Esercizi per il corso di Matematica e Laboratorio

CORSO DI LAUREA IN SCIENZE VIVAISTICHE, AMBIENTE E GESTIONE DEL VERDE

Prof. Lorenzo Fusi

25 settembre 2012

Indice

L	Esercizi sulla retta	2
2	Esercizi sulla parabola	4
3	Esercizi sulla circonferenza	8
1	Esercizi su equazioni algebriche	10
5	Esercizi sulle disequazioni	12
3	Equazioni e disequazioni trigonometriche	15
7	Equazioni e disequazioni logaritmiche	19
3	Esercizi su equazioni esponenziali	22
)	Esercizi sulle funzioni	26
10	Esercizi su limiti e continuità	29
11	Esercizi sulle derivate	36
12	Esercizi sulla regola de l'Hôpital	44
13	Esercizi sugli studi di funzione	46
14	Esercizi su problemi di ottimizzazione	51
15	Esercizi sugli integrali	54

Esercizi sulla retta

1.1. Calcolare l'equazione della retta passante per $A \equiv (-3/2; 1/4)$ e perpendicolare alla retta di equazione 3x + 4y = 0.

[R:
$$16x - 12y + 27 = 0$$
]

1.2. Calcolare l'equazione della retta passante per il punto di intersezione delle rette di equazioni 2x + y - 2 = 0 e 2x + 3y - 8 = 0 e parallela alla retta passante per i punti $A \equiv (1; 5/4), B \equiv (-2; 7/2)$

[R:
$$6x + 8y - 21 = 0$$
]

1.3. Trovare la distanza fra le rette parallele 3x - 2y + 5 = 0 e 2y - 3x + 2 = 0.

[R:
$$(7\sqrt{13})/13$$
]

1.4. Data la famiglia di rette 2(k-2)x + (k-2)y + 1 - k = 0 dipendente dal parametro k determinare fra di esse quella passante per l'origine.

[R:
$$y = -2x$$
]

1.5. Data la famiglia di rette 2(k-2)x + (k-2)y + 1 - k = 0 dipendente dal parametro k determinare fra di esse quella che incontra l'asse delle ascisse in un punto la cui distanza dall'origine misura 2.

[R:
$$2x + y + 4 = 0$$
, $2x + y - 4 = 0$]

1.6. Siano A e B i punti di intersezione della retta di equazione 4x+3y-12=0 con gli assi di riferimento: si determinino i punti C della retta di equazione x-y+5=0 tali che il triangolo ABC abbia area 20

$$[R: \left(\frac{37}{7}, \frac{72}{7}\right), \left(-\frac{43}{7}; -\frac{8}{7}\right)]$$

- 1.7. Date la famiglie di rette 2x+3y=a+7 e ax+2(3+a)y=18-a dipendente dal parametro a determinare per quali valori di a le rette corrispondenti
 - a) risultano parallele;
 - b) risultano perpendicolari;
 - c) si incontrano in un punto di ascissa 5;
 - d) si incontrano nel punto $Q \equiv (-2; 3);$

[R:
$$a = -12$$
; $a = -9/4$; $a = 3$ e $a = -12$; impossibile;]

1.8. Scrivere l'equazione della retta passante per lintersezione delle rette r) : y = x e s) : 2x + y = 6 e parallela alla retta x - y + 4 = 0.

$$[R: y = x]$$

- 1.9. Determinare l'equazione della retta passante per i punti $A \equiv (-1, a)$ e $B \equiv (2a, 1)$ e dire:
 - a) per quali valori di a tale retta è parallela all'asse delle x o a quello delle y?
 - b) Per quali valori di a è parallela alla prima o seconda bisettrice?

[R:
$$a = 1$$
, $a = -1/2$, $a = 0$, $a = -2$.]

1.10. Date la famiglia di rette

$$2x - y + 1 + k(x + 3y - 5) = 0$$

determinare

- a) quella che passa per l'origine,
- b) quella che passa per il punto $A \equiv (3,2)$
- c) quella parallela alla retta 5x 3y + 1 = 0
- d) quella perpendicolare alla retta 3x y + 7 = 0

[R:
$$k = 1/5$$
, $k = -5/4$, $k = 0$, $a = -2$.]

Esercizi sulla parabola

2.1. Scrivere l'equazione del luogo di punti di un piano riferito ad un sistema di coordinate cartesiane ortogonali equidistanti dalla retta di equazione y+6=0 e dal punto $A\equiv (-1;-5)$

[R:
$$y = x^2/2 + x - 5$$
]

2.2. Determinare i punti di intersezione della parabola di equazione $y=x^2-5x+4$ con la retta di equazione x+y-4=0.

2.3. Determinare i punti di intersezione della parabola di equazione $y = x^2/2 - x + 4$ con la retta di equazione 4x - 5y - 20 = 0.

[R: la retta non interseca la parabola]

2.4. Determinare i punti di intersezione della parabola di equazione $y=x^2$ con la retta di equazione 4x-y-4=0.

[R: retta tangente in (2;4)]

2.5. Determinare i punti di intersezione della parabola di equazione $x=y^2-4y-5$ con la retta di equazione x-y+5=0.

[R:
$$(0;5), (-5;0)$$
]

2.6. Determinare i punti di intersezione della parabola di equazione $y=x^2-4x$ con la retta di equazione x+y+2=0.

$$[R: (1; -3), (2; -4)]$$

2.7. Trovare l'equazione della parabola della forma $y = ax^2 + bx + c$ sapendo che passa per $A \equiv (2; -1)$, $B \equiv (-1; 14)$ e $C \equiv (1; 0)$.

[R:
$$y = 2x^2 - 7x + 5$$
]

2.8. Trovare l'equazione della parabola della forma $y = ax^2 + bx + c$ sapendo che passa per $A \equiv (2; 9)$, $B \equiv (5; 0)$ e che in questo punto la tangente ha coefficiente angolare -6.

[R:
$$y = -x^2 + 4x + 5$$
]

2.9. Trovare l'equazione della parabola della forma $y = ax^2 + bx + c$ sapendo che passa per $A \equiv (3; 1)$, e che ha vertice in $V \equiv (2; 0)$.

[R:
$$y = x^2 - 4x + 4$$
]

2.10. Trovare l'equazione della parabola avente come asse di simmetria la retta x=1, l'ordinata del vertice uguale a 5 e passante per $A\equiv (2;6)$.

[R:
$$y = x^2 - 2x + 6$$
]

2.11. Trovare l'equazione della parabola della forma $y=ax^2+bx+c$ avente vertice in $V\equiv (0;4)$ e tangente alla retta di equazione 4x+y-8=0.

[R:
$$y = -x^2 + 4$$
]

2.12. Determinare l'equaizone della parabola con asse parallelo all'asse delle Y e passante per i punti $A \equiv (-1; 14), B \equiv (2; -4), C \equiv (7/2; -25/4)$. Scrivere poi le equazioni delle tangenti a tale parabola nei suoi punti di intersezione con l'asse delle X.

[R:
$$y = x^2 - 7x + 6, 5x + y - 5 = 0; 5x - y - 30 = 0$$
]

2.13. Determinare l'equazione della parabola con asse parallelo all'asse delle Y passante per $A\equiv (3;4)$ ed avente vertice in $V\equiv (1;0)$. Trovare poi il raggio della circonferenza avente il centro nel primo quadrante, tangente agli assi ed alla retta tangente alla parabola nel suo punto di ascissa 0.

[R:
$$y = x^2 - 2x + 1, r = \frac{3 \pm \sqrt{5}}{4}$$
]

2.14. Determinare l'equazione della parabola della forma $y=ax^2+bx+c$ con 2a=1, asse di simmetria di equazione x-2=0 e passante per $P\equiv (1;3/2)$. Determinare poi le coordinate dei punti T di tale parabola per i quali risulti $\overline{TA}^2+\overline{TB}^2=28$, essendo A e B i punti di coordinate $A\equiv (1;0), B\equiv (3;0)$.

[R:
$$y = x^2/2 - 2x + 3, (0, 3), (4, 3)$$
]

2.15. Scrivere l'equazione della parabola \mathcal{P} simmetrica rispetto all'asse delle Y e passante per i punti $A \equiv (0;1)$ e $B \equiv (2;-3)$. Scrivere le equazioni delle tangenti alla parabola \mathcal{P} nei suoi punti di intersezione con gli assi e calcolare l'area e perimetro del trapezio delimitato da dette tangenti e dall'asse delle X. Scrivere poi le equazioni delle tangenti \mathcal{T}_1 e \mathcal{T}_2 alla parabola \mathcal{P} passanti per il punto (0;5) e calcolare area e perimetro del triangolo avente per lati le rette \mathcal{T}_1 e \mathcal{T}_2 e la retta di equazione y = -3.

[R:
$$y=-x^2+1$$
; $y=1$; $2x-y+2=0$; $2x+y-2=0$; area 3/2; perimetro $3+\sqrt{5}$; $4x-y+5=0$; $4x+y-5=0$; area 16, perimetro $4(\sqrt{17}+1)$.]

- 2.16. In un piano riferito ad un sistema di assi cartesiani XOY sia dato il punto $P \equiv (2a + 3; a^2 3a 27/4)$, con a numero reale maggiore di 3/2.
 - a) Trovare l'equazione del luogo $\mathcal P$ descritto dal punto P al variare del parametro a
 - b) Scrivere l'equazione della tangente \mathcal{T} al luogo \mathcal{P} passante per il punto $A \equiv (7; -21)$
 - c) Indicato con B il punto di tangenza della retta \mathcal{T} con il luogo \mathcal{P} , scrivere l'equazione della normale al luogo \mathcal{P} in B, ossia l'equazione della retta perpendicolare alla tangente in B.

[R: ramo di parabola
$$y = x^2/4 - 3x$$
, con $x > 6$; $4x - y - 49 = 0$; $x + 4y - 42 = 0$.]

