfactory result, in the light of Example 2, is given by the following.
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Theorem (Theorem 1). Let G be a finite group which, modulo its Fitting subgroup, has
abelian Sylow p-subgroups for every prime p. If H and A are two arbitrary subgroups of G
such that A ⊆ S1

G(H), then H is subnormal in 〈H,A〉.

In another direction, we search for some extra assumptions on A, in particular, related to
its embedding in G, that, together with the condition A ⊆ S1

G(H), guarantee H sn 〈H,A〉.
We have been able to prove the following.

Theorem (Theorem 2). Let G be a finite group, and A and H be two subgroups of G such
that A ⊆ S1

G(H). If A is subnormal in G, then H sn 〈H,A〉.

Theorem (Theorem 3). Let G be a finite group, and A and H be two subgroups of G such
that A ⊆ S1

G(H). If the index of A in G is a prime power, then H is subnormal in 〈H,A〉.

Theorem 3 can be considered the main result of this paper. Its proof makes use of a result
of Guralnick which relies on the Classification of finite simple groups.

We mention that a particular case of our general problem has been dealt with by Ho and
Völklein in [3, 4]. They treat the situation in which H is a p-subgroup of G and A is a Sylow
p-subgroup contained in SG(H). With the use of the classification theorem and under the
assumption p � 5, they prove that H sn 〈H,A〉 (which in that context just means H � A).

1. Preliminary facts, Example 2 and Theorem 1

Throughout this section and the rest of the paper, G will always denote a finite group and
H one of its subgroups.

We collect some basic facts about the subnormalizers SG(H) and S1
G(H), defined in the

Introduction (as in [7, 7.7]). These are, in general, different subsets of G, the inclusion SG(H) ⊆
S1

G(H) being strict. The following example shows that there do exist finite groups admitting a
subgroup A contained in S1

G(H) and intersecting SG(H) trivially.

Example 1. Let G = S7 be the symmetric group on seven objects, H the subgroup
generated by the element h = (12)(34) and A the one generated by the element a = (235)(467).
As hha = (1234)(56) and hha−1

= (1725)(34), both the subgroups 〈H,Ha〉 and
〈
H,Ha−1

〉
are

isomorphic to the dihedral group D8, and so A lies in S1
G(H). However,

hhaha−1
= (1723456),

so HA is not a 2-group and H is not subnormal in 〈H, a〉.

For elements of order 2, being in SG(H) or in S1
G(H) are equivalent, as stated in the following

lemma. The proof is left to the reader.

Lemma 1. Let x be an involution in S1
G(H). Then x ∈ SG(H).

We also omit the easy proof of the following fact.

Lemma 2. The subnormalizer S1
G(H) is closed under right and left multiplication by

elements of the normalizer of H in G.
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From now on A will always denote a subgroup of G lying in S1
G(H). As we see in Example 2

this condition is not enough to guarantee the subnormality of H in 〈H,A〉 (even if G is soluble
with all Sylow subgroups of nilpotency class at most 2).

Example 2. In GL(2, 5) let T be the subgroup Q ◦ Z � A0, where Q is a Sylow 2-subgroup

Q2

of SL(2, 5), Z a cyclic subgroup of order 4 generated by a scalar matrix z having non-zero entries
equal to a primitive fourth root of unity and A0 a cyclic subgroup of order 3 of the normalizer
of Q, generated by a (the symbol ‘◦’ denotes the central product). Let Q be a quaternion group Q3
of order 8 and its subgroups of order 4, say 〈x〉, 〈y〉 and 〈w〉, are transitively permuted by 〈a〉
using the rule xa = y, ya = w, wa = x. The subgroup

〈
z2

〉
is the center of Q and acts like the

inversion on the natural module M of order 25. Set G := M � T . In G let H be the subgroup
generated by the element h := xz. This H has order 2, and since H sn T , A0 ⊆ S1

G(H). We
claim that there exists a conjugate A1 of A0 for which A1 ⊆ S1

G(H) and H is not subnormal
in 〈H,A1〉. The centralizer of h in M is 1-dimensional. Since A0 acts fixed-point-freely on
M we can write CM (h) = 〈v〉, with v = [m,a−1] for some m ∈ M ; in particular, va is equal
to am. Set A1 := Am

0 = 〈va〉. As va ∈ CM (H)A0 and a−1v−1 ∈ A0CM (H), by Lemma 2, we
have A1 ⊆ S1

G(H). If H were subnormal in 〈H,A1〉, then HA1 =
〈
h, hva, ha−1v−1

〉
would be

a 2-subgroup containing the element z2 = (h · hva)2. Since z2 acts like the inversion on M ,
it is easy to see that the subgroup D := Q ◦ Z is the only 2-Sylow subgroup of G containing
z2. Therefore HA1 � D and H � D ∩ Dva. By Frattini’s argument, there exists an element
m1 ∈ M such that Dva = Dm1 . Thus

Hm1 � Dm1 ∩ MH = H(Dm1 ∩ M) = H

and so m1 ∈ CM (H). Also, a and vam−1
1 lie in NG(D), thus vam−1

1 ∈ NG(D) = T, and therefore
vam−1

1 ∈ T ∩ M = 1; this forces

va = m1 ∈ CM (H) ∩ CM (Ha) = CM (〈H,Ha〉) � CM (z2) = 1,

by which we obtain the contradiction v = 1.

We now collect some useful results. As introduced by Wielandt [8] (see also [7, p. 129]),
an operator on a lattice Σ of subgroups of G is a function ω : Σ −→ Σ such that for every
H,K ∈ Σ:

(i) 〈H,K〉ω = 〈Hω,Kω〉;
(ii) H � K implies Hω � K.

Lemma 3. Let ω be an operator on the lattice Σ with elements that are intersections and Q3
joins of subgroups of the family {Ha|a ∈ A}. Assume that ω commutes with the conjugation
action of A. If A ⊆ S1

G(H), then H normalizes (Hω)A.

