
J. Group Theory, Ahead of Print
DOI 10.1515/JGT.2009.032

Journal of Group Theory
( de Gruyter 2009

Some structural results on the non-abelian tensor square of
groups

Russell D. Blyth, Francesco Fumagalli and Marta Morigi

(Communicated by S. Sidki)

Abstract. We study the non-abelian tensor square GnG for the class of groups G that are
finitely generated modulo their derived subgroup. In particular, we find conditions on G=G 0

so that GnG is isomorphic to the direct product of ‘ðGÞ and the non-abelian exterior square
G ^ G. For any group G, we characterize the non-abelian exterior square G ^ G in terms of a
presentation of G. Finally, we apply our results to some classes of groups, such as the classes of
free solvable and free nilpotent groups of finite rank, and some classes of finite p-groups.

Introduction

The non-abelian tensor square GnG of a group G is a special case of the non-
abelian tensor product GnH of two arbitrary groups G and H that was introduced
by Brown and Loday in [5], [6] and it arises from applications of a generalized Van
Kampen theorem in homotopy theory.

For all g; h a G let gh ¼ ghg�1 and ½g; h� ¼ ghg�1h�1. Then GnG is defined as the
group generated by the symbols gn h, for g; h a G, subject to the relations

ghn k ¼ ðghn gkÞðgn kÞ and gn hk ¼ ðgn hÞðhgn hkÞ:

The definition guarantees the existence of an epimorphism k : GnG ! G 0, defined
on the generators by kðgn hÞ ¼ ½g; h� for all g; h a G. Let JðGÞ be the kernel of the
map k, and let ‘ðGÞ be the normal subgroup generated by the elements gn g, for all
g a G. The group ðGnGÞ=‘ðGÞ is called the non-abelian exterior square of G, and is
denoted by G ^ G. The map k factorizes modulo ‘ðGÞ, thus inducing an epimor-
phism k0 : G ^ G ! G 0. By results in [5], [6], the kernel of the map k 0 is isomorphic
to the Schur multiplicator MðGÞ of G. Let GðG=G 0Þ be Whitehead’s quadratic
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functor, as defined in [16]. Then results in [5], [6] give a commutative diagram with
exact rows and central extensions as columns:

1 1???y
???y

GðG=G 0Þ ���! JðGÞ ���! MðGÞ ���! 1???y
???y

???y
1 ���! ‘ðGÞ ���! GnG ���! G ^ G ���! 1???y k

???y k 0

???y
1 ���! G 0 ���!id

G 0???y
???y

1 1

We are interested in the case when the middle row of the above diagram splits. Our
main result in this context is the following.

Theorem 1. Let G be a group such that G=G 0 is finitely generated. If G=G 0 has no

elements of order 2, or if G 0 has a complement in G, then GnGU‘ðGÞ � ðG ^ GÞ.

We will see that, under the hypotheses of Theorem 1, the structure of the tensor
square GnG is completely determined once the structures of G=G 0 and G ^ G are
known. In [4] Brown, Johnson and Robertson proved that if MðGÞ is finitely gen-
erated then G ^ G is isomorphic to the derived subgroup of any covering group ĜG

of G (the notion of a covering group is well known if G is finite, see [11], and in the
general case the authors of [4] adopted a similar definition). Our contribution is the
following.

Theorem 2. Let G be a group and let F be a free group such that GUF=R for some

normal subgroup R of F. Then G ^ GUF 0=½F ;R�.

As corollaries of Theorems 1 and 2, we deduce the structure of non-abelian tensor
squares of finitely generated groups that are free in some variety.

The paper is organized as follows. In the first section we collect some background
material and prove Theorem 1, while in Section 2 we prove Theorem 2 and derive
several consequences. Section 3 deals with finite p-groups G; in particular some upper
bounds on the orders of GnG and MðGÞ are found.

The notation used in this paper is standard (the reader is referred for example to
[11]), with the only exception that conjugation and commutation are as defined in
the second paragraph of this Introduction.
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1 Structure of the non-abelian tensor square

Let G be an arbitrary group. In order to investigate the structure of GnG, it is
sometimes more convenient to consider the following construction, which was intro-
duced in [14].

