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Abstract

We consider noisy binary channels on regular trees and introduce peri-
odic enhancements consisting of locally self-correcting the signal in blocks
without break of the symmetry of the model. We focus on the realistic
class of within-descent self-correction realized by identifying all descen-
dants k generations down a vertex with their majority. We show that this
also allows reconstruction strictly beyond the critical distortion. We fur-
ther identify the limit at which the critical distortions of within-descent
k self-corrected transmission converge, which turns out to be the criti-
cal point for ferromagnetic Ising model on that tree. We finally discuss
how similar phenomena take place with the biologically more plausible
mechanism of eliminating signals which are locally not coherent with the
majority.

1 Introduction
We consider a binary channel on a regular tree, as in [?], with a distortion
rate ε > 0 at every transmission and are interested in the reconstruction of the
starting bit σ0 from the signals σWn

at the n-th generation of the tree. We
focus on the majority rule, by which σ0 is reconstructed as the symbol having
majority in σWn .

In [?] it is shown that for regular trees the majority rule is asymptotically
equivalent to the optimal maximum-likelihood rule, and that there is a critical
distortion ε̄c =

√
r−1

2
√

r
such that for ε > ε̄c no asymptotic reconstruction takes
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place and for ε < ε̄c there is asymptotic reconstruction; see also [?] for a review
and [?] for a dynamical version of these results.

The aim of this paper is to investigate how a non-symmetry breaking mech-
anism of correction performed while transmitting the signal can improve recon-
struction by either majority or maximum likelihood. To this purpose, we pro-
pose a local self-correction method by which the signal is periodically enhanced
in blocks formed within the generations. The enhancement uses majority rule
and consists of taking all signals in a block and changing them to all agree
with their majority value (with random choice to break tie). The self-correction
is based on the information available at the level of interest, and thus can in
principle be performed while the signal is transmitted. From every vertex the
transmission is then continued as it used to be in the original mechanism and
the symmetry of the model is not broken.

It is easy to see that with non-local enhancement one can reconstruct beyond
the critical distortion: in fact, by forcing all vertices of each generation to agree
with their majority, one can reconstruct for every ε ∈ [0, 1

2 ). However, such
correction involves taking majority on larger and larger blocks, which is not an
implementable strategy.

A slightly less expensive self-correction strategy consists of using blocks of
fixed size M (as soon as the generation is large enough) and then performing
self-correction at every generation. In section 2 we show that for any noise level
ε < 1

2 it is possible to achieve reconstruction in this way with sufficiently large
block size M . This procedure has the advantage of involving only a bounded
number of within generation information exchange in self-correcting a block,
and thus could in principle be implemented by a real machine. However, it still
involves a very large number of within generation operations, performed at each
generation: if the cost of each such operation is not zero (as in basically all
reasonable situations) then the total cost might become too high.

We, therefore, restrict our attention, in the sequel, to a self-correction mecha-
nism which contains costs by performing self-correction less often, and which has
the additional advantage of being performed within the descent of some signal
involved in the previous correction. This within descent self-correction reduces
implementation costs, and allows signals to be dispersed and loose contact after
their involvement in the enhancement, a feature which could be meaningful in
a realistic setting. The within-descent self-correction at level k is performed by
taking each vertex at some lk-th generation, l ∈ N, considering its rk descen-
dants k generations down, and then changing them to agree with their majority
(randomly breaking ties).

At first sight, it is not even obvious that such reconstruction improves upon
the non self-corrected transmission, but in section 3 we show that, except for k =
1 and r = 2, the within-descent self-correction at level k strictly increases the
critical distortions, and thus is an effective enhancement. The proof is based on
the comparison between the self-correction based on the majority transformation
with one correction based on random transformation which leaves the critical
points unchanged.

The rest of the work is devoted to identifying the limit of the critical distor-

2



tions of the within-descent self-correction of level k as k diverges. Although it
might seem that such mechanism is almost useless for large k, it turns out that
instead it improves the transmission further.

To identify the large k limit, in section 4 we exploit the correspondence with
the Ising model. In fact, it is easy to see that, for regular trees, the reconstruc-
tion problem is equivalent to the free boundary conditions phase transition of
the ferromagnetic Ising model on the tree with inverse temperature β such that
1− 2ε = tanh(β). Such transition occurs at the critical inverse temperature β̄c

such that for β > β̄c the free boundary Ising model is convex combination of
the extremal states (see [?] for a detailed description). On the other hand, the
Ising model undergoes its regular phase transition (with boundary conditions)
at a lower inverse temperature βc < β̄c. In terms of p = tanh(β) and on a reg-
ular tree with forward branching rate r, we have pc = tanh(βc) = 1

r (as shown
originally in [?]) and p̄c = tanh(β̄c) = 1√

r
(as shown in [?, ?, ?]).

Our self-correction at level k introduces thus new critical values 1−2εc(k) =
pc(k) = tanh(βc(k)) < p̄c and our main result is a bound on pc(k) showing
that limk→∞ pc(k) = pc, the regular Ising model phase transition point. Such
estimate is derived by introducing the FK representation of the Ising model and
then comparing the information carried by the FK tree of the origin against
the external “noise” produced by all other freely fluctuating clusters of vertices.
We think that this comparison, which is based on Gaussian approximation and
large deviation techniques, has an interest in itself as it gives a very natural way
of evaluating the information available on the tree.

In section 5 we remark that the majority self-correction is not biologically
feasible, and introduce, instead, a minority removal self-correction which con-
sists of self-correcting a generation by removing the elements not belonging to
the majority. Since this leaves at least rk/2 descendants, nothing really changes,
and such correction also improves upon normal reconstruction up to the Ising
model critical point. As we discuss, this, however, seems to indicate a peculiar
phenomenon: it looks like that accepting the risk of creating uniform incorrect
regions (“tumors”) increases the resistance of inheritance to distortion. Whether
this is a biologically meaningful statement should be further investigated with
many bits models and realistic parameters.

There remain several open issues. First of all, our bounds on pc(k) in section
4 are not sharp. Also, our analysis has been performed either for correction
each k = 1 steps using large block size M or for correction every k steps with
M = rk: we do not deal with the generic case of correcting blocks of size M each
k generations. Solving the two issues above would then allow to treat the main
open problem left by the present work: if one is to reconstruct the signal at a
fixed generation n and if within generation transmission has some given cost,
it would be natural to introduce a correspondence between within generation
transmission costs and gain in reconstruction probability, and then look for the
self-correction algorithm with optimal k and M .
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2 Large Block Reconstruction
We consider regular trees T (r)with forward branching rate r > 0. The n-th
level of the tree is indicated by T

(r)
n and T

(r)
→n represents the tree up to and

including the n-th level. Vertices v of T (r) are then identified by coordinates
v = (n, s) where n is the level and s = 1, ..., rn numbers the vertices at the same
level. Signals or configurations are variables {σv}v∈T (r) , σv ∈ {−1, 1}, and their
distribution is specified by taking ε > 0, Pε(σ0 = 1) = 1/2 and for each vertex
v and predecessor ←v, Pε(σv = σ←v) = 1 − ε independently of all other pairs.
Reconstruction under majority rule on (T (r), Pε) takes place if

0 < lim inf
n

∆n(Pε) =: lim inf
n

(Pε(Sn > 0|σ0 = 1)− Pε(Sn < 0|σ0 = 1))

= lim inf
n

Eε|Pε(σ0 = 1|Sn)− Pε(σ0 = −1|Sn)|

(1)

where Sn =
∑

v∈T
(r)
n

σv.
We first consider self-correction performed at each step using large blocks.

We fix an integer M > 0 and let ñ = max{k : rk ≤ M}. We then consider
the ñ-th generation as block 0, and partition each of the following generations
into blocks of size M as follows: vertices v = (n, s) ∈ T

(r)
n are partitioned into⌊

rn

M

⌋
blocks of vertices with consecutive coordinates s, and possibly one block

of rn −
⌊

rn

M

⌋
M vertices, which is from now on discarded without affecting the

argument which follows. Each block B is then connected to all blocks B′ such
that there are two vertices v ∈ B and v′ ∈ B′ which are connected on T (r). One
can easily see that considering blocks as renormalized vertices and connections
between them as renormalized bonds we have a new tree T̄ (r) with forward
branching r at all vertices v̄ ∈ T̄

(r)
n , n ≥ 1, and branching rate r0 ≤ r at the

starting vertex v̄0. The branching rate of T̄ (r) is thus again r.
Next, we consider self-corrected variables, which are required to be constant

on blocks:

ΣM = {σ ∈ {−1, 1}T (r)
such that σv is constant on each block}, (2)

and the self-correction map ΦM : {−1, 1}T (r) → ΣM defined by
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(ΦMσ)v =



sign(
∑

v∈B σv) if v ∈ B ⊆ T (r) \ T
(r)
→(ñ−1)

and
∑

v∈B σv 6= 0

Z
if v ∈ B ⊆ T (r) \ T

(r)
→(ñ−1)

and
∑

v∈B σv = 0

σv if v ∈ T
(r)
→(ñ−1),

(3)

where Z ∈ {−1, 1} is a symmetric random variable.
The transmission is then self-corrected by the map ΦMat every step: σ

T
(r)
→(n−1)

∈

ΣM generates σ
T

(r)
→n

∈ {−1, 1}T (r)
as usual, and then we take ΦM

(
σ

T
(r)
→n

)
∈ ΣM .