- 2.17. In un piano riferito ad un sistema di assi cartesiani XOY rappresentare la parabola $\mathcal P$ di equazione $y=-2x^2+11x+6$
 - a) Determinare sull'arco parabolico \mathcal{P} giacente nel primo quadrante un punto R in modo che l'area del quadrilatero OARC sia 48, essendo A e C le intersezioni di \mathcal{P} rispettivamente con il semiasse positivo delle X e con l'asse delle Y.
 - b) Condurre una retta \mathcal{R} , parallela all'asse X, in modo che per il rettangolo MNPQ, avente i vertici M ed N nei punti di intersezione della retta \mathcal{R} con la parabola \mathcal{P} ed i vertici P e Q sull'asse X, risulti NP = 2MN.

[R:
$$(5,11)$$
, $(1,15)$, $y = \pm \sqrt{185} - 4$]

- 2.18. In un piano riferito ad un sistema di assi cartesiani XOY sia dat la parabola $\mathcal P$ di equazione $y=-x^2+4x$
- ©L. Fusi, Univ. di Firenze

- a) condurre una retta parallela all'asse delle X in modo che il rettangolo ABCD, avente per vertici C e D i punti di intersezione della retta considerata con la parabola \mathcal{P} e gli altri due vertici sull'asse delle X, abbia perimetro di misura 10;
- b) Scrivere le equazioni delle tangenti alla parabola \mathcal{P} nei punti C e D prededentemente trovati, verificando che tali tangenti sono simmetriche rispetto all'asse della parabola;
- c) Trovare la misura del raggio della circonferenza inscritta nel triangolo DEC, essendo E l'intersezione delle tangenti trovate in precedenza.

[R:
$$y = 3$$
; $2x + y - 9 = 0$; $2x - y + 1 = 0$; $E \equiv (2, 5)$, $r = \frac{\sqrt{5} - 1}{2}$]

Esercizi sulla circonferenza

3.1. Dire per quali valori di k la circonferenza di equazione $3x^2 + 3y^2 + 3k^2x - 16y - 3k = 0$ passa per il punto (1;3).

[R:
$$k_1 = 3, k_2 = -2$$
].

3.2. Trovare e rappresentare il luogo geometrico dei punti P di un piano tali che $\overline{PA}/\overline{PB}=3$, con $A\equiv(2;0)$ e $B\equiv(-2;0)$.

[R:
$$x^2 + y^2 + 5x + 4 = 0$$
].

3.3. Scrivere l'equazione della circonferenza passante per i punti $A \equiv (-2;3)$, $B \equiv (3;1)$ e $C \equiv (1;-2)$.

[R:
$$19x^2 + 19y^2 - x - 31y - 156 = 0$$
].

3.4. Scrivere l'equazione della circonferenza circoscritta al triangolo di vertici $A \equiv (3;3), B \equiv (1;4)$ e $C \equiv (-2;1)$.

[R:
$$3x^2 + 3y^2 - 5x - 7y - 18 = 0$$
].

3.5. Determinare se esistono le coordinate dei punti di intersezione della retta \mathcal{R} con la circonferenza \mathcal{C} aventi equazioni 4x+y-4=0 e $x^2+y^2+6x-4y+12=0$.

[R: Non esistono punti di intersezione].

3.6. Determinare se esistono le coordinate dei punti di intersezione della retta $\mathcal R$ con la circonferenza $\mathcal C$ aventi equazioni 3x-y+20=0 e $x^2+y^2+6x-2y=0$.

[R: La retta risulta tangente nel punto (-6; 2)].

3.7. Nella famiglia di circonferenze aventi equazione $x^2 + y^2 - (k+3)x + (k-1)y - k - 3 = 0$, determinare quelle per cui il raggio sia 4.

[R:
$$k = -7, k = 3$$
.]

3.8. Nella famiglia di circonferenze aventi equazione $x^2 + y^2 - (k+3)x + (k-1)y - k - 3 = 0$, determinare quelle per cui la retta di equazione y = 1 stacchi una corda la cui misura risulta $\sqrt{37}$.

[R:
$$k = -8, k = 2$$
.]

3.9. Determinare le equazioni delle rette tangenti alla circonferenza di equazione $x^2 + y^2 - 4x + 2y - 4 = 0$ passanti per il punto $p \equiv (5, -1)$.

[R:
$$x = 5$$
.]

3.10. Scrivere l'equazione della circonferenza con centro $C \equiv (1; -1)$ che stacca sull'asse delle X una corda di misura 6. Condotte poi le tangenti alla circonferenza nei suoi punti di intersezione con gli assi, calcolare l'area del quadrilatero ABCD delimitato da tali tangenti.

[R:
$$x^2 + y^2 - 2x + 2y - 8 = 0$$
; $x - 3y + 6 = 0$; $3x + y - 12 = 0$; $x + 3y + 12 = 0$; $3x - y + 6 = 0$; area del quadrilatero 45].

3.11. Determinare le posizioni relative delle circonferenze $x^2 + y^2 - 6y + 7 = 0$ e $x^2 + y^2 - 6x + 1 = 0$.

[R: Le circonferenze sono tangentinel punto (1; 2) e l'equazione della tangente in comune risulta y = x + 1].

3.12. Sono dati i punti $A \equiv (4;2)$, $B \equiv (10;4)$, $D \equiv (3;5)$. Dopo aver verificato che le rette AB e AD sono perpendicolari, determinare le coordinate del punto C, vertice del rettangolo ABCD. Scrivere poi l'equazione della circonferenza circoscritta a detto rettangolo.

[R:
$$C \equiv (9,7), x^2 + y^2 - 13x - 9y + 25 = 0$$
].

Esercizi su equazioni algebriche

4.1. Risolvere l'equazione

$$\frac{1+\frac{1}{x}}{\frac{1}{x}-1} = \frac{x+\frac{1}{2}}{x-\frac{1}{2}}$$

$$[R: \pm \frac{\sqrt{2}}{2}].$$

4.2. Risolvere l'equazione

$$\frac{1}{x+1} - \frac{1}{x-2} = \frac{1}{3-x} + \frac{1}{x+2}$$

[R: impossibile].

4.3. Risolvere l'equazione

$$\frac{2 - \frac{5}{x+3}}{2 + \frac{4}{x-3}} + \frac{x+2}{x-1} - \frac{15}{x+3} = 0$$

[R:
$$\frac{13}{4}$$
].

4.4. Dato il polinomio $P(x)=x^2+ax+b,$ con $a,b\in\mathbb{R},$ risolvere l'equazione P(x)=0 sapendo che P(1)=1 e P(-1)=-1.

[R:
$$\frac{-1 \pm \sqrt{5}}{2}$$
].

CAPITOLO 4. ESERCIZI SU EQUAZIONI ALGEBRICHE

4.5. Siano $a, b \in \mathbb{R}$ tali che a + b = q, con $q \in \mathbb{R}$. Determinare per quali valori di $a \in b$ il prodotto p = ab è massimo.

[R:
$$a = b = \frac{q}{2}$$
].

4.6. Siano $a,b \ge 0$ tali che ab=p, con p dato. Determinare per quali valori di a e b la somma q=a+b è minima.

[R:
$$a = b = \sqrt{p}$$
].

4.7. Risolvere la seguente equazione di grado superiore al primo

$$x^4 - 7x^3 + 5x^2 + 31x - 30 = 0$$

[R:
$$x = 1$$
, $x = 3$, $x = -2$, $x = 5$].

4.8. Risolvere la seguente equazione di grado superiore al primo

$$2x^8 + 3x^4 - 2 = 0$$

[R:
$$\pm \frac{1}{2^{\frac{1}{4}}}$$
].

4.9. Risolvere la seguente equazione di grado superiore al primo

$$3x + \frac{1}{x-1} = \frac{3x-2}{x-1}$$

[R: impossibile].

4.10. Risolvere la seguente equazione di grado superiore al primo

$$\frac{1}{(2x-3)^4} + \frac{2}{(2x-3)^2} - 3 = 0$$

[R:
$$x = 1, x = 2$$
].

4.11. Risolvere la seguente equazione di grado superiore al primo

$$\left(\frac{x+2}{x-4}\right)^4 - 13\left(\frac{x+2}{x-4}\right)^2 + 36 = 0$$

[R:
$$x = 2$$
, $x = \frac{5}{2}$, $x = 7$, $x = 10$].

Esercizi sulle disequazioni

5.1. Risolvere per via grafica la disequazioni di secondo grado

$$3x - x^2 - 2 < 0$$

[R:
$$x < 1, x > 2$$
]

5.2. Risolvere per via grafica la disequazioni di secondo grado

$$\frac{3x^2 + 3x}{4} \ge \frac{x^2 - 1}{6} - \frac{x - 1}{3}$$

[R:
$$x \le -2, x \ge 1/7$$
]

5.3. Risolvere per via grafica la disequazioni di secondo grado

$$x^2 - 7x + 12 < 0$$

[R:
$$3 < x < 4$$
]

5.4. Risolvere per via grafica la disequazioni di secondo grado

$$x^{2} + x - 6 + (2x - 1)^{2} \le (x + 1)^{2}$$

[R:
$$-3/4 \le x \le 2$$
]

5.5. Risolvere per via grafica la disequazioni di secondo grado

$$\frac{1}{3}x^2 - \frac{2}{3}x - 1 \ge 0$$

[R:
$$x \le -1, x \ge 3$$
]

CAPITOLO 5. ESERCIZI SULLE DISEQUAZIONI

5.6. Risolvere la disequazione fratta

$$\frac{x-2}{1-x} < 0$$

[R: x < 1, x > 2]

5.7. Risolvere la disequazione fratta

$$\frac{x+2}{2x-3} \ge \frac{1-3x}{3-2x}$$

[R: impossibile]

5.8. Risolvere la disequazione fratta

$$\frac{x^2 - 3x - 10}{2x - x^2 - 1} \ge 0$$

[R: $-2 \le x \le 5, \ x \ne 1$]

5.9. Risolvere la disequazione fratta

$$\frac{3}{4-x^2} + 3 < \frac{x+3}{2-x}$$

[R:
$$-9/4 < x < -2$$
, $1 < x < 2$]