Let Gj be a group isomorphic to G via the isomorphism j : G ! Gj, and consider
the group

nðGÞ :¼ 3G;Gj jR;Rj; g3 ½g1; g
j
2 � ¼ ½g3g1; ðg3g2Þj� ¼ g

j

3 ½g1; g
j
2 �; for all g1; g2; g3 a G4;

where R;Rj are the defining relations of G and Gj respectively.
In [14, Proposition 2.6], the non-abelian tensor square GnG is proved to be iso-

morphic to the commutator subgroup ½G;Gj� inside nðGÞ.
From now on we identify GnG with ½G;Gj� and, unless di¤erently specified, we

write ½g; hj� in place of gn h (for g; h a G). For the reader’s convenience we report
here some results that we will often use.

Lemma 1.1 ([14, Lemma 2.1], [3, Lemma 2.1], [15, Lemma 3.1]). Let G be any group.

The following relations hold in nðGÞ.

(i) ½g3;g
j

4
�½g1; g

j
2 � ¼ ½g3;g4�½g1; g

j
2 � ¼ ½gj

3
;g4�½g1; g

j
2 �, for all g1; g2; g3; g4 a G.

(ii) ½gj1 ; g2; g3� ¼ ½g1; g
j
2 ; g3� ¼ ½g1; g2; g

j
3 � ¼ ½gj1 ; g

j
2 ; g3� ¼ ½gj1 ; g2; g

j
3 � ¼ ½g1; g

j
2 ; g

j
3 �,

for all g1; g2; g3 a G.
(iii) ½g1; ½g2; g3�j� ¼ ½g2; g3; g

j
1 �

�1, for all g1; g2; g3 a G.
(iv) ½g; gj� is central in nðGÞ, for all g a G.
(v) ½g; gj� ¼ 1, for all g a G 0.

(vi) If g1 a G 0 or g2 a G 0, then ½g1; g
j
2 �

�1 ¼ ½g2; g
j
1 �.

For a finitely generated abelian group A, the non-abelian tensor square is simply
the ordinary tensor product of two copies of A. In particular, if A ¼ fa1; . . . ; asg is
a set of generators of A such that A is the direct product of the cyclic groups
3a14; . . . ; 3as4, then we can write

AnA ¼ ‘ðAÞ � EAðAÞ;

where

‘ðAÞ ¼ 3½ai; aji �; ½ai; a
j
j �½aj; a

j
i � j 1c i < jc si

and

EAðAÞ ¼ 3½ai; ajj � j 1c i < jc s4:

Observe that ‘ðAÞ is independent of the set of generators A of A, since in fact
‘ðAÞ ¼ 3½a; aj� j a a A4, while EAðAÞ does depend on the choice of A.

It turns out that for any group G such that Gab is finitely generated (in particular,
for any finitely generated group G), the structure of ‘ðGÞ essentially depends on Gab.
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The following lemma, which improves the result [15, Proposition 3.3] of Rocco,
makes this observation precise.

Lemma 1.2. Let G be a group such that Gab is finitely generated. Assume that Gab is

the direct product of the cyclic groups 3x1G
04; . . . ; 3xsG 04 and set EðGÞ to be

3½xi; xj
j � j i < j4½G 0;Gj�. Then the following hold:

(i) ‘ðGÞ is generated by the set f½xi; xj
i �; ½xi; x

j
j �½xj; x

j
i � j 1c i < jc sg;

(ii) ½G;Gj� ¼ ‘ðGÞEðGÞ.

Proof. (i) Let Y ¼ fyaga a I be a set of generators for G 0 and let X ¼ fxigsi¼1. Then
G ¼ XUY generates G. By [2, Lemma 17] (or [15, Proposition 3.3]), ‘ðGÞ is gener-
ated by f½a; aj�; ½a; bj�½b; aj� j a; b a Gg.

Note that ½a; aj� ¼ 1 if a a Y (by Lemma 1.1 (v)) and similarly ½a; bj�½b; aj� ¼ 1 if
at least one of a and b lies in Y (Lemma 1.1 (vi)).