The distribution Pε,M of the self-corrected configuration is then recursively de-

fined by Pε,M

(
σ

T
(r)
→n

∣∣∣σT
(r)
→(n−1)

)
= Pε

(
Φ−1

M σ
T

(r)
n

∣∣∣σT
(r)
→(n−1)

)
.

We then take configurations on the renormalized tree T̄ (r) to be σ̄v̄ if v̄ rep-
resents the block B and (ΦMσ)v = σ̄v̄ for all v ∈ B, and indicate by ΨM :
ΣM → Σ̄M , with Σ̄M = {σ̄v̄, v̄ ∈ T̄ (r)} = {−1, 1}T̄ (r)

, the renormalizing trans-
formation. Renormalized configurations are described by P̄ε,M = ΨM ◦Pε,M on
(the Borel σ-algebra of) Σ̄M .

Our first result is that, no matter how large the noise level ε ∈ [0, 1
2 ) is, with

large enough block size M it is possible to reconstruct the starting signal σ0

after performing the M -block self-correction at each step.

Theorem 2.1 ∀ε ∈ [0, 1
2 ) ∃M̄ : ∀M > M̄

lim inf
n

∆n(P̄ε,M ) > 0.

Proof. We first calculate the error rate ε̄M on the renormalized tree T̄ (r): let
B be any block of size M of direct descendant of some site v′ ∈ B′, where B is
a descendant of B′ in T̄ (r); then

ε̄M = Pε(
∑
v∈B

σv < 0|σv′ = 1) +
1
2
Pε(
∑
v∈B

σv = 0|σv′ = 1). (4)

Given σv′ , the σv’s are {−1, 1}-i.i.d. random variables with Pε(σv = 1|σv′ =
1) = 1− ε > 1

2 , so that by large deviations theory there exists cε > 0 such that
ε̄M ≤ e−cεM for all M > 0. Therefore, for M large enough,

(1− 2ε̄M )2r ≥ (1− 2e−cεM )2r > 1. (5)
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This implies that ε̄M < εc and there is reconstruction on the renormalized tree
T̄ (r). By [?] this implies that for such M ’s:

lim inf
n

P̄ε,M (σ̄0 = 1|
∑

v̄∈T̄
(r)
n

σ̄v̄ > 0)− P̄ε,M (σ̄0 = −1|
∑

v̄∈T̄
(r)
n

σ̄v̄ > 0)

 > 0.

(6)
Now, σ̄0 = 1 if

∑
v∈T

(r)
ñ

σv > 0 or, with probability 1
2 , if

∑
v∈T

(r)
ñ

σv = 0.
Therefore,

lim inf
n

Pε(
∑

v∈T
(r)
ñ

σv > 0|
∑

v̄∈T̄
(r)
n

σ̄v̄ > 0)− Pε(
∑

v∈T
(r)
ñ

σv < 0|
∑

v̄∈T̄
(r)
n

σ̄v̄ > 0)

 > 0.

(7)
We now show that by reading the block variables σ̄v̄ for v̄ ∈ T̄

(r)
n one can

reconstruct σ0. To this purpose let

A = {σ0 = +1},
B = {

∑
v∈T

(r)
ñ

σv > 0}

and

C = {
∑

v̄∈T̄
(r)
n

σ̄v̄ > 0}.

(8)

We then have, by total probabilities theorem, the Markov property and the
fact that P (A|Bc) = P (Ac|B) (with the same equality when A and Ac are
exchanged),

Pε(A|C)− Pε(Ac|C)
= Pε(A|C ∩B)Pε(B|C) + Pε(A|C ∩Bc)Pε(Bc|C)

−(Pε(Ac|C ∩B)Pε(B|C) + Pε(Ac|C ∩Bc)Pε(Bc|C)) (9)
= Pε(A|B)Pε(B|C) + Pε(A|Bc)Pε(Bc|C)

−(Pε(Ac|B)Pε(B|C) + Pε(Ac|Bc)Pε(Bc|C))
= (Pε(A|B)− Pε(Ac|B))(Pε(B|C)− Pε(Bc|C)) > 0;

the last inequality holds since it follows from (??) that if M is large enough,
lim infn(Pε(B|C) − Pε(Bc|C)) > 0, and it follows from the next Lemma that
Pε(A|B)− Pε(Ac|B) > 0 for every ñ. �
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Lemma 2.2 Consider any tree T (r) and a transmission problem described by
the distribution Pε, let Sn(σ) = Sn =

∑
v∈T

(r)
n

σv. Then

i)
Pε(Sn−1 > 0|Sn > 0)− Pε(Sn−1 < 0|Sn > 0) > 0

ii)
Pε(Sn > 0|D)− Pε(Sn < 0|D) > 0

for every D ⊆ {−1, 1}T
(r)
n−1 such that ∀σ ∈ D, Sn−1(σ) > 0.

iii)
Pε(Sn > 0|σ̂

T
(r)
n−1

)− Pε(Sn < 0|σ̂
T

(r)
n−1

) > 0

for every configuration σ̂
T

(r)
n−1

∈ {−1, 1}T
(r)
n−1 such that

∑
v∈T

(r)
n−1

σ̂v = l > 0.

iv)
Pε(Sn−k > 0|Sn > 0)− Pε(Sn−k < 0|Sn > 0) > 0

for every k = 1, ..., n.

Proof. Clearly ii) implies i) taking D = {Sn−1 > 0}, and iii) implies ii) since

Pε(Sn > 0|Sn−1 > 0)

=
∑

σ̂
T

(r)
n−1

:
P

v∈T
(r)
n−1

σ̂v>0

Pε(Sn > 0|σ̂
T

(r)
n−1

)Pε(σ̂T
(r)
n−1

|Sn−1 > 0)

(10)

To show iii) assume
∑

v∈T
(r)
n−1

σ̂v = l > 0. Then Sn =
∑ rn−1−l

2
i=1 Xi+

∑ rn−1−l
2

i= rn−1−l
2

Yi+∑rn−1

i=rn−1−l+1 Xi with Xi i.i.d, Yi i.i.d, Xi, Yi ∈ {−r, r} and Xi =
∑r

j=1 X̃j , X̃j

i.i.d, X̃j ∈ {−1, 1}, P (X̃j = 1) = 1− ε and Yi =
∑r

j=1 Ỹj , Ỹj i.i.d, Yj ∈ {−1, 1},
P (Ỹj = 1) = ε, all these variables being independent. So Xi is distributed like
S1 conditioned to σ0 = 1 and, by symmetry of the distribution of S1, Xi =d −Yi,
so that

S̄n =

rn−1−l
2∑

i=1

Xi +
rn−1−l∑

i= rn−1−l
2 +1

Yi (11)

is a symmetric random variable. Therefore,
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Pε(Sn > 0|σ̂
T

(r)
n−1

) = Pε(S̄n +
rn−1∑

i=rn−1−l+1

Xi > 0)

=
rn−1−l∑

l1=l−rn−1

Pε(S̄n +
rn−1∑

i=rn−1−l+1

Xi > 0|S̄n = l1)Pε(S̄n = l1)

=
rn−1−l∑

l1>0

Pε(
rn−1∑

i=rn−1−l+1

Xi > −l1|S̄n = l1)

+Pε(
rn−1∑

i=rn−1−l+1

Xi > l1|S̄n = −l1)

Pε(S̄n = l1)

+ Pε(
rn−1∑

i=rn−1−l+1

Xi > 0|S̄n = 0)Pε(S̄n = 0)

=
rn−1−l∑

l1>0

[
Pε(

l∑
i=1

Xi > −l1) + Pε(
l∑

i=1

Xi > l1)