5.10. Risolvere la disequazione fratta

$$\frac{1}{4} + \frac{x+1}{2x-1} - \frac{2x+1}{x+2} \ge 0$$

[R:
$$-2 < x \le -1/2, 1/2 < x \le 2$$
]

5.11. Risolvere la disequazione con il valore assoluto

$$\left| \frac{2x - 3}{5 - x} \right| < 2$$

[R: x < 13/4]

5.12. Risolvere la disequazione con il valore assoluto

$$\frac{|x+2|}{x-3} < 2$$

[R: $x < 3, x > 8, x \neq 2$]

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

CAPITOLO 5. ESERCIZI SULLE DISEQUAZIONI

5.13. Risolvere la disequazione con il valore assoluto

$$\left| \frac{2x-3}{x-1} \right| > 1$$

[R:
$$x < 4/3, x \neq 1, x > 2$$
]

5.14. Risolvere la disequazione con il valore assoluto

$$|3 - 5x| > 3 - x^2$$

[R:
$$x < 0, x > 1$$
]

5.15. Risolvere la disequazione con il valore assoluto

$$|x^2 - 4| + |3x| < 4$$

[R: impossibile]

5.16. Risolvere la disequazione con il valore assoluto

$$1 - |1 - x^2| > 0$$

[R:
$$-\sqrt{2} < x < 0, \ 0 < x < \sqrt{2}$$
]

5.17. Risolvere la disequazione con il valore assoluto

$$1 - ||x| - 1| > 0$$

[R:
$$-2 < x < 0, 0 < x < 2$$
]

5.18. Risolvere la disequazione con il valore assoluto

$$1 + |x - 1| \le |1 + |x + 1||$$

[R:
$$x \ge 0$$
]

 $5.19.\,$ Risolvere la disequazione con il valore assoluto

$$\frac{\sqrt{|x|-1}}{\sqrt{x^2-1}} \ge \frac{x+3}{|x|+1}$$

[R:
$$-1 < x < 1$$
]

Equazioni e disequazioni trigonometriche

6.1. Risolvere la seguente equazione trigonometrica

$$\sin 2x \cdot (\cot x - \tan x) = 2(\sin x + \cos x)$$

[R:
$$x = \frac{3}{4}\pi + k\pi$$
]

6.2. Risolvere la seguente equazione trigonometrica

$$\cos^2 x = \cos 2x$$

[R:
$$x = k\pi$$
]

6.3. Risolvere la seguente equazione trigonometrica

$$\cos^2 x - \sin x - 1 = 0$$

[R:
$$x = k\pi$$
, $x = \frac{3}{2}\pi + 2k\pi$]

6.4. Risolvere la seguente equazione trigonometrica

$$\sin x + \cos 2x = \cos x$$

[R:
$$x = \frac{\pi}{4} + k\pi$$
; $x = 2k\pi$; $x = \frac{\pi}{2} + 2k\pi$]

CAPITOLO 6. EQUAZIONI E DISEQUAZIONI TRIGONOMETRICHE

6.5. Risolvere la seguente equazione trigonometrica

$$(2\cos^2 x - 1)(1 - 2\sin^2 x) = \cos 2x$$

[R:
$$x = k\pi$$
, $x = \frac{\pi}{4} + k\frac{\pi}{2}$]

6.6. Risolvere la seguente equazione trigonometrica

$$\frac{\sqrt{3}\sin 2x}{\sqrt{2}\sin x - 1} + \sqrt{2}\sin x + 1 = 0$$

[R:
$$x = \frac{\pi}{12} + \frac{k\pi}{2}$$
]

6.7. Risolvere la seguente equazione trigonometrica

$$\sin^2\frac{x}{2} + \cos x = 0$$

[R:
$$x = (2k+1)\pi$$
]

6.8. Risolvere la seguente equazione trigonometrica

$$\tan(\frac{\pi}{4} - x) = \cos(2x)$$

[R:
$$x = \frac{\pi}{4} + k\pi$$
; $x = \frac{k\pi}{2}$]

6.9. Risolvere la seguente equazione trigonometrica

$$\tan^2\frac{x}{2} + \cos x = 1 + \cos^2 x$$

[R:
$$x = \frac{\pi}{2} + k\pi$$
]

6.10. Dimostrare che

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

$$\cos(3x) = \cos x - 4\sin^2 x \cos x$$

CAPITOLO 6. EQUAZIONI E DISEQUAZIONI TRIGONOMETRICHE

6.11. Dimostrare che

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

6.12. Trovare le soluzioni di

$$\sin x - \cos x = 1$$

[R:
$$x = \frac{\pi}{2} + 2k\pi, x = (2k+1)\pi$$
]

6.13. Dimostrare le seguenti identità

$$2\cos x\cos y = \cos(x-y) + \cos(x+y)$$

$$2\sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2\sin x \cos y = \sin(x - y) + \sin(x + y)$$

6.14. Risolvere la seguente disequazione trigonometrica

$$\sin x > \frac{\sqrt{3}}{2}$$

[R:
$$\frac{\pi}{3} + 2k\pi < x < \frac{2}{3}\pi + 2k\pi$$
]

6.15. Risolvere la seguente disequazione trigonometrica

$$\cos\left(3x - \frac{\pi}{3}\right) > -\frac{1}{2}$$

$$[R: -\frac{\pi}{9} + \frac{2}{3}k\pi < x < \frac{\pi}{3} + \frac{2}{3}k\pi]$$

6.16. Risolvere la seguente disequazione trigonometrica nell'intervallo $[0, 2\pi]$

$$\cos x + \sin 2x > 0$$

[R:
$$0 \le x < \frac{\pi}{2}$$
, $\frac{7\pi}{6} < x < \frac{3\pi}{2}$, $\frac{11\pi}{6} < x \le 2\pi$]

6.17. Risolvere la seguente disequazione trigonometrica nell'intervallo $[0,2\pi]$

$$\frac{-\cos x + \sin x}{\cos x + \sin x} \ge 0$$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

CAPITOLO 6. EQUAZIONI E DISEQUAZIONI TRIGONOMETRICHE

[R:
$$\frac{\pi}{4} \le x < \frac{3\pi}{4}$$
, $\frac{5\pi}{4} \le x < \frac{7\pi}{4}$]

6.18. Risolvere la seguente disequazione trigonometrica nell'intervallo $[0,2\pi]$

$$\frac{\cos x}{2\cos x - 1} < 0$$

[R:
$$\frac{\pi}{3} < x < \frac{\pi}{2}$$
, $\frac{3\pi}{2} < x < \frac{5\pi}{3}$]

6.19. Risolvere la seguente disequazione trigonometrica nell'intervallo $(-\frac{\pi}{2}, \frac{\pi}{2})$

$$\frac{\tan x - 1}{2\cos x - \sqrt{3}} > 0$$

$$[\mathrm{R:} \ -\frac{\pi}{2} < x < -\frac{\pi}{6}, \ \frac{\pi}{6} < x < \frac{\pi}{4}]$$

6.20. Risolvere la seguente disequazione trigonometrica nell'intervallo $[0,2\pi]$

$$\frac{2\sin^2 x - 1}{\sin x} \le 0$$

[R:
$$0 < x \le \frac{\pi}{4}$$
, $\frac{3\pi}{4} \le x < \pi$]

Equazioni e disequazioni logaritmiche

7.1. Risolvere la seguente equazione

$$\ln x = \ln(x^2 - 2)$$

[R: x = 2]

7.2. Risolvere la seguente equazione

$$\ln(x-1) + \ln(x^2+3) = \ln(x^2-1)$$

[R: impossibile]

7.3. Risolvere la seguente equazione

$$3(\ln x - 1) - (\ln x - 1)^{\frac{1}{3}} - 2 = 0$$

[R: $x = e^2$]

7.4. Risolvere la seguente equazione

$$\frac{\ln(10-x)}{\ln(4-x)} = 2$$

[R: x = 1]

CAPITOLO 7. EQUAZIONI E DISEQUAZIONI LOGARITMICHE

7.5. Risolvere la seguente equazione

$$2\log_2 x + \log_{1/2}(3 - x^2) - \log_2\left(\frac{1}{x^2 + 1}\right) = 0$$
 [R: $x = 1$]

7.6. Risolvere la seguente equazione

$$1 + \ln(x - 1) = \ln 5$$

$$[R: x = \frac{e+5}{e}]$$

7.7. Risolvere la seguente equazione

$$\frac{\ln(2-x)}{\ln(3+x^2)} = \frac{1}{2}$$

[R:
$$x = \frac{1}{4}$$
]

7.8. Risolvere la seguente disequazione

$$2\ln(x-3) - \ln(3x-1) > \ln(1+x^2)$$

[R: impossibile]

7.9. Risolvere la seguente disequazione

$$\ln(\sqrt{36 - x^2} - x) > \ln(\sqrt{1 + x^2} - x)$$

[R:
$$-\sqrt{\frac{35}{2}} < x < \sqrt{\frac{35}{2}}$$
]

7.10. Risolvere la seguente disequazione

$$\log_{\frac{3}{4}}(6+5x) \ge 0$$

[R:
$$-\frac{6}{5} < x \le -1$$
]

$CAPITOLO\ 7.\ EQUAZIONI\ E\ DISEQUAZIONI\ LOGARITMICHE$

7.11. Risolvere la seguente disequazione

$$\log_{\frac{1}{2}}(x^2 - 8) > 0$$

[R:
$$-3 < x < -\sqrt{8}, \ \sqrt{8} < x < 3$$
]

7.12. Risolvere la seguente disequazione

$$\ln x - \frac{2}{\ln x} + 1 \ge 0$$

[R:
$$e^{-2} \le x < 1, \ x \ge e$$
]

7.13. Risolvere la seguente disequazione

$$\log_{\sqrt{2x^2 - 7x + 6}} \left(\frac{x}{3}\right) > 0$$

[R: x > 3]

