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Abstract. We consider the classical problem of estimating T , the total number of
species in a population, from repeated counts in a simple random sample and propose
a new algorithm for treating it. In order to produce an estimator T̂ we actually start
from the estimation of a related quantity, the unobserved probability U . In fact, we
first show that an estimation of T can be obtained by requiring compatibility between
the Laplace add-one (or add-λ) estimator and the Turing-Good estimator ÛTG of U ;
the estimators obtained in this way concide with those of Chao-Lee and of Horvitz-
Thompson, depending on λ. On the other hand, since the Laplace formula can be
derived as the mean of a Bayesian posterior with a uniform (or Dirichlet) prior, we
later modify the structure of the likelihood and, by requiring the compatibility of the
new posterior with ÛTG, determine a modified Bayesian estimator T̂ ′. The form of T̂ ′

can be again related to that of Chao-Lee , but provides a better justified term for their
estimated variance. T̂ ′ appears to be extremely effective in estimating T , for instance
improving upon all existing estimators for the standard fully explicit Carothers data. In
addition, we can derive estimations of the population distribution, confidence intervals
for U and confidence intervals for T ; these last appear to be the first in the literature
not based on resampling.
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1. Introduction

We consider the classical problem of estimating the number T of species in a population,
and, subsequentely, their distribution, from a simple random sample drawn with replacement.
We are interested in the ”small sample” regime in which it is likely that not all species have
been observed. Problems of this kind arise in a variety of settings: for example, when
sampling fish from a lake or insects in a forest (see, for instance, Shen et al (2003) on how
to use estimates of T to predict further sampling, or Brose et al (2003)); or when estimating
the size of a particular population (see Böhning et al (2004)); or when trying to guess how
many letters an alphabet or how many specific groups of words a language contains (see
Church and Gale (2006)) or how many words a writer knows (see Efron and Thisted (1976));
or, even, when determining how many different coins were coined by an ancient population
Esty (1986)). Because of its great interest this has become a classic in probability and there
has been a great number of studies suggesting methods for the estimation of T . See, for
instance, Bunge and Fitzpatrick (1993) for a review through 1993 and Gandolfi and Sastri
(2004) for some further details.

A quantity closely related to T has also been studied intensively. Each of the species
which have not been observed in the sample has some probability of being selected next if
we were to continue sampling, and the sum U of all these probabilities is the probability
that the next trial will result in the appearance of an unobserved species. The estimation
of U is also of interest in a number of situations, for instance when deciding whether to
carry a special container for possible new species or whether to reserve part of a code for
unusual words; it is also of interest in dealing with genomic datasets while evaluating the
probability of discovering new genes by sequencing additional sequences of DNA fragments
(see Mao (2004) and Lijoi et al (2007)) or, in general, in finding stopping rules. We can turn
this second question into a simplified version of our original problem by assuming that there
are N + 1 species, the N observed ones and the ”new” species with probability U ; the main
issue becomes then the estimation of the probabilities of the various species and especially
for the new one. For this and other reasons that we shall see, the estimations of T and U
are closely intertwined.

We now fix some notation before proceeding. Assume that the population from which
the sample is drawn has a total of T species (which we sometimes will call states) having
proportions p1, p2, · · · , pT .; and that in a sample x1, x2, · · · , xn of size n there are N observed
species. For i = 1, · · · , T , let mi be the number of observations of the species i in the sample,
so that

∑N
i=1 mi = n. For later purposes, let R denote the number of species observed
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more than once and assume that the mi’s are given one of the possible orders in which
m1, . . . ,mR ≥ 2, mR+1, . . . ,mN = 1 and mi = 0 for i = N +1, . . . , T . Also, for j = 1, · · · , n,
let nj be the prevalence of j, which is to say the number of species observed exactly j times,
so that

∑n
j=1 nj = N. Next, let Ln(i) = mi/n be the empirical frequency of species i, so

that C =
∑

i:Ln(i)>0 pi is the coverage, i.e, the total probability of the observed species, and

U =
∑

i:Ln(i)=0 pi is the unobserved probability.

The first attempt to estimate U can be extracted from Laplace (see Laplace (1995) and
Orlitsky et al (2003)) who suggested an ”add-one” estimator: this consists in adding one
to the number of observations of each species plus an additional one for the ”unobserved”
species. The estimate of the unobserved probability becomes: ÛL = 1

1+
P

i≥0(mi+1)
= 1

1+n+N
.

Laplace’s method provides also an estimate of the probability of each observed species i as
p̂i = mi+1

1+n+N
.

If adding ”one” does not sound like a sensible choice, then one can easily develop an
”add λ” estimator ÛL,λ, in which some positive value λ is added to each species’ frequencies
(including the unobserved one). To see how it works, just change the ”1”’s into ”λ”’s in the
above formulas. A recent advance in the direction of estimating the unobserved probability
U appears in Orlitsky et al (2003), in which a quantity is introduced, called attenuation,
that measures how well the estimation of U works as the sample gets larger, and in which
asymptotically very good estimators are determined.

With a seemingly completely different method, Turing and Good (see Good (1953)) pro-
posed another estimator of U . Recall that n1 is the number of species observed exactly
once and n the size of the sample; then the Turing-Good estimator for U is some minor
modification of:

Û =
n1

n
.

A plausible rationale for this estimator is that while for species observed at least twice the
empirical frequency is already becoming stable and very likely close to the probability of
the species, species observed only once are likely to be randomly selected representatives
of the collection of the yet unobserved species. In more mathematical terms, Good (1953)
has a derivation for the estimation of the probability of the species observed j times. The
Turing-Good estimator for the total probability Cj =

∑
i:Ln(i)=j pi of the species observed j

times is thus

Ĉ0 = ÛTG =
n′1
n′

for j = 0 and

Ĉj =
j + 1

n′
n′j+1
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for j ≥ 1, where the n′j’s are ”smoothed” values of the nj’s and n′ = Ĉ0 +
∑

j>0:n′j+1>0 Ĉj.

Smoothing is a minor modification of the original value and is needed for various reasons,
one of which is avoiding the possibility that some observed species are estimated to have
zero probability (see Good (1953) and Orlitsky et al (2003)). We adopt here a smoothing
which is very close to one also suggested by Good, obtained by letting n′j = max(nj, 1) for
j ≥ 2, so that we use

ÛTG =
n1

n1 +
∑

j>0:nj>0 max(nj+1, 1)
.

We take n′1 = n1, and not equal to max(n1, 1), because the behaviour of the estimators that
we will produce in connection with UTG is better described if we allow the possibility that
the unobserved probability is estimated to be zero. Our method of estimation of T will make
use of an estimation of U , and we choose the smoothed Turing Good estimator.

Other methods for estimating U have been developed, and in particular we refer to Lijoi
et al (2007) for a Bayesian method based on the general class of Gibbs-type priors (see also
Pitman (2005) and the other references in Lijoi et al (2007) for the definition and properties
of such priors). This class contains several known families of priors as particular cases and
each such family is based on one or more parameters, which need to be further estimated.
In Lijoi et al (2007), for instance, a maximum likelihood estimator is used. It is conceivable
that within this wide class some extention of the methods we present here could produce
even better results than those we obtained. However, we focus on the Turing-Good estimator
since it is more direct and simpler, while still allowing us to achieve very satisfactory results.

Let us describe, at this point, the type of data to which our analysis applies. There
are several types of data in which there are classes and associated natural numbers and in
which it is typically recorded how many classes are associated to a given natural number.
Consider three examples: in sampling from a lake the classes are the different fish species
and the associated natural number is the the number of times a species was captured; in
surveying the number of occupants of a car, each car is a class and the number of occupants
is the associated natural number; in recording the daily number of deaths within a certain
population, each day is a class and the number of deaths is the associated natural number.

These examples are substantially different. In the case of car occupants, 0 cannot occur,
while it can in the other two cases. In the other two examples, on the other hand, if k
classes are associated with the natural number m in a sample of size n, say, we are lead
to different conclusions. In the number of deaths, we are lead to conclude that each class
has about probability k/N of being associated to m; while in the fish sampling, we are lead
to conclude that there are k classes having probability about m/n of being sampled (which
is in accordance, with the exception of m = 1, with the above mentioned rationale for the
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Turing-Good estimator). The first type of data could be called ”Poissonian data”, this last
could be called ”Turing-Good type” data, while the data from the car occupancy survey
could be called zero− truncated data (in the specific case of Poissonian type).

Notice, in particular, that in the Poissonian type the natural number 0 plays a different
role from that in the Turing-Good type data. In the first, in fact, if k classes were associated
to 0, the above procedure would assign a nonzero probability to 0, and thus there are no
logical hindrances to observing the natural number 0 also; however, in the Turing-Good
type data, the above procedure would lead to a probability 0 of those classes, so that, having
probability 0, it is impossible, on a logical basis, that those classes, and thus the natural
number 0, are observed: a fact well expressed in the tautology that one cannot observe in a
sample that some species were not observed in the sample.

We are interested in the non zero-truncated Turing − Good type data and will thus
develope methods and discuss examples for this type of data. Notice, for intance, that in
Böhning and Schön (2005) the two types of data are mixed together and estimation methods
are applied to all of them. Our estimation method applies only to the two Turing-Good
type data reported there, namely the illegal immigrants in the Netherlands on page 724 and
the 1995 North American breeding bird abundance survey taken from Norris III and Pollock
(1998) on page 735. All other examples reported in the paper are of the Poissonian type,
including all those with an explicit value of the number of classes associated to 0.

This is no surprise. Due to the intrinsic impossibility of observing the classes associated to
0, gaining complete knowledge of the number of classes associated to 0 in the Turing-Good
type data must require a substantially different process from that used in the sampling, so
that it is unusual to have data reporting both the sampling procedure and the complete
information about all classes. Two notable exceptions are the data in Carothers (1973)
and in Edwards and Eberhardt (1967), resulting from experiments explicitly devoted to the
generation of this type of information. We briefly recall the content of the data in section 5
and then test our estimators on them.