]
Pε(S̄n = l1)

+ Pε(
l∑

i=1

Xi > 0)Pε(S̄n = 0)

(12)

By the analogous expression for Sn < 0 we then need

Pε(
l∑

i=1

Xi > −l1) + Pε(
l∑

i=1

Xi > l1)

> Pε(
l∑

i=1

Xi < −l1) + Pε(
l∑

i=1

Xi < l1) (13)

For every l ≥ 1 and l1 ≥ 0, we have
∑l

i=1 Xi =
∑rl

j=1 X̃j and

Pε(
rl∑

j=1

X̃j > l1) =
rl∑

h=
rl+l1

2

(
rl
h

)
(1− ε)hεrl−h (14)

Also, by the change of variable rl − h′ = h,
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Pε(
rl∑

j′=1

X̃j′ < −l1) =

rl−l1
2∑

h′=0

(
rl
h′

)
(1− ε)h′εrl−h′

=
rl∑

h=
rl+l1

2

(
rl
h

)
(1− ε)rl−hεh

(15)

So that, for ε < 1
2 ,

Pε(
l∑

i=1

Xi > l1)− Pε(
l∑

i=1

Xi < −l1)

rl∑
h=

rl+l1
2

(
rl
h

)
(1− ε)rl−hεrl−h((1− ε)2h−rl − ε2h−rl) > 0.

(16)

This shows (??) since we have seen one strict inequality between two terms, and
the other two terms satisfy

Pε(
l∑

i=1

Xi > −l′1)− Pε(
l∑

i=1

Xi < l′1)

= Pε(
l∑

i=1

Xi ≥ l′1)− Pε(
l∑

i=1

Xi ≤ −l′1) > 0

(17)

for the same inequality (??) applied to l1 = l′1 − 1 ≥ 0.
Finally, (iv) is shown using iteratively (??) for k larger than one with

A = {Sn−k > 0}
B = {Sn−k+1 > 0}

and

C = {Sn ≥ 0}.

�
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3 Within-descent self-correction: strict inequal-
ity of critical points

Our aim is to consider within-descent self-correction at some level k. To this
purpose we take a vertex v in some generation mk, m ∈ N, and look at its rk

descendants k generation down (thus in T
(r)
(m+1)k) as generated by the transmis-

sion; we then force all such descendants to agree to their majority (with random
choice if there is no majority). Transmission is then resumed as usual from the
modified status. This amounts to define a map Φk : {−1, 1}T (r) → Σk given by

Φk(σ)v =



1 with probability 1 if
∑rk

s′2=1 σmk,s1rk+s′2
> 0

−1 with probability 1 if
∑rk

s′2=1 σmk,s1rk+s′2
< 0

{
1 with probability 1/2
−1 with probability 1/2 if

∑rk

s′2=1 σmk,s1rk+s′2
= 0

(18)

if v ∈ T
(r)
mk, with v = (mk, s1r

k + s2), s1 = 0, ..., rk(m−1) − 1, s2 = 1, ..., rk;
otherwise

Φk(σ)v = σv. (19)

As before, the transmission is self-corrected by the map Φk every k steps:
σ

T
(r)
→mk

∈ Σk generates σ
T

(r)
→(m+1)k

∈ {−1, 1}T (r)
as usual, and then we take

Φk(σ
T

(r)
→(m+1)k

) ∈ Σk. The distribution P
(k)
ε of the self-corrected configuration

is then recursively defined by

P (k)
ε (σ

T
(r)
→(m+1)k

|σ
T

(r)
→mk

) = Pε(Φ−1
k σ

T
(r)
→(m+1)k

\T (r)
→mr

|σ
T

(r)
→mk

). (20)

Notice that P
(k)
ε is no longer a Markov chain but the conditional probabilities

satisfy

P (k)
ε (σ

T
(r)
n
|σ

T
(r)
→(n−1)

) = Pε(σT
(r)
n
|σ

T
(r)
→(n−1)

)

= Pε(σT
(r)
n
|σ

T
(r)
(n−1)

)

(21)

for all n not of the form n = mk.
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Next, for σ ∈ Σk, let Ψk(σ) ∈ T (rk) be defined by

Ψk(σ)v = σ(mk,s1rk+1) (22)

if v ∈ T
(rk)
m , v = (m, s1r

k + s2), s1 = 0, ..., rk(m−1) − 1, s2 = 1, ..., rk. Note that
Ψk(σ) is a configuration of an almost regular tree T (rk): T (rk) has branching
rate 1 at the starting vertex and then rk at all other vertices. As we will see, the
initial segment makes no difference in our arguments, and, therefore, we adopt
the slight abuse of notation T (rk) (which in our definitions indicates a regular
tree).

Using P
(k)
ε we define the self-corrected critical distortions

εc,r(k) = sup{ε : lim inf
n

∆n(P (k)
ε ) > 0}. (23)

Note that on Ψk(Φk({−1, 1}T (r)
)) = T (rk) the distribution Ψk(P (k)

ε ) =
P

(k)
ε · Ψ−1

k is a Markov chain, by the definition of P
(k)
ε , and thus it is again

a transmission model with error rate ε(k). In other words, Ψk(P (k)
ε ) = Pε(k) on

T (rk).
We first show that reconstruction under Ψk(P (k)

ε ) on T (rk) is equivalent to
reconstruction under the k-self corrected distribution P

(k)
ε .

Lemma 3.1 lim infn ∆n(P (k)
ε ) > 0 if and only if lim infn ∆n(Ψk(P (k)

ε )) > 0

Proof. First, observe that lim infn ∆n(Ψk(P (k)
ε )) > 0 on Ψk(Σk) if and only if

lim infn ∆n(Ψk(P (k)
ε )) > 0 on T (rk). In fact, on Ψk(Σk) we obtain

Pε(k)(Sn > 0|σ0 > 0)

= lim inf
n

[
(1− ε(k))Pε(k)(Sn > 0|σ(1,1) > 0) (24)

+ε(k)Pε(k)(Sn > 0|σ(1,1) < 0)
]

= (1− 2ε(k)) lim inf
n

Pε(k)(Sn > 0|σ(1,1) > 0) + ε(k)

(25)

so that

Pε(k)(Sn > 0|σ0 > 0)− Pε(k)(Sn < 0|σ0 > 0)

= (1− 2ε(k))∆n(Ψk(P (k)
ε ));

(26)
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the lim infn of the last expression is positive if and only if lim infn ∆n(Ψk(P (k)
ε )) >

0 on T (rk) as ε(k) < 1/2. Now, observe that lim infn ∆n(P (k)
ε ) > 0 implies

lim infmk ∆mk(P (k)
ε ) > 0, that is lim infn ∆n(Ψk(P (k)

ε )) > 0 on Ψk({−1, 1}T (r)).
To show the reverse implication, notice that for every level n of T (rk) not of

the form n = mk we have

∆n(P (k)
ε ) = ∆n−1(P (k)

ε )(P (k)
ε (Sn > 0|Sn−1 > 0)− P (k)

ε (Sn < 0|Sn−1 > 0))
(27)

where if n − 1 = mk then Sn−1 =
∑

v∈T
(r)
n−1

(Φk(σ))v. In all cases, the event
D = {Sn−1 > 0} is such that σ̂ ∈ D satisfies

∑
v∈T

(r)
n−1

σ̂v > 0; this implies

P
(k)
ε (Sn > 0|Sn−1 > 0) > P

(k)
ε (Sn < 0|Sn−1 > 0) by part ii) of Lemma 2.2

applied to P
(k)
ε , since, by (??), the conditional probabilities coincide with those

of Pε.
Therefore, computing ∆n(P (k)

ε ) by finite iteration from the maximum level
mk < n, lim infmk ∆mk(P (k)

ε ) > 0 implies lim infn ∆n(P (k)
ε ) > 0. �

Our next aim is to show that εc,r(k) > ε̄c,r, which is to say pc,r(k) < p̄c,r,
where ε̄c,r is the critical distortion rate for majority or maximum likelihood
reconstruction on T (r).

In order to do this we introduce another random transformation, the fraction
identification transform Φ̃k : {−1, 1}T (r) → {−1, 1}T (r)

given by

Φ̃k(σ)v = σv̄ (28)

if v ∈ T
(r)
mk, with v = (mk, s1r

k + s2), s1 = 0, ..., rk(m−1) − 1, s2 = 1, ..., rk, and
v̄ = (mk, s1r

k + s̄2), s̄2 = 1, ..., rk uniformly chosen at random. Otherwise

Φ̃k(σ)v = σv. (29)

As before, for σ ∈ Φ̃k({−1, 1}T (r)
), let Ψ̃k(σ) ∈ T (rk) be defined by

Ψ̃k(σ)v = σ(m,s1rk). (30)

Now, the strict inequality between the self-corrected critical distortion and
the original one can be proven. The strict inequality holds for all values of k
and r except for the one step correction on binary trees.