(ii) Consider the map f : ½G;Gj� ! ½Gab; ðGabÞj� induced by the projection onto
Gab. Then Im f ¼ f ð‘ðGÞ3½xi; xj

j � j i < j4Þ and Ker f ¼ ½G 0;Gj� ¼ ½G; ðG 0Þj� (see
[14, Remark 3]), so ½G;Gj� ¼ ‘ðGÞEðGÞ. r

We are now able to describe the structure of the non-abelian tensor square GnG

in terms of ‘ðGÞ and the non-abelian exterior square G ^ G. Our result generalizes
[4, Proposition 8] and [3, Proposition 3.1].

Theorem 1.3. Assume that Gab is finitely generated. Then, with the notation of Lemma

1.2, the following hold.

(i) The map f1 defined to be the restriction f j‘ðGÞ : ‘ðGÞ ! ‘ðGabÞ of the projection
f : G ! Gab onto Gab has kernel N ¼ EðGÞV‘ðGÞ. Moreover, N is a central

elementary abelian 2-subgroup of ½G;Gj� of rank at most the 2-rank rk2ðGabÞ of
Gab.

(ii) ½G;Gj�=NU‘ðGabÞ � ðG ^ GÞ.
(iii) Suppose either that Gab has no elements of order 2 or that G 0 has a complement in

G. Then ‘ðGÞU‘ðGabÞ and GnGU‘ðGÞ � ðG ^ GÞ.

Proof. (i) Let w a ‘ðGÞVEðGÞ. Then

f1ðwÞ ¼ f ðwÞ a ‘ðGabÞVEðGabÞ ¼ 1;

and so NcKerð f1Þ. Conversely,

Kerð f1Þ ¼ Kerð f ÞV‘ðGÞ ¼ ½G 0;Gj�V‘ðGÞcN:

Moreover, N is a central subgroup of ½G;Gj�, as Nc‘ðGÞ (see Lemma 1.1 (iv)). We
now recall that there is a sequence of epimorphisms

GðGabÞ !c ‘ðGÞ !f1 ‘ðGabÞ;
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where GðGabÞ is the Whitehead functor on G (see [4]). In particular, if N2 ¼ Kerðcf1Þ
and N1 ¼ KerðcÞ, then NUN2=N1. Now [14, Remark 6] proves that N2 is an ele-
mentary abelian 2-group of rank r ¼ rk2ðGabÞ. Since NUN2=N1, the result follows.

(ii) By Lemma 1.2 and (i), we have

½G;Gj�=NU‘ðGÞ=N � EðGÞ=N:

Note that ‘ðGÞ=NU‘ðGabÞ and EðGÞ=NU ½G;Gj�=‘ðGÞ ¼ G ^ G:
(iii) If Gab has no elements of order 2, then 2 does not divide the order of the

torsion part of GðGabÞ, and so GðGabÞU‘ðGÞU‘ðGabÞ, forcing the result.
Assume now that G 0 has a complement A in G. If we write g a G as g ¼ xa, with

x a G 0 and a a A, by [15, Lemma 3.1 (iv)] we have ½g; gj� ¼ ½a; aj�; forcing

‘ðGÞ ¼ 3½g; gj� j g a G4 ¼ 3½a; aj� j a a A4U‘ðGabÞ;

and N ¼ 1. r

Observation. In [14, Remark 6] it is proved that in the proof of Theorem 1.3 (i) if
we have jxij ¼ jxiG 0j, for i ¼ 1; . . . ; r, then N1 has rank r, so NUN2=N1 ¼ 1,
‘ðGÞU‘ðGabÞ and GnGU‘ðGÞ � ðG ^ GÞ.

As a consequence of Theorem 1.3 and the fact that the Schur multiplicator MðGÞ
is isomorphic to the quotient JðGÞ=‘ðGÞ (by [15, Proposition 2.8]), we have the
following:

Corollary 1.4. Let G be a group such that Gab is a finitely generated abelian group with

no elements of order 2. Then JðGÞUGðGabÞ �MðGÞ.

