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Pythagorean Theorem in Game Form. 
 
 
 
 
 
 

Suggestions and Tips for a Workshop on the Pythagorean Theorem and Thereabouts. 
 
A series of puzzles serves as an introduction to the numerous facets of the Pythagorean Theorem. 
To begin with, the theorem is  first examined in its traditional form and then in a more general way 
by replacing the squares by similar figures; in the final step, we proceed to  the Theorems of  Euclid  
and Pappus of Alexandria. The different facets of these theorems are made tangible through  
puzzles that take a more playful approach to the theorem and to its proof. 
 
Aims of the workshop 
 
The workshop aims at an introduction of  a number of important geometric concepts through play. 
It deals with the theorem of Pythagoras in the first place, and then with Euclid’s theorem, that 
usually precedes its proof, as well as with a rather surprising generalisation, due to Pappus of 
Alexandria (V century a. D.). The passage from squares to exhagons and stars makes possible to 
introduce the notion of similar figures, and to show that the areas of similar figures are proportional 
to the squares of corresponding sites.  
 
We propose here some suggestions for the laboratory. We suggest a possible path, together with 
remarks concerning the management of the activities. These observations are distilled from the 
laboratories made at the museum. The reference classes are junior high schools, but with some 
adjustements the workshops can be adapted to high school pupils, for whom we suggest 
occasionally some possible additions. 
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1.The Proposition 

 
The workshop starts with the proposition of the Theorem, which is what two of the puzzles deal 
with. If the class is not yet familiar with the Pythagorean Theorem, the puzzles may be a way of 
getting the students to formulate the Theorem on their own.  Should they be familiar with it, the 
workshop may begin by asking the students themselves  to state the Theorem. 
It is widely known that the Pythagorean Theorem may take different forms;  of the two main ones, 
one is  expressed geometrically  and the other one algebraically. In the former case , it says 
 
In a right-angled triangle, the squares drawn on the legs  are equivalent to the square drawn on the 
hypotenuse. 
 
or some equivalent formulation. In the latter, it may be said that 
 
In a  right-angled triangle of legs a and b and Hypotenuse c we have  a2+b2=c2.  
 
At times, school children miss the context and merely remember the  a2+b2=c2  formula; of course, 
it is then necessary to provide an explanation. One half-way measure speaks about areas and states 
that  
 
In a right-angled triangle, the sum of the areas of the squares built upon the legs  is  equal to the 
area of the square built on the hypotenuse. 
 
Once it has been established that these propositions are equivalent, we can use any one of them (for 
example, the third). We may wonder – what does this mean ? 
 
 
You have three squares at stake whose sides are given respectively by the hypotenuse and by the 
two legs.  The theorem states that the first square has the same area as the other two taken together. 
To verify this experimentally –mind you, not to prove it !-, you can proceed in different ways; for 
example, by measuring  legs  a and b and hypotenuse c and verify that a2+b2=c2 . 
 
Another approach  that will be used  throughout the workshop involves cutting the square of the 
hypotenuse into a certain number of pieces and using  them to form the squares of the legs. 
 
Here, what is known as  equidecomposability  is applied   – if two figures are made up of the same 
pieces arranged in a different way, then , they evidently  have the same area. So, if you can build the 
two squares of the legs using the pieces of the square of the hypotenuse, it means that these two 
figures (the square of the hypotenuse, the two squares of the legs) are equivalent.  
 
At this point, an initial observation may be made. Two equivalent figures are not always 
equidecomposable. For instance, it can be proven -and for those familiar with integral calculus this 
is not difficult to do – that the two figures below, i.e. the segment of a parabola and a rectangle, 
have the same area, yet they are not equidecomposable. 
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However, if the figures in question are polygons or composed of polygons,  the opposite is also 
true:  two polygons have the same area if and only if they  can be cut into the same pieces. 
 
Please, take note of -and possibly look further into- the fact that this result does not hold for 
polyhedra. Two equidecomposable polyhedra are obviously equivalent , i.e. they have the same 
volume, but two equivalent polyhedra are not always equidecomposable.  
 
Now, let us examine puzzles related to the proposition, the first one having  five and the second one 
seven pieces.  
 
In the first puzzle the five pieces can be used to form either the two squares of the legs or the large 
square of the hypotenuse. This first apparently rather  simple  five-piece puzzle often turns out to be 
one of the trickiest, but don’t  lose heart! Anyway, here is the solution: 
 
 

 
 

The second puzzle made up of seven pieces is analogous.  Even though there are more pieces, a 
certain symmetry helps to recompose it. Here is the solution: 
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The solutions  to these puzzles may be given to the class as a skills game. The class can be split up 
into two or more teams, depending on the number of students; they may work at the same time or 
one team at a time and an arbiter may be appointed to time the task.  Once they are given the go-
ahead, the teams first have to put the squares of the legs together. It is advisable to start with those , 
because they are easier than the square of the hypotenuse, which can be done afterwards. Whoever 
takes the least overall time wins. 