It is time to get back to the estimation of T . In this direction there are several parametric
methods based on assuming some structure of the species distribution; for instance, an
estimator devised for the uniform case, in which the probabilities of all species are assumed
to be the same is the Horvitz-Thompson

T̂HT =
N

1− U
,
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(see Lindsay and Roeder (1987) and Bishop et al (1975)) and then U can be further estimated,
for instance by the Turing-Good method, to get

T̂HTTG =
N

1− ÛTG

.

See Darroch and Ratcliff (1980) and Böhning and Schön (2005). Another estimator developed
for the uniform case is a Bayesian estimator (see Marchand and Schroeck (1982)) based on
the improper prior on T uniform over the positive integers. Also the method in Böhning and
Schön (2005), which is more appropriate for and mostly applied to Poissonian type data,
relies on some uniformity assumption, since it assumes that each class in the population has
the same (Poisson or Poisson mixture) probability of being associated to a certain natural
number.

On the other hand, we want to focus here on non-parametric estimation.

If one, in fact, has no reasonable guess for the form of the distribution then a non-
parametric approach is needed. In this direction, Harris (1968), Chao (1984) and Chao
and Lee (1992) have proposed some such estimators, of which the most reliable ones seem
to be those proposed in Chao and Lee (1992). In our notation these amount to

T̂CL(γ̂) =
N

1− ÛTG

+
nÛTG

(1− ÛTG)
γ̂2,

with γ̂2 an estimate - for which Chao & Lee make two proposals - of the coefficient of
variation of the pi’s. The γ̂2’s, however, are determined by somewhat involved procedures
and are not fully justified from a theoretical point of view.

We start our work by proposing a comparison between two of the above estimators of
U : Laplace’s ”add one” and Turing-Good. In fact, it would make sense to apply Laplace’s
estimator by adding one to each of the frequencies of all the T species, not just of the arbitrary
N + 1. Of course, we do not know the true value of T , but for any given value the ”add
one” estimator would estimate a probability of mi+1

T+n
for a species observed mi times (with mi

possibly equal to 0). Now, we can hope to reconcile the Laplace and Turing-Good estimators

by requiring that they assign the same value to Û . Since in the ”add one” performed on T
species the total probability for the T −N unobserved species is then estimated to be T−N

T+n
,

reconciling the two estimators would imply a value of T which solves T−N
T+n

= ÛTG. This
equation happens to have a single root, which is also larger than or equal to N and thus can

serve as an estimator of T : T̂ (1) = N

1−ÛTG
+ nÛTG

1−ÛTG
. Quite surprisingly, this turns out to be the

Chao-Lee estimator with the estimated variance γ̂2 equal to 1. This is already something,
but it is not such a great achievement since the Chao-Lee estimator with variance 1 is not
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so good: Chao and Lee discuss a few cases in which it might make sense, but its inadequacy
was the main reason for introducing the estimated variance term; the inadequacy of T̂ can
also be seen in our table 1 below in which several estimators are applied to the Carothers
data (see Carothers (1993) for fully detailed and published data of sampling from a known

taxi cab population): the rms error of T̂ from the true value is much larger than for most
other proposed estimators in the literature. However, the reconciling procedure seems to
have to produce a somewhat more meaningful result, so we proceed further.

An estimator with an additional parameter that could be suitably tuned might then be
obtained by reconciling Turing-Good with the ”add λ” estimation of U . In the above terms

we need to solve (T−N)λ
Tλ+n

= ÛTG, which gives

(1) T̂ (λ) =
N

1− ÛTG

+
nÛTG

(1− ÛTG)

1

λ
.

This is nothing else than the Chao-Lee estimator with γ2 = 1/λ. In this way, we have gone
one step forward, and we produced indeed a more flexible estimator, completely reproducing
the Chao-Lee result; from the point of view of the estimation of T , however, the problem has
unfortunately just shifted from estimating T to estimating λ or, in fact, γ2. At this point,
one can clearly resort to methods proposed in the literature on how to estimate either λ (see
Huand (2006) or Good (1967)) or γ, or proceed further with the reconciliation.

To pursue the second direction, we really need to understand more about the ”add one”
and ”add λ” estimators. It turns out, as was probably known already to Laplace, that the
probability estimation according to the ”add one” method is nothing else but the average
species probability under the Bayesian posterior given the sample with a prior uniform over
all possible probability distributions on T species. To be more specific, let

ΣT = {p = (p1, p2, · · · , pT ), pi ≥ 0,
T∑

i=1

pi = 1}

and consider the uniform prior ρ on ΣT . Then, given a sample x the likelihood is

µ(x) =
n∏

j=1

pxj
=

T∏
i=1

pmi
i =

N∏
i=1

pmi
i

and the posterior becomes

ρn,T (dµ) =
µ(x)ρ0,T (dµ)∫

ΣT
µ(x)ρ0,T (dµ)

(2)

=
1

Z
1ΣT

pm1
1 pm2

2 · · · pmN
N dp1 · · · dpNdpN+1 . . . dpT
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where Z =
∫

ΣT
pm1

1 · · · pmN
N dp1 · · · dpT (note that the constant terms have been cancelled).

We then get the “add one” probability estimation by taking the average species probability
under such posterior:

(3) Eρn,T
(pi) =

mi + 1

T + n
, i = 1, . . . , N

(4) Eρn,T
(pi) =

1

T + n
, i = N + 1, . . . , T.

In addition, Johnson proposed the use of the broader class of Dirichlet distributions as
priors: see Johnson (1932) for the original introduction, Jeffreys (1961) and Good (1965) for
various discussions, and Zabell (1982) for a historical description. The Dirichlet distributions
depend on one parameter (it is possible to introduce one parameter for each state, but we
restrict ourselves to a constant choice) that we here indicate by λ. The prior ρ0,T,λ has then

density c
∏T

i=1 pλ−1
i for some constant c and the posterior becomes

ρn,T,λ(dµ) =
1

ZΛ

1ΣT

T∏
i=1

pmi+λ−1
i dp1 . . . dpT .

As the reader has guessed by now, the average under the posterior starting from the
Dirichlet prior distribution becomes the estimated probability using the ”add λ” estimation:

(5) Eρn,T,λ
(yi) =

mi + λ

Tλ + n
, i = 1, . . . , N

(6) Eρn,T,λ
(yi) =

λ

Tλ + n
, i = N + 1, . . . , T,

from which the full Chao-Lee estimator has been previously derived.

The reconcilation between several estimators has thus led us to a Bayesian approach and
we now explore in that direction. Besides the method for uniform species distributions
mentioned in Marchand and Schroeck (1982), a general Bayesian approach is presented in
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Boender and Rinnoy Kan (1987), by starting from a prior distribution of T and, conditionally
to T , a uniform or Dirichlet(λ) prior on the species probability. This method, however,
is seen to depend heavily on the choice of λ and thus leads to introducing a (level III)
prior on λ itself (as suggested in Good (1967)) which in turn requires the introduction of a
further parameter (Boender and Rinnoy Kan (1987), formulae (10) and (11)), with then no
analytical expression for the posteriors. In the end, this direction seems to include several
undetermined choices (the prior on T and the extra parameter at level III) and no simple
analytical expression of the estimators.

On the other hand, we are now in a position to improve the reconciliation method. The
standard Bayesian posterior and, thus, the ”add” estimators do not really reflect the rationale
beyond the Turing-Good method, because they treat the species observed once the same as
those observed more times. The idea beyond Turing-Good is that, instead, the species
observed once and those not observed should be lumped in a single group observed, thus,
n1 times. This suggests that a more appropriate likelihood could take into account the fact
that only R = N − n1 have been observed more than once and thus give

µ(x) =
R∏

i=1

pmi
i (1− p1 − · · · − pR)n1 .

A slightly less standard calculation, carried out in section 2 below, shows that now the
average posterior probability with a uniform prior is

(7) Eρ′n,T
(yi) =

mi + 1

T + n
, i = 1, . . . , R

(8) Eρ′n,T
(yi) =

n1

(T −R)(T + n)
+

1

T + n
, i = R + 1, . . . , T.

This amounts to an ”add one” estimator, with the species observed less than twice sharing
the observed frequency n1.

The average value of U under the posterior is just T−N times the last expression and thus
reconciling such an estimation with Turing-Good leads to solving the equation Eρ′n,T

(U) =

(T −N)( n1

(n1+T−N)(T+n)
+ 1

T+n
) = ÛTG = Û . The only solution in [N,∞] of such an equation



10

turns out to have the form

T̂ ′ =
(N − n1)(2− Û) + nÛ +

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

2(1− Û)

=
N

(1− Û)
+

nÛ

(1− Û)
γ2(9)

with

γ2 =
(n−N + n1)Û − 2n1 +

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

2nÛ
.(10)

It also turns out that 1 ≥ γ2 ≥ 0 and γ2 = 0 iff all states have been observed exactly once
(which is to say, n1 = N = n). Thus, we get again the Chao-Lee estimator, but this time
with an explicit expression for the γ2 term; the expression we get behaves like an interspecies
variance, and it does so even more than the values, occasionally exceeding one, suggested
by Chao and Lee. The value T̂ ′ thus stands a better chance of being a good estimator of T .
And indeed our table 1 shows that on the Carothers data it performs much better than T̂
and for far from uniform distributions (such as are those labelled Aγ and Bγ) is even the
best estimator available.

It would be possible at this point to start from Jeffrey’s distribution. However, there
seems to be no clearcut gain in doing so. With Carothers’ data, the value of λ which would
return the true population size with the modified Bayesian estimator is often close to 1 with
no easily identifiable patterns in the deviations. It is still conceivable that different contexts
require different values of λ as suggested in Boender and Rinnoy Kan (1987), but we do not

pursue this direction in the present paper and we restrict ourselves to the analysis of T̂ and
T̂ ′.