We recall the notions of non-abelian tensor center ZnðGÞ and non-abelian exterior

center Z^ðGÞ of a group G. These groups are defined in [7] as

ZnðGÞ ¼fg a G j ½g; xj� ¼ 1; for all x a Gg;
Z^ðGÞ ¼fg a G j ½g; xj� a ‘ðGÞ; for all x a Gg:

As Ellis showed in [7] and [8], ZnðGÞ is a characteristic central subgroup of G and
is the largest normal subgroup L of G such that GnGUG=LnG=L. The non-
abelian exterior center Z^ðGÞ is a central subgroup of G and is equal to the epicenter
Z�ðGÞ of G.

Corollary 1.5. Let G be any group such that Gab is finitely generated. With the nota-

tion of Theorem 1.3, if N ¼ 1 then ZnðGÞ ¼ Z^ðGÞVG 0. In particular, the conclusion
holds if G is a finite group of odd order.

Proof. By the definition of exterior center we have that ½Z^ðGÞVG 0;Gj�cN ¼ 1:
Therefore Z^ðGÞVG 0 cZnðGÞ. Conversely, we trivially have ZnðGÞcZ^ðGÞ.
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Let x a ZnðGÞ. Under the natural map from GnG to Gab nGab, the element
1 ¼ ½x; xj� is mapped to ½xG 0; ðxG 0Þj�, which is thus the trivial element of the tensor
product Gab nGab. Hence xG 0 is the identity element of Gab, so x a G 0. We conclude
that ZnðGÞcG 0. r

Question. With the notation of Theorem 1.3, is it always true that

N ¼ ½Z^ðGÞVG 0;Gj�?

Note that a positive answer to this question will imply, by [4, Proposition 9], that
GnG=N is isomorphic to the tensor square of G=H, where H is defined to be
Z^ðGÞVG 0.

2 Structure of the non-abelian exterior square

We will now describe the structure of the non-abelian exterior square G ^ G of a
group G. Throughout this section we view the non-abelian tensor square GnG as
defined at the beginning of the paper, with generators g1 n g2, rather than via the
isomorphic subgroup ½G;Gj� of nðGÞ. We denote by g1 ^ g2 the coset of G ^ G con-
taining g1 n g2.

Let G be a group and let R !i F !p G be a presentation for G, where F is a free
group. The following theorem is the main result of this section. As the proof uses an
argument similar to that of [12, Theorem 2], we will just sketch it.

Theorem 2.1. Let G be a group and let F be a free group such that GUF=R for some

normal subgroup R of F. Then G ^ GUF 0=½F ;R�.

Proof. Set F � to be the quotient F=½F ;R� and set R� to be R=½F ;R�, so that

1 ! R� !i F � !h G ! 1 (1)

is a central exact sequence. From the sequence (1) and by [4, Proposition 7], there
exists a homomorphism x : GnG ! ðF �Þ0 such that h x is the commutator map
k : GnG ! G 0. In particular, x operates as follows on the generators g1 n g2 of
GnG: xðg1 n g2Þ ¼ ½ f1; f2�½F ;R�; where f1 and f2 are any two preimages of g1 and
g2 in F , respectively. Of course, x is trivial on the central subgroup ‘ðGÞ, and so it
induces a homomorphism

x : G ^ G ! ðF �Þ0 UF 0=½F ;R�: (2)

It turns out that the map x is an isomorphism.
The surjectivity of x follows immediately from its definition. To prove that x is in-

jective one can consider its restriction f : MðGÞ ! ðF �Þ0 to MðGÞ and using the same
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argument as in the proof of [12, Theorem 2] one concludes that f is injective. Then
one applies the short five lemma ([1, Proposition 2.10]) to the commutative diagram

1 ���! MðGÞ ���!i G ^ G ���!k 0
G 0 ���! 1???yf

???yx

???y1G 0

1 ���! ðRVF 0Þ=½F ;R� ���!~ii F 0=½F ;R� ���!~hh G 0 ���! 1;

where ~ii is the restriction of the map i to R� V ðF �Þ0 and ~hh is the restriction of h to
ðF �Þ0. r

As consequences of the results above we can describe the structures of the non-
abelian tensor squares of some groups that are ‘universal’ in the sense that they are
free in suitable varieties. The next two results are already known, but one may now
give immediate proofs for each using Theorems 1.3 and 2.1.