 
2. Hexagons and Stars 

 
After finishing the games dealing with the traditional Pythagorean Theorem, unless you find 
yourself obliged to stop them, promising to make the puzzles available at break-time to those who 
are eager to take up the challenge posed by the impenetrability of bodies, you can go on to the 
following step. 
 
Taking advantage of the fact that, by now,  your students will have become warmed up by  their  
attempts at tackling the traditional theorem,  you can get them to state the proposition of the 
Theorem once again as a chorus – repeating never does  any harm. If you notice that they have 
reached  a higher level of awareness when saying  words such  area, squares, triangles, legs, etc. ,  
in a row , and if you see them looking at the puzzles  they have been doing for confirmation and 
support, then your first goal has been achieved. 
 
At this point, after the traditional Theorem, a new challenge can be presented  to them: “what if I 
said ‘hexagon of the hypotenuse….’?” 
Some classes have already seen the extension and the best students will say: “ That goes for all the 
regular polygons. ” 
 
Then, be even more daring and say : ”What about stars?” 
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And if they do not appear surprised, you will wrong-foot them  by saying : “What if I put the figure 
of a lion (or whatever comes into your mind – the most unsymmetrical one possible) there?” 
The proposition of the Theorem remains valid whatever figure you might choose (and this generally 
strikes them as unexpected) as long as the very same figure is placed on every side,  after having 
enlarged or reduced it as needed. 
 
In other words – and here you may risk repeating the same thing in more geometric terms by talking 
about similarity instead of enlargement or perhaps by eliciting  the word similarity from them.  
Given the three sides of the right-angled triangle, in the case of the traditional proposition, it is easy 
to understand how large the three squares in the game have to be : their sides will be the same 
length as the two legs and the hypotenuse. When generalizing, someone may find it hard to 
understand how the figures are enlarged or reduced.  
 
When dealing with hexagons and regular polygons in general, this is still quite immediate; here, too, 
three figures with long sides respectively like the two legs and the hypotenuse may be taken. As 
regards stars, this is already less apparent. In the puzzle given, it is the distance between two points, 
meaning a segment that  is not part of  the figure needs to coincide  with the legs or the hypotenuse 
every time.  Generally, any segment may be chosen, also in case of regular squares or polygons, not 
necessarily one side, but also a diagonal, an apothem or any segment. The important thing is  to 
always take corresponding segments for the three figures: always diagonals, or always apothems, or 
whatever. 
 
In the figure below, on the left, the sides of the right-angled triangle  are equal  to three 
corresponding  segments in the hexagons that can be seen in the figure on the right. Thus, the 
Pythagorean Theorem is applicable to the three figures on the left : the area of the figure of the 
hypotenuse is equal to the sum of the areas of the figures of the legs.  Of course, the Theorem also 
holds for  corresponding hexagons. 
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If the class has followed you up to this point, you can go on  to “Why is it applicable?”, proceeding 
to explain that in similar figures, the areas are proportional to the squares of corresponding 
segments and this brings us back to the traditional Pythagorean Theorem. 
 
In other words, if we have three similar figures in which a,b,c are the lengths of corresponding 
segments, e.g. the sides of three regular hexagons or the three segments in the figure above, the 
areas of the three figures will be ka2, kb2 and kc2. If a, b, c are the legs and the hypotenuse of a 
right-angled triangle, the equation will be a2+b2=c2. And therefore also ka2+kb2=kc2. 
 
Now, back to the puzzles. The first one gives the version of the Pythagorean Theorem with 
hexagons, the second one is with stars. 
If the students enjoyed  competing, the puzzle can be done by the same teams as before. Here are 
the solutions:  
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3. Proof  
 
It is not known whether or how Pythagoras himself  managed to prove his Theorem, that is to say 
whether he actually worked out a convincing argument for the validity of his discovery. However, 
after him, a number of proofs were provided by different scholars. 
 
One of the simplest  ones known is proposed as a puzzle. Four copies of the right-angled triangle at 
issue are placed in a large square  whose side is equal to the sum of the legs. This is done  in two 
different ways. In the first, the square of the hypotenuse remains uncovered while  in the second  it 
is the squares of the two legs that are not covered. Since the square is large and the four triangles 
are always the same, it may be deduced that the area of the uncovered figures in the first and the 
second case is identical. 
 

       
 
This proof is sometimes already known to students, and therefore they will be able to work out  the 
configuration once again. Seldom, though, will they be able to  explain why the two configurations 
result in the Theorem. Try guiding them one step at a time to identify the two small squares and the 
large one, explaining what makes them equivalent. 
 