Once we have an estimated value of T , we can take the average probability under the
(modified) Bayesian posterior distribution, and this provides an estimation for the species
distribution. Such an estimation problem is very relevant in many contexts, and, by itself,
our estimation method produces a new and original estimator. For a direct application and
a quick reference to existing methods see Jedynak et al (2005), in which it is also shown how
to use the Turing Good and the ”add one” estimators to estimate the species probabilities
(see section 1 in Jedynak et al (2005)); in the paper, however, the relation between these
two estimators is not realized and when the population size is needed (in section 4) it is
estimated with an ”ad hoc” method.
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In addition to what we have discussed so far, we can bootstrap our method to provide an
estimation of the distribution of U . This is achieved by assuming for T one of the estimated
values and by defining

P (U ≥ ε) = ρn,T

µ = (p1, . . . , pT ) : µ(U) =
∑

i:Ln(i)=0

pi ≥ ε

 .

If we replace T by T̂ then the r.h.s. becomes a function of the sample only, and thus it can
provide an estimator for the distribution of U :

P̂ (U ≥ ε) = ρn,T̂

µ = (p1, . . . , pT̂ ) : µ(U) =
∑

i:Ln(i)=0

pi ≥ ε

 .

Depending on which expression is taken for T̂ we get different estimators for the distribution
of U .

In Almudevar et al (2000) also there is an estimate of the distribution of U , but by
the way it is built, it relies on the fact that the sample gives a good approximation of
the population distribution, a situation which occurs when almost all species have been
observed. This amounts to developing an estimator of the ”small” residual probability that,
even if we think that most if not all species have been observed, still some species with small
probabilies have been missed. It is a complementary range of application with respect to
ours, as we implement a large correction due to the likely presence of several unobserved
species carrying a substantial total probability. This suggests an alternative use of the two
estimators of the distribution of U for ”large” and ”small” samples; the formulation of our
estimator suggests,in turn, the use of the positivity of n1 to discriminate between the two.
Actually, this could be quite a general argument for statistical tests: when the range of
the possible observations is not known and some indicator like n1 is strictly positive, all
estimators need to be corrected to take care of the presence of some unobserved states;
otherwise, one can use the usual estimators.

Finally, we carry out a second bootstraping. We observe that, for a fixed level α, the
estimated distribution of U allows us to find real intervals I such that P (U ∈ I) ≥ α; such
an interval, which can be chosen to contain the Turing-Good estimator of U , can be taken
as a confidence interval for U . Furthermore, observing that Eρ′n,T

(U) is a continuous strictly

increasing function of T , one can take the inverse image of I under Eρ′n,T
(U), and interpret

this as an α-confindence interval for T . Thus, this method generates confidence intervals
based, and possibly centered, on the estimates T̂ and T̂ ′. Calculations for the centered
version are carried out in Section 4. The confidence intervals that we provide are the first
to be defined without necessity of generating external data: the methods used so far, for



12

instance in Chao (1984) or Colwell (2006), follow Efron (1981) and require the construction
of a ”pseudo-population” with random draws from it.

In Section 5 we compute our confidence intervals for some data from Carothers (1973) and
Edwards and Eberhardt (1967). Unfortunately, we can make explicit evaluations only for
the regular Bayesian, which does not provide an acceptable confidence interval. The exact
formula for the modified Bayesian method is computationally too heavy and could not be
easily computed even for the Carothers data. Also, asymptotic analysis (see, for instance,
Lehmann (1983), sec. 2.6 and 6.7) does not seem suitable to approximate the distribution
of U ; standard calculations show that the regular Bayesian estimate of the distribution of

U is, for n large, asymptotically normal with mean Û and SD =

√
Û(1−Û)√

n
, independent

of the initial distribution on the pi’s. Unfortunately, this turns out to be not such a good
approximation of our estimate of the distribution of U , at least for several small examples and
for the Carothers data. A plausible explanation is that the sample size is not large enough
for the asymptotics to take place. On the other hand, since in our problem large sample
sizes would yield a delta at 0 as estimate of U , it is conceivable that standard asymptotic
analysis is never applicable to our problem.

On the other hand, calculations with very small size examples show that the standard
deviation of the distribution of U computed via the modified Bayesian is a constant multiple
times the standard deviation obtained via the regular Bayesian; so we implement a mixed
formula in which the range of the interval I estimating U is taken from the regular Bayesian
formula, then it is multiplied by a suitable factor and mapped into the T space by the
modified Bayesian estimator. The confidence intervals produced by this method turn out to
be quite narrow and, nonetheless, cover the true value with a frequency quite close to the
level of confidence.

We must remark, though, that the method of calculation, in particular the choice of
the above mentioned multiplicative factor, and the coverage of the true value by the confi-
dence interval are not entirely satisfactory, and thus approximating formulas for the modified
Bayesian expression and modified definitions of the confidence intervals will be the subject
of further research.

2. Point estimators of T and of species distribution.

As mentioned above, we consider a population with T species having proportions p1, p2, · · · , pT

and adopt the notation introduced in the previous section.
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Our first proposition summarizes the remark that an estimate of T is uniquely determined
by reconciling the add−λ and the Turing-Good estimators.

Proposition 2.1.

Consider a simple random sample of size n drawn with replacement from a population
with T species. The only value T̂ (λ) of T such that both the add−λ and the Turing-Good
estimators assign the same probability to the collection of unobserved species is

(11) T̂ (λ) =
N

1− ÛTG

+
nÛTG

(1− ÛTG)

1

λ
.

Proof The add−λ estimator assigns probability mi+λ
Tλ+n

, i = 1, . . . , N to the observed

species and λ
Tλ+n

, i = N + 1, . . . , T to the unobserved ones; and thus it assigns probability
(T−N)λ
Tλ+n

, to the collection of unobserved species. Let us denote by ÛTG the value of a Turing-
Good estimator (for some choice of smoothed constants) of the unobserved probability. By

equating the two values (T−N)λ
Tλ+n

= ÛTG and solving for T we obtain the result.

�

For λ = 1 this gives T̂ = T̂ (1) = N

1−ÛTG
+ nÛTG

(1−ÛTG)
.

Our aim is now to recall the derivation of the add−λ estimator of species probabilities
from a Bayesian scheme.

Given T , a prior knowledge about the population distribution can be described by a
measure ρ0 = ρ0,T,λ on ΣT , which we can initially take to be uniform (λ = 1) or, more

generally, Dirichlet(λ) with density c
∏T

i=1 pλ−1
i . The classical Bayesian likelihood is µ(x) =∏n

j=1 pxj
=
∏T

i=1 pmi
i and the posterior density then becomes ρn,T,λ(dµ) = µ(x)ρ0,T,λ(dµ) =

1
Z

∏T
i=1 pmi+λ−1

i dp1 . . . dpT .

Posterior densities are easily computed by means of the the projection on

QT = {y = (y1, y2, · · · , yT−1), yi ≥ 0,
T−1∑
i=1

yi ≤ 1},
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which is given by

µ(y) =
T−1∏
i=1

ym1
i (1− y1 − . . .− yT−1)

mT =
T∏

i=1

ymi
i ,(12)

where the last equality makes sense if we additionally define yT = (1−y1−· · ·−yT−1). Then
the Bayesian posterior becomes

ρn,T,λ(dµ)

=
µ(x)ρ0,T,λ(dµ)∫
QT

µ(x)ρ0,T (dµ)

=
1

Z
1QT

ym1+λ−1
1 ym2+λ−1

2 . . . y
mT−1+λ−1
T−1 (1− y1 − · · · − yT−1)

mT +λ−1 dy1 . . . dyT−1

where Z =
∫

QT
ym1+λ−1

1 ym2+λ−1
2 . . . y

mT−1+λ−1
T−1 (1− y1 − · · · − yT−1)

mT +λ−1dy1 . . . dyT−1.

As mentioned in the introduction, we look for a slightly modified version of the likelihood
obtained by lumping together the states that have been observed zero or one times, since
this actually corresponds more directly to the rationale behind the Turing-Good estimator.
As also mentioned, we consider only λ = 1 and, given that the number of states observed
more than once is R = N − n1, we take

µ′(x) =
R∏

i=1

pmi
i (1− p1 · · · − pR)mR+1+···+mN

(where if R = T we take mR+1 + · · ·+ mN = 0 and 00 = 1) with its projected version,

µ′(y) =
R∏

i=1

ymi
i (1− y1 · · · − yR)n1

(taken with yT = 1− y1 − · · · − yT−1, and 00 = 1), since mR+1 + · · · + mN = n1. With this
notation we can define a second posterior ρ′n,T = ρ′n,T,x given by

ρ′n,T (dµ) =
µ′(x)ρ0,T (dx)∫

QT
µ′(x)ρ0,T (dx)

(13)

=
1

Z ′1QT
ym1

1 · · · ymR
R (1− y1 − · · · − yR)n1dy1 · · · dyT−1,

with Z ′ as the normalizing factor. Note that if each state has been observed at least twice
(i.e, R = T ) then the posteriors coincide; since this occurs with a probability which tends to
one in n, we are really interested in small to moderate size samples.

For any given T , we start from computing the expected probability of each state under
the posterior.
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Lemma 2.1.

For any λ > 0 we have:

Eρn,T,λ
(yi) =

mi + λ

Tλ + n
, i = 1, . . . , N(14)

(15) Eρn,T,λ
(yi) =

λ

Tλ + n
, i = N + 1, . . . , T

(16) Eρ′n,T
(yi) =

mi + 1

T + n
, i = 1, . . . , R

(17) Eρ′n,T
(yi) =

n1

(T −R)(T + n)
+

1

T + n
, i = R + 1, . . . , T

Proof: The classical beta integral gives, for any pair a, b ≥ 0 and any x ∈ [0.1]

(18)

∫ 1−x

0

ya(1− x− y)bdy =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
(1− x)(a+b+1),

where Γ is the gamma function.