Proof. For every a ∈ A, we have

〈H,Ha〉ω = 〈Hω, (Ha)ω〉 = 〈Hω, (Hω)a〉 ,

therefore

[H, (Hω)a] � [H, 〈H,Ha〉ω] � 〈H,Ha〉ω � (Hω)A.

Our basic application of Lemma 3 is as follows.

Corollary 1. If A ⊆ S1
G(H), then H normalizes the subgroups (HN )A and Op(H)A (HN

denotes the nilpotent residual of H).
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Proof. By [7, Theorems 3.3.1. and 4.1.3], both maps H �→ HN and H �→ Op(H) are
operators on the lattice of all subnormal subgroups of a group. The statement is then an
immediate consequence of Lemma 3.

Lemma 4. Let H be a p-perfect subgroup of G. If K is a normal p-subgroup of G, then
S1

G(H) ∩ K = NK(H).

Proof. Let k ∈ S1
G(H) ∩ K. Set L :=

〈
H,Hk

〉
and Y the normal closure of HL. Then, as any Q4

Hx (x ∈ L) is subnormal in L, the map X �→ Op(X) when restricted to the family {Hx|x ∈ L}
is an operator; in particular, we have

Op(Y ) = 〈Op(Hx)|x ∈ L〉 = 〈Hx|x ∈ L〉 = Y.

Therefore Y � Op(L). However, L = Y Hk and L/Y is p-perfect, thus L = Op(L). Moreover,
L = L ∩ KH = H(L ∩ K), and so

Op(L) = Op(H)Op(L ∩ K) = Op(H) = H,

that is, L = H and Hk = H.

We say that a group G lies in the class (S1) if
for every pair of subgroups H, A of G, the condition A ⊆ S1

G(H) implies H sn〈H, A〉.
We also say that G lies in (S1)P if

for every pair of subgroups H, A of G, with H a group of prime power order, A ⊆ S1
G(H)

implies H sn〈H, A〉.
In searching for the finite groups that lie in (S1), the key ingredient is the following.

Proposition 1. Let X be a class of groups closed under quotients and subgroups. Then
X ⊆ (S1) if and only if X ⊆ (S1)P .

Proof. Assume that X ⊆ (S1)P . Let G ∈ X and H,A arbitrary subgroups of G, with A ⊆
S1

G(H); we prove that H sn〈H,A〉, by induction on |G| + |H|.
By the s-closure of X, we may assume that G = 〈H,A〉.
(1) Suppose first that H has a subnormal subgroup S, which is a simple non-abelian group.
Let D be the subgroup generated by all the subnormal subgroups of H isomorphic to S,

namely the S-components of H. Then 1 = D � H and D is the direct product of all the
S-components of H. Let a ∈ A, then D � H sn

〈
H,Ha−1

〉
, and so

Da � Ha sn 〈H,Ha〉 .

If we set Da the product of the S-components of 〈H,Ha〉, then Da � Da. By [7, Theorem 4.6.3],
Da normalizes every subnormal subgroup of 〈H,Ha〉; in particular, it normalizes H. Thus
Da ∩ H � Da and as Da ∩ H is a product of S-components, we have Da ∩ H = D. Therefore
for every a ∈ A,

[Da,H] � [Da,H] � Da ∩ H = D,

and so

[DA,H] � D � DA ∩ H. (1)

This shows that DA is normalized by H and so DA � 〈H,A〉 = G. Since DA = 1, by the
inductive hypothesis, HDA/DA sn G/DA, and therefore HDA sn G. Since H � HDA by (1),
we conclude that H sn G.

(2) Assume now that the minimal subnormal subgroups of H are all abelian.
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Let p be a prime divisor of the order of H such that Op(H) = 1. Set also X := Op(H).
If X = 1, then H is a p-subgroup and so it is subnormal in G by the assumption X ⊆ (S1)P .

Thus X is not trivial. Assume now that X = H. As H sn〈H,Ha〉 for every a ∈ A, we have
that 1 = Op(〈H,Ha〉) and this normalizes H by Lemma 4. In particular for every a ∈ A,

[Op(H)a,H] � H ∩ Op(〈H,Ha〉) � Op(H).

Then [Op(H)A,H] � Op(H), that is, Op(H)A is normal in G and H � HOp(H)A. Working
modulo Op(H)A we obtain that HOp(H)A � G, and so H sn G, as required. Assume therefore
that X is a proper non-trivial subgroup of H. We claim that X sn G. In fact, A ⊆ S1

G(X)
and, by induction on |H|, we have X sn XA. Moreover by Corollary 1, XA is normalized by
H, thus XA � G and so X sn G. Since H has only abelian components, the same occurs to
X, in particular, there exists a prime number q such that Oq(X) = 1. As X sn G, we have
Oq(G) = 1. If q = p, then since G = S1

G(X), by Lemma 4, Op(G) normalizes X. Thus X is
normal in HOp(G) and since HOp(G)/X is a p-group, we have H/X sn HOp(G)/X, by which
H sn HOp(G). Moreover, as Op(G) = 1, working modulo Op(G), we deduce that HOp(G) sn G,
and H sn G. Let therefore q not equal p. If Oq(H) = H, arguing as before we have that Oq(H) is
subnormal in G, and so H = 〈Op(H), Oq(H)〉 is subnormal in G. Thus we assume that Oq(H)
equals H. Then 1 = Oq(H) � Oq(〈H,Ha〉), and this latter normalizes H. Therefore, for every
a ∈ A,

[Oq(H)a,H] � H ∩ Oq(〈H,Ha〉) � Oq(H),

by which we deduce that Oq(H)A � 〈H,A〉 = G and H � HOq(H)A. Considerations modulo
Oq(H)A bring to HOq(H)A sn G and thus H sn G. Q5

A group is said to be an A-group if all its Sylow subgroups are abelian. As a corollary of the
previous result we have the following.

Theorem 1. Let G be a finite group such that G/Fit (G) is an A-group. If H and A are
two arbitrary subgroups of G with A ⊆ S1

G(H), then H is subnormal in 〈H,A〉.