Theorem 3.2 If k > 1 or k = 1, r > 2

εc,r(k) > ε̄c,r; (31)

εc,2(1) = ε̄c,2 (32)
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To prove this fact, we explicitly compute the noise change under the frac-
tion identification. On Φ̃k({−1, 1}T (r)) the probability distribution P̃ε(k) which
implements the fraction transform is defined as P

(k)
ε with ε(k) replaced by

ε̃(k) = 1 − 1
rk

∑rk

s′2=1(2σmk,s1rk+s′2
− 1). Note that Ψk(P̃ε

(k)
) = Pε̃(k) on T (rk).

We then have

Lemma 3.3 ∀ε, ∀k

1− 2ε̃(k) = (1− 2ε)k (33)

therefore the critical distortion ε̃c,r(k) = sup{ε : lim infn ∆n(P̃ (k)
ε ) > 0} equals

εc,rk .

Proof. Denote by Xk the number of 1’s at level k. By definition and linearity
of expected values,

ε̃k(k) = 1− 1
rk

Eε(Xk|σ0 = 1) = 1− Pε(σv̄ = 1|σ0 = 1) (34)

for every v̄ ∈ T
(r)
k . The last probability refers to a one-dimensional Markov

chain of length k with distortion probability ε, and can be easily computed.
Alternatively, (??) can be verified by induction, since by the last equality, 1 −
2ε̃(1) = 1− 2ε and

ε̃(k) = ε(1− ε̃(k − 1)) + (1− ε)ε̃(k − 1), (35)

so that
1− 2ε̃(k) = (1− 2ε)(1− 2ε̃(k − 1)) = (1− 2ε)k. (36)

From [?], (1− 2εc,r)2r = 1 and since Ψk(P̃ε(k)) is on T (rk), on this second tree
criticality is identified by (1−2εc,rk)2rk = 1 and (??) implies (1−2ε̃c,r(k))2rk =
((1− 2εc,r)k)2rk = ((1− 2εc,r)2r)k = 1 . So ε̃c,r(k) = εc,rk . �

Proof of Theorem 3.2 Introduce

Tk,r(ε) =
1
rk

rk−1
2∑

l=0

l (Pε(Xk = l|σ0 = 0)− Pε(Xk = l|σ0 = 1)) (37)

when r is odd, and

Tk,r(ε) =
1
rk

rk

2 −1∑
l=0

l (Pε(Xk = l|σ0 = 0)− Pε(Xk = l|σ0 = 1)) (38)

when r is even. For r odd, we have

13



Tk,r(ε) =
1
rk

rk∑
l= rk+1

2

(rk − l)Pε(Xk = rk − l|σ0 = 0)− 1
rk

rk−1
2∑

l=0

lPε(Xk = l|σ0 = 1)

= ε̃(k)− ε(k)

(39)

and, for r even

Tk,r(ε) =
1
rk

rk∑
l= rk

2 +1

(rk − l)Pε(Xk = rk − l|σ0 = 0)

− 1
rk

rk−1
2∑

l=0

lPε(Xk = l|σ0 = 1) +
1
2
Pε(Xk =

rk

2
)− 1

2
Pε(Xk =

rk

2
)

= ε̃(k)− ε(k)

(40)

By Lemma 3.3 ε̃c,r(k) = ε̄c,rk and T1,2(ε̄c,2) = 0, so it is sufficient to show that
Tk,r(ε̄c,r) > 0 for the non trivial cases of k and r. Theorem 1.4 in [?] shows that
Pε(Xk = l|σ0 = 0) ≥ Pε(Xk = l|σ0 = 1) if rk− l > l. To have strict inequality it
is sufficient to show that Pε(Xk = 1|σ0 = 0) > Pε(Xk = 1|σ0 = 1). This will be
done by induction in k. We focus on the number i of distortions of σ0 at the first
step. The index i runs from 0 to r, but it is convenient to group together the

i-th and the (r−i)-th terms. Note that Pε(X1 = i|σ0 = 0) =
(

r
i

)
εi(1−ε)r−i.

Assuming ī = r+1
2 for r odd and ī = r

2 + 1 if r is even and i ≥ ī, the terms in
Tk,r can be collected like this

Tk,r(ε) =
r∑

i=ī

(
r
i

)
Tk,r,i(ε) (41)

with

Tk,r,i(ε) =
[
εi(1− ε)r−i − (1− ε)iεr−i

]
·
[
iPε(Xk−1 = 1|σ0 = 1)(Pε(Xk−1 = 0|σ0 = 1))i−1

·(Pε(Xk−1 = 0|σ0 = 0))r−i + (r − i)(Pε(Xk−1 = 0|σ0 = 1))i

·Pε(Xk−1 = 1|σ0 = 0)(Pε(Xk−1 = 0|σ0 = 0))r−i−1

−iPε(Xk−1 = 1|σ0 = 0)(Pε(Xk−1 = 0|σ0 = 0))i−1

·(Pε(Xk−1 = 0|σ0 = 1))r−i − (r − i)(Pε(Xk−1 = 0|σ0 = 0))i

·Pε(Xk−1 = 1|σ0 = 1)(Pε(Xk−1 = 0|σ0 = 1))r−i−1
]

14



(42)

Now, the first factor is negative if ε ∈ (0, 1/2) in particular if ε = ε̄c,r. We now
show that the second factor is negative as well under the hypothesis that the
statement is true for k − 1.

The (r−i) terms of the second addend are greater than or equal to (r−i) ≤ i
terms taken from the third addend since

Pε(Xk−1 = 0|σ0 = 0) ≥ Pε(Xk−1 = 0|σ0 = 1) (43)

again by [?]. The remaining (2i − r) terms from the third addend are strictly
less than (2i− r) ≤ i terms taken from the first since

Pε(Xk−1 = 1|σ0 = 0)Pε(Xk−1 = 0|σ0 = 0)
> Pε(Xk−1 = 1|σ0 = 1)Pε(Xk−1 = 0|σ0 = 1);

(44)

in fact, Pε(Xk−1 = 0|σ0 = 0) ≥ Pε(Xk−1 = 0|σ0 = 1) follows from [?], and
Pε(Xk−1 = 1|σ0 = 0) > Pε(Xk−1 = 1|σ0 = 1) follows by the induction hypoth-
esis.

Finally, the remaining (r − i) terms in the first addend are greater than or
equal to the (r − i) terms in the fourth addend again by [?].

For r = 2 and k = 2 the statement is true, as, by direct computation, we
have, for some f(ε),

Pε(X2 = 1|σ0 = 0)− Pε(X2 = 1|σ0 = 1)

= 4(1− ε)5ε + 2ε(1− ε)f(ε) + 4(1− ε)ε5 − 8(1− ε)3 − 2ε(1− ε)f(ε)

= 4ε(1− ε)((1− ε)2 + ε2)2

(45)

which is positive for ε ∈ (0, 1/2). For r > 2 and k = 1 the statement is
true as well in the same domain as Pε(X1 = 1|σ0 = 0) − Pε(X1 = 1|σ0 = 1) =
ε(1− ε)r−1 > (1− ε)εr−1. �

4 Limit of within-descent self-corrected critical
distortions

The transmission model we are considering can equivalently be rewritten (see
[?]) as an Ising model µβ with inverse temperature β such that

tanh(β) = 1− 2ε (46)
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and
µβ,η(σ

T
(r)
→n

) =
1
Z

e−β
P

(←v,v) σ←vσv (47)

where µβ is any weak limit of µβ,η. In turn, this can be represented as an FK
model, see [?]. The usual FK parameter p′ = 1−e2β can then be modified on the
tree, to account also for the number of clusters, to p = p′

2−p′ = tanh(β) = 1−2ε.

With H = {0, 1}E(T (r)), where E(T (r)) are the length 1 edges of T (r) and η ∈ H,
denoting by E(T (r)

→n) the edges of T
(r)
→n, we have

νp(ηE(T (r)
→n)

) =
∏

←v,v∈T
(r)
→n

pη(←v,v)(1− p)1−η(←v,v) . (48)

Therefore, the FK model is simply an independent Galton-Watson branching
process with each descendant generated independently with probability p. The
relation between νp and µβ is the usual (see [?])