Corollary 2.2 ([4, Proposition 6]). Let Fn be a free group of rank n. Then

Fn nFn UZnðnþ1Þ=2 � ðFnÞ0:

Corollary 2.3 ([3, Corollary 1.7]). Let G ¼ Nn;c be the free nilpotent group of rank

n > 1 and class cd 1. Then

GnGUZnðnþ1Þ=2 � ðNn;cþ1Þ0:

Corollary 2.4. Let F be the free group of finite rank n > 1, let d be a natural number,
and let G ¼ F=F ðdÞ be the free solvable group Sn;d of derived length d and rank n > 1.
Then

GnGUZnðnþ1Þ=2 � F 0=½F ;F ðdÞ�

is an extension of a nilpotent group of class at most 3 by a free solvable group of de-

rived length d � 2 and infinite rank. In particular, if d ¼ 2, then GnG is nilpotent.

Proof. Theorems 1.3 and 2.1 imply that GnG has the described factorization.
Note that F ðd�1Þ=½F ;F ðdÞ� is a normal subgroup of the group F 0=½F ;F ðdÞ� and
that F ðd�1Þ=½F ;F ðdÞ� is nilpotent of class at most 3, as it is a quotient of
F ðd�1Þ=g3ðF ðd�1ÞÞ. Thus M ¼ Znðnþ1Þ=2 � F ðd�1Þ=½F ;F ðdÞ� is also nilpotent of class at
most 3 and GnG=M is isomorphic to F 0=F ðd�1Þ, so it is free solvable of derived
length d � 2. The fact that F 0=F ðd�1Þ is of infinite rank follows from the well-known
fact that F 0 is not finitely generated. r

We end this section by applying our results to a particular finite p-group.
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Let d be an integer and, as before, denote by Fd the free group on d generators. We
recall that for every integer i the group giðFdÞ=giþ1ðFdÞ is free abelian of rank

mdðiÞ :¼
1

i

X
tji

mðtÞdi=t;

where m is the Möbius function (see [11, Chapter 3.2]).
We also recall for a fixed prime number p the notion of the lower central p-series

of a group G. The terms of this series are fliðGÞgid 1, where l1ðGÞ ¼ G and
lkþ1ðGÞ ¼ ½lkðGÞ;G�lkðGÞ p, for kd 1. This series is the most rapidly descending
central series of G whose factors have exponent p (see [11, Chapter 3]).

For every pair of positive integers d and c, define Gd;c to be the quotient
Fd=lcþ1ðFdÞ. According to [11, Theorem 3.2.10], Gd;c is a finite p-group of class c

and order pm, where m ¼
Pc

j¼1ðcþ 1 � jÞmdð jÞ.

Corollary 2.5. With the above notation, we have Gd;c ^ Gd;c UG0
d;cþ1 and

Gd;c nGd;c U ðZpcÞdðdþ1Þ=2 � G0
d;cþ1:

Proof. Let G ¼ Gd;c. We first prove that GnGU‘ðGÞ � ðG ^ GÞ.
For p odd this follows from Theorem 1.3, while for the case p ¼ 2 a little more

care is needed. More precisely, we observe that if Fd ¼ 3 f1; . . . ; fd4, then the image
xi in G ¼ Fd=lcþ1ðFdÞ of the generator fi of Fd has order pc for each i. Moreover,
by [11, Theorem 3.2.10], Gab is isomorphic to a direct product of d ¼ mdð1Þ cyclic
groups Zpc of order pc. So now our claim follows from the observation following
Theorem 1.3.