Proof. The class of finite groups T such that T/Fit (T ) is an A-group is closed under
subgroups and quotients. Therefore, by Proposition 1 we reduce to proving the statement in
the case in which H is a p-subgroup for some prime number p. In this situation for every
a1, a2 ∈ A, 〈Ha1 ,Ha2〉 is a p-group, and the assumption on G implies that

[Ha1 ,Ha2 ] � Op(G).

Therefore we have proved that
(HA)′ � Op(G).

As HA/(HA)′ is generated by p-groups, we deduce that HA is a p-group. In particular,
H sn HA � 〈H,A〉, and so H sn 〈H,A〉, as required.

Remark 1. This result does not furnish a complete characterization of the finite groups in
(S1) (for instance, it can easily be checked that this class contains the symmetric group S5).

2. Theorems 2 and 3

We have already introduced the term component in the course of the proof of Proposition 1.
We recall the precise definition.

Definition 1. A subgroup S of G is a component of G if S is subnormal and quasisimple
(this means that S is a perfect group and S/Z(S) is simple non-abelian).
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Lemma 5. Let G be a finite group, S a component of G and H a subgroup of G. If
S ⊆ SG(H), then either S � H or [H,S] = 1.

Proof. We may assume that G = 〈H,S〉 = SHH. It is enough to prove that H is subnormal
in G; for then the result will follow from a well-known fact about components [6, 6.5.2]. We Q6
proceed by induction on |G| + |H|. Let T be equal to SH ∩ H. If T = H, then S is normal
in G and G = SH. By Lemma 2 and the Wielandt criterion, H is subnormal in G. Therefore
assume that T is properly contained in H. By induction on the order of H, T is normalized
by S. Thus T � G. If T is not trivial then, by the minimality of G, H sn G. Then assume that
T = 1 and G = SH � H. Let H0 be a proper subgroup of H and s be an arbitrary element of
S. As H sn〈H, s〉, there exists an integer m such that

[〈s〉H0 , mH0] � H ∩ SH = 1,

which means that H0 is subnormal in 〈H0, s〉, that is, S ⊆ SG(H0) for every subgroup H0 of
H. By induction on |H|, S normalizes every proper subgroup of H. Therefore H must contain
a unique maximal subgroup; in other words, H is a cyclic p-group, for some prime p. Moreover,
since the maximal subgroup of H is normal in G, we can reduce to the case |H| = p. Let H
be equal to 〈h〉. Now if S is normal in G by the Wielandt criterion, then we immediately have
H sn G. Therefore assume that SH is the direct product of p copies of S. Let y be an element
of p′-order of S. For some integer m,

[〈y〉H , mH] � SH ∩ H = 1

and since the action of H on 〈y〉H is coprime, [〈y〉H ,H] = [〈y〉H , mH], so every p′-element of
S centralizes H. However, then [S,H] = 1 and H is normal in G.

Theorem 2. Let A ⊆ S1
G(H). If A is subnormal in G, then H sn 〈H,A〉.

Proof. We proceed by induction on |G| + |G : H|. We assume that G is a minimal
counterexample and H is maximal in G for which the statement is not true. In particular,
we have G = 〈H,A〉.

We claim that Fit (G) is a p-group, for some prime p.
Assume that p and q are two distinct primes and that M and N are minimal normal

subgroups of G with M of p-power order and N of q-power order. By the minimality of
G, we have that neither of them is contained in H. By the inductive hypothesis, HM
and HN are subnormal in G and so also HN ∩ HM is such. Let H0 := H ∩ MN and let
πM and πN be, respectively, the projection maps from H0 to M and to N . We have that
Ker(πM ) = H0 ∩ N , Im(πM ) = H0N ∩ M , and similar statements for the map πN . By the
theorems of isomorphisms, we have

H0N ∩ M

H0 ∩ M
� H0

(H0 ∩ N)(H0 ∩ M)
� H0M ∩ N

H0 ∩ N
.

Therefore, since p = q, we must have H0 = (H0 ∩M)(H0 ∩N), that is, H ∩MN =(H ∩M)
(H ∩ N). However then, by the modular law, HM ∩ HN = H(M ∩ HN) = H(H0 ∩ M) = H,
and thus H is subnormal in G. Therefore we can assume that Fit (G) = Op(G), for some
prime p.

Suppose now that A ∩ Op(G) = 1. If A is a p-subgroup, then A � Op(G) and G = HOp(G).
Call R := Op(H), then A � S1

G(R) ∩ Op(G) and by Lemma 4, A normalizes R. Thus R �
〈H,A〉 = G. By minimality of G, we deduce that R = 1, forcing H to be a p-group and the
same for G, which is a contradiction. Therefore A is not a p-subgroup. By Lemma 4

[Op(G), Op(A)] � Op(G) ∩ Op(A) � Op(A). (2)
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Moreover Op(A)H = Op(AH), which is normal in G. The subgroup T := [Op(G), Op(A)H ] is
then normal in G and contained in Op(A)H . As Op(A) sn G and Op(A) ⊆ S1

G(H), by the
previous case we deduce H sn Op(A)HH, so also H sn HT . As T � G, A ⊆ S1

G(HT ), thus if
T � H, by induction on |G : H|, we have HT sn G, and H subnormal in G. Otherwise, if
T � H and T = 1, by the minimality of G, we have H sn G. Thus T is equal to 1, in particular,
Op(A) � CG(Op(G)). As A sn G, if K is any component of G, by [6, 6.5.2], either K � A or
[K,A] = 1. Since A is not a p-group, Op(A) cannot centralize every component of G, otherwise it
centralizes the generalized Fitting subgroup of G and so by [6, 6.5.8] Op(A) � Fit (G) = Op(G).
Let therefore K be a component of G contained in A and let Y := KG ∩ A. As [KG, A] � Y ,
Y H is normalized by both H and A. Thus Y H is equal to KG. By induction on the index of H
in G, HKG sn G. Moreover by Lemma 5, Y normalizes H, so also does KG. Thus H � HKG,
which is itself subnormal in G if HKG properly contains H. Hence KG � H, but then by
minimality of G we again reach a contradiction.