To compute Eρn,T,λ(yi) notice that the distribution of ρn,T,λ remains unchanged under a
permutation of the subscripts so that we can compute the integrals in any order we like: it
turns out to be convenient to integrate with respect to yi last. Therefore, the next calculation
performed for i = 1 is valid for all i = 1, . . . , T − 1.

We have

Eρn,T,λ(y1)

=
1

Z

∫
QT

ym1+λ
1 ym2+λ−1

2 . . . y
mT−1+λ−1
T−1 (1− y1 − . . .− yT−1)

mT +λ−1dy1 . . . dyT−1.
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Let ρi = mi + λ− 1 for i = 1, . . . , T , and ρ̃i = ρi + δi,1, where δ is the Kronecker function;
moreover, for all i = 1, . . . , T − 1, let

Gi =
Γ(1 + ρi)Γ(1 +

∑T
s=i+1 ρs + T − 1− i)

Γ(2 +
∑T

s=i ρs + T − 1− i))
.

Further, let G̃i be as Gi with ρs replaced by ρ̃s and let

Ĩ(i) =

∫
Qi

yρ̃1

1 yρ̃2

2 . . . y
PT

s=i+1 ρ̃i+T−s

i dy1 . . . dyi.(19)

so that Eρn,T,λ(y1) = Ĩ(T − 1)/I(T − 1)

Then

Ĩ(T − 1) =
Γ(1 + ρ̃T−1)Γ(1 + ρ̃T )

Γ(2 + ρ̃T−1 + ρ̃T )
I(T − 2)

= G̃T−1
Γ(1 + ρ̃T−2)Γ(1 + ρ̃T−1 + ρ̃T + 1)

Γ(2 + ρ̃T−2 + ρ̃T−1 + ρ̃T + 1)
I(T − 3)

=
T−1∏
s=1

G̃s

with I(T − 1) =
∏T−1

s=1 Gs.

Notice that G̃s = Gs for all s except s = 1, so that

Eρn,T,λ
(y1) =

Ĩ(T − 1)

I(T − 1)

=
T−1∏
s=1

G̃s

Gs

=
Γ(ρ1 + 2)

Γ(
∑T

s=1 ρs + 1 + T )

Γ(
∑T

s=1 ρs + T )

Γ(ρ1 + 1)

=
1 + ρ1∑T

s=1 ρs + T

=
m1 + λ∑T

i=1 mi + Tλ
=

m1 + λ

Tλ + n
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Recalling that mi = 0 for i ≥ N we get the result for all i < T . Finally

Eρn,T,λ
(yT ) = 1−

T−1∑
i=1

Eρn,T,λ
(yi)

= 1−
N∑

i=1

mi + λ

Tλ + n
− (T −N − 1)

λ

Tλ + n

= 1− n + Nλ + (T −N − 1)λ

Tλ + n
=

λ

Tλ + n

which yields the result for the regular Bayesian.

In the modified Bayesian the calculation can be carried out in the same manner, with
some modifications at the end. Although we are interested in the case λ = 1, we follow the
same strategy as in the regular Bayesian, and obtain the result for all λ > 0. In this part of
the proof we dente all quantities with a prime. For i ≤ R, we have:

Eρ′n,T
(yi) = Eρ′n,T

(y1)

=
1

Z ′

∫
QT

ym1+λ
1 ym2+λ−1

2 . . . ymR+λ−1
R (1− y1 − . . .− yR)n1yλ−1

R+1 . . . yλ−1
T−1dy1 . . . dyT−1

=
1

I ′(T − 1)
Ĩ ′(T − 1),

with I ′(i) defined as in (??) with all ρ replaced by ρ′, such that ρ′i = ρi and ρ̃′i = ρ̃i for all
i = 1, . . . , R and i = N + 1, . . . , T − 1, but with ρ̃′i = ρ′i = λ− 1 for i = R + 1, . . . , N .

Next, for i = R + 1, . . . , T − 1, let G′
i be as Gi with the needed primes, i.e.:

G′
i =

Γ(1 + ρ′i)Γ(1 +
∑T

s=i+1 ρ′s + T − 1− i)

Γ(2 +
∑T

s=i ρ
′
s + T − 1− i))

;

and for i = 1, . . . , R, let instead

G′
i =

Γ(1 + ρ′i)Γ(1 + n1 +
∑T

s=i+1 ρ′s + T − 1− i)

Γ(2 + n1 +
∑T

s=i ρ
′
s + T − 1− i))

.

As before, let G̃′
i be as G′

i with ρ′s replaced by ρ̃′s.
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We have again that Ĩ ′(T − 1) =
∏T−1

s=1 G̃′
s and that G̃′

s = G′
s for all s except s = 1, so that

Eρ′n,T,λ
(y1) =

Ĩ ′(T − 1)

I ′(T − 1)

=
T−1∏
s=1

G̃′
s

G′
s

=
Γ(ρ′1 + 2)

Γ(n1 +
∑T

s=1 ρ′s + 1 + T )

Γ(n1 +
∑T

s=1 ρ′s + T )

Γ(ρ′1 + 1)

=
1 + ρ′1

n1 +
∑T

s=1 ρs + T

=
m1 + λ

n1 +
∑R

i=1 mi + Tλ
=

m1 + λ

Tλ + n
.

For λ = 1 we get (??).

For i = R + 1, . . . , T − 1 the expected value becomes

Eρ′n,T,λ
(yi) = Eρ′n,T,λ

(yR+1)

=
1

Z ′

∫
QT

ym1+λ−1
1 ym2+λ−1

2 . . . ymR+λ−1
R (1− y1 − . . .− yR)n1yλ

R+1 . . . yλ−1
T−1dy1 . . . dyT−1

=
1

K(T − 1)
K̃(T − 1).

This time we let ρ as before, but ρ̃′i = ρ̃i − δi,1 + δi,R+1. Then

K(T − 1) =
T−1∏
i=1

Ḡ′
i

with Ḡ′
i = G′

i for all i = R + 2, . . . , T − 1,

Ḡ′
R+1 =

Γ(1 + ρR+1 + 1)Γ(1 +
∑T

s=R+2 ρs + T −R− 2)

Γ(2 +
∑T

s=R+1 ρs + 1 + T −R− 2)
;

and, for i = 1, . . . R,

Ḡ′
i =

Γ(1 + ρi + 1)Γ(1 + n1 +
∑T

s=i+1 ρs + T − i− 1)

Γ(2 + n1 +
∑T

s=i ρs + 1 + T − i− 1)
.
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We no longer have Ḡ′
i = G′

i, but two terms cancel in Ḡ′
i and Ḡ′

i−1 for all i = 2, . . . , R so
that, since Γ(a + 1) = aΓ(a),

Eρ′n,T,λ
(yi) =

K(T − 1)

Z ′

=
(ρR+1 + 1)(1 + n1 +

∑T
s=R+1 ρs + (T −R)λ− 1)

(2 + n1 +
∑T

s=1 ρs + Tλ− 2)(2 +
∑T

s=R+1 ρs + (T −R)λ− 2)

=
n1 + (T −R)λ

(n + Tλ)(T −R)λ
,

for i = R + 1, . . . , T − 1.

To complete the result notice that

Eρ′n,T,λ
(yT ) = 1−

T−1∑
i=1

Eρ′n,T,λ
(yi)

= 1−
R∑

i=1

mi + 1

n + T
− (T −R− 1)

n1 + (T −R)λ

(n + Tλ)(T −R)λ

=
n1 + (T −R)λ

(n + Tλ)(T −R)λ
.

For λ = 1 this completes the proof.

�

2.1 Estimates of the number of species

We now move on to the estimation of T by explicitly writing the expression for the expected
unobserved probability U . In addition, according to the rationale that states observed once
belong to the same class as those not observed, we also compute the expectation of the
”unobserved” probability U ′ =

∑
i:mi≤1 pi. Let ρ′n,T = ρ′n,T,1.
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Corollary 2.2 For T ≥ N, we have

Eρn,T,λ
(U) =

(T −N)λ

n + Tλ
,

Eρ′n,T
(U) =

T −N

(n1 + T −N)

(2n1 + T −N)

(T + n)
,(20)

Eρn,T,λ
(U ′) =

n1 + (T −R)λ

n + Tλ
,

Eρ′n,T
(U ′) =

(T −N + 2n1)

n + T

Proof

We have

Eρn,T,λ
(U) =

T∑
i=N+1

λ

n + Tλ
=

(T −N)λ

n + Tλ
;

Eρ′n,T
(U) =

T∑
i=N+1

(
n1

(n1 + T −N)(T + n)
+

1

T + n
)

=
(2n1 + T −N)(T −N)

(n1 + T −N)(T + n)
;

Eρn,T,λ
(U ′) =

N∑
i=R+1

mi + λ

n + Tλ
+

T∑
i=N+1

λ

n + Tλ
=

n1 + (T −R)λ

n + Tλ
;

Eρ′n,T
(U ′) =

T∑
i=R+1

(
n1 + T −R

(T −R)(T + n)

)
=

(T −N + 2n1)

n + T

�
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In the next Lemma we collect some properties of the above expected values seen as func-
tions of T , in order to determine which ones can be used to determine estimators of T .

Lemma 2.3 For fixed n, N and n1 we have

(i) Eρn,N,λ
(U) = Eρ′n,N

(U) = 0,

Eρn,N,λ
(U ′) = n1+(N−R)λ

n+Nλ
,

Eρ′n,N
(U ′) = 2n1

n+N
;

(ii) Eρn,T,λ
(U) is strictly increasing in T for all T ≥ N ;

(iii) Eρ′n,T
(U) is strictly increasing in T for all T ≥ N ;

(iv) if n1 < n then Eρn,T,λ
(U ′) is strictly increasing in T for all T ≥ N ;

(v) Eρ′n,T
(U ′) is strictly increasing in T for all T ≥ N

(vi) limT→∞ Eρn,T,λ
(U) = limT→∞ Eρ′n,T

(U)

= limT→∞ Eρn,T,λ
(U ′) = limT→∞ Eρ′n,T

(U ′) = 1

Proof (i) and (vi) follow immediately from the expressions in Lemma 2.2.