µβ(σ
T

(r)
→n

) =
∑

η
E(T

(r)
→n)
∼σ

T
(r)
→n

ν(ηE(T (r)
→n)

)
1

Cl(ηE(T (r)
→n)

)
(49)

where ∼ means that σ is compatible with η, i.e., σ←vσvη(←v,v) ≥ 0, and
Cl(ηE(T (r)

→n)
) equals the number of σ’s compatible with the given η, i.e. the

number of site clusters determined by 1-edges in η.
In this section we want to show that εc,r(k) → εc,r, i.e. pc,r(k) → pc,r and

the main results will be

Theorem 4.1 There exist c1, c2 > 0 and a function αk > 0, limk→∞ αk = 0
such that

1
r
∨ 1

c
1
2k
1 r

≤ pc(k) ≤ 1 + αk

c
1
2k
2 r

(50)

so that it easily follows

Corollary 4.2

lim
k→∞

pc(k) =
1
r
.

The FK representation is thus a process in which each edge e ∈ E(T (r)) is
open, i.e. ηe = 1, independently of all other edges, with probability p. The open
edges are then just the (randomly selected) error fre edges in the transmission,
in the sense that, given the configuration of the edges, the signal is generated
by:

i) fixing the signal σ0 at the origin;
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ii) having the signal transmitted error free through the open edges;

iii) having the signal chosen at random with equal probability through the
closed edges.

Seen globally, the set of vertices of T (r) falls apart into maximal connected
components connected by open edges, and such components are called clusters.
The cluster containing a vertex v is indicated by C(v). Notice that C(0) de-
scribes the descendants of a Galton-Watson process with offspring distribution
Bernoulli of parameters r and p. The configuration of FK edges can also be
described by some η ∈ {0, 1}E(T (r)).

As before, let T
(r)
n be the vertices in the n-th generation of the tree. The

vertices of T
(r)
n also fall apart into “clusters” connected, via the entire tree, by

open edges (these “clusters” are just the intersection of the clusters of T (r) with
T

(r)
n ). Given a configuration η ∈ {0, 1}E(T (r)) of open, i.e. value 1, FK edges,

let Zi = Zi(η), i = 1, ...,mn = mn(η), be the clusters of T
(r)
n in η, 1 ≤ mn ≤ rn,

and let zi = |Zi|.
Notice that Ψk(Φk(σ)) is a configuration of T (rk) and that on such tree there

is reconstruction if the FK density p(k) = prk is such that p2
rkrk > 1 (see [?]).

On the other hand, by our construction, prk = 1 − 2P (Sk > 0|σ0 = 1), so
we need a lower bound for this expression. Such lower bound is achieved by
estimating the size of C(0)∩T

(r)
k , which is the set carrying information, and the

value of
∑mk

i=1 Z ′i, where Z ′i are independent symmetric random variables taking
values in {−zi, zi}, i.e. distributed as the Zi’s. This last sum can be estimated
via the normal approximation using Berry-Essen estimates of the error. This,
however, involves second and third moments of Zi, and we need to develop a
somewhat elaborate bound on these moments since simple ones based on the
maximum size of Zi are not sufficient.

Such bounds on the sums of moments of Zi’s are determined in Theorems
4.2 and 4.3 below, as follows. First, notice that in creating the k-th generation
roughly (1−p)rk−1 vertices are isolated, thus giving rise to the same number of
Zi’s taking values in {−1, 1}. Therefore,

∑mk

i=1 z2
i ≥ crk for some c > 0 and our

first two estimates show that this bound is nearly optimal. On the other hand,
the largest cluster is of size roughly (pr)k, so that z3

i ' (pr)3k = (p2r)k(pr2)k ≤
(1− c)k(pr2)k if p2r < 1. Our last estimate shows that also this bound is nearly
optimal. Note that this estimate cannot hold if p2r ≥ 1, so that it provides no
information about the reconstruction regime of the original tree.

We first need a large deviation result for the size of the set of vertices Rn =
C(0) ∩ T

(r)
n , i.e. for the survival set of the Galton-Watson process in the n- th

generation. Let Pp = Pε for p = 1− 2ε.

Lemma 4.3 Let γ = logr/log(pr) > 1 and γ∗ such that 1/γ + 1/γ∗ = 1 and let
W = limn→∞

|Rn|
(pr)n (see [?]). Indicating by P the distribution of W and by E

the expected value with respect to P , if pr > 1 then there exist M, c1, c2, c3 > 0
such that if ε > 0 is such that (1 + ε)γ∗ < (pr)1/3 and l ∈ N is such that
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((1+ε)/2)γ

γ∗(γτ)1/(γ−1) ≤ c1(pr)1/3 and (1 + ε)l/2 > M ∨ 1 with τ = maxx<pr H(x) < ∞
and H(x) = x−γ log(Br ·Φ(x)), Φ(s) = E(esW ) and Br the Bottcher’s function
(see [?]), then

Pp(|Rl| ≥ (1 + ε)lplrl) ≤ c2e
c3(1+ε)γ∗l

(51)

for all l ∈ N.

Proof. By large deviation properties of W , there exists M > 0 such that for
all x > M

P (W ≥ x) ≤ exp
(

xγ∗

γ∗(γτ)1/(γ−1)

)
(52)

for all x. Also, there exist c4, c5 > 0 such that

P

(∣∣∣∣ |Rn|
(pr)n

−W

∣∣∣∣ ≥ 1
)
≤ c4e

c5(pr)n/3
, (53)

for all n, see [?], Theorem 5; the conditions of that result are easily met by
considering a process with the offspring of Rn plus one additional offspring in
each vertex. Therefore, under the current assumptions, for some c2 ≥ c4 + 1
and all l ∈ N

P (|Rn| ≥ (1 + ε)lplrl) ≤ P

(∣∣∣∣ |Rn|
(pr)n

−W

∣∣∣∣ ≥ 1
)

+ P (W ≥ (1 + ε)l/2)

≤ c4e
c5(pr)l/3

+ exp
(

((1 + ε)l/2)γ∗

γ∗(γτ)1/(γ−1)

)
≤ c2e

c3(1+ε)γ∗l

(54)

if c3 = 1
γ∗(2γ∗γτ)1/(γ−1) . �

Theorem 4.4 ∀p and r with Pp-probability one there exists a constant c7 =
c7(η) > 0 such that

mk∑
i=1

z2
i ≥ c7r

k (55)

for all k larger than some k̄7(η).

Proof.
∑mk

i=1 z2
i ≥

∑
C:C∩T

(r)
k 6=∅,|C|=1

|C|2 = |{C ⊆ T
(r)
k : |C| = 1}| =: Ik.

For every b = (←v, v), ←v ∈ T
(r)
k−1, ηb is independently chosen to be 0 with

probability 1 − p, and in such a case C(v) = {v}. So, by large deviations
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estimates for rk i.i.d. binary random variables, if c7 = 1−p
2 , P (Ik ≤ c7r

k) ≤
e−c3

(1−p)
2 rk

for some c3 > 0 (see, for instance [?])
Therefore,

∑∞
k=1 Pp(η : Ik ≤ c7r

k) ≤
∑∞

k=1 e−c3
(1−p)

2 rk

< ∞ and by Borel-
Cantelli the statement holds with Pp-probability 1 for large k with c7 = 1−p

2 .
�

Theorem 4.5 Suppose p2r < 1 and pr > 1. For every α > 0 there exist
c8 = c8(α) > 0 and, with Pp-probability one, a finite k̄8(η) > 0 such that

mk(η)∑
i=1

z2
i (η) ≤ c8(1 + α)krk (56)

for all k ≥ k̄8(η).