Then we reduced to the case A ∩ Fit (G) = 1. In particular, any minimal subnormal subgroup
of G contained in A is necessarily a non-abelian simple group. Let S be one of these. Let
Y := SG ∩ A, then [SG, A] � Y . Arguing as in the last part of the previous case, we have that
Y H = SG. By induction on the index of H in G, we can assume that HSG sn G. Now Y � A
and Y normalizes H, by Lemma 5. Therefore [SG,H] = [Y H ,H] � H and H � HSG sn G.

The following four lemmas are easy facts that will be needed in the proof of our main result
(Theorem 3).

Lemma 6. Let H be a p-subgroup of G and A a subgroup of G contained in S1
G(H).

Assume that G has abelian Sylow p-subgroups. Then H sn 〈H,A〉.

Proof. For every a ∈ A, H and Ha commute pairwise. H is then a central subgroup of HA

and so H sn 〈H,A〉.

Lemma 7. Let A and K be two subgroups of G. Assume that K is subnormal in G. Then
|K : K ∩ A| divides |G : A|.

Proof. We use induction on the defect d of K in G. The result is clear if K is normal in G,
so assume that d > 1. By the inductive step, |K : K ∩ A| divides

∣∣KG : KG ∩ A
∣∣ =

∣∣KGA : A
∣∣,

so it also divides |G : A|.

Lemma 8. Let P be a p-subgroup of G. If the index in G of NG(P ) is a power of p, then
P � Op(G).

Proof. We prove that P is contained in any p-Sylow of G. Let S be one of those and let
P be contained in Sg, for some g ∈ G. By assumption G = SNG(P ), so we can write g = sn
with s ∈ S and n ∈ NG(P ). Then P � Sg = Sn and so P = Pn−1 � S.

We prove the following lemma under the strong assumption of p-solubility. It would be
interesting to know if it works without this assumption. For the analogous problem with the
‘zero’-subnormalizer SG(H) we refer the interested reader to the works of Ho and Völklein
[3, 4]. (For a different proof of the following result see [1, Lemma 2.17].)

Lemma 9. Assume that G is p-soluble, H a p-subgroup of G and P a Sylow p-subgroup of
G. If P ⊆ S1

G(H), then H � P .



“jdm050” — 2007/8/23 — page 8 — #8

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Page 8 of 16 FRANCESCO FUMAGALLI

Proof. Let G be a minimal counterexample. If Op(G) = 1, by induction on |G| we have
that HOp(G)/Op(G) � P/Op(G), and so H � P . Thus Op(G) equals 1. Let S be a non-trivial
normal p′-subgroup of G. Working modulo S, we obtain H � PS. By the Schur–Zassenhaus
theorem there exists an element s ∈ S such that Hs � P . For an arbitrary h in H, then

[h, h−s] ∈ S ∩ 〈
H,Hh−s〉

since [h, h−s] is equal both to [h, s][h−1, s] ∈ S and to h−1 · hh−s

. Since h−s ∈ P ⊆ S1
G(H),〈

H,Hh−s〉
is a p-group, and as |S| is coprime with p, we have [h, h−s] = 1. Then [h−1, s] =

[h, s]−1 = [s, h], and so

[s, h, h] = [h−1, s, h] = [s, h−1]h−1[h−1, s]h

= [s, h−1][s, h] = [s, h−1][h−1, s] = 1,

which means that [s, h] commutes with h and thus its order is a p-power. As [s, h] lies also in
S, [s, h] = 1. Since this happens for all h ∈ H, H = Hs � P .

We are now ready to state and prove our main result.

Theorem 3. Let G be a finite group, and A and H two subgroups of G such that
A⊆S1

G(H). Assume that the index of A in G is a power of some prime number p. Then
H is subnormal in 〈H,A〉.

Proof. We prove the theorem by induction on |G| + |H|. We let G be a minimal
counterexample; in particular, G = 〈A,H〉.

We discuss separately the cases: G is soluble or not.
Assume first that G is a soluble group.
We claim that the normal core AG of A is trivial. Otherwise let G be the group G/AG and

use the ‘bar’ notation to denote its subgroups. By the minimality of G the subgroup HAG is
subnormal in G, and hence HAG sn G. By Lemma 2, HAG ⊆ S1

G(H), and so by the Wielandt
criterion H sn HAG and H sn G. Thus, assume that AG equals 1 and let M be a minimal
normal subgroup of G. Then M is an elementary abelian p-group, and Fit (G) = Op(G). Let
q be a prime divisor of |H| such that Oq(H) � H. By induction on the order of H, we have
Oq(H) sn 〈Oq(H), A〉. By Corollary 1, H normalizes Oq(H)A; then Oq(H)A � G = 〈A,H〉 and
so Oq(H) sn G. Consider first the case where H is a q-group, that is, Oq(H) = 1. If q = p, then H
is subnormal in the p-group HOp(G). Working modulo Op(G), HOp(G) sn G, and then H sn G.
Let therefore q = p and let Q be a Sylow q-subgroup of G contained in A. By Lemma 9, H � Q,
but then H � A and so A = G and H sn G by the Wielandt criterion. Therefore Oq(H) is a
non-trivial subnormal subgroup of G properly contained in H. Since Fit (G) = Op(G), we have
Op(Oq(H)) = 1, and so also Op(H) = 1. Consider the subgroup Op(H), that we can assume not
trivial. If Op(H) is a proper subgroup of H, arguing as before we have Op(H) sn G. In particular,
by Lemma 4, Op(G) normalizes Op(H), and then the subgroup HOp(G) normalizes Op(H).
Since HOp(G)/Op(H) is a p-group, H is subnormal in HOp(G), which is itself subnormal in G,
and we conclude that H sn G. Finally we are reduced to consider the case Op(H) = H. Then
by Lemma 4, for every a ∈ A, Op(〈H,Ha〉) normalizes H; in particular

[Op(H)a,H] � Op(〈H,Ha〉) ∩ H � Op(H).

Therefore Op(H)A is a non-trivial normal subgroup of G that normalizes H. Working modulo
Op(H)A, we obtain that HOp(H)A is subnormal in G, but then H sn G, and this completes
the proof in the case where G is soluble.