Then observe that for any a, b ∈ R, b > a, and any λ > 0 the function Tλ+a
Tλ+b

is strictly
increasing in T.

(ii) then follows for b = n > −Nλ = a.

(iv) follow for b = n > n1 − Rλ = a, since n > n1, except when n1 = n, in which case, in
fact, R = 0.

As to (iii), we can write (2n1+T−N)(T−N)
(n1+T−N)(T+n)

= f1(T )f2(T ), with f1(T ) = (T−N)
(n1+T−N)

. We

then apply the same reasoning as above with λ = 1. Thus, f ′1(T ) > 0, since we can take
b = n1 − N > −N = a, except when n1 = 0 in which case f1(T ) = 1. Also, f ′2(T ) > 0 by
observing that b = n > 2n1 − N = a, except when n = N = n1 in which case f2(T ) = 1.
Therefore, (f1f2)

′ > 0 except when n = N = n1 = 0, which is impossible.

Finally, (v) follows easily by similar arguments.

�
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From the properties listed in Lemma 2.3, the expected values involving U ′ are not suitable
for determing T when equated to the Turing-Good estimator, because of their behaviour
around T = N . For the expected values involving U , instead, the properties above guarantee
that there is a unique solution of equations of the form Eρn,T

(U) = Û and that this is some

T̂ ∈ [N, +∞]. Such roots, or rather some integer approximation, will be taken as our
estimators.

Note that, by (i)-(iii), the root T̂ of any such equation satisfies T̂ = N iff Û = 0 and that,

by (ii), (iii) and (vi) T̂ = +∞ iff Û = 1.

Theorem 2.4.

Let Û be a real number in [0, 1]. Then the unique solution in [N, +∞] of the equation

Eρn,T,λ
(U) = Û is

(21)
N

1− Û
+

nÛ

(1− Û)

1

λ
.

and the unique solution of Eρ′n,T
(U) = Û in [N,∞] has the form

(N − n1)(2− Û) + nÛ +

√
4n2

1(1− Û) + (Û)2(n + N − n1)2

2(1− Û)

=
N

(1− Û)
+

nÛ

(1− Û)
γ2(22)

Furthermore, 1 > γ2 ≥ 0 and γ2 = 0 iff all states have been observed exactly once (which
is to say, n1 = N = n).

Finally, T̂ = N and T̂ ′ = N iff Û = 0, and T̂ = +∞ and T̂ ′ = +∞ iff Û = 1.

Proof.

(??) is trivial and we let T̂ (λ) to equal the integer part of N

(1−Û)
+ nÛ

(1−Û)

1
λ
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The equation Eρ′n,T
(U) = Û has solutions

T ′
+,− =(N − n1)(2− Û) + nÛ ±

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

2(1− Û)

(23)

= N +

n1(−2 + Û) + (n + N)Û ±
√

4(n1)2(1− Û) + (Û)2(n + N − n1)2

2(1− Û)

 .

Note that

(4(n1)
2(1− Û) + (Û)2(n + N − n1)

2)− (n1(−2 + Û) + (n + N)Û)2

= 4n1(n + N)Û(1− Û) ≥ 0,(24)

with strict inequality for non trivial U , which is to say different from 0 or 1. This implies
that T ′

− ≤ N and T ′
+ ≥ N , with strict inequalities for nontrivial T , so that T ′

+ is the unique

solution of Eρ′n,N
(U) = Û in [N, +∞) and we then let T̂ ′ equal the integer part of T ′

+. By

Lemma 2.3 such a solution equals N if and only if Û = 0 and can be taken to equal +∞ if
and only if Û = 1.

We can now write

T ′
+ =

N

(1− Û)
+

nÛ

(1− Û)
γ2(25)

with

γ2 =
(n−N + n1)Û − 2n1 +

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

2nÛ
.

Simple calculations show that γ2 = (n− n1)/n for Û = 1 and limÛ→0 γ2 = (n−N)/2n.

Note also that if all states have been observed exactly once in the sample this means that
n1 = N = n, and in such case a simple calculation shows that γ2 = 0. Moreover, γ2 ≥ 0, as
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follows from

(4(n1)
2(1− Û) + (Û)2(n + N − n1)

2 − ((n−N + n1)Û − 2n1)
2

= 4Û(n1(n−N) + nÛ(N − n1)) ≥ 0,

since n ≥ N and N ≥ n1. Furthermore, the above inequality is strict unless one of two
things happen: (1) Û = 0, and in such case γ2 > 0 unless n = N which already implies that
all states have been observed once, or (2) when n = N and N = n1, implying again that all
states are observed once.

Finally, γ2 < 1 since

1− γ2 =
(n + N − n1)Û + 2n1 −

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

2nÛ

and

((n + N − n1)Û + 2n1)
2 − (4(n1)

2(1− Û) + (Û)2(n + N − n1)
2)

= 4Ûn1(n + N) > 0;

in fact, the last inequality is strict unless Û = 0, but in that case we have already seen that
the limit of γ2 is strictly less than 1.

�

The integer part of T̂ (1) and T̂ ′ of the two roots in Theorem 2.4 are taken as our estimates
of T and will be called regular Bayesian and modified Bayesian estimator, respectively. These
expressions coincide with the Chao-Lee estimator for the values γ2 = 1 and for the given γ2,
respectively.

In Section 5 we test the two estimators T̂ = T̂ (1) and T̂ ′ with smoothed Turing-Good Û

on some explicit data. As expected, T̂ , which also corresponds to T̂ ′ with γ = 1, is too simple
and does not perform well in most samples; on the other hand, T̂ ′ turns out to be the best
available estimator, performing particularly well for far from uniform species distributions.

2.2 Estimates of species distribution
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We now turn to the estimation of the species distribution. A reasonable estimate for this
is the posterior average probability of each species as computed in Lemma 2.1 under either
ρn or ρ′n taking the corresponding estimated value T̂ and T̂ ′, respectively, as a value for T .

For the first estimator, taking T̂ as in (??), this leads to

Eρn,T̂ ,λ(yi) =
mi + λ

T̂λ + n
=

(mi + λ)(1− Û)

n + Nλ
, i = 1, . . . , N,(26)

and

Eρn,T̂ ,λ(yi) =
λ

T̂λ + n
=

λ(1− Û)

n + Nλ
, i = N + 1, . . . , T̂1(27)

with T̂ = T̂ (λ) = N

1−Û
+ nÛ

(1−Û)

1
λ
.

Note that the values in (??) are close to the unbiased estimator mi/n of the probability
of the i-th species. The above estimation also constitutes a mixture of the Laplace add-λ
and Turing-Good estimators: it is in fact obtained by adding λ to the frequency mi of the
N observed species (recall that n =

∑N
i=1 mi), but only after having assigned probability Û

to the event that we will observe a new species; the estimate of each of the N species is then
reduced by the factor 1 − Û to compensate for this. This is likely to be a sensible way to
make the attenuation of the Laplace estimator (see Orlitsky et al (2003)) finite. If no better
estimation of λ is available, one can always use λ = 1.

For the second estimator, taking T̂ ′ as in (??), this gives for i = 1, . . . , R

Eρ′n,T̂ ′(yi) =
mi + 1

T̂ ′ + n

=
2(1 + mi)

(2− Û)(n + N − n1) +

√
4(n1)2(1− Û) + (Û)2(n + N − n1)2

and for i = R + 1, . . . , T̂ ′, with a = 4(n1)
2(1− Û) + (Û)2(n + N − n1)

2,

Eρ′n,T̂ ′(yi) =
n1

(n1 + T̂ ′ −N)(T̂ ′ + n)
+

1

(T̂ ′ + n)

=
2(1− Û)(

√
a + 2n1 − 2n1Û + RÛ)

(
√

a + 2n + 2R− 2nÛ −RÛ)(
√

a + RÛ)
.

Note that this value is close to a natural estimation in our scheme: we estimated that
there are n1 + T̂ ′−N species which have been observed less than twice; these together share
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a probability that we estimate of the order of n1/n, and since there is no further element to
distinguish one species from the other, a natural estimate for their probability is 1

n1+T̂ ′−N

n1

n
,

close to the expression we get.

3. Estimates of the distribution of the unobserved mass U

In this section we give a Bayesian interpretation of P (U > ε) and estimate it by using

the value of T previously estimated by our T̂ or T̂ ′. The idea is to assume that T is known
and then define P (U > ε) as the probability under the posterior of the distributions which
give weight greater than or equal to ε to the unobserved species. When we have such an
expression we then replace T by one of its estimates: the resulting function is our estimate
of the distribution of U . Note that we assume continuity in all the parameters involved so
that we do not distinguish between P (U > ε) and P (U ≥ ε).

There are, however, various possible choices for the quantities we intend to use: the
posterior can be generated in the standard Bayesian form, or with our modified version;
as set of unobserved states one can take those not observed at all, or those observed zero
times or once, and, finally, we have two estimators for T . However, if we want the estimated
distribution function to be roughly centered in Û we should use U = {i : L(i) = 0}, and, for
each likelihood, the estimation of T derived with that likelihood. These restrictions give rise
to only two forms of the estimated distribution of U : one is

Pλ(U > ε) = ρn,T̂ ,λ(U > ε)(28)

= ρn,T̂ ,λ

µ = (p1, . . . , pT̂ ) : µ(U) =
∑

i:Ln(i)=0

pi > ε

 ,

of which we only consider the value P (U > ε) = P1(U > ε) for λ = 1; and the other is the
modified version

P ′(U > ε) = ρ′
n,T̂ ′

(U > ε)(29)

= ρ′
n,T̂ ′

µ = (p1, . . . , pT̂ ′) : µ(U) =
∑

i:Ln(i)=0

pi > ε

 .
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Since T̂ ′ is a very good estimator, P ′ is likely to produce an effective estimation of the
distribution of U while (??) with λ = 1 is not likely to provide a good estimation. However,
there are several reasons to include first the explicit form of (??): it gives rough preliminary
estimates; it is easier to implement; the explicit formula for (??) can be written in terms of
that for (??); but, above all, the expression we get for (??) is computationally too heavy
and already for the mid size example from the Carothers data we are using in section 5 we
have to resort to a mixed method in which really only (??) for λ = 1 is computed.