Proof. Let γ = logr
log(pr) > 1 and γ∗ such that 1

γ + 1
γ∗ = 1 and take ε1 such

that (1 + ε1)γ∗ ≤ (pr)1/3 and (1 + ε1)4p2r < 1. By Lemma 4.1, if n ∈ N and
V = V (n) ⊆ T (r) is some set of vertices, then, since (1 + ε1)γ∗ ≤ (pr)1/3 we
have

Pp(AV (n)) = Pp(∃v ∈ V (n) : |C(v) ∩ T (r)
n | ≥ (1 + ε1)n−|v|(pr)n−|v|)

≤
∑

v∈V (n)

c5e
−c4(1+ε1)

γ∗(n−|v|)

(57)

Recursively define Vj and dj as follows:

V1 = V1(n) =

{
v ∈ T (r) : |v| ≤ d1n = n

log
(
(1 + ε1)4p2r

)−1

log r

}
,

Vj = Vj(n) =

v ∈ T (r), v /∈
j−1⋃
j′=1

Vj′

: |v| ≤ djn = n
log
(
(1 + ε1)4(1−dj−1)p2(1−dj−1)r1−2dj−1

)−1

log r

}

(58)

we then have

rd1n =
1

((1 + ε1)4p2r)n ,

rdjn =
1(

(1 + ε1)4(1−dj−1)p2(1−dj−1)r1−2dj−1
)n ,
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(59)

Pp(AV1(n)) ≤
(
(1 + ε1)4p2r

)−n
c5e
−( 1

2 )
γ∗

(1+ε1)
γ∗n(1−d1)

,

Pp(AVj
(n)) ≤

(
(1 + ε1)4(1−dj−1)p2(1−dj−1)r(1−2dj−1)

)−n

·c5e
−( 1

2 )
γ∗

(1+ε1)
γ∗n(1−dj)

(60)

On AVj
(n)c we have

∑
v∈Vj

|C(v) ∩ T (r)
n |2 ≤ rdjn ((1 + ε1)pr)2n(1−dj−1)

≤ (1 + ε1)−2n(1−dj−1)rn.

(61)

Note that for j = 2, 3, ...

dj = (1− dj−1)
log(1 + ε1)4p2r

log r
+ dj−1 = (1− dj−1)d1 + dj−1 (62)

and that d1 ∈ (0, 1) since (1 + ε1)4p2r < 1, so that limj→∞ dj = 1.
On the other hand, for the given α > 0 let ρ1 be such that rρ1 < 1+α; then,

if for any cluster C we let Base(C) = min{k : C ∩ T
(r)
k 6= ∅}, we have

∑
C:Base(C)≥(1−ρ1)n

|C ∩ T (r)
n |2 ≤

∑
C

|C ∩ T (r)
n | max

C:Base(C)≥(1−ρ1)n
|C ∩ T (r)

n |

≤ |T (r)
n |rρ1n

≤ (1 + α)nrn.

(63)

Next, take J1 ∈ N such that dJ1 ≥ (1− ρ1). Then

∞∑
n=1

J1∑
j=1

Pp(AVj
(n)) ≤

J1∑
j=1

∞∑
n=1

(
(1 + ε1)4(1−dj−1)p2(1−dj−1)r(1−2dj−1)

)−n

·c5e
−c6(1+ε1)

γ∗n(1−dj)
< +∞

(64)

since for each j the series is of the form Ane−Bn

, with A > 1 and B > 0, thus
convergent. This implies that, by Borel-Cantelli, AV1(n)∪AV2(n)∪ ...∪AVJ1,

(n)
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occurs only for a finite number of n’s with probability one. Thus, for almost all
η there exists k̄8(η) such that for all k > k̄8(η),

⋂J1
j=1 AVj

(k)c occurs and this
implies

mk(η)∑
i=1

z2
i =

∑
C

|C ∩ T
(r)
k |2

≤
∑

C:Base(C)≥(1−ρ1)k

|C ∩ T
(r)
k |2 +

J1∑
j=1

∑
C:Base(C)∈Vj

|C(v) ∩ T
(r)
k |2

≤ (1 + α)krk + (1 + ε1)−2k(1−dJ1 )rkJ1

≤ c8(1 + α)krk

(65)

for a suitable c8 = c8(J1). �

Theorem 4.6 If p2r < 1 and pr > 1, then there exist ᾱ′ > 0, c9 > 0 and, with
Pp-probability one, a finite k̄9(η) > 0 such that for every α′ < ᾱ′

mk(η)∑
i=1

z3
i ≤ c9(1− α′)k(pr2)k (66)

for all k ≥ k̄39(η).

Proof. We proceed as in the proof of Theorem 4.2 by taking ε1, Vj , AVj
(n).

On AVj
(n)c we now have∑
v∈Vj

|C(v) ∩ T (r)
n |3 ≤ rdjn((1 + ε1)pr)3n(1−dj−1)

≤ (1 + ε1)−n(1−dj.−1)pn(1−dj−1)r(2−dj−1)n

≤ 1
((1 + ε1)1−dj−1(pr)dj−1)n

(pr2)n

(67)

with dj ’s defined as above.
Now, take ρ2 > 0 such that ρ2 < log(pr)

4logr . Then∑
C:Base(C)≥(1−ρ2)n

|C ∩ T (r)
n |3 ≤

∑
C

|C ∩ T (r)
n | max

C:Base(C)≥(1−ρ2)n
|C ∩ T (r)

n |2

≤ rnr2ρ2n

≤ rn(pr)n(pr)−n/2

≤ (1− α′)n(pr2)n
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(68)

provided that 1− α′ ≥ 1√
pr .

Next, take J2 ∈ N such that dJ2 ≥ 1 − ρ2 and note that the Borel-Cantelli
Lemma applies as above. Take α′ also satisfying 1 − α′ ≥ (1 + ε1)−(1−dJ2 ).
Then, for k ≥ k̄9(η),

mk(η)∑
i=1

z3
i =

∑
C

|C ∩ T
(r)
k |3

≤
∑

C:Base(C)≥(1−ρ2)k

|C ∩ T
(r)
k |3 +

J2∑
j=1

∑
C:Base(C)∈Vj

|C(v) ∩ T
(r)
k |3

≤ (1− α′)k(pr2)k +
1

(1 + ε1)(1−dJ2 )k
(pr2)k

≤ c9(1− α′)k(pr2)k.

(69)

�
The next result gives the inequality for critical points pc(k).

For the lower bound we need

Lemma 4.8 If Zi’s, i = 1, ...,m, are independent random variables each taking
value in some {−l, l}, l ∈ N such that Zi ∈ {−1, 1} for all i = 1, ..., I then for
every α > 0 and m ≥ I > 0 we have

P (
m∑

i=1

Zi ∈ [−α, α]) ≤ P (
I∑

i=1

Zi ∈ [−α, α]) (70)

Proof. Since pk = P (
∑I

i=1 Zi = k) =
(

I
(I + k)/2

)
2−I , pk increases up to

I/2 and decreases afterwards; then, letting Sk =
∑k

i=1 Zi, we have
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P (Sm ∈ [−α, α]) = P (SI ∈ [−α, α], Sm ∈ [−α, α])
+P (SI /∈ [−α, α], Sm ∈ [−α, α])

= P (SI ∈ [−α, α], Sm ∈ [−α, α])

+
∑

t/∈[−α,α]

∑
l∈[−α−t,α−t]

P (SI = t, Sm−I = l)

≤ P (SI ∈ [−α, α], Sm ∈ [−α, α]) (71)

+
∑

t/∈[−α,α]

∑
l∈[−α−t,α−t]

P (SI = t + l, Sm−I = −l)

= P (SI ∈ [−α, α], Sm ∈ [−α, α])
+P (SI ∈ [−α, α], Sm /∈ [−α, α])

= P (SI ∈ [−α, α])

�

For the upper bound we need an estimate for the error rate ε(k) at distance
k, i.e. the value defined by

1− ε(k) = Pp

 ∑
v∈T

(r)
k

σv > 0 |σ0 = 1

+
1
2
Pp

 ∑
v∈T

(r)
k

σv = 0 |σ0 = 1

 (72)

Lemma 4.7 If p2r < 1 and pr > 1 then there exists c10 > 0 such that for every
α > 0 with probability one there exists k̄11 finite such that for all k > k̄10

1− ε(k) ≥ 1
2

+
1
2
c10

(p
√

r)k

(1 + α)k/2
(73)

Proof. We have

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1

+
1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1
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=

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| <
(pr)k

2

 (74)

+
1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| <
(pr)k

2


 · Pp

(
|Rk| <

(pr)k

2

∣∣∣∣σ0 = 1
)

+

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≥
(pr)k

2


+

1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≥
(pr)k

2


 · Pp

(
|Rk| ≥

(pr)k

2

∣∣∣∣σ0 = 1
)

Notice that for each η ∈ {−1, 1}E(T (r)),
∑

v∈T
(r)
k

σv =
∑mk(η)

i=1 Zi + |Rk|, with
Zi symmetric random variables. Therefore,

Pp(
∑

v∈T
(r)
k

σv > 0|σ0 = 1, |Rk| <
(pr)k

2
) +

1
2
Pp(

∑
v∈T

(r)
k

σv = 0|σ0 = 1, |Rk| <
(pr)k

2
)

≥
∑

η ∈ {−1, 1}E(T (r))

|Rk| ≤ (pr)k

2

Pp

mk(η)∑
i=1

Zi > 0 |η

+
1
2
Pp

mk(η)∑
i=1

Zi = 0 |η

Pp(η) ≥ 1
2
.