Assume that G is not soluble. We prove a series of reductions on the structures of the group
G and of the subgroup H.
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2.1. H is a nilpotent subgroup

By contradiction, assume that the nilpotent residual HN of H is not trivial. By [7, Lemma
7.6.6(a)], HN is subnormal in HA, and so in G too. Set N := (HN )A =

〈
(HN )a|a ∈ A

〉
. By

Corollary 1, N is normalized by H, and so by the whole group G. By induction on |G|, we
can assume that HN sn G. By [7, Lemma 7.6.6(b)], H is then subnormal in HN , and so in G.
Therefore HN = 1, and H is nilpotent.

2.2. H is a t-group, for some prime number t

By contradiction, let t and r be two different prime divisors of |H| and let T and R be,
respectively, the non-trivial t- and r-Sylow subgroups of H. By induction on |H|, Or(H) is
subnormal in 〈Or(H), A〉. In particular, using Corollary 1,

Or(H) sn Or(H)A = Or(H)G � G.

As 1 = T � Or(H) sn G, we get Ot(G) = 1. Arguing in a similar way Ot(H) is subnormal in
G. By Lemma 4, Ot(G) normalizes Ot(H), thus Ot(H) � HOt(G) sn G, where the last is by
induction on |G|. As HOt(G)/Ot(H) is a t-group, we have H sn HOt(G) sn G, which contradicts
our assumption.

2.3. Fit (G) = 1

Let M be an abelian minimal normal subgroup of G. As we can assume that AG = 1, M is
an elementary abelian p-subgroup of G. By induction on |G|, we have HM/M � Ot(G/M) =:
X/M . Let T be a Sylow t-subgroup of A such that T ∩ X is a Sylow t-subgroup of X and
X = M � (T ∩ X). Then T ∩ X � A ⊆ S1

T (H), and so, by the soluble case treated before, H
is subnormal in 〈H,T ∩ X〉. However, we then have 〈H,T ∩ X〉 = T ∩ X, which forces H � A,
G = A and H subnormal in G by the Wielandt criterion.

2.4. G = MH, where M is a minimal normal subgroup of G

By contradiction, assume that MH is properly contained in G. Then, working modulo M ,
MH sn G, forcing MH sn G. By Lemma 7, the index of MH ∩ A in MH is a power of p. Thus
by induction on |G|, H is subnormal in the subgroup W := 〈H,MH ∩ A〉 and so H � Ot(W ).
In particular, t = p, otherwise Ot(W ) � MH ∩ A, which implies H � A, leading immediately
to a contradiction. Since W has p-power index in MH, by Lemma 8, Op(W ) � Op(MH). Then
H sn Op(MH), and we conclude in this case that H sn G.

2.5. M is a non-abelian simple group

Assume that M is the direct product of, say, k > 1 isomorphic copies, {Si}i=1,...,k, of a non-
abelian simple group S. As the index of M ∩ A in M divides |G : A|, for every i = 1, 2, . . . , k,
|Si : Si ∩ A| is a p-power. Let a be an arbitrary element of S1 ∩ A and let h ∈ H. If h does
not normalize S1, then ah ∈ Sj , for some j = 1, thus the element a−1ah = [a, h] has order |a|.
However, [a, h] = (h−1)ah also lies in 〈H,Ha〉 and so it must be a t-element. This shows that
S1 ∩ A is a t-group, which is impossible as S1 is simple non-abelian.

2.6. H is cyclic, moreover if t = p, |H| = p

Let K be a maximal subgroup of H, with MK a normal subgroup of G of index t. By
applying the inductive hypothesis on it, K is subnormal in the subgroup W := 〈K,MK ∩ A〉.
If t = p, then K lies in Op(W ). Since W has p power index in G, by Lemma 8, we have Op(W ) �
Op(G) = 1, in particular, K = 1 and |H| = p. Assume that t = p, then K � Ot(W ) � MK ∩ A,
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as this has index in W coprime with t. In particular K � A and H is cyclic having H ∩ A as
its unique maximal subgroup.

Summarizing Sections 2.1–2.6, our minimal counterexample G is an insoluble group
G = 〈A,H〉 = MH, where M is a finite non-abelian simple group and H is a cyclic t-group,
for some prime t. In particular, the condition A ⊆ S1

G(H) simply means that every subgroup
〈H,Ha〉, a ∈ A, is a t-group.

From now on set H = 〈h〉 and assume that it acts on M non-trivially; also set A∗ := M ∩ A.
Guralnick [2] gives a complete classification of all finite non-abelian simple groups admitting

a subgroup of prime power index. With our notation these are precisely the ones listed here.
(1) M is the alternating group An and A∗ � An−1, with n = pa.
(2) M = PSL(n, q) and A∗ is the stabilizer of a projective point or a hyperplane such that

|M : A∗| = (qn − 1)/(q − 1) = pa.
(3) M = PSL(2, 11) and A∗ � A5.
(4) M is the Mathieu group M23 and A∗ � M22, or M = M11 and A∗ � M10.
(5) M = PSU(4, 2) � PSp(4, 3) and A∗ is a parabolic subgroup of index 27.

We examine separately the different cases and show how to reach a contradiction in any of
these.

2.6.1. Alternating and symmetric groups. Let M be the alternating group An of degree
n = pa � 5. The group G = M 〈h〉 is either An or Sn, according to whether h lies in M or not.
In any case, the subgroup A of p-power index in G is the stabilizer of some point and it is
isomorphic either to An−1 or to Sn−1.