Lemma 3.1.

For T̂ integer

ΨT̂ (ε) = P (U > ε) = (1− ε)T̂+n−1

T̂−N∑
i=1

(
ε

1− ε
)T̂−N−i Γ(T̂ + n)

(T̂ −N − i)!Γ(i + n + N)
(30)

and

Ψ′
T̂ ′

= P ′(U > ε) =

(T̂ ′−N)∑
i=1

Γ(T̂ ′ −N)Γ(T̂ ′ −N + n1)

Γ(T̂ ′ −N − i + 1)Γ(i + n1)

(i+n1−1)∑
j=0

(
i + n1 − 1

j

)
(−1)j

×

(
i+2n1−j∑

s=1

εT̂ ′−N+2n1−s(1− ε)R+n−n1+s−1 Γ(i + 2n1 − j)

Γ(i + 2n1 − j − s + 1)Γ(i + n− n1 + R)

)
(31)

×Γ(T̂ ′ −N + n− n1 + R)

Γ(T̂ ′ −N + 2n1)
.

Proof.

We start thus from (??), which is to say (??) with λ = 1; if T̂ > N then by the expression
of the standard Bayesian posterior we get

P (U ≥ ε) = ρn,T̂ ,1(U > ε)

=
1

Z

∫
yi≥0PN

i=1 yi≤1−ε,
PT̂−1

i=1 yi≤1

ym1
1 · · · ymN

N dy1 · · · dyN · · · dyT̂−1,(32)
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where Z is the usual normalizing factor, this time with λ = 1 and T replaced by T̂ .

If T̂ = N then we conclude that all states have been observed and that, therefore, P (U >
ε) = 0 for all ε.

It is possible to give an explicit expression for the r.h.s. as follows.

Let Iε denote the integral in the r.h.s. of the above equation, so that P (U ≥ ε) = Iε/Z

and let K = T̂ − N . We now can get an explicit expression for Iε by first integrating with
respect to the variables yN+1, . . . , yT−1; this gives

Iε =
1

(K − 1)!

∫
yi≥0PN

i=1 yi≤1−ε

ym1
1 . . . ymN

N (1− y1 − · · · − yN)K−1dy1 . . . dyN .(33)

To get a simple expression we now want to reduce to gamma integrals and this can be
achieved by integrating by parts several times until the expression to the power (K − 1)
disappears. We then arrive at

Iε =
1

(K − 1)!

∫
yi≥0PN−1

i=1 yi≤1−ε

ym1
1 . . . y

mN−1

N−1 ·

(
K∑

i=1

εK−i (K − 1)!mN !

(K − i)!(mN + i)!
(1− ε− y1 − . . . yN−1)

mN+i

)
dy1 . . . dyN−1.(34)
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Now, for each term in the sum we can perform N − 1 gamma integrals and simplify:∫
yi≥0PN−1

i=1 yi≤1−ε

ym1
1 . . . y

mN−1

N−1 (1− ε− y1 − . . . yN−1)
mN+idy1 . . . dyN−1

= (1− ε)i+
PN

j=1 mj+N−1

N−1∏
r=1

Γ(1 + mN−r)Γ(1 + i +
∑N

j=N−r+1 mj + r − 1)

Γ(2 + i +
∑N

j=N−r mj + r − 1)

= (1− ε)i+
PN

j=1 mj+N−1
Γ(1 + i + mN)

∏N−1
j=1 Γ(1 + mj)

Γ(i +
∑N

j=1 mj + N)

= (1− ε)i+n+N−1
Γ(1 + i + mN)

∏N−1
j=1 Γ(1 + mj)

Γ(i + n + N)

so that

(K − 1)!Iε =
K∑

i=1

εK−i (K − 1)!mN !

(K − i)!(mN + i)!
(1− ε)i+n+N−1

Γ(1 + i + mN)
∏N−1

j=1 Γ(1 + mj)

Γ(i + n + N)

= (1− ε)T+n−1

K∑
i=1

(
ε

1− ε
)K−i (K − 1)!mN !

(K − i)!Γ(i + n + N)

N−1∏
j=1

Γ(1 + mj).(35)

Recall that Z = I0 which, in the expression above, means i = K, so that, by the definition
of K, we have

Iε

Z
= (1− ε)T̂+n−1

T̂−N∑
i=1

(
ε

1− ε
)T̂−N−i Γ(T̂ + n)

(T̂ −N − i)!Γ(i + n + N)

Notice that in (??), for any positive integers s and t, with N, K, n and T replaced respec-
tively by s, t + 1,

∑s
j=1 mj and s + t + 1, we have

∫
yi≥0Ps

i=1 yi≤1−ε

ym1
1 · · · yms

s (1− y1 − . . .− ys)
tdy1 . . . dys = (1− ε)t+s+

Ps
j=1 mj ×

t+1∑
i=1

(
ε

1− ε
)t+1−i t!ms!

(t− i + 1)!Γ(i +
∑s

j=1 mj + s)

s∏
j=1

Γ(1 + mj)(36)
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In (??), we need to integrate over the region Σ = {y = (y1, . . . , yT−1) ∈ QT :
∑N

i=1 yi ≤
1− ε,

∑T−1
i=1 yi ≤ 1} obtaining

P ′(U > ε) = ρ′n,T ′

µ = (p1, . . . , pT̂ ′) : µ(U) =
∑

i:Ln(i)=0

pi ≥ ε


=

1

Z ′

∫
Σ

ym1
1 · · · ymR

R (1− y1 − · · · − yR)n1dy1 · · · dyN · · · dyT̂ ′−1,(37)

=
I ′ε
Z ′

where Z ′ = I ′0.

This case is more involved. To compute I ′ε we carry out the first K − 1 = T − 1 − N
integrations, as before, with respect to the variables yN+1, . . . , yT−1; this gives

(K − 1)! I ′ε(38)

=

∫
yi≥0PN

i=1 yi≤1−ε

ym1
1 . . . ymR

R (1− y1 − · · · − yR)n1(1− y1 − · · · − yN)K−1dy1 . . . dyN .

Now we again integrate K − 1 times by parts with respect to yN , then with respect to the
n1−1 variables yN−1, . . . yR+1, expand in powers of ε, and, finally, compute the last integrals
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using (??). This leads to

(K − 1)! I ′ε =

∫
yi≥0PN−1

i=1 yi≤1−ε

ym1
1 . . . ymR

R (1− y1 − · · · − yR)n1 ·

(
K∑

i=1

εK−i (K − 1)!

(K − i)!(i)!
(1− ε− y1 − . . .− yN−1)

i

)
dy1 . . . dyN−1

=

∫
yi≥0PR

i=1 yi≤1−ε

ym1
1 . . . ymR

R (1− y1 − · · · − yR)n1 ·

(
K∑

i=1

εK−i (K − 1)!

(K − i)!(i)!

(1− ε− y1 − · · · − yR)i+n1−1

(i + 1) . . . (i + n1 − 1)

)
dy1 . . . dyR(39)

=
K∑

i=1

εK−i (K − 1)!

(K − i)!(i + n1 − 1)!

i+n1−1∑
j=0

(
i + n1 − 1

j

)
(−1)jεj

∫
yi≥0PR

i=1 yi≤1−ε

ym1
1 . . . ymR

R (1− y1 − · · · − yR)i+2n1−1−jdy1 . . . dyR

=
K∑

i=1

(K − 1)!

(K − i)!(i + n1 − 1)!

i+n1−1∑
j=0

(
i + n1 − 1

j

)
(−1)j

×(
i+2n1−j∑

s=1

εK+2n1−s

(1− ε)1−R−n+n1−s

(i + 2n1 − 1− j)! mR!

(i + 2n1 − j − s)!Γ(i + n− n1 + R)

)
×

R∏
j′=1

Γ(1 + mj′)

Taking ε = 0 the only nonvanishing term is for s = 2n1 + K; in this case, since 0 ≤ j and
i ≤ K, so that 1 ≤ s ≤ i− j + 2n1 ≤ K − j + 2n1 ≤ K + n1 = s. Hence i− j = K, which
implies that i = K and j = 0. Therefore,

I0 =
1

(K + n1 − 1)!

(K + 2n1 − 1)! mR!

Γ(K + n− n1 + R)

R∏
j′=1

Γ(1 + mj′);
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then,

I ′ε
I ′0

=
K∑

i=1

(K − 1)!(K + n1 − 1)!

(K − i)!(i + n1 − 1)!

i+n1−1∑
j=0

(
i + n1 − 1

j

)
(−1)j

×(
i+2n1−j∑

s=1

εK+2n1−s

(1− ε)1−R−n+n1−s

(i + 2n1 − 1− j)!

(i + 2n1 − j − s)!Γ(i + n− n1 + R)

)
×

Γ(K + n− n1 + R)

(K + 2n1 − 1)!
(40)

Substituting K = T̂ ′ −N in I ′ε/I
′
0 we obtain the estimate P ′(U > ε).

�

We now discuss the relation of our estimate of the distribution of U with the one developed
in Almudevar et al (2000), which is based on large deviations and a bootstrap method.

In Almudevar et al (2000) it is proven, by large deviations methods, that, for a suitable
function s∗(ε), in a sample of size n,

P (U ≥ ε) ≈ (1− s∗(ε))n,

where s∗(ε) can be further estimated by

s∗n(ε) = inf{
∑

i:Ln(i)>0

Ln(i) :
∑

i:Ln(i)>0

Ln(i) > ε}.