Esercizi su equazioni esponenziali

8.1. Risolvere la seguente equazione esponenziale

$$2e^{2x} - 6e^x + 3 = 0$$

$$[R: x = \ln\left(\frac{3 \pm \sqrt{3}}{2}\right)]$$

8.2. Risolvere la seguente equazione esponenziale

$$5^{1-x} = 25 \cdot 5^{x^2 - 1}$$

[R:
$$x = -1$$
; $x = 0$]

8.3. Risolvere la seguente equazione esponenziale

$$\ln(e^x + e) = 2$$

[R:
$$x = 1 + \ln(e - 1)$$
]

8.4. Risolvere la seguente equazione esponenziale

$$4^x + 2^{2x-1} = 3^{x+1} + 3^{x-1}$$

[R:
$$x = \log_{4/3}(20/9)$$
]

CAPITOLO 8. ESERCIZI SU EQUAZIONI ESPONENZIALI

8.5. Risolvere la seguente equazione esponenziale

$$3^x = [3^{2x-1}]^{1/3}9^{1/x}$$

[R:
$$x = -3$$
; $x = 2$]

8.6. Risolvere la seguente equazione esponenziale

$$\frac{9^{x+1}}{27^{3x-2}} = \frac{3^{1+x}}{81}$$

[R:
$$x = \frac{11}{8}$$
]

8.7. Risolvere la seguente equazione esponenziale

$$\sqrt[x+2]{\left(\frac{2}{3}\right)^{4x}} = \frac{16}{81} \sqrt[x]{\left(\frac{3}{2}\right)^{x+2}}$$

[R:
$$x = 2$$
]

8.8. Risolvere la seguente equazione esponenziale

$$2^{\sqrt{x}+2} + 2^{2-\sqrt{x}} = 17$$

[R:
$$x = 4$$
]

8.9. Risolvere la seguente equazione esponenziale

$$\frac{2^{x-1} + \sqrt{9^{x+2}}}{3^{x-2} + 2^{x+1}} = 3$$

[R:
$$x = \frac{\ln \frac{52}{33}}{\ln \frac{2}{3}}$$
]

8.10. Risolvere la seguente equazione esponenziale

$$\sqrt[x+3]{4^x} = \sqrt{2} \sqrt[x]{\frac{1}{2^{1-x}}}$$

[R:
$$x = 1, x = 6$$
]

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

CAPITOLO 8. ESERCIZI SU EQUAZIONI ESPONENZIALI

8.11. Risolvere la seguente equazione esponenziale

$$\frac{2}{4^x - 4} - \frac{1}{4^x - 2^{x+1}} + \frac{2^x - 4}{2^{2x} + 2^{x+1}} = 0$$

[R: $x = \log_2 3$]

8.12. Considerata la seguente equazione esponenziale parametrica

$$\sqrt{6 \cdot 2^{x+1}} - \sqrt{3} = \frac{\sqrt{3}}{2} (\sqrt{2} \cdot 2^{x+1} - k)$$

a) stabilire per quali valori del parametro k l'equazione ammette come soluzione x=-2; b) in relazione al valore di k precedentemente determinato, risolvere l'equazione ottenuta e stabilire se essa ammette altre soluzioni oltre a quella indicata.

[R:
$$k = \frac{\sqrt{2}}{2}$$
; altra soluzione $x = \log_2(9 - 4\sqrt{2}) - 2$]

8.13. In relazione all'equazione trascendente

$$\frac{a^x - a^{2x}}{a^{3x} - 1} = -\frac{2}{7}$$

a) dire per quali valori del parametro a l'equazione ha senso; b) risolvere l'equazione e verifica re che essa ammette due soluzioni; c) stabilire se esiste qualche valore di a per il quale le due radici sono uguali;

[R:
$$x_1 = \log_a 2$$
; $x_2 = -\log_a 2$; Non esistono a per cui $x_1 = x_2$]

8.14. Risolvere la seguente disequazione esponenziale

$$\left(\frac{1}{2}\right)^{x^2 - 3x} < 4$$

[R: x < 1, x > 2]

8.15. Risolvere la seguente disequazione esponenziale

$$3^{x^2+2x} \ge 1$$

[R: $x \ge 0$; $x \le -2$]

CAPITOLO 8. ESERCIZI SU EQUAZIONI ESPONENZIALI

8.16. Risolvere la seguente disequazione esponenziale

$$\frac{e^x + e^{-x}}{2} < 3$$

[R:
$$\ln(3 - 2\sqrt{2}) < x < \ln(3 + 2\sqrt{2})$$
]

8.17. Risolvere la seguente disequazione esponenziale

$$3^{2x-1} < 3^{4x^2 - x - 1}$$

[R:
$$x < 0$$
, $x > \frac{3}{4}$]

8.18. Risolvere la seguente disequazione esponenziale

$$2^{1-x} + 2^{1+x} > 4$$

[R: $x \neq 0$]

8.19. Risolvere la seguente disequazione esponenziale

$$\frac{3^{-x} - 81}{5^{(x+2)/x} - 25} \le 0$$

[R: $x \le -4$, 0 < x < 2]

8.20. Risolvere la seguente disequazione esponenziale

$$x^{\sqrt{x}} \le (\sqrt{x})^x$$

[R:
$$x \in [0, 1] \cup \{x \ge 4\}$$
]

8.21. Risolvere la seguente disequazione esponenziale

$$3^{4x} - 3^{3x} - 7(3^{2x}) + 3^x + 6 < 0$$

[R: 0 < x < 1]

8.22. Risolvere la seguente disequazione esponenziale

$$\sqrt{\left(\frac{4}{9}\right)^x + 3} > 3\left(\frac{2}{3}\right)^x - 1$$

[R: x > 0]

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

Esercizi sulle funzioni

9.1. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \sqrt{e^{2x} - e^x},$$
 $f(x) = \ln(1 - x^3),$ $f(x) = \ln(3x) + \frac{4}{\sqrt{x}}$ [R: $x \ge 0, x < 1, x > 0$.]

9.2. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \ln(x^2 + x) - x,$$
 $f(x) = \sqrt{1 + 2x} - \ln(4x),$ $f(x) = \frac{\sqrt[3]{x - 1}}{x + 1}$

$$[R: x > 0 \text{ e } x < -1, \quad x > 0, \quad x \neq 1]$$

9.3. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \sqrt{\frac{x-5}{x^2-9}}, \qquad f(x) = \frac{e^{\sqrt{x+1}}}{x+1}, \qquad f(x) = \ln\left(\sqrt{\frac{2x^2+1}{x}}\right)$$

$$[R: x \in (-3,3) \cup [5,\infty), \quad x > -1, \quad x > 0]$$

9.4. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \ln\left(\frac{x-2}{1-x}\right), \qquad f(x) = \ln(x^2 - 2x - 3), \qquad f(x) = \sqrt{\frac{1}{x^2 - x + 6}}$$

$$[R: x \in (1,2), \ x > 3 \text{ e } x < -1, \ x \in \mathbb{R}]$$

9.5. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \sqrt{1 - \ln(x - x^2)}, \qquad f(x) = \sqrt{\sin x + \frac{1}{2}}, \qquad f(x) = \left(x + \frac{1}{x}\right)^{\frac{1}{x}}$$

$$[R: x \in (0, 1), \quad -\frac{\pi}{6} + 2k\pi \le x \le \frac{7\pi}{6} + 2k\pi, \quad x > 0.]$$

9.6. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \frac{\ln(1+x^2)}{\sin(x) - x}, \qquad f(x) = \ln(3 + 2\cos x - \cos^2 x), \qquad f(x) = (\ln x)^{\frac{1}{\ln x}}$$

$$[R: x \neq 0, \quad x \neq (2k+1)\pi, \quad x > 1]$$

9.7. Determinare l'insieme di definizione delle seguenti funzioni

$$f(x) = \frac{1 - \tan x}{\sin^2 x - \ln x + \cos^2 x}, \qquad f(x) = \sqrt[4]{e^{2x} - e^x}, \qquad f(x) = \sqrt{e^{2x} - 3e^x - 10}$$

$$[R: x > 0 \text{ e } x \neq e \text{ e } x \neq \frac{\pi}{2} + k\pi, \qquad x \ge 0, \quad x \ge \ln 5]$$

9.8. Dire se le seguenti funzioni sono pari o dispari

$$f(x) = \frac{x}{1+x^2}$$
, $f(x) = x\sin(2x)$, $f(x) = \cos(x^3)$, $f(x) = 2^{x^3}$

[R: dispari, pari, ne pari ne dispari]

9.9. Sia data la funzione $f(x) = \frac{1}{x}$. Calcolare la funzione composta $f^2 = f \circ f$

[R:
$$f^2 = x$$
]

9.10. In una soluzione sia $[H^+]$ la concentrazione di ioni di idrogeno (il numero di moli per cm^3). L'acidità della soluzione è definita come

$$pH = -\log_{10}[H^+].$$

Se pH < 7 la soluzione si dice basica. Se il pH > 7 la soluzione si dice acida. Calcolare il pH dell'acqua sapendo che la concentrazione di ioni idrogeno è 10^{-7} .