Consider first the case G = M = An. Let h1 be the element of prime order t in H. We claim
that h1 ∈ A. Otherwise, A ⊆ S1

G(〈h1〉), and by the Wielandt criterion 〈h1〉 is subnormal in A,
contradicting the simplicity of A, if n > 5. Note that if n = 5, then it must be that t = 2, but
then, as the Sylow 2-subgroups of G are elementary abelian of order 4, h = h1 and so h1 ∈ A
would imply A = G, which is a contradiction. Therefore h1 ∈ A, and thus h = h1. Write h as
the product of, say, k � 1 t-cycles σi (i = 1, 2, . . . , k). Without loss of generality, we can assume
that A is the stabilizer of the point 1 and that σ1 = (12 . . . t). The element a1 := (234) belongs
to A and

h−1ha1 = (235),

forcing t = 3. If h = σ1 = (123), then 〈h, ha1〉 � A4, and so it is not a 3-subgroup. Thus there
are at least two t-cycles in the factorization of h. Again there is no loss in assuming σ2 = (456).
Take a2 := (24)(35), then

h−1ha2 = (16)(24)

which, being not a 3-element, leads to a contradiction.
Assume now that h ∈ M = An so that G = Sn. The subgroup 〈h〉 is then a cyclic 2-group.

Without loss of generality, we assume again that the stabilizer of 1 in An, namely An(1), is
contained in A. Since h is an odd permutation not fixing 1, we can write

h = σ1σ2 . . . σt

as a product of an odd number t of disjoint cycles, each of order a power of 2. Assume that
the point 1 lies in the orbit of σ1. If t = 1, then we can assume that h = σ2 = (12 . . . 2m). Take
the element a1 := (234) of A. A computation shows that h−1ha1 has order 3, forcing 〈h, ha1〉
to be not a 2-subgroup, again a contradiction. Thus t > 1. We can suppose that 2, 3 and 4 are
points, respectively, in the orbits of σ1, σ2 and σ3. Again the element a1 = (234) of A is such
that h−1ha1 has order 3, producing the same contradiction.

2.6.2. Projective groups. Let M be the projective special linear group PSL(n, q) and A∗

the stabilizer in M of a projective point or of a hyperplane. Subgroups of these two types
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are fused in Aut (M), therefore without loss of generality we can always assume A∗ to be the
stabilizer of some projective point. Note that |M : A∗| = (qn − 1)/(q − 1) = pa, and, since p is
the unique primitive divisor of qn − 1, A∗ is a p′-Hall subgroup of M .

The arguments we use to reach a contradiction require the following lemma more than once.
We prefer to state and prove it now separately.

Lemma 10. Let M = PSL(n, q), q = rf , r being the characteristic of the field, G = M 〈h〉
and h ∈ M acting on M as an outer automorphism of order a power of r. Then there does not
exist any Borel subgroup of M that lies in S1

G(H). (In particular, A∗ � S1
G(〈h〉).)

Proof. By contradiction, let B be a Borel subgroup of M in S1
G(H). Write B = U � C, with

U the unipotent radical and C a Cartan complement; set also N := NM (C). Then M is equal
to BNB. Let U1 be an r-Sylow subgroup normalized by H, and B1 := NM (U1). Let g ∈ M be
such that B1 = Bg; if we write g = b1nb2, with bi ∈ B and n ∈ N , then

B ∩ B1 � Cb2 =: C2.

Since for all x ∈ C2, [h, x] is an r-element of B1, we have that [H,C2] � U1. A look at the
structure of outer automorphisms of M shows the following dichotomy.

(a) either G = M 〈μ〉 for some r-element μ of G that acts on V like a field automorphism or
(b) r = 2 and G = M 〈μi〉 for some field automorphism μ and some graph automorphism

i of M .
Case 1: Up to conjugation we can assume that μ normalizes U1. Thus μ also normalizes

B1, and B1 〈h〉 = B1 〈μ〉 (otherwise NM (B1) > B1 which is a contradiction, as B1 contains the
normalizer in M of an r-Sylow of M). Therefore we can write h = yμs, for some r-element
y ∈ U1 and some s � 1. Since for all x ∈ C2,

[h, x] = [yμs, x] = [y, x]μ
s

[μs, x]

lies in U1, we deduce that [μs, x] ∈ U1. However, μ normalizes B1, thus in particular, with
respect to a basis for V under which the elements of B1 have upper unitriangular shape, μ acts
on the entries of these matrices as a field automorphism, and therefore it normalizes C2. Then

[μs, x] ∈ C2 ∩ U1 = 1

and Fq ⊆ Fix (μs), which means that μs = 1 and h ∈ M , which is a contradiction.
Case 2: If h is not associated to any field automorphism of M and h ∈ M , then G/M is

isomorphic to a cyclic subgroup of the abelian group

A(n, q)
PGL(n, q)

� 〈ν〉 × 〈i〉

(where 〈ν〉 is the full group of field automorphisms and 〈i〉 is the group of graph automorphisms
of order 2) containing an element not in 〈ν〉. Therefore Mh = Mμi, for some field automorphism
μ. Moreover, with the same notation as before, we can think that both μ and i are defined on
the same base B under which the elements of U1 have unitriangular shape and the ones of C2

have diagonal shape. This means that μ acts on the elements of U1 as a field automorphism
on every entry of such matrices, and i as the inverse transpose; in particular for every x ∈ C2

[i, x] = xτx = x2.

By Sylow’s theorem, there exists some element m ∈ M such that U1 〈h〉 = U1 〈μi〉m . Let h =
u1(μi)m for some u1 ∈ U1; for all x ∈ C2 we have that

[h, x] = [u1, x]μim

[(μi)m, x] ∈ U1
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and so [(μi)m, x] ∈ U1. Then U1C2 equals U1C
(μi)m

2 . By the Schur–Zassenhaus theorem there
exists some u2 ∈ U1 such that (μi)mu2 ∈ NG(C2). Then

[(μi)mu2, x] � U1 ∩ C2 = 1.

Now

NG(C2) = M 〈μi〉 ∩ NG(C2) = NM (C2) 〈μi〉
so we can write

(μi)mu2 = μin

for some element n ∈ NM (C2). Therefore for all x ∈ C2

1 = [μin, x] = [μi, x]n[n, x] = (xμx)n[n, x]

forcing

nxn−1 = x−μ.

This can happen only if n ∈ C2 and μ inverts the elements of C2. However, then μi acts like
the transpose on the matrices representing the elements of M in the base B, and so μi is not
an automorphism of M , which is the required contradiction.

We subdivide our analysis into two cases, according to the dimension n being 2 or greater.