The first difference is a matter of interpretation: in Almudevar et al (2000), P (U ≥
ε) represents the probability that in repeated samples from a fixed populations the total
probability of the unobserved states exceeds ε. This probability can clearly be computed
if the population is known, or else estimated as above from the sample. Our approach, on
the other hand, resembles more the probability that in testing different randomly selected
populations the total probability of the unobserved states exceeds ε. Clearly, in taking just
one sample of one population both approaches can be considered.
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The main difference between our method and the method in Almudevar et al (2000),
however, is in the range of application of the two methods. Since the ABS method uses
the sample to estimate the population distribution, it is not suitable with a small coverage
(such as the 20% of the Carothers data): it makes more sense to use it when we think that
most species have been observed and we want to estimate the low probability of still having
missed some of them. In fact, (1−s∗(ε))n ≤ (1− ε)n is a very small number except when ε is
very small. On the other hand, the method we develop here deals exactly with the opposite
case, in which the coverage is largely incomplete. Thus, the two methods cover distinct
possibilities, and we can use as discriminant the value of n1: if n1 > 0, coverage is likely to
be incomplete and our method applies; otherwise, if n1 = 0 coverage is more likely to be
complete or almost so, and the ABS method applies (in this case, in fact, our estimate of T
is N , if we do not smooth n1 and the estimated distibution of U is just a trivial delta at 0).

4. Confidence intervals for U and T

We now perform a second bootstrap in order to generate confidence intervals for U and
T . Note first that, by the methods of Section 3, we get an estimate of the distribution of U ,
so that given 1 − α > 0 we can determine Û1 and Û2 such that the (estimated) probability

that U is in [Û1, Û2] is greater than or equal to 1−α, i.e. PT̂ (U ∈ [Û1, Û2]) ≥ α. The interval

[Û1, Û2] contains ÛTG, and one possible choice is to take it symmetric around ÛTG; when the

modified Bayesian method is used to produce the interval we denote it by [Û ′
1, Û

′
2]. Any such

interval can be considered as a confidence interval for U .

Confidence intervals for U can in principle be obtained also from estimates of the error in
the Turing-Good estimator ÛTG. However, the available estimates do not seem to provide
useful intervals; for instance, the bounds provided in McAllester and Schapire (2000) are
interesting only asymptotically in the sample size, and even for moderate size samples such
as those in the Carothers data the bounds fall even outside the interval [0, 1].

Next, we want to discuss confidence intervals for T . Recall that by Lemma 2.3, Eρ′n,T
(U)

and Eρn,T
(U) are strictly increasing in T . Then

(41) [T̂ (Û1), T̂ (Û2)] = {T : Eρn,T
(U) ∈ [Û1, Û2]}

and

(42) [T̂ ′(Û ′
1), T̂

′(Û ′
2)] = {T : Eρ′n,T

(U) ∈ [Û ′
1, Û

′
2]}
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where T̂ (Û) (T̂ ′(Û), resp.) is the solution of Eρn,T
(U) = Û (Eρ′n,T

(U) = Û , respectively), can

be considered confidence intervals for T at level α.

One possible choice for the interval [Û1, Û2] is to take it symmetric around the Turing-

Good estimate for the unobserved probability, so that the intervals [T̂ (Û1), T̂ (Û2)] and

[T̂ ′(Û1), T̂
′(Û2)] will certainly contain our pointwise estimates T̂ and T̂ ′, respectively. The

functions that we use are taken from Theorem 2.4 we have

(43) T̂ (Û) =
N

1− Û
+

nÛ

1− Û
.

and

T̂ ′(Û ′) =
(N − n1)(2− Û ′) + nÛ ′ +

√
4(n1)2(1− Û ′) + (Û ′)2(n + N − n1)2

2(1− Û ′)
(44)

Due to the numerical difficulties in computing the approximate distribution of U using the
modified Bayesian method, and thus in determining Û ′

i , i = 1, 2, we actually develop a mixed
method which turns out to be much more easily implementable, quite effective, and with
extra flexibility. We already discussed how the function Ψ′

T̂ ′
(ε) (see Lemma 3.1) cannot be

numerically computed even in mid size samples and how simple examples have indicated that
it would give rise to a larger confidence interval than that obtained from ΨT̂ (ε). Thus [Û ′

1, Û
′
2]

contains [Û1, Û2], or, for symmetric intervals around ÛTG, Û ′
2 = ÛTG + d′ and Û2 = ÛTG + d,

with d′ > d. In some examples d′ turns out to be a constant c̄ times d, and ΨT̂ (ε) turns out
to be an invertible function of ε; we thus select some constant c̄, which we take to be c̄ = 2
for convenience, and then use the following scheme:

- fix a confidence level α,

- determine d such that ΨT̂ (ÛTG + d)−ΨT̂ (ÛTG + d) = 1− α,

- let the confidence interval be [T̂ ′(ÛTG − c̄d), T̂ ′(ÛTG + c̄d)]

The extra flexibility of this method comes from the fact that in principle it can be applied
even without any theoretical justification on the constant c̄, just selecting a value which
turns out to be effective in experimental examples.

The perfomance of the above confidence intervals for the Carothers data is evaluatedd in
the next Section.
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5. Data analysis

The estimators and confidence intervals discussed above for the number of unobserved
species are computed here for three sets of data: the words used by Shakespeare, included
mostly for curiosity, the Carothers data for Edinburgh taxi cabs and data from live trapping
of cottontail rabbits. We do not try to estimate the unobserved probability, or the coverage,
since its true value is not known, making it impossible to use the data as a test of the
estimators. To make implementation simple, there is a software created precisely to calculate
most of the estimators presented here, together with estimates on the error (see Colwell
(2006)) but the calculations below are based on the formulas given here or in the original
works (see Gandolfi and Sastri (2004), Section 4, for a review).

For the number of words used by and known to Shakespeare data containing the number
of words used up to ten times can be found in Efron and Thisted (1976). Based on those
numbers it is possible to compute several estimators, including those presented here. The
number of words used by Shakespeare is 31,534 and the estimators are in the first column of
Table 1. So, T̂MLE = 31, 534, T̂TG = 32, 034 ecc. Efron and Thisted (1976) gave their own
estimate of 66,534, which looks a bit high compared to most estimators available.

The data in this example, as well as almost all others taken from real experiments, have
the drawback that we do not really know the number we are trying to estimate, so this
hardly constitutes a test for the estimators.

A very useful set of data is instead in Carothers (1973) for the taxi cabs in Edinburgh.
The data consists of records of taxi cabs observed at different times and locations, and while
they were meant to study estimation methods for the population size in capture-recapture
experiments, they have been adapted to our present situation by interpreting every taxi
cab as a different species and each observation as a different member of that species in the
sample. An observation does not alter the probability of future observations, so this data
could costitutes a very explicit example of the results of drawing with replacement from a
population with different species. One of the advantages of the data is that it is entirely
published and thus calculations based on it are fully reproducible.

The data is divided into several experiments, denoted as A α, Aβ etc. to Bγ. From
the way is has been sampled, the data somehow goes from more uniform to a less uniform
distribution, with a drastic change in sampling technique between the A and the B data.
So, really the estimators to be used for uniform distributions are expected to perform poorly
in the later samples. Tables 1 and 2 report the performance of several estimators on the
data for the various experiments. The estimators considered are: the maximum likelihood
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TMLE (see Lewontin and Prout (1956)), the Turing-Good TTG, the i-th Jack-Knife estimator
TJKi (see Burnahm and Overton (1979)) for i = 1, . . . , 6, the first Chao estimator TC1 (see
Chao (1984)), the Bias-Corrected Chao estimator TC2 (see Colwell (2006)), the first and
second Chao-Lee estimators TCL1 and TCL2 (see Chao and Lee (1992)), the abundance based
coverage estimator TACE (see Colwell (2006)), which for the Carothers data coincides with

TCL1, and our first and second Bayesian estimators T̂ and T̂ ′.

Explicit formulas are as follows.

(1) Maximum likelihood estimator T̂MLE:

solution of the equation

N = TMLE[1− e−n/TMLE ]

(see Lewontin and Prout (1956) or Huang and Weir (2001));

(2) Turing Good T̂TG :

T̂TG =
N

ĈTG

=
N

1− n1

n

;

(3) Jackknife estimator T̂J,k of order k:

TJ,k = N +
k∑

j=1

(−1)j+1

(
k

j

)
nj

(see Burnahm and Overton (1979))

In Burnahm and Overton (1979) there is also a method suggested to determine the most
suitable k, based on a statistical test that subsequently rejects the various k, until the first
which is not rejected at some level α. We indicate also the estimation results when the
”optimal” value of k is selected in that way. The resulting estimator for α = 0.14 is denoted
by TJ,opt and listed in tables 1 and 2.
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The low value of α is selected to avoid that all values of k are rejected. All k happen, in
fact, to be rejected for the Shakespeare data, so that the method in Burnahm and Overton
(1979) does not indicate which k to use.