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

[R:
$$pH = 7$$
]

9.11. Utilizzando il grafico di $f(x) = e^x$ disegnare, tramite le operazioni di traslazione, dilatazione e rotazione, i grafici di

$$y = e^{|x|}, \quad y = 3e^x, \quad y = e^x - 1, \quad y = |e^x - 1|$$

9.12. Determinare dominio e immagine delle seguenti funzioni. Nel caso in cui la funzione sia invertibile determinare la funzione inversa

$$y = x^3 + 3$$
, $y = e^{-|x|}$, $y = x|x|$

 $[\mathbf{R} \colon dom = \mathbb{R} \in Im = \mathbb{R}, \quad dom = \mathbb{R} \in Im = (0,1], \quad dom = \mathbb{R} \in Im = \mathbb{R} \]$

Esercizi su limiti e continuità

10.1. Calcolare i seguenti limiti

$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^3 + 5x^2 + 8x + 4}, \qquad \lim_{x \to 2} \frac{x^4 - 8x^2 + 16}{x^3 - 8}$$
[R: $\pm \infty$, 0]

10.2. Calcolare i seguenti limiti

$$\lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^3 - 2x^2 - 4x + 8}, \qquad \lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}$$

$$[R: \frac{3}{4}, \frac{2}{3}]$$

10.3. Calcolare i seguenti limiti

$$\lim_{x \to \infty} \frac{4x^5 + 7x^4 + 1}{2x^5 + 7}, \qquad \lim_{x \to \infty} \frac{3x^3 + 4x^2 + x - 1}{x^4}$$
[R: 2, 0]

10.4. Calcolare i seguenti limiti

$$\lim_{x\to\pm\infty}\frac{x^3+1}{x-1},\qquad \lim_{x\to1}\frac{\sqrt{x}-1}{x-1}$$

$$[\mathrm{R:}\;+\infty,\quad \frac{1}{2}]$$

10.5. Calcolare i seguenti limiti

$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{2x}}{\sqrt{x-2}}, \qquad \lim_{x \to -1} \frac{x^{1/3} + 1}{x+1}$$
[R: 0, $\frac{1}{3}$]

10.6. Calcolare i seguenti limiti

$$\lim_{x\to 1}\frac{x+1-2\sqrt{x}}{(x-1)^2},\qquad \lim_{x\to \infty}\frac{x+\sqrt{x}}{2\sqrt{x}+x}$$
 [R: $\frac{1}{4},$ 1]

10.7. Calcolare i seguenti limiti

$$\lim_{x \to \infty} \frac{3x - 2}{\sqrt{4x - 1} + \sqrt{x + 1}}, \qquad \lim_{x \to \infty} \left(\frac{1}{x}\right)^{1/3} \cdot \left(x^2 + 1\right)^{1/2}$$

$$[R: +\infty, +\infty]$$

10.8. Calcolare i seguenti limiti

$$\lim_{x \to \infty} \sqrt{x^2 + 5x + 6} - x, \qquad \lim_{x \to \infty} \sqrt{x} \left(\sqrt{x} - \sqrt{1 + x} \right)$$

$$\left[\text{R: } \frac{5}{2}, -\frac{1}{2} \right]$$

10.9. Calcolare i seguenti limiti

$$\lim_{x \to \infty} \frac{(x^8 + 1)^{1/8} + (x^4 - 1)^{1/4}}{(x^5) + 1)^{1/5} + (x^3 + 1)^{1/3}}, \qquad \lim_{x \to \infty} \frac{\sqrt{x - 1}}{x^2 + x - 2}$$
[R: 1, 0]

10.10. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x}, \qquad \lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{\sqrt{x^3 + 3} - 2}$$

$$[R: \frac{1}{4}, \frac{\sqrt{2}}{3}]$$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

10.11. Calcolare i seguenti limiti

$$\lim_{x \to 81} \frac{3 - x^{1/4}}{9 - x^{1/2}}, \qquad \lim_{x \to 0} \frac{\sin 3x}{x}$$

[R: $\frac{1}{6}$, 3]

10.12. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}, \qquad \lim_{x \to 0} \frac{\sin 5x}{\sin 2x}$$

[R: $\frac{1}{2}$, $\frac{5}{2}$]

10.13. Calcolare i seguenti limiti

$$\lim_{x \to \pm \infty} x \sin \frac{1}{x}, \qquad \lim_{x \to 0} \frac{\sin^4 x}{(1 - \cos x)^2}$$

[R: 1, 4

10.14. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\sin^4 x}{(1 - \cos x)^2}, \qquad \lim_{x \to 0} \frac{\sin^4 x}{(1 - \cos x)^3}$$

[R: 4, $+\infty$]

10.15. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{1 - \cos 2x}{\sin^2 3x}, \qquad \lim_{x \to 0} \frac{3x + \tan x}{\sin x + \tan^2 x}$$

[R: $\frac{2}{9}$, 4]

10.16. Calcolare i seguenti limiti

$$\lim_{x \to 0^+} \frac{\sqrt{1 - \cos x}}{x}, \qquad \lim_{x \to \pm \pi} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sin^2 x}$$

$$[R: \frac{1}{\sqrt{2}}, \quad \mp \infty]$$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

10.17. Calcolare i seguenti limiti

$$\lim_{x\to 0}\frac{x^3}{\tan x-\sin x},\qquad \qquad \lim_{x\to 0^+}\ln x-\ln\sin 2x$$
 [R: 2, $-\ln 2$]

10.18. Calcolare i seguenti limiti

$$\lim_{x\to\pi/2}\tan x(1-\sin x), \qquad \qquad \lim_{x\to\infty}\ln(\sqrt{x^2+1}-x)$$
 [R: 0, $-\infty$]

10.19. Calcolare i seguenti limiti

$$\lim_{x \to 0^+} \exp\left(\frac{\ln^2 x - 2}{\ln x - 2}\right), \qquad \lim_{x \to 0} \frac{x}{\log_a(1 + x)}$$
[R: 0, $\ln a$]

10.20. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{a^x - 1}{x}, \qquad \lim_{x \to 0} \frac{e^x - e^{\sin x}}{x}$$
[R: $\ln a$, 0]

10.21. Calcolare i seguenti limiti

$$\lim_{x\to 0}\frac{1-\cos x}{(e^x-1)^2}, \qquad \lim_{x\to 1}x^{\frac{1}{1-x}}$$

$$[\mathrm{R}\colon \frac{1}{2}, \quad \frac{1}{e}]$$

10.22. Calcolare i seguenti limiti

$$\lim_{x \to 0^{+}} x^{\frac{1}{\ln 3x}}, \qquad \lim_{x \to 0} \frac{e^{x} - e^{-x}}{e^{2x} - e^{-2x}}$$
[R: $e, \frac{1}{2}$]

10.23. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}, \qquad \lim_{x \to \infty} \frac{4^x - 2}{(2^x + 5)(2^x - 6)}$$
[R: $a - b$, 1]

10.24. Calcolare i seguenti limiti

$$\lim_{x \to 0^+} x \ln x, \qquad \lim_{x \to 1} (x - 1) \log_5(x^4 - 4x^3 + 6x^2 - 4x + 1)$$
[R: 0, 0]

10.25. Calcolare i seguenti limiti

$$\lim_{x \to \infty} \frac{x^3}{2^x}, \qquad \lim_{x \to \infty} \frac{(\ln x)^2}{\sqrt{x}}$$
[R: 0, 0]

10.26. Calcolare i seguenti limiti

$$\lim_{x\to 0^+} \sqrt{x} \ln x, \qquad \lim_{x\to 0^+} x^x$$
 [R: 0, 1]

10.27. Calcolare i seguenti limiti

$$\lim_{x \to 0^{+}} x^{1/x}, \qquad \lim_{x \to 0} \frac{e^{-1/x^{2}}}{x^{2}}$$
[R: 0, 0]

10.28. Calcolare i seguenti limiti

$$\lim_{x \to 1^{-}} \ln x \cdot \ln(1-x), \qquad \lim_{x \to 0^{+}} x^{1/\ln x}$$
[R: 0, \quad e]

10.29. Calcolare i seguenti limiti

$$\lim_{x \to 0^{\pm}} x^4 2^{-\frac{1}{x}}, \qquad \lim_{x \to 1^{+}} (x - 1)^{\frac{1}{1 - x}}$$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

[R: ∞ se $x \to 0^-$ e 0 se $x \to 0^+$, 1]

10.30. Calcolare i seguenti limiti

$$\lim_{x \to 0^{+}} \frac{x + \sqrt{x}}{\sin x}, \qquad \lim_{x \to 0} \frac{3x^{2} + e^{x}}{2x^{3} + \ln(x^{2})}$$
[R: $+\infty$, 0]

10.31. Calcolare i seguenti limiti

$$\lim_{x \to +\infty} \frac{(x+1)\ln\left(1+\frac{1}{x}\right)}{x}, \qquad \lim_{x \to 0} \frac{\ln(\cos x)}{x^2}$$
 [R: 0, $-\frac{1}{2}$]

10.32. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\cos(\sin x) - 1}{x^2}, \qquad \lim_{x \to 0} (\sin x)^{\tan x}$$

$$[R: -\frac{1}{2}, \quad 1]$$

10.33. Una funzione f(x) è definita nel modo seguente

$$f(x) = \begin{cases} \sin x, & \text{se } x \le 6 \\ ax + 4, & \text{se } x > 6 \end{cases}$$

dove $a \in \mathbb{R}$. Determinare a in modo tale che la funzione sia continua in x=6

[R:
$$a = (\sin 6 - 4)/6$$
]

10.34. Sia $f(x) = x \sin(1/x)$ per $x \neq 0$. Determinare f(0) in modo tale che f(x) sia continua nello 0

[R:
$$f(0) = 0$$
]

10.35. Una funzione f(x) è definita nel modo seguente

$$f(x) = \begin{cases} \frac{(1 - \cos^3 x)}{x(e^x - 1)}, & \text{se } x < 0\\ \ln(\sqrt{x} + 1), & \text{se } x \ge 0 \end{cases}$$

Dire se la funzione è continua in x = 0.

[R: La funzione non è continua in x = 0]

10.36. Una funzione f(x) è definita nel modo seguente

$$f(x) = \begin{cases} \frac{(1 - \cos x)\cos\left(\frac{2}{x}\right)}{\ln(1+x)}, & \text{se } x > 0\\ \sin x, & \text{se } x \le 0 \end{cases}$$

Dire se la funzione è continua in x = 0.