We have ‘ðGÞU ðZpcÞdðdþ1Þ=2. We show that the derived subgroup of a covering
group for G is isomorphic to G0

d;cþ1. In the following, let Li denote liðFdÞ, id 1.
We note that the group Gd;cþ1 ¼ Fd=Lcþ2 has Lcþ1=Lcþ2 as a central elementary abe-
lian subgroup. Moreover,

M=Lcþ2 ¼ g2ðFdÞLcþ2 VLcþ1

Lcþ2
U

Lcþ1 V g2ðFdÞ
Lcþ2 V g2ðFdÞ

;

which in turn is isomorphic to MðGÞ, by [11, Theorem 3.2.10]. Now let H=Lcþ2 be a
complement of M=Lcþ2 in Lcþ1=Lcþ2 and consider the factor group

Gd;cþ1 ¼ Gd;cþ1

H=Lcþ2
:

If NcGd;cþ1 we denote by N the image of N in Gd;cþ1 under the canonical projec-
tion. It follows that MðGÞUMcZðGd;cþ1ÞVG

0
d;cþ1: Moreover,

Gd;cþ1=MUFd=Lcþ1 ¼ G;

so Gd;cþ1 is a covering group for G. Finally, note that G
0
d;cþ1 UG0

d;cþ1. r
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3 Non-abelian tensor squares of finite p-groups

Throughout this section G is a finite p-group, for some prime p. We start with a
lemma concerning the lower central p-series of G. We again identify the group
GnG with its isomorphic image ½G;Gj� in the group nðGÞ defined in Section 2.

Lemma 3.1. Let G be a finite p-group. Then for every kd 1,

½lkðGÞ;Gj� ¼ ½G; ðlkðGÞÞj�:

Proof. We prove the result by induction on k. Since the result is trivial for k ¼ 1, we
now assume that ½lkðGÞ;Gj� ¼ ½G; ðlkðGÞÞj�.

Since ½lkðGÞ;G;Gj� and ½lkðGÞ p;Gj� are both normal in nðGÞ, we have

½lkþ1ðGÞ;Gj� ¼ ½½lkðGÞlkðGÞ p;G�;Gj�½lkðGÞ;G;Gj�½lkðGÞ p;Gj�:

Using Lemma 1.1 (ii), we have

½lkðGÞ;G;Gj� ¼ ½lkðGÞj;Gj;G� ¼ ½G; ½lkðGÞ;G�j�c ½G; lkþ1ðGÞj�:

Thus our proof will be complete if we show that ½lkðGÞ p;Gj�c ½G; lkþ1ðGÞj�.
Define R to be ½lkðGÞ;G;Gj� (¼ ½G; ½lkðGÞ;G�j�).

Note that R contains the derived subgroup of ½lkðGÞ;Gj�. To see this, we observe
that ½lkðGÞ;Gj�0 is generated by the elements

½½x; aj�; ½y; bj��; where x; y a lkðGÞ and aj; bj a Gj;

and, by Lemma 1.1 (i) and the defining properties of nðGÞ, we have

½½x; aj�; ½y; bj�� ¼ ½½x; a�; ½y; b�j� a R:

We claim that the following hold:

½xm; aj� a ½x; aj�mR for all x a lkðGÞ; aj a Gj;m a N; (3)

½y; ðbmÞj� a ½y; bj�mR for all y a G; bj a ðlkðGÞÞj;m a N: (4)

We prove (3) by induction on m. The proof of (4) is similar.
If m ¼ 1 then (3) is trivially true. Let md 2. Then

½xm; aj� ¼ ½x � xm�1; aj� ¼ x½xm�1; aj�½x; aj� ¼ ½xm�1; ðxaÞj�½x; aj�:

Now the claim is proved since, by induction on m, the term ½xm�1; ðxaÞj� lies in the
coset

½x; ðxaÞj�m�1
R ¼ ½x; ½x; a�jaj�m�1

R ¼ ð½x; ½x; a�j� � ½x;a�
j

½x; aj�Þm�1
R

¼ ð½x; ½x; a�j� � ½x; aj�Þm�1
R ¼ ð½x; aj�Þm�1

R;

The non-abelian tensor square of groups 9



by repeated use of Lemma 1.1, and the fact that ½x; ½x; a�j� ¼ ½x; a; xj��1 a R. There-
fore claims (3) and (4) are true, and we now complete the proof of the lemma. The
group ½lkðGÞ p;Gj� is generated by elements of the form ½xp; aj� with x a lkðGÞ and
aj a Gj. By (3) we have ½xp; aj� a ð½x; aj�Þ pR. Now