If  you deem it fitting, when working with older students, you may also raise the question as to 
whether the square of the hypotenuse  in the first configuration really is a square. This stage is often 
passed over, but it is necessary to complete the proof without relying solely on the visual aspect. 
 
Thus, if you want to prove that the first square is indeed a square, you may first of all observe that it 
has four equal sides since they are all equal to the hypotenuse of the right-angled triangle given. 
Therefore,  it undoubtedly is a rhombus, but to infer that it is a square, the angles have to be right 
angles. This may be done by observing that each of the white angles is equal to a flat angle minus  
the two yellow angles and that, since the two  are angles of  a right-angled triangle, they form a 
right angle. Consequently, every white angle is a right angle and thus we do have a square.  
 
One may also notice that the figure on the right shows the algebraic formula  

 
(a+b)2 = a2+b2+2ab 

 

 
As a matter of fact,  if a and b are the legs of the right-angled triangle, then the large square has the 
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sides a+b and its area (a+b)2  is the sum of the areas of the squares of the legs (a2 +b2), plus the 
areas of the two rectangles with sides a and b.  
 

4. Euclid 
 
The oldest known proof of the Pythagorean Theorem is due to Euclid and can be found in the first 
book  of  his Elements . 

 
Euclid approached one part of the problem at a time, and 
starting with just one of the squares of the legs, he saw that …. 
At this point, the corresponding puzzle can be given to the 
students.  “Are you already familiar with Euclid’s Theorem? 
Well, then, let’s check. Otherwise, solve the puzzle to discover 
it ”. 
 
Using the pieces provided, compose first the square of the leg 
and then the rectangle that is equal to it. Then you may see  that 
in a right triangle, the square built on a leg is equivalent to the 
rectangle whose sides are the hypotenuse and the projection of 
the leg on the hypotenuse. 
 
This result enables Euclid to prove Pythagoras’ Theorem. 
 
What happens if the square of the other leg is taken into 

consideration as well ?  
 

 
5. Euclid’s  Second Theorem 
 
Let us  digress for a moment  on a small tangent regarding  Euclid’s second Theorem:  
 
In a right-angled triangle, the square built on the height  corresponding to the hypotenuse  is equal 
to the rectangle whose sides are the projections of the two legs on the hypotenuse. 
 

As a puzzle, Euclid’s second theorem  is broken up exactly as the first one was, that is to say, a 
puzzle corresponding to the first theorem  works for the second theorem as well, and vice versa. 
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Consider the right-angled triangle abc  where bd is the height on the ac hypotenuse. The second 
Euclidean Theorem  states that the square befd on the height is equivalent to  the rectangle adhg, 
whose sides are the projections of the legs on the hypotenuse. 
 
At this point, let us examine another right-triangle  with the hypotenuse DC equal to the projection 
dc of the previous triangle’s greater leg and a leg BD equal to the height bd. The first Euclidean 
Theorem states that the square of the leg BD is equal to the rectangle whose sides are the 
hypotenuse DC and the projection DA of the leg BD on the hypotenuse.  
 
Since the squares bedf and BEDF are the same by construction, the rectangles adhg and DAHG 
must be equivalent. But these rectangles have heights ag=DG, and therefore the bases ad and DA 
are the same. As a result, the two rectangles are congruent. If we decompose the rectangle DAHG so 
that the pieces make up  the square BEDF, the same decomposition  works for the rectangle adhg 
and the square bedf.  
 
6. Pappus of  Alexandria. 
 
Some may  wonder what happens when the triangle is not right-angled. This question may  arise 
when the students repeat the Proposition; someone will inevitably forget to say that the triangle has 
to be right-angled. 
 
A few centuries after Euclid, Pappus of Alexandria ( 4th c. A.D.) found a theorem analogous to the 
first Euclid’s, except for the fact that  triangle ABC is not right-angled and, instead of a square, there 
is an arbitrary parallelogram . 
 

Given a triangle ABC, we build a  parallelogram ABGF on the 
side AB,  and on the extension of side FG we take any point 
H . We join H and B and prolonge the segment HB; on this 
extension, which meets side AC in I, we take IL=HB and 
complete parallelogram AILM. Pappus’ Theorem states that 
parallelogram  AILM is equivalent to the initial parallelogram 
ABFG.   
 
This is the result illustrated in the last puzzle. As for Euclid’s  
Theorem, once again we now need to check the equivalence 
between the two parallelograms by using the same pieces to 
buildi the parallelograms in question. 
 
Proving  Pappus’ Theorem is not difficult and this activity 
may be proposed to older students. The  important thing is to 
remember that two parallelograms that have  the same base 
and are between the same parallels, that is have the same 
height, are equivalent. 
 