[R: La funzione è continua in x = 0]

Esercizi sulle derivate

11.1. Calcolare la derivata delle seguenti funzioni

$$f(x) = \frac{2x}{1 - x^2}, \qquad f(x) = \frac{\sqrt{x}}{1 + x}$$
$$[R:f'(x) = \frac{2(1 + x^2)}{(1 - x^2)^2}, \qquad f'(x) = \frac{1 - x}{2\sqrt{x}(1 + x)^2}]$$

11.2. Calcolare la derivata delle seguenti funzioni

$$f(x) = \frac{\cos x}{2x^2 + 3}$$

$$f(x) = 3x^4 + 5x + x^{3/2} - 2x^{-3}$$

$$f'(x) = \frac{-\sin x(2x^2 + 3) - 4x\cos x}{(2x^2 + 3)^2}, \qquad f'(x) = 12x^3 + 5 + \frac{3}{2}\sqrt{x} + 6x^{-4}]$$

11.3. Calcolare la derivata delle seguenti funzioni

$$f(x) = e^{-3x}(x^2 + 2x - 1) \qquad f(x) = x \ln x$$
 [R: $f'(x) = e^{-3x}(-3x^2 - 4x - 1)$, $f'(x) = 1 + \ln x$]

11.4. Calcolare la derivata delle seguenti funzioni

$$f(x) = e^{2x}(2\sin 3x - 4\cos 3x),$$
 $f(x) = \cos 2x - \sin x$

[R:
$$f'(x) = e^{2x}(16\sin(3x) - 2\cos(2x)), \qquad f'(x) = -\cos x(4\sin x + 1)$$
]

11.5. Calcolare la derivata delle seguenti funzioni

$$f(x) = \sqrt{1+x^2},$$
 $f(x) = x\sqrt{1+x^2}$

[R:
$$f'(x) = \frac{x}{\sqrt{1+x^2}}$$
, $f'(x) = \frac{1+2x^2}{\sqrt{1+x^2}}$]

11.6. Calcolare la derivata delle seguenti funzioni

$$f(x) = \cot x = \frac{1}{\tan x},$$
 $f(x) = (\sin x)^3$
$$[R: f'(x) = -\frac{1}{\sin^2 x}, \qquad f'(x) = 3\sin^2 x \cos x]$$

11.7. Calcolare la derivata delle seguenti funzioni

$$f(x) = \exp\left(\frac{x+2}{x-3}\right), \qquad f(x) = e^{\sqrt{x}}$$

$$[R: f'(x) = -\frac{5}{(x-3)^2} \exp\left(\frac{x+2}{x-3}\right), \qquad f'(x) = \frac{1}{2\sqrt{x}} e^{\sqrt{x}}]$$

11.8. Calcolare la derivata delle seguenti funzioni

$$f(x) = \frac{x^3 - 1}{x^2 + 5}, \qquad f(x) = e^{\frac{1}{\ln x}}$$

$$[R: f'(x) = \frac{x^4 + 15x^2 + 2x}{(x^2 + 5)^2}, \qquad f'(x) = -\frac{1}{x \ln^2 x} e^{\frac{1}{\ln x}}]$$

11.9. Calcolare la derivata delle seguenti funzioni

$$f(x) = e^{x}(x^{4} + \sqrt{x}), \qquad g(x) = \ln\left(\frac{x^{2}}{2} + x\right)$$

$$[R: f'(x) = e^{x}(x^{4} + \sqrt{x} + 4x^{3} + \frac{1}{2\sqrt{x}}, \quad g'(x) = \frac{2(x+1)}{x^{2} + 2x}]$$

11.10. Calcolare la derivata delle seguenti funzioni

$$f(x) = \frac{\sin x}{x+1},$$
 $g(x) = \frac{\sqrt{x}}{\sqrt{x} + (x+1)^2}$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

[R:
$$f'(x) = \frac{(x+1)\cos x - \sin x}{(x+1)^2}$$
, $g'(x) = \frac{(x+1)(1-3x)}{2\sqrt{x}(x\sqrt{x} + (x+1)^2)^2}$]

11.11. Calcolare la derivata delle seguenti funzioni

$$f(x) = \ln(\sin(x^2 + 1)),$$
 $g(x) = \arctan(\sqrt{1 + x^2} - x)$

[R:
$$f'(x) = \frac{2x(\cos(x^2+1))}{\sin(x^2+1)}$$
, $g'(x) = \frac{\frac{x}{\sqrt{1+x^2}} - 1}{1 + (\sqrt{1+x^2} - x)^2}$]

11.12. Calcolare la derivata destra e sinistra di

$$f(x) = |\ln x|$$

nel punto x = 1

[R:
$$D_{+} = 1$$
, $D_{-}(1) = -1$]

11.13. Calcolare la derivata destra e sinistra di

$$f(x) = |x^3 - x|$$

nei punti x = -1, x = 0

[R:
$$D_{+}(-1) = 2$$
, $D_{-}(-1) = -2$, $D_{+}(0) = 1$, $D_{-}(0) = -1$]

11.14. Mostrare che la funzione

$$f(x) = \begin{cases} x & x \le 1 \\ e^{x-1} & x > 1 \end{cases}$$

è derivabile nel suo dominio di definizione

11.15. Mostrare che la funzione

$$f(x) = \begin{cases} \ln(1+2x) & -\frac{1}{2} \leqslant x \leqslant 0\\ 2x & x > 0 \end{cases}$$

è derivabile nel suo dominio di definizione

11.16. Determinare i valori dei parametri a e b in modo che la funzione

$$f(x) = \begin{cases} 2x + a & x \le 1\\ 2bx^3 + ax & x > 1 \end{cases}$$

sia derivabile in \mathbb{R} .

[R:
$$a = -2 e b = 1$$
]

11.17. Determinare i valori dei parametri $a \in b$ in modo che la funzione

$$f(x) = \begin{cases} x^2 + ax & x \le 0\\ b\ln(x+1) & x > 0 \end{cases}$$

sia derivabile in \mathbb{R} .

[R:
$$a = b$$
]

11.18. Calcolare la derivata seconda di

$$f(x) = \frac{1}{x} + \ln(x^2 + 1)$$

[R:
$$f''(x) = \frac{2}{x^3} - \frac{2(x^2 - 1)}{(x^2 + 1)^2}$$
]

11.19. Calcolare la derivata seconda di

$$f(x) = \begin{cases} \frac{x}{x^2 + 1} & x \leq 0\\ x & x > 0 \end{cases}$$

[R:
$$f''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^2}$$
 se $x \le 0$ e 0 se $x > 0$]

11.20. Scrivere l'equazione della retta tangente al grafico di $f(x)=\sin(x)$ nel punto $x=\frac{\pi}{3}$.

[R:
$$3x - 6y + (3\sqrt{3} - \pi) = 0$$
]

11.21. Scrivere l'equazione della retta tangente al grafico di $f(x) = 3x^2 + 2x + 1$ nel punto x = 2.

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

[R:
$$14x - y + 15 = 0$$
]

11.22. Scrivere l'equazione della retta tangente al grafico di $f(x) = \ln x$ nel punto x=1.

[R:
$$y = x - 1$$
]

11.23. Scrivere l'equazione della retta tangente al grafico di $f(x)=\cos(\ln x)$ nel punto $x=e^{\frac{\pi}{2}}$.

[R:
$$2x + \pi y - 2e^{\pi/2}$$
]

11.24. Scrivere l'equazione della retta tangente al grafico di $f(x)=e^{2x}$ nel punto $x=\frac{1}{2}.$

[R:
$$y = 2e(x - \frac{1}{2}) + e$$
]

[R:
$$f''(x) = \frac{2x(x^2 - 3)}{(x^2 + 1)^2}$$
 se $x \le 0$ e 0 se $x > 0$]

11.25. Scrivere l'equazione della retta tangente al grafico di $f(x)=\sin(2x)$ nel punto $x=\frac{\pi}{8}.$

[R:
$$y = \sqrt{2}(x - \frac{\pi}{8}) + \frac{\sqrt{2}}{2}$$
]

11.26. Scrivere l'equazione della retta tangente al grafico di $f(x) = \ln(x+2) - 3$ nel punto x = -1.

[R:
$$y = x - 2$$
]

11.27. Un parallelepipedo di base $1m \times 2m$ e altezza 5m è pieno d'acqua. Da un rubinetto posto in prossimità del fondo vengono prelevati 20 litri al minuto. Con quale velocità l'altezza dell'acqua decresce?

[R:
$$\frac{1}{6} \times 10^{-3} \frac{m}{s}$$
]

11.28. Qual'è il tasso di variazione del volume di una sfera ripetto al suo raggio. E rispetto all'area? [Sugg. Il volume di una sfera è $V(R)=\frac{4}{3}\pi R^3$, mentre l'area della superficie è $A(R)=4\pi R^2$, dove R è il raggio della sfera].

[R:
$$\frac{dV}{dR} = 4\pi R^2$$
, $\frac{dA}{dR} = 8\pi R$]

11.29. Sia data la funzione $f(x) = x + \sin x$. Determinare tutti i punti x in cui il grafico della retta tangente abbia coefficiente angolare nullo.

[R:
$$x = \frac{3}{2}\pi + 2k\pi$$
, $k \in \mathbb{Z}$]

11.30. Dimostrare che la retta y=-x è tangente al grafico della funzione $f(x)=x^3-6x^2+8x$. Determinare i punti di tangenza. La tangente interseca la curva in qualche altro punto?

[R: La retta y = -x è tangente a f(x) nel punto (3, -3). L'ulteriore punto di intersezione è (0, 0)]

11.31. Sia $f(x) = (1 + \sqrt{x})(1 - \sqrt{x})$ con x > 0. Trovare f'(x), f''(x) e f'''(x).

[R:
$$f'(x) = -2x$$
, $f''(x) = -2$, $f'''(x) = 0$]

11.32. Determinare i coefficienti del polinomio $P(x)=ax^3+bx^2+cx+d$ sapendo che P(0)=P(1)=-2 e che $P^{'}(0)=-1$, $P^{''}(0)=10$

[R:
$$a = -4$$
, $b = 5$, $c = -1$, $d = -2$]

11.33. Ogni lato di un cubo si allunga alla velocità costante di 1 cm al secondo. A che velocità aumenta il volume V del cubo quando la lunghezza di ciascun lato è a) 5 cm, b) 10 cm?

$$[R: \frac{dV}{dt} = 300 \frac{cm^3}{s}]$$

11.34. Due automobili iniziano a muoversi dallo stesso punto. Una procede verso nord con velocità 60 km/h, l'altra verso est alla velocità di 25 km/h. A che velocità cresce la loro distanza D dopo due ore? Quanto sono distanti dopo tre ore?