(4) First estimator of Chao: T̂C1 :

TC1 = N + n2
1/(2n2)

(see Chao (1984));

(5) Bias corrected estimator of Chao: T̂C2 :

TC1 = N + n2
1/(2(n2 + 1))− (n1n2)/(2(n2 + 1)2)

(see Colwell (2006))

(6) First estimator of Chao and Lee: T̂CL1 :

T̂CL(γ̂2) =
N

ĈTG

+
n(1− ĈTG)

ĈTG

γ̂2

=
nN

n− n1

+
nn1

n− n1

γ̂2,

with γ̂2 given by

γ̂2 = max
(
(nN/(n− n1)

∑
j(j − 1)nj/(n(n− 1))− 1, 0

)

(see Chao and Lee (1992));

(7) Second estimator of Chao and Lee T̂CL2 :

as above with γ̂2 replaced by γ̃2 given by

γ̃2 = max
(
γ̂2
(
(1 + n1

∑
j(j − 1)nj/((n− 1)(n− n1))

)
, 0
)

.
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Each set of data has seven samples and Table 1 reports the RMS error of the estimators
from the true value of the number of taxi cabs (roughly 420 on the days of sampling), which

is to say the accuracy of the estimates. One can see that the MLE and T̂TG are among
the best estimators in the A data set, but perform rather poorly in the B data set. Other
estimators are performing with mixed results, but some Jackknife are quite accurate, and
accuracy is often improved when a choice is made on the value of k. Pooling all the data
(last column), the Jackknife estimator with the optimal choice for k turns out to be the

most accuraty among all previously known estimators. Finally, our T̂ , the regular Bayesian,
is performing extremely badly from all points of view, while our T̂ ′ is doing well in the
uniform distributions, and extremely well in the non-uniform ones, yielding also the best
overall estimator.

Table 2 shows the SE of the estimators, which is the deviation from the average estimated
value, indicating the precision of the estimation. Once again, the optimal Jackknife and our
T̂ ′ are the most precise, with the first performing slightly better.

An explicit value for the total number of species is also in Edwards and Eberhardt (1967),
and it is further discussed in Burnahm and Overton (1979). Here, capture frequencies of
a known population of T = 135 rabbits are reported; in a sample of n = 76 captures, the
following are the number of animals captured 1 through 7 times respectively: (n1, . . . , n7) =
(43, 16, 8, 6, 0, 2, 1). In table 1 we report the performance of the various estimators. Notice
that the closest guess is provided by the first Chao estimator, but that several other, including
our T̂ ′, come very close to the true value. It is curious that without smoothing and rounding
our T̂ ′ would give 135.01.

Next, we present some confidence intervals based on the methods of the present paper,
again computed on the Carothers data. The first confidence interval reported is generated
by the standard Bayesian method [T̂ (Û − d), T̂ (Û + d)], with T̂ (Û) as in (??) and d such

that ΨT̂ (ÛTG + d) − ΨT̂ (ÛTG + d) = 1 − α, where α is the confidence level and ΨT̂ (ε) is as
in Lemma (3.1).

The second confidence interval is computed with the mixed method described at the
end of the last section. With d computed as just mentioned, the confidence interval is
[T̂ ′(ÛTG − 2d), T̂ ′(ÛTG + 2d)] with T̂ ′(Û) as in (??).

Table 3 compares our results with those of Chao and with a Jackknife estimate, following
the table included in Chao (1984). Note that, as mentioned, except for ours, the other
confidence intervals are based on resampling, so each implementation would give different
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results. Observe that the confidence intervals based on the Jackknife procedure are narrow,
but miss the true value most of the time: this is a feature due to the choice of the order k
of the estimator; Chao (1984) uses order k = 2, which, from our Table 1, is a bad choice;
had the optimal k, or at least k = 4, been used, then the confidence intervals would have
missed the true value much less frequently, with about the same average size. In any case,
Chao’s confidence intervals miss only once the true value, but at the price of being 5 − 6
times larger on average. The confindence intervals based on the standard Bayesian estimate
are clearly off the mark, but those based on the modified Bayesian estimate (computed by a

mixed method with smoothed Turing-Good ÛTG and dilation constant c̄ = 2), have a much
more reasonable coverage, are only twice the size of the Jackknife confidence intervals and
do not require resampling.

Table 4 shows the coverage of the true value and the average sizes of 95% and 99%
confidence intervals computed using the standard and modified Bayesian methods (again
by a mixed method with c̄ = 2 and a smoothed Turing-Good estimator). Clearly, the 99%
confidence interval have a very good coverage (in particular on the less uniform samples)
and a moderate interval size.
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CAROTHERS
DATA

DATA

Estimate
of number
of words
known to
Shakespeare

Cott.
rabbit
data

Aα-
RMS
Error

Aβ-
RMS
Error

Aγ-
RMS
Error

Bα-
RMS
Error

Bβ-
RMS
Error

Bγ-
RMS
Error

overall
RMS
Error

TMLE 31534 100.4 65.96 78.03 45.9 130.84 79.14 109.7 89.41

TTG 32054 109.1 66.06 74.86 52.13 128.65 83.97 110.61 89.93

TJK1 45910 119 210.42 204.43 117.12 217.12 221.21 141.83 189.73

TJK2 55943 146 145.46 137.08 67.91 150.2 159.21 83.86 128.78

TJK3 63925 165 104.8 99.05 59.45 101.31 115.66 54.27 92.12

TJK4 70685 178 86.41 90.77 72.51 68.86 87.32 55.09 77.85

TJK5 76632 181 84.24 100.94 107.65 58.23 76.78 90.61 87.917

TJK6 81961 162 90.57 116.89 174.73 78.44 91.8 160.65 124.36

TJKopt 81961 146 80.22 85.27 43.35 73.86 85.79 57.7 72.72

TC1 55327 134 72.29 79.47 64.85 124.95 97.89 110.91 94.20

TC2 55323 131 74.01 66.77 67.14 110.63 105.8 113.17 91.37

TCL1 32054 118.5 66.06 83.1 52.13 129.58 79.13 109.93 90.49

TCL2 32054 115.2 66.06 83.21 52.13 129.42 79.54 110.22 90.58

T̂ 46668 178 286.02 376.76 198.17 330.89 151.37 78.62 258.76

T̂ ′ 40903 140 65.15 99 47 90.77 58.68 53.12 71.58

TACE 39448 128

Efron−
Thisted 66534

Table 1. Point estimations in Shakespeare and cottontail data and RMS
error in estimations from the Carothers Data
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Standard Errors

Aα-
SE
Error

Aβ-
SE
Error

Aγ-
SE
Error

Bα-
RMS
Error

Bβ-
SE
Error

Bγ-
SE
Error

overall
SE
Error

TMLE 65.94 50.07 27.98 130.38 31.02 10.49 86.05

TTG 65.61 52.21 30.5 128.56 24.78 10.37 84.67

TJK1 63.64 67.81 68.3 52.96 53.81 44.38 73.93

TJK2 77.2 83.32 64.3 58.98 60.47 31.17 77.47

TJK3 82.88 89.84 57.45 55.78 57.37 18.56 74.32

TJK4 83.89 90.13 65.55 48.82 49.19 38.19 74.30

TJK5 83.73 87.36 100.4 50.24 46.63 84.61 87.82

TJK6 86.13 85.22 166.82 73.64 63.81 159.52 124.10

TJKopt 78.51 74.37 43.33 70.05 31.36 11.38 69.25

TC1 66.07 67.22 37.83 124.4 17.04 14.34 83.84

TC2 61.84 61.59 38.0 106.88 18.21 13.8 75.40

TCL1 65.61 57.02 30.5 128.93 20.16 10.18 86.33

TCL2 65.61 57.1 30.5 128.84 20.33 10.23 86.37

T̂ ′ 100.9 90 55.30 182.25 46.839 38.17 138,14

T̂ ′ 60.21 60.55 38 87.43 37.55 10.82 79.83

Table 2. Table of Standard Errors from the Carothers data
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Data
sub-
sets

Jackknife
estimate

95%
conf.
interval

Chao’s
estimate

95%
conf.
interval

Standard
Bayesian
estimate

95%
conf.
interval

Modified
Bayesian
estimate

95%
conf.
interval

Aα a 192 155-229 253 147-475 477 413-560 304 247-408

Aα b 217 176-258 414 230-885 734 637-861 440 358-599

Aα c 223 182-264 484 247-1207 836 726-981 493 400-674

Aα d 325 274-376 384 251-540 676 606-759 450 384-550

Aα e 332 281-383 366 250-513 678 610-760 456 390-554

Aα f 350 297-403 430 275-616 734 660-821 487 417-592

Aα g 407 350-464 404 283-495 679 619-747 482 422-563

Cove-
rage 1 in 7 7 in 7 1 in 7 5 in 7

Ave.
size
c.i.

94.57 435.43 174 188.86

Bα a 233 190-276 691 344-1808 1109 963-1302 631 512-873

Bα b 199 160-238 325 183-726 590 510-695 362 293-494

Bα c 213 172-254 439 226-1123 644 558-756 390 318-533

Bα d 333 282-384 421 272-633 782 701-880 510 431-622

Bα e 315 266-364 338 227-471 610 548-684 415 355-505

Bα f 303 250-356 331 216-465 592 530-6668 402 342-491

Bα f 346 307-385 312 224-380 546 497-603 399 348-468

Cove-
rage 0 6 in 7 0 in 7 5 in 7

Ave.
size
c.i.

90 559.14 182.71 198.14

Table 3. Comparison of confidence intervals
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Standard
Bayesian
Estimate

Modified
Bayesian
Estimate

Data
sub-
sets

Coverage
95% c.i.

Ave.
size 95%
c.i.

Coverage
99% c.i.

Ave.
size 99%
c.i.

Coverage
95% c.i.

Ave.
size 95%
c.i.

Coverage
99% c.i.

Ave.
size 99%
c.i.

Aα 1 in 7 174 1 in 7 231.14 5 in 7 188.86 7 in 7 257.71

Aβ 0 197.71 0 262.57 5 in 7 213.43 5 in 7 291.57

Aγ 0 112.28 0 148.14 4 in 7 126.71 6 in 7 168.71

Bα 0 182.71 0 242.86 5 in 7 198.14 6 in 7 271.71

Bβ 1 in 7 144 1 in 7 191 6 in 7 158.14 7 in 7 215

Bγ 1 in 7 92.43 in 7 122.14 4 in 7 105.86 7 in 7 140.57

Total 3 in 42 150.52 4 in 42 199.64 29 in 42 165.19 38 in 42 224.21

Table 4. Evaluation of confidence intervals between Standard Bayesian and
Modified Bayesian methods for the Carothers data.