(75)

For the second part of (??) we use that

Pp(
∑

v∈T
(r)
k

σv > 0|σ0 = 1, |Rk| ≥
(pr)k

2
) +

1
2
Pp(

∑
v∈T

(r)
k

σv = 0|σ0 = 1, |Rk| ≥
(pr)k

2
)

≥
∑

η:|Rk(η)|≥ (pr)k

2

Pp

mk(η)∑
i=1

Zi > 0 |η

+
1
2
PP

mk(η)∑
i=1

Zi = 0 |η


+Pp

mk(η)∑
i=1

Zi ∈
(
− (pr)k

2
, 0
]
|η

 Pp(η)

Pp(|Rk| ≥ (pr)k

2 )

≥ 1
2

+
1
2

∑
η:|Rk(η)|≥ (pr)k

2

Pp

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ < (pr)k

2
|η

 Pp(η)

Pp(|Rk| ≥ (pr)k

2 )
(76)
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Then

Pp(
∑

v∈T
(r)
k

σv > 0|σ0 = 1) +
1
2
Pp(

∑
v∈T

(r)
k

σv = 0|σ0 = 1)

≥ 1
2

+
1
2

∑
η:|Rk(η)|≥ (pr)k

2

Pp

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (pr)k

2
|η

Pp(η) (77)

Since the random variable W defined in Lemma 4.1 is absolutely continuous
and E(W ) = 1 (see [?]), then P (W ≥ 1

2 ) > 0. Moreover, |Rk|
(pr)k converges in

distribution to W , so there exists a non random k̄1 such that for all k ≥ k̄1

Pp

(
|Rk|
(pr)k

≥ 1
2

)
≥ 1

2
P (W ≥ 1

2
) > 0. (78)

We then want to estimate Pp

(∣∣∣∑mk(η)
i=1 Zi

∣∣∣ ≤ (pr)k

2 |η
)

via the Gaussian ap-
proximation using the Berry-Essen estimates of the error. To this extent, we
will use the results in Theorems 4.2, 4.3 and 4.4 with α of Theorem 4.3 such that
(1+α)−1/2 > 1−α′, with α′ < ᾱ′ and ᾱ′ determined as in Theorem 4.4. Such re-
sults hold with Pp-probability one for almost all η’s, and thus it is possible to find
a non random k̄2 such that Pp(η : k̄2 ≥ max(k̄7(η), k̄8(η), k̄9(η)) > 1− 1

4P (W ≥
1
2 ). Let k̄3 such that

(
p2r
1+α

)k
1

4c8(α) < − log 1
2 and 1√

c8(1+α)k ≥ 2 c9

c
3/2
7

(1 − α′)k,

for k > k̄3.
If we define the non random constant

k̄10 = max(k̄1, k̄2, k̄3) (79)

and

Mk =

η ∈ {−1, 1}E(T
(r))

∣∣∣∣∣∣ |Rk(η)|
(pr)k

≥ 1
2
, c7r

k ≤
mk(η)∑
i=1

Z2
i (η) ≤ c8(1 + α)krk,

mk(η)∑
i=1

|Z3
i (η)| ≤ c9(1− α′)k(pr2)k

 (80)

then, for k ≥ k̄11

Pp(Mk) ≥ 1
4
P (W ≥ 1

2
) > 0. (81)

From (??) we then get
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Pp(
∑

v∈T
(r)
k

σv > 0|σ0 = 1) +
1
2
Pp(

∑
v∈T

(r)
k

σv = 0|σ0 = 1)

≥ 1
2

+
1
2

∑
η∈Mk

Pp

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (pr)k

2
|η

Pp(η), (82)

which we now estimate using the Gaussian approximation. Given η, the Z ′i’s
are independent random variables, so we can substitute them with the equally
distributed Z ′i’s. The Berry-Essen Theorem gives

P

mk(η)∑
i=1

Z ′i ∈
[
− (pr)k

2
,
(pr)k

2

] = P

mk(η)∑
i=1

Zi√
Vk

∈

[
− (pr)k

2√
Vk

,
(pr)k

2√
Vk

]
=

∫ (pr)k

2√
Vk

−
(pr)k

2√
Vk

1√
2π

e−x2/2dx + Ek

(83)

with |Ek| ≤ sk

V
3/2

k

, where Vk =
∑mk(η)

i=1 V ar(Zi) =
∑mk(η)

i=1 z2
i and sk =

∑mk(η)
i=1 E(|zi|3) =∑mk

i=1 z3
i .

If η ∈ Mk, Vk ≤ c8(1 + α)krk and

Ek ≤
c9(1− α′)k(pr2)k

(c1rk)3/2
=

c9

c
3/2
7

(1− α′)kpkrk/2 (84)

so that

P

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (pr)k

2

 ≥
∫ 1

2 (pr)k

√
c8(1+α)krk

−
1
2 (pr)k

√
c8(1+α)krk

1√
2π

e−x2/2dx− c9

c
3/2
7

(1− α′)kpkrk/2

≥ pkrk/2

√
c8(1 + α)k/2

e
− p2krk

4c7(1+α)k − c9

c
3/2
7

(1− α′)kpkrk/2

≥ 1
2

pkrk/2

√
c8(1 + α)k/2

(85)

for k ≥ k̄10 ≥ k̄3. Together with (??), (??) this implies

P (
∑

v∈T
(r)
k

σv > 0|σ0 = 1)+
1
2
P (

∑
v∈T

(r)
k

σv = 0|σ0 = 1) ≥ 1
2

+
1
2
c10

pkrk/2

(1 + α)k/2
(86)
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with c10 = 1√
c8

Pp(Mk) > 0, for all k ≥ k̄10. �

Proof of Theorem 4.1 From Lemma 4.7, the probability of error free trans-
mission p(k) = 1− 2ε(k) satisfies

p(k) ≥ c11
(p
√

r)k

(1 + α)k/2
(87)

for the binary transmission problem on T (rk)for k large enough. Therefore,
there is reconstruction if

1 < p(k)rk/2 = c11

(
pr√
1 + α

)k

, (88)

which is to say

pc(k) ≤ 1 + α

c
1/k
11 r

(89)

for k large enough. Let αk be the smallest α s.t. (??) holds. Then limk→∞ αk =
0 as required to prove the upper bound of Theorem 4.1.

Similarly to (??) we estimate, for β > 0,
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1− ε(k) =

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| > (1 + β)k(pr)k


+

1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| > (1 + β)k(pr)k




·Pp(|Rk| > (1 + β)k(pr)k|σ0 = 1)

+

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (1 + β)k(pr)k


+

1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (1 + β)k(pr)k




·Pp(|Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ ≤ (1 + β)k(pr)k|σ0 = 1)

+

Pp

 ∑
v∈T

(r)
k

σv > 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ > (1 + β)k(pr)k


+

1
2
Pp

 ∑
v∈T

(r)
k

σv = 0

∣∣∣∣∣∣∣σ0 = 1, |Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ > (1 + β)k(pr)k




·Pp(|Rk| ≤ (1 + β)k(pr)k,

∣∣∣∣∣∣
mk(η)∑
i=1

Zi

∣∣∣∣∣∣ > (1 + β)k(pr)k|σ0 = 1).

(90)

From Lemma 4.3

Pp(|Rk| > (1 + β)k(pr)k|σ0 = 1) ≤ c5e
c6(1+β)γ∗k

.

In the third term, the expression between square brackets is exactly 1
2 since

Zi’s are independent and symmetric.
Next we consider the second term. Assume first pr ≥ 1. Let I be the

set of vertices in T
(r)
k which are isolated FK clusters. Then, by large devia-

tions for i.i.d. random variables, Pp(|I| < 1
2

(
1−p

r

)
rk ≤ e−crk

. Moreover, from
Lemma 4.8, the expression between square brackets in the second term of (??)
is bounded above by Pp

(∣∣∣∑I
i=1 Z ′i

∣∣∣ ≤ ((1 + β)pr)k
)
, with Z ′i i.i.d. symmetric
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random variables with values in {−1, 1}. In turn, if |I| ≥ (1− p− ε)rk ≥ rk

2 the
normal approximation implies that for some c12 > 0, c13 > 0,

Pp

(∣∣∣∣∣
I∑

i=1

Z ′i

∣∣∣∣∣ ≤ ((1 + β)pr)k

)
≤ c12((1 + β)p

√
r)k + c13

1√
I

≤ c1p
krk/2(1 + β)k

(91)

for a suitable c1 large enough, where the last term comes from the Berry-Essen
error estimate for the random variables Z ′i, with |I| ≥ rk

2 and 1
rk/2 ≤ pkrk/2.