[R:
$$\frac{dD}{dt} = 130 \frac{Km}{h}$$
, la distanza dopo tre ore è $D = 195$, Km]

11.35. Una nave si muove parallelamente a una costa rettilinea alla velocità costante di 12 nodi (miglia marine orarie) a una distanza di 4 miglia dalla costa. A che velocità v si avvicina a un faro sulla costa nel momento in cui si trova esattamente a 5 miglia di distanza da questo?

$$[R: v = \frac{36}{5} \text{ nodi }]$$

11.36. Un serbatoio d'acqua ha la forma di un cono circolare retto con vertice rivolto vero il basso. La sua altezza è di 10 m, mentre il raggio di base è di 15 m. L'acqua esce dal fondo alla velocità costante di 1 m^3/s . Altra acqua viene immessa nel serbatoio alla velocità costante c m^3/s . Calcolare c in modo che il livello dell'acqua salga alla velocità di 4 metri al secondo nel momento in cui l'acqua nel serbatoio è profonda 2 metri.

[R:
$$c = (1 + 36\pi)$$
]

11.37. Una particella si muove lungo la curva $y = x^2$. In che punto della curva l'ascissa e la l'ordinata variano alla stessa velocità?

[R:
$$x = \frac{1}{2}$$
]

11.38. Stabilire i punti stazionari delle funzioni

$$f(x) = x^2 - 3x + 2,$$
 $g(x) = x^3 - 4x$

e studiare il segno di $f^{'}(x),\;g^{'}(x)$ in modo da stabilire la natura di tali punti.

[R: Per la
$$f(x)$$
 si ha $x=1$ min. rel. e $x=-5$ max. rel. Per la $g(x)$ si ha $x=\frac{2}{\sqrt{3}}$ min. rel. e $x=-\frac{2}{\sqrt{3}}$ max. rel.]

11.39. Stabilire i punti stazionari delle funzioni

$$f(x) = x^3 - 6x^2 + 9x + 5,$$
 $q(x) = 2 + (x - 1)^4$

e studiare il segno di $f^{'}(x)$, $g^{'}(x)$, in modo da stabilire la natura di tali punti.

[R: Per la f(x) si ha x=1 max. rel. e x=3 min. rel. Per la g(x) si ha x=1 min. assoluto]

11.40. Stabilire i punti stazionari delle funzioni

$$f(x) = \frac{1}{r^2},$$
 $g(x) = x + \frac{1}{r^2}$

e studiare il segno di $f^{'}(x),\;g^{'}(x),$ in modo da stabilire la natura di tali punti.

[R: La f(x) non ha punti stazionari. Per la g(x) $x=2^{1/3}$ è minimo relativo.]

11.41. Stabilire i punti stazionari delle funzioni

$$f(x) = \frac{1}{(x-1)(x+3)},$$
 $g(x) = \frac{x}{1+x^2}$

e studiare il segno di $f^{'}(x)$, $g^{'}(x)$, in modo da stabilire la natura di tali punti.

[R: La f(x) ha un max relativo in x = -1. La g(x) ha minimo assoluto in x = -1 e max assoluto in x = 1]

11.42. Stabilire i punti stazionari delle funzioni

$$f(x) = \frac{x^2 - 4}{x^2 - 9},$$
 $g(x) = \sin^2 x$

e studiare il segno di $f^{'}(x)$, $g^{'}(x)$, in modo da stabilire la natura di tali punti.

[R: La f(x) ha un max relativo in x = 0. La g(x) ha minimo assoluto in $x = k\pi/2$ se k è dispari o zero, mentre ha max assoluto in $x = k\pi/2$ se k è pari.]

11.43. Stabilire i punti stazionari delle funzioni

$$f(x) = x - \sin x,$$
 $g(x) = x + \cos x$

e studiare il segno di $f^{'}(x)$, $g^{'}(x)$, in modo da stabilire la natura di tali punti.

[R: La f(x) ha come punti stazionari i punti $x=2k\pi$ che non sono ne massimi ne minimi. La g(x) ha come punti stazionari $x=k\pi/2+2k\pi$ che non sono ne massimi ne minimi.]

Esercizi sulla regola de l'Hôpital

12.1. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to 1} \frac{\sqrt{x} - \sqrt[4]{x}}{x - 1}, \qquad \lim_{x \to 0} \frac{x + \sin x}{x - \sin x}$$

$$[R: \frac{1}{4}, +\infty]$$

12.2. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to e} \frac{\sqrt{x} - \sqrt{e}}{\ln x - 1}, \qquad \lim_{x \to \sqrt{2}/2} \frac{\arcsin^2 x - (\pi^2/16)}{2x^2 - 1}$$

$$[R: \frac{\sqrt{e}}{2}, \frac{\pi}{4}]$$

12.3. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to +\infty} \frac{e^{1/x^2} - 1}{2 \arctan x^2 - \pi}, \qquad \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3}$$

$$[R: -\frac{1}{\pi}, -\infty]$$

12.4. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to +\infty} \frac{x}{\ln(x+1) - \ln x} \qquad \qquad \lim_{x \to 0} \frac{\sin(e^x - 1) - x}{x \arctan x}$$

CAPITOLO 12. ESERCIZI SULLA REGOLA DE L'HÔPITAL

$$[R: -\infty \quad -\frac{1}{2}]$$

12.5. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} \qquad \qquad \lim_{x \to 1} \frac{x^x - x}{1 - x + \ln x}$$

 $[R:\,2,\quad -2\,\,]$

12.6. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to +\infty} \frac{\cos\left(\frac{x}{x^2 - 1}\right) - 1}{\frac{\pi}{2} - \arctan x} \qquad \lim_{x \to 2} \frac{x^2 - 2^x}{x - 2}$$

[R: 0, $4(1 - \ln 2)$]

12.7. Calcolare i seguenti limiti facendo uso del Teorema de l'Hôpital

$$\lim_{x \to 0} \frac{x - \tan x}{x - \sin x} \qquad \qquad \lim_{x \to +\infty} x(\arctan x - \arccos x^{-2})$$

[R: -2, -1]

Esercizi sugli studi di funzione

Per ciascuna delle seguenti funzioni determinare il dominio della funzione, dove la funzione è continua, i limiti agli estremi del campo di definizione, le intersezioni con gli assi (ove questo sia possibile), eventuali asintoti, gli intervalli di monotonia, massimi e minimi relativi e assoluti, eventuali punti a tangenza verticale, cuspidi e punti angolosi. Disegnare poi un grafico qualitativo della funzione e, dove richiesto, determinare anche la derivata seconda indicando gli intervalli di concavità e convessità.