(1) Let n = 2.
According to [2], the condition q + 1 = pa occurs exactly when:
(i) q = r is a Mersenne prime of the form 2a − 1, p = 2;
(ii) q = 2f , p is a Fermat prime and a = 1;
(iii) q = 8 and pa = 9.

(i) Let M = PSL(2, r), where r = 2a − 1 is a Mersenne prime, and a � 3. As |Out (M)| = 2,
either G = M = PSL(2, r) or G = PGL(2, r). In both situations, for t = 2 the Sylow
t-subgroups of G are cyclic [5, II.8.10]. Thus by Lemma 6 we reach a contradiction with
the fact that Fit (G) = 1. Therefore t equals 2. Note that t = p, and so by Subsection 2.6 in the
reductive sections, we can assume that h is an involution of G. Let 〈v1〉 be the projective point,
in the natural module V , stabilized by A. Since 〈v1〉 is not 〈h〉-invariant, we fix B :=

{
v1, v

h
1

}
as a basis for V . Let α be an element of the ground field Fr of multiplicative odd order and
let a be the element of A represented by the diagonal matrix diag(α, α−1), with respect to B.
Then

[h, a] = diag(α2, α−2),

which is an element of odd order, in contradiction to the fact that it must lie in the 2-subgroup
〈h, ha〉.

(ii) Let p = 2f + 1 be a Fermat prime and M = PSL(2, 2f ). The group M has abelian Sylow
subgroups [5, II.8.27]. Therefore if G = M we reach a contradiction by Lemma 6 and the
simplicity of G. Assume that h ∈ M . The order the outer automorphism group of M is f ,
which is a power of 2, p being a Fermat prime. Therefore t = 2 = r. We apply Lemma 10 to
obtain the required contradiction.

(iii) Let M = PSL(2, 8). Suppose that M has abelian Sylow subgroups, thus by Lemma 6
we can assume that M is strictly contained in G. Therefore 〈h〉 has order 3 and G = M 〈h〉 =
PΓL(2, 8). Note that A∗ is a Hall 3′-subgroup of G and is the normalizer in M of a Sylow Q7
2-subgroup of G. By order arguments, we have that the intersection of any two conjugates of
A∗ contains a Sylow 7-subgroup of G. Let 〈x〉 be a subgroup of order 7 in A ∩ Ah−1

, then

[x, h] = (hx)−1h = x−1xh
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lies both in 〈h, hx〉, which is a 3-group and in A∗, which is a 3′-subgroup, therefore [x, h] = 1,
and the subgroup H centralizes a 7-Sylow of G. This is impossible, since the normalizers in G
of the 7-Sylow subgroups are Frobenius groups of order 42.

(2) Now let n � 3. The condition (qn − 1)/(q − 1) = pa implies that p is the unique primitive
divisor of qn − 1. In particular n is a prime number and pa ≡ 1 (mod n).

Lemma 11. t = r, the characteristic of the field.

Proof. Proceed by contradiction. Assume first that t = p. As p is the unique primitive
divisor of rfn − 1, it is easy to see that p � f . Moreover p = 2 and p = n (as pa ≡ 1 (mod n)).
Therefore p � 2df = |Out (M)| (where d = (n, q − 1)), and so, in this situation, 〈h〉 lies in M . As
the Sylow p-subgroups of M are cyclic [5, II.7.3], we reach a contradiction by Lemma 6. Assume
that t = p. Since A has index pa in G, G = MA and 〈h〉 is contained in a Sylow t-subgroup of
some conjugate of A, say H � Am (for m ∈ M). Under our assumptions, (A∗)m = (A ∩ M)m is
the stabilizer in M of some projective point, say 〈v1〉. In particular, Or(A ∩ M) = 1. Moreover
we can assume that Or(A ∩ M) = Or(A), otherwise we would have G = MOr(A), and thus
t = r. As h ∈ A, A∗ is the stabilizer in M of some 〈v2〉 = 〈v1〉. Set X := Or(Am) ∩ A. Then
X � M and for all x ∈ X, the element

[h, x] ∈ 〈h, hx〉 ∩ Or(Am)

is both a t-element and an r-element. If it were t = r, then we conclude that [H,X] = 1. Take
any a ∈ A ∩ Am ∩ M and b any element of X, then

[a, b, h] ∈ [Or(Am) ∩ A, 〈h〉] = [X, 〈h〉] = 1

and

[b, h, a] ∈ [[X, 〈h〉], A] = 1.

By the three-subgroup lemma, [h, a] ∈ CAm∩M (Or(Am) ∩ A), which is an r-subgroup of
PSL(n, q). Therefore if t = r, we must have

[〈h〉 , A ∩ Am ∩ M ] = 1.

Let now Y := Or(A) ∩ Am. Then Y � A ∩ Am ∩ M and [Or(A), Y ] = 1, since Or(A) is abelian.
By the three-subgroup lemma again, we conclude that

[H,Or(A)] � CM (Y ).

Again a matrix computation shows that CM (Y ) is an r-group, and therefore under our
contradictory assumption,

[〈h〉 , Or(A)] = 1.

However, then Or(A) is a non-trivial normal subgroup of G, and this is impossible. �
By Lemmas 10 and 11, we are reduced to consider only the case when G = M = PSL(n, q)

and 〈h〉 is an r-subgroup, r being the characteristic of the field. We show now how to reach
the last contradiction.

Since r = p, 〈h〉 lies in a Sylow r-subgroup of some conjugate Ag of A. Assume that Ag and A
are, respectively, the stabilizers of the projective points 〈v1〉 and 〈v2〉. Set W the 〈h〉-invariant
subspace of V generated by 〈v1〉 and 〈v2〉. Suppose first that dim(W ) = 2. We can choose an
appropriate basis B for V with respect to which the restriction of h to W can be represented
by the following projective matrix [

1 b
0 λ

]
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for some b, λ ∈ Fq, λ = 0. Moreover, as h ∈ A, b = 0. Computation then shows that

hr
|W =

[
1 bΦr(λ)
0 λr

]
,

where Φr(X) denotes the cyclotomic polynomial associated to the prime r. As hr ∈ A, λ is an
rth-root of unity. But r = char Fq, therefore λ = 1, that is, with respect to B

h|W =
[
1 b
0 1

]
.