Collecting the above estimates we have

1− ε(k) ≤ e−crk

+ c12((1 + β)p
√

r)k + c13p
krk/2(1− α′)k +

1
2

≤ 1
2

+
1
2
c1p

krk/2(1 + β)k.

(92)

Therefore,

p(k) ≤ c1p
krk/2(1 + β)k (93)

and the condition for non-reconstruction on the rescaled tree T (rk) becomes

c1p
krk(1 + β)k < 1. (94)

This implies

pc(k) ≥ 1

(1 + β)c1/k
1 r

≥ 1

c
1/k
1 r

. (95)

If, on the other hand, pr < 1, then for small enough β, (1+β)pr < 1 and the
second term in square brackets of (??) reduces to 1

2Pp

(∑
v∈T

(r)
k

σv = 0
∣∣∣σ0 = 1

)
,

but clearly in this case the symmetry is not broken and no reconstruction can
take place. �

From Theorem 4.1 it is obvious that the critical points pc(k) converge to the
Ising model critical point.
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5 Minority removal
The self-correction mechanism discussed above is not suitable for biological
transmission, in which offsprings, once generated, cannot be changed. How-
ever, there is a similar mechanism, which consists of self-correcting a generation
by removing the elements not belonging to the majority, which could be imple-
mented in a biological setting. If r ≥ 4 and such minority removal is carried out
every step in blocks of size M , then in the renormalized tree each (macroscopic)
vertex has a random number of children larger then or equal to 2, while the
error rate is estimated as in (??) but on a random number of vertices, between
M
2 and M ; by taking inequalities as done below, one can see that (??) still holds

with minor changes and thus reconstruction is also possible at every ε < 1
2 with

a sufficiently large M . It is also the case that if a within-descent minority re-
moval is carried out every k generations, only minor changes in the constants
are needed in Theorem 4.1 and the limit of the critical points is still the Ising
critical point as in Corollary 4.2.

This highlights a possibly real but rather particular phenomenon. It looks
like a bit of information in the parent biological unit is better transmitted, i.e.
it is more resistant to random transmission errors, if enhanced by regularly
destroying descendants not belonging to the local majority. From the biological
point of view this is also likely to improve the functionality of local segments
(cells or individuals, for instance). However, the minority removal sometimes
preserves the wrong information, thus creating blocks of mutated descendants,
a phenomenon similar to tumor formation. In this respect, our findings seem to
suggest that tumor generation might be intrinsically connected to improvement
in character transmission. Of course, any such claim must be warranted by the
study of many bits transmission.

Back to our single bit model, the minority-removal carried out every step
by blocks of size M corresponds to first generating a random tree T ′M by means
of a transformation Φ′M analogous to ΦM and then identifying each block (of
random size between M

2 and M) by means of a transformation Ψ′M , analogous
to ΨM . Let P̄ ′ε,M = Ψ′M (Φ′M (Pε)) be the distribution on the resulting random
tree T ′M .

Similarly, the within-descent minority removal carried out every k-steps cor-
responds to generating a random tree T ′k by means of a transformation Φ′k, anal-
ogous to Φk, and then identifying each block (of random size between rk

2 and
rk) by means of a transformation Ψ′k, analogous to Ψk. Let P

′(k)
ε = Ψ′k(Φ′k(Pε))

be the distribution on the resulting random tree T ′k.
Note that T ′M and T ′k are Galton-Watson trees, since they are random trees

with an i.i.d. number of offsprings in each vertex. In generating T ′M at least M/2
vertices are preserved in each block of size M ; these have at least rM/2 ≥ 2M
descendants which can be divided into at least 2 blocks of size M (and possibly
one remaining smaller block). Thus the number of descendants is at least 2. In
generating T ′r on the other hand, at least rk/2 vertices are preserved in each
block of size rk and each such vertex gives rise to one descendant block, so
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each block (which is a renormalized vertex) has at least rk/2 (and at most rk)
descendants.

The branching numbers, which on the Galton-Watson trees equal the mean
offspring number (see [?]), satisfy then br(T ′M ) ≥ 2 and rk/2 ≤ br(T ′r) ≤ rk.

We begin with a Lemma stating that if on a subtree T ′ ⊂ T maximum
likelihood reconstruction takes place, then it does also on T .

Lemma 5.1 Given trees T ′ ⊆ T , if maximum likelihood reconstruction takes
place on T ′ then it does also on T , i.e. if lim infn ∆n(PT ′) > 0 then lim infn ∆n(PT ) >
0.

Proof. Let An = {σn ∈ Tn : P (σn|σ0 = +1) > P (σn|σ0 = −1)}, let A′n be
the same with Tn replaced by T ′n and let B′ = {σ′n ∈ T ′n : P (σ′n|σ0 = +1) =
P (σ′n|σ0 = −1)}. We know P (A′n|σ0 = +1)− P (A′n|σ0 = −1) ≥ δ > 0 for some
δ for large n, and we want to show the same for An. However, denoting by
P±(·) = P (·| ± 1) we have P±(An ∩ (A′n)c) = P∓(Ac

n ∩ A′n) by symmetry, and
for any event C, by definition of An,

P+(An ∩ C) ≥ P−(An ∩ C)
P+(Ac

n ∩ C) ≤ P−(Ac
n ∩ C). (96)

Then,

P+(An)− P−(An)

= P+(An ∩A′n) + P+(An ∩ (A′n)c) + P+(An ∩B′)

−P−(An ∩A′n)− P−(An ∩ (A′n)c)− P−(An ∩B′)

= P+(An ∩A′n) + P−(Ac
n ∩A′n) + P+(An ∩B′)

−P−(An ∩A′n)− P+(Ac
n ∩A′n)− P−(An ∩B′)

≥ P+(An ∩A′n) + P+(Ac
n ∩A′n)

−P−(An ∩A′n)− P−(Ac
n ∩A′n)

= P+(A′n)− P−(A′n)

(97)

from which the result follows. �
The results for minority removal can be summarized as follows. Notice that

in the proof we use maximum likelihood reconstruction to use Lemma 5.1 and
get a bound on the critical point; on the other hand, it is shown in [?] that for
binary tree the critical points for majority or maximum likelihood reconstruction
coincide.

Theorem 5.2
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i) If r ≥ 4, in the minority removal carried out every step with blocks of size
M , for every ε ∈ [0, 1/2) ∃ ¯̄M : ∀M > ¯̄M

lim inf
n

∆n(P̄ ′ε,M ) > 0.

ii) In the within-descent minority removal carried out every k steps if p′c(k) is
the critical point then with c > 0 as in Theorem 4.1 we have

1
2

1
2k r

≤ p′c(k) ≤ 4
1
2k

c
1
2k r

so that

lim
k→∞

p′c(k) =
1
r
.

Proof. i) In generating T ′M at least M
2 vertices were preserved in each block of

size M ; these vertices have r M
2 ≥ 4M

2 = 2M descendants which can be divided
into at least two blocks of size M (and some remaining others, possibly smaller).
Thus, the number of descendants in the renormalized tree is at least 2.

On the other hand, the error rate ε̄′M satisfies (??) with M replaced by M
2 .

By Lemma 5.1, maximum likelihood reconstruction on T ′M follows from that on
T (M/2) which is ensured by

2(1− 2ε̄′M )2 ≥ 2(1− 2e−cεM/2)2 > 1 (98)

which is satisfied for large M .
ii) In generating T ′r at least rk

2 vertices are preserved in each block of size rk;
each such vertex gives rise to one descendant block, so the branching number
of the renormalized tree is at least rk

2 .
Also, it is possible to show bounds on the renormalized error free trans-

mission p′(k) similar to those used to prove Theorem 4.1. By carefully going
through that proof, one can see that if pr ≥ 1

p′(k)2 ≤ 2c2
1p

2krk(1 + β)k (99)

as in (??) if pr < 1 again p(k) is exponentially small in k and thus there is no
reconstruction; and, finally

p′(k) ≥ c2

pk
√

rk

2

(1 + α)k/2
. (100)

as in (??).
Again by Lemma 5.1 this implies

1
r
∨ 1

(2c1)
1
2k r

≤ p′c(k) ≤ 4
1
2k

c
1
2k
2 r
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and

lim
k→∞

p′c(k) =
1
r
.

�
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