II Compitino di ALGEBRA 2 29 gennaio 2010

- 1. Sia G un gruppo finito d'ordine 1225. Si mostri che G è abeliano.
- 2. Siano G un gruppo ed \mathbb{F} il campo $\mathbb{Z}/2\mathbb{Z}$. Posto $\Omega = \mathbb{F}^G$ sia, per ogni $x \in G$ ed $f \in \Omega$, x.f l'elemento di Ω definito ponendo, per ogni $a \in G$, x.f(a) = f(ax). Dimostrare che in questo modo si definisce un'azione (sinistra) di G su Ω . Sia $f \in \Omega$ la funzione definita da f(1) = 1 e f(g) = 0 se $g \neq 1$. Trovare lo stabilizzatore di f in G. Trovare quindi il nucleo dell'azione. Nel caso in cui G sia un gruppo ciclico di ordine primo f0, determinare il numero di orbite di f1 su f2.
- 3. Sia $u := -1 + \sqrt[4]{3}$.
 - (a) Si determini il polinomio minimo, f, di u su \mathbb{Q} .
 - (b) Si dica se $\mathbb{Q}[u]$ è un'estensione normale di \mathbb{Q} .
 - (c) Si determini il campo di spezzamento, \mathbb{E} , di f in \mathbb{C} ed il grado $|\mathbb{E}:\mathbb{Q}|$.
 - (d) Si determini l'ordine del gruppo di Galois $G := \operatorname{Gal}(\mathbb{E}|\mathbb{Q})$ e si individui il tipo di isomorfismo di G.
 - (e) Si esibisca un'estensione normale su $\mathbb Q$ di grado 4 che sia contenuta in $\mathbb E$.