½x; aj� a ½lkðGÞ;Gj� ¼ ½G; ðlkðGÞÞj�

by the inductive hypothesis, so we may write

½x; aj� ¼ w1 . . .wl ;

with wi ¼ ½yi; bji �, yi a G and b
j
i a lkðGÞj for i ¼ 1; . . . ; l. In particular, since

½lkðGÞ;Gj�=R is abelian we have ½x; aj�pR ¼ w
p
1 . . .w

p
l R: Finally, by (4) we have

w
p
i R ¼ ½yi; ðbp

i Þ
j�R for i ¼ 1; . . . ; l, forcing

½xp; aj� a R½G; ðlkðGÞ pÞj� ¼ ½G; ðlkþ1ðGÞÞj�: r

The following result is an improvement of [14, Corollary 3.12]. In [10] it is proved
using arguments di¤erent from ours.

Proposition 3.2. Let G be a finite group of order pn (with p prime) and let d ¼ dðGÞ be
the minimum number of generators of G. Then pd

2
c j½G;Gj�jc pnd .

Proof. Of course j½G;Gj�jd pd
2

, as GnG admits G=FðGÞnG=FðGÞ as a quotient,
and G=FðGÞnG=FðGÞ is elementary abelian of order pd

2

, since it is an ordinary
tensor product.

Let lkðGÞ be the last non-trivial term of the series fliðGÞgi, and let
p : G ! G ¼ G=lkðGÞ be the quotient map. The map p induces a natural epimor-
phism epp : ½G;Gj� ! ½G;G

j�. According to [14, Remark 3] and using Lemma 3.1, we
have

KerðeppÞ ¼ ½lkðGÞ;Gj�½G; lkðGÞj� ¼ ½lkðGÞ;Gj�:

Since lkðGÞ is a central elementary abelian subgroup of G, by Lemma 1.1 (ii), we
have that KerðeppÞ is an elementary abelian p-subgroup lying in the center of nðGÞ.
Thus the map

y : lkðGÞ � G ! ½lkðGÞ;Gj�; ða; gÞ 7�! ½a; gj�

is bilinear. Let lkðGÞ be generated by the set fai j i ¼ 1; . . . ; dkg and let G be gener-
ated by fgi j i ¼ 1; . . . ; dg. Therefore KerðeppÞ is generated by the set

f½ai; gjj � j i ¼ 1; . . . ; dk; j ¼ 1; . . . ; dg;

forcing jKerðeppÞjc pd�dk , and j½G;Gj�jc pd�dk j½G;G
j�j. By induction we obtain that

j½G;Gj�jc pd�dk . . . pd
2 ¼ pd

Pk

i¼1
di ¼ pnd : r
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Remark. Homocyclic abelian groups show that the upper bound in Proposition 3.2 is
best possible. Another example for which the upper bound is reached is when G is the
group G2;2 ¼ F2=l3ðF2Þ.

As a consequence of our results we have the following bound for the order of the
Schur multiplicator of finite p-groups.

Corollary 3.3. Let G be a finite p-group of order pn with d ¼ dðGÞ generators. If p is

odd, the order of the Schur multiplicator MðGÞ of G is at most pdðn�ðdþ1Þ=2Þ. If p ¼ 2,
then jMðGÞjc 2dðn�ðdþ3Þ=2Þ.

Proof. By Theorem 2.1 and the definition of the exterior square,

jMðGÞj jG 0j ¼ jG ^ Gj ¼ jGnGj
j‘ðGÞj :

If p is odd, by Theorem 1.3, ‘ðGÞU‘ðGabÞ, and so j‘ðGÞjd pdðdþ1Þ=2. If p ¼ 2, then
j‘ðGÞjd pdðdþ3Þ=2. The proof is now completed by using the bounds given in Propo-
sition 3.2. r

For other results on the non-abelian tensor squares of finite p-groups see [13],
where powerful p-groups are considered and another bound on order of the Schur
multiplicator is given, using di¤erent invariants.
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