To prove this equivalence, the trick is to add the dotted lines  

AP and PQ and to take into consideration parallelogram APQI . In the figure, you immediately 
notice that parallelograms ABGF and ABHP are equivalent, because they have the same base AB 
and are between parallels AB and FH. Parallelograms ABHP and APQI are equivalent in the same 
way, as they have the same base AB and they are between parallels AP and IH. Consequently, 
parallelograms ABGF and APQI are equivalent. If you then observe  that PA is equal to HB, being 
the opposite sides of a parallelogram, then you can deduce that  parallelograms APQI and AILM are 
equal, and therefore the latter is equivalent to ABGF.  
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The Euclidean Theorem is a special case of Pappus’s Theorem  .  
 

In fact,  if triangle ABC is right-angled and parallelogram 
ABGF  is a square, by choosing H so that stright line HB is 
perpendicular to hypotenuse AC, you get a segment HB that is 
equal to AC. Indeed, the angle GHB is equal to the angle ACB 
as their sides are perpendicular, the angles HGB and ABC are 
right  and segments AB and BG are also equal since  ABGF is a 
square. Parallelogram AILM , which according to the Pappus’s 
Theorem  is equivalent to the square ABGF, is therefore  the 
rectangle  that has as its sides the segment IL (which by 
construction is equal to HB  and it is thus also equal to 
hypotenuse AC) and the projection  AI of AB on the hypotenuse, 
as stated by the first Euclidean Theorem.  
 
Then, if two 
parallelograms are 
constructed, one for 
each of the two sides, 
and if as a point H 
you take  the one 
where the 
prolongation of sides 

FG and DE meet, by drawing a straight line and 
completing the Pappus construction on both sides, what 
you get is parallelogram ACNM, built on base AC , with 
side AM equal and parallel to segment HB. Thus, 
Pappus’s Theorem tells us that its area is equal to the 
sum of the areas of the initial parallelograms.  
 
 
This is an extension of the Pythagorean Theorem that 
you find in the particular case in which the triangle is 
right-angled and the two parallelograms are squares.  
 
As a matter of fact, in this case segment HI is perpendicular 
to AC, which can be demonstrated by means of the figure 
on the right. Rectangle HEBG is equal to rectangle ABCT 
since by construction we have HE=AB and BE=BC. As a 
result, triangles HEB and ABC, each one being half of the 
respective rectangle, will also be equal, and in particular 
angles IHE and CAE will be equal. 
Since HE is perpendicular to AE, also HI  will be  
perpendicular to AC.  
Therefore, we may apply the Euclidean Theorem to squares 
ABGF and BCDE and obtain the Pythagorean Theorem.  
 

 

 
7.  A More In-Depth Look for Grown-Ups  
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From the Pappus’s Theorem, it follows that in an acute triangle, the square on the greater side, i.e. 
the hypotenuse in the case of a right-angled triangle, is less than the sum of the squares of the other 
two sides, i.e. the legs if the triangle is right-angled. When the triangle is obtuse, the square is 
greater.   
 
Let us take an acute triangle ABC, whose greater side is AC. From vertex B, we draw BI 
perpendicular to AC and on its extension we take point H  so that HB=AC. From H we draw HF 
parallel to AB and HD parallel to BC, and then we build rectangles ABGF and BCDE. According to  
Pappus’s Theorem, they will be equivalent to rectangles AILM and ICNL, respectively; therefore, 
together they will be equivalent to square ACNM. 
 
At this point, we may ask: Will rectangle BCDE be greater or lesser than the square on BC ?  
 

To respond, we draw  AQ perpendicular to BC. 
Since angle γ  is acute, point Q will fall 
between C and B. Triangles AQC and HEB are 
equal, indeed they are  right-angled with 
HB=AC; besides, angles EHB and ACQ are 
equal  since their sides are perpendicular. As a 
result, BE=CQ<BC and therefore, rectangle 
BCDE is lesser than the square on BC. 
Similarly, rectangle ABGF is proven to be 
lesser  than the square on AB and thus the 
square on the greater side AC is less than the 
sum of the squares on the other two sides.  
 
If instead angle γ is obtuse, point Q falls 
outside segment BC and thus BE will be 
greater than side BC and rectangle BCDE will 
be greater than the square on BC. As a result, 
the square on side AC will be greater than the 
sum of the squares on the other two.  
 
Using a bit of trigonometry, it is possible to 
specify  by how much the square on a side  
deviates from the sum of the other two.  Since 
CQ=BC- BQ= b – a cos γ , the area of 
rectangle BCDE will  be b(b – a cos  γ). 

Likewise, the area of rectangle ABGF is found to be a(a –b cos γ).  
 
Therefore, by the Theorem of Pappus we have c2  = a(a – b cos γ) + b(b –a cos γ), that is to say 

 
c2 = a2  + b2  – 2ab cos γ 

 
This is known as the Carnot Theorem. 
 
 

 