Let now a be any element of A such that

a|W =
[

1 0
b−1 1

]
.

Then

[h, a]|W =
[

3 b
−b−1 0

]
.

In particular [h, a] = 1 and r = 3, otherwise the element [h, a]|W has order 2, which is not a
power of r, contrary to the fact that [h, a] lies in 〈h, ha〉. However, then a matter of computation
shows that the element h|W · (ha)|W has order 3, contrary to the fact that it must be a
power of r.

Assume therefore that dim(W ) � 3. Set v3 := v2
h. If r = 2, then we choose an involution

a ∈ A such that a(v1) = −v1, a(v2) = −v2, a(v3) = v3. Then [h, a] fixes v1 and sends v3 to −v3,
its order therefore must be even, contrary to the fact that we are assuming r = 2. Thus r is
equal to 2. Since h2 ∈ A we have that vh

3 ∈ 〈v2〉. Take a ∈ A such that it interchanges 〈v1〉 with
〈v3〉. Then

[h, a] : 〈v1〉 �−→ 〈v2〉
〈v2〉 �−→ 〈v3〉
〈v3〉 �−→ 〈v1〉

forcing the order of [h, a] to be a power of 3, in contradiction to the fact that r = 2. Q8

2.6.3. M = PSL(2, 11). The subgroups of PSL(2, 11) of prime power index are isomorphic
to A5 and have index 11. These lie in two conjugacy classes of PSL(2, 11), which are fused in
PGL(2, 11). In particular, PGL(2, 11) has no subgroups of index 11. Thus, in our notation, we
can exclude the case h ∈ M . Assume therefore that G = M . Since |PSL(2, 11)| = 22 · 3 · 5 · 11,
G is an A-group. The subnormality of 〈h〉 in G is guaranteed by Corollary 1, but this contradicts
the simplicity of G.

2.6.4. Mathieu groups. Let M be either M11 or M23. These groups have no outer
automorphisms, therefore h ∈ M and G = M . In both cases for a prime t = 2, the Sylow
t-subgroups of G are abelian; Lemma 6 leads therefore to a contradiction if H is not a 2-group.
Let 〈h〉 be a 2-subgroup. Then 〈h〉, being contained in a conjugate of A, stabilizes some point
in the natural permutation action of M , say the point marked by 1. Since M is 2-transitive,
we can also assume that A is the stabilizer of 2. Let h1 be the involution of 〈h〉, and let 3
be such that 3h = 3. There exists an element a of A that interchanges 1 and 3 and fixes the
element 3h. In particular [h, a] contains the 3-cycle (1, 3h, 3) and so it cannot be a 2-element,
in contradiction to the fact that 〈h, ha〉 must be a 2-subgroup.

2.6.5. M = PSU(4, 2). Let M be the simple group PSU(4, 2) having A∗ as a maximal
parabolic subgroup of index 27. The order of M is 26 · 34 · 5, and Out (M) = C2, therefore we
limit our considerations to the cases in which 〈h〉 is either a 2-group or a 3-group. Assume
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first that |h| is a power of 2. The subgroup A∗ is the stabilizer of a unitary projective line,
in particular it contains some involutions that are regular unipotent elements of M . Each of
these elements, according to [4], lies in a unique Sylow 2-subgroup of M . Let a ∈ A be any
of these regular unipotent involutions. As A ⊆ S1

G(〈h〉) and |a| = 2, by Lemma 1, 〈h, a〉 is a
2-group. Let S be a Sylow 2-subgroup of G containing 〈h, a〉. Then S ∩ M =: P is the unique
Sylow 2-subgroup of M that contains the element a. Thus either h ∈ P or S = P · 〈h〉; in both
cases 〈h〉 normalizes P . Since we can repeat this argument for every Sylow 2-subgroup of A,
and since A is generated by two distinct of these, we have that 〈h〉 normalizes A, and this is a
contradiction.

Consider now the case that 〈h〉 is a 3-subgroup. Then G = M and, by Section 2.6, we can
assume that |h| = 3. Let a ∈ A and let P be a Sylow 3-subgroup of G containing 〈h, ha〉. Now
P contains a characteristic subgroup X of index 3, which is elementary abelian of order 33. Let
N := NG(X). Then N is a maximal subgroup of G of index 40, and by order reasons we have
that |N ∩ A| = 23 · 3. The inductive hypothesis shows that 〈h〉 sn 〈h,N ∩ A〉 =: W . Therefore
N = P · W and 〈h〉 is subnormal in both P and W . By [7, Theorem 7.7.1] 〈h〉 is subnormal in N .
In a similar way, 〈h〉a sn N . However then 〈h, ha〉 sn N , that is, 〈h, ha〉 � O3(N) = X, which
is elementary abelian. We conclude that [h, ha] = 1 for all a ∈ A. Therefore 〈h〉 is a central
subgroup of its normal closure 〈h〉A, so 〈h〉 sn G, in contradiction with the simplicity of G.

3. Further comments

(1) Theorems 1–3 of course do hold if we substitute A ⊆ S1
G(H) with the stronger condition

A ⊆ SG(H). Even the analogs to our initial question for the ‘zero’-subnormalizer SG(H)
(replacing S1

G(H)) has a negative answer. In fact the symmetric group S8 can be generated by
the elements

h := (12)(34)(56)(78), a1 := (23)(45)(67), a2 := (24)(35)(67)

and a matter of calculation shows that A = 〈a1, a2〉 lies in SG(〈h〉), but of course 〈h〉 is not
subnormal in S8. However, it would be interesting to find, if it exists, a soluble counterexample
of this case.

(2) A more general and difficult question, as it generalizes the problem studied in [4], is the
following.

Question. If H and A are two subgroups of G such that (|H| , |G : A|) = 1 and A ⊆ S1
G(H),

is then H subnormal in 〈H,A〉?

(Note that in our counterexamples both |H| and |G : A| are even.)
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