13.1. Studiare la seguente funzione (con derivata seconda)

$$f(x) = x^3 e^{-x}$$

13.2. Studiare la seguente funzione

$$f(x) = (\cos(x))^2 + \sin(x) \qquad x \in [-\pi, \pi]$$

13.3. Studiare la seguente funzione (con derivata seconda)

$$f(x) = \frac{x^2 - 9}{e^{x-2}}$$

13.4. Studiare la seguente funzione (con derivata seconda)

$$f(x) = 4x^2 + 12x + \ln(2x + 3)$$

13.5. Studiare la seguente funzione (con derivata seconda)

$$f(x) = \frac{x}{2 + \ln x}$$

CAPITOLO 13. ESERCIZI SUGLI STUDI DI FUNZIONE

13.6. Studiare la seguente funzione (con derivata seconda)

$$f(x) = (2x^2 + x)e^{2x}$$

13.7. Studiare la seguente funzione

$$f(x) = e^{3x}\sqrt{x^2 - 4}$$

13.8. Studiare la seguente funzione

$$f(x) = \frac{e^{5x}}{x^2 + 2x + 8}$$

13.9. Studiare la seguente funzione

$$f(x) = \frac{e^{5x}}{\sqrt{3x+4}}$$

13.10. Studiare la seguente funzione

$$f(x) = \ln(-x^2 + x + 3)$$

13.11. Studiare la seguente funzione

$$f(x) = |x \ln x|$$

13.12. Studiare la seguente funzione (con derivata seconda)

$$f(x) = \frac{x^2 + 3x - 1}{x + 2}$$

13.13. Studiare la seguente funzione

$$f(x) = \frac{x^2 + 3x - 1}{x^2 - 4}$$

13.14. Studiare la seguente funzione

$$f(x) = \frac{1}{x}e^{-\frac{1}{x}}$$

13.15. Studiare la seguente funzione

$$f(x) = x \ln|x - 1|$$

CAPITOLO 13. ESERCIZI SUGLI STUDI DI FUNZIONE

13.16. Studiare la seguente funzione

$$f(x) = \frac{|2x-1|}{2x^2 - x + 1}$$

13.17. Studiare la seguente funzione

$$f(x) = \ln x + \frac{1}{\ln x}$$

13.18. Studiare la seguente funzione

$$f(x) = \frac{x^2}{x+1}e^{\frac{x}{x+1}}$$

13.19. Studiare la seguente funzione

$$f(x) = -(x+9)\sqrt{1 + \frac{2}{x}}$$

13.20. Studiare la seguente funzione (con derivata seconda)

$$f(x) = \ln\left(\sqrt{\frac{x+1}{x}}\right)$$

13.21. Studiare la seguente funzione (con derivata seconda)

$$f(x) = e^{|x-2|} \sqrt{x^2 - 1}$$

13.22. Studiare la seguente funzione

$$f(x) = \frac{e^x - 1}{1 + |x|}$$

13.23. Studiare la seguente funzione

$$f(x) = \frac{x^2 - 3}{\sqrt{|x|}}$$

13.24. Studiare la seguente funzione

$$f(x) = |x|e^{-x^2}$$

13.25. Studiare la seguente funzione

$$f(x) = e^{\frac{x+1}{x-1}}$$

CAPITOLO 13. ESERCIZI SUGLI STUDI DI FUNZIONE

13.26. Studiare la seguente funzione

$$f(x) = \ln\left(\frac{1-x^2}{1+x^2}\right)$$

13.27. Studiare la seguente funzione

$$f(x) = x - \sqrt{(x-3)x}$$

13.28. Studiare la seguente funzione

$$f(x) = xe^{-24x^2 + 2}$$

13.29. Studiare la seguente funzione

$$f(x) = \sqrt{x^4 + 2x^2 - 1}$$

13.30. Studiare la seguente funzione

$$f(x) = f(x) = \arctan\left(\frac{1}{|x| - x^2}\right)$$

13.31. Studiare la seguente funzione

$$f(x) = e^{1+\sin^2 x}$$

13.32. Studiare la seguente funzione

$$f(x) = 2x - \ln|x|$$

13.33. Studiare la seguente funzione

$$f(x) = \ln\left(1 + \frac{(x-1)^2}{x^2}\right)$$

13.34. Studiare la seguente funzione

$$f(x) = \ln|x^2 - 1| - \frac{16}{3x}$$

13.35. Studiare la seguente funzione

$$f(x) = xe^{\frac{1}{3\ln x^2}}$$

13.36. Studiare la seguente funzione

$$f(x) = \frac{\sqrt{2x^2 - 2x + 1}}{x}$$

13.37. Studiare la seguente funzione

$$f(x) = 3\cos x + \frac{1}{\cos x}$$

13.38. Studiare la seguente funzione

$$f(x) = \sqrt[5]{x(x+1)(x+2)}$$

13.39. Studiare la seguente funzione

$$f(x) = \sqrt[3]{\frac{e^{2x} - 1}{2}}$$

13.40. Studiare la seguente funzione

$$f(x) = \ln(x^2 - 5x + 7)$$

13.41. Studiare la seguente funzione

$$f(x) = \sqrt{x^2(x-1)}$$

13.42. Studiare la seguente funzione

$$f(x) = \frac{e^{-x} - 1}{1 + |x|}$$

Esercizi su problemi di ottimizzazione

14.1. Un agricoltore ha L metri di staccionata per chiudere un pascolo rettangolare adiacente a un lungo muro in pietra. Quali sono le dimensioni del pascolo di area massima?

[R: Larghezza L/4 e lunghezza L/2]

14.2. Un agricoltore vuol chiudere un pascolo rettangolare di area A adiacente a un lungo muro in pietra. Quali sono le dimensioni che richiedono lo steccato di misura minore?

[R: Larghezza
$$\frac{\sqrt{2A}}{2}$$
 e lunghezza $\sqrt{2a}$]

14.3. Data una sfera di raggio R, trovare il raggio r e l'altezza h del cilindro circolare retto aventa la massima superficie laterale che si può inscrivere nella sfera.

[R:
$$r = \frac{h}{2}, h = \frac{R}{\sqrt{2}}$$
]

14.4. Dato un cono circolare retto di raggio R e di altezza H, trovare il raggio e l'altezza del cilindro circolare retto di area laterale massima che si può inscrivere nel cono

$$[\mathbf{R} \colon r = \frac{R}{2}, \, h = \frac{H}{\sqrt{2}}]$$

14.5. Trovare le dimensioni del cilindro circolare retto di volume massimo che può essere inscritto in un cono circolare retto di raggio R e altezza H.

CAPITOLO 14. ESERCIZI SU PROBLEMI DI OTTIMIZZAZIONE

[R:
$$r = \frac{2R}{3}, h = \frac{H}{3}$$
]

14.6. Data una sfera di raggio R calcolare, in termini di R, il raggio r e l'altezza h del cono circolare retto di volume massimo che si può inscrivere nella sfera.

[R:
$$h = \frac{4R}{3}$$
, $r = \frac{2\sqrt{2}R}{3}$]

14.7. Trovare il rettangolo di area massima che si può inscfrivere in un semicerchio, quando la base inferiore è sul diametro.

[R: Un rettangolo la cui base è il doppio dell'altezza]

14.8. Trovare il trapezio isoscele di area massima che si può inscfrivere in un semicerchio, con la base inferiore coincidente col diametro.

[R: Un trapezio la cui base minore coincide con il raggio]

14.9. Un cilindro è ottenuto facendo ruotare un rettangolo attorno all'asse delle x. La baase si trova sul semiasse positivo delle x e l'intero rettangolo si trova all'interno della regione compresa fra la curva

$$y = \frac{x}{x^2 + 1}$$

e l'asse delle x. Trovare il volume massimo del cilindro.

 $[R: \frac{\pi}{4}]$

Esercizi sugli integrali

15.1. Calcolare i seguenti integrali indefiniti

$$\int \ln x dx, \qquad \int x e^x dx, \qquad \int x \cos x dx$$

$$[R: x \ln x - x, \qquad e^x (x - 1), \qquad x \sin x + \cos x]$$

15.2. Calcolare i seguenti integrali indefiniti

$$\int \sin^2 x \cos x dx, \qquad \int \arctan x dx, \qquad \int x \sin x \cos x dx$$

$$[R: \frac{\sin^3 x}{3}, \qquad x \arctan x - \frac{1}{2} \ln(x^2 + 1), \qquad \frac{\sin(2x)}{8} - \frac{x \cos(2x)}{4}]$$

15.3. Calcolare i seguenti integrali indefiniti

$$\int 2\cos(\ln x^2)dx, \qquad \int \tan x dx, \qquad \int \frac{x+2}{(x-2)(x+3)}dx$$
 [R:
$$\frac{16}{5}x\left[\sin(\ln x^2) + \cos(\ln x^2)\right], \qquad -\ln|\cos x|, \qquad \frac{4}{5}\ln|x-2| + \frac{1}{5}\ln|x+3|$$
]

15.4. Calcolare i seguenti integrali indefiniti

$$\int (3x^3 + 1)^2 x^2 dx, \qquad \int \frac{dx}{x \ln x} dx, \qquad \int (x^{-\frac{5}{6}} + 2x^{-2} - 3x^{-1} + 2) dx$$

[R:
$$\frac{(3x^3+1)^3}{27}$$
, $\ln|\ln x|$, $6x^{1/6} - \frac{2}{x} - 3\ln|x| + 2x$]

15.5. Calcolare i seguenti integrali indefiniti

$$\int \frac{1}{x(x+1)} dx, \qquad \int \frac{x}{x^2+1} dx, \qquad \int x \cos x dx$$

$$[R: \ln|x| + \ln|x+1|, \qquad \frac{1}{2} \ln(x^2+1), \qquad x \sin x + \cos x]$$

15.6. Calcolare i seguenti integrali indefiniti

$$\int \frac{1}{x(\ln x)^2} dx, \qquad \int \frac{e^{2x} - e^{-x}}{3} dx, \qquad \int e^{-x^2} x dx$$

$$[R: -\frac{1}{\ln x}, \qquad \frac{1}{3} \left[\frac{e^{2x}}{2} + e^{-x} \right], \qquad -\frac{1}{2} e^{-x^2}]$$

15.7. Calcolare i seguenti integrali indefiniti

$$\int (x^2 + 5x + 4)e^x dx, \qquad \int (\cos x)^2 dx, \qquad \int \frac{3e^{\sqrt{x}}}{\sqrt{x}} dx$$
[R: $e^x(x^2 + 3x + 1), \qquad \frac{x}{2} + \frac{\sin(2x)}{4}, \qquad 6e^{\sqrt{x}}$]

15.8. Calcolare i seguenti integrali indefiniti

$$\int \frac{\sqrt{\ln x}}{x} dx, \qquad \int \frac{\cos x}{\sqrt{1 + \sin x}} dx, \qquad \int \frac{1}{x^2 + 16} dx$$

$$\left[\text{R: } \frac{2}{3} \ln^{3/2} x, \qquad 2\sqrt{1 + \sin x}, \qquad \frac{1}{4} \arctan\left(\frac{x}{4}\right) \right]$$

15.9. Calcolare i seguenti integrali indefiniti

$$\int e^{\cos x} \sin x \cos x dx, \qquad \int \frac{2x+1}{(x^2+2x-3)} dx, \qquad \int \frac{1}{(x^2+1)\arctan x} dx$$
[R: $e^{\cos x} (1-\cos x), \qquad \frac{1}{4} [5\ln|x+3|+3\ln|x+1|, \qquad \ln|\arctan x|]$

15.10. Calcolare i seguenti integrali indefiniti

$$\int \frac{x}{\sqrt{25x^2 + 1}} dx, \qquad \int x^2 \ln(1+x) dx, \qquad \int \ln(\sqrt{1+x}) dx$$

$$\left[\text{R: } \frac{1}{25} \sqrt{25x^2 + 1}, \ \frac{1}{3} \left[(x^3 - 1) \ln(x+1) - \frac{x^3}{3} + \frac{x^2}{2} + 1 \right], \ (1 + x) \left[\ln(\sqrt{1+x}) - \frac{1}{2} \right] \right]$$

15.11. Calcolare i seguenti integrali indefiniti

$$\int \frac{\tan x}{(\cos x)^2} dx, \qquad \int x^3 \sqrt{1 - x^2} dx, \qquad \int \frac{x^5 + 3x - 1}{2 + x} dx$$

$$[R: \frac{\tan^2 x}{2}, \qquad \frac{1}{3} \left[\frac{2}{5} (1 - x^2)^{5/2} - x^2 (1 - x^2)^{3/2} \right], \qquad \frac{x^5}{5} - \frac{x^4}{2} + \frac{4x^3}{3} - 4x^2 + 19x - 33 \ln|x + 2|]$$

15.12. Calcolare i seguenti integrali definiti

$$\int_{0}^{1} x^{2} \cos x dx, \qquad \int_{1/e}^{e} |\ln x| dx, \qquad \int_{0}^{\pi/2} \cos x \cos(2x) dx$$

$$[R: 2\cos(1), \qquad 2\left(1 - \frac{1}{e}\right), \qquad \frac{1}{3}]$$

15.13. Calcolare i seguenti integrali definiti

$$\int_{2}^{3} \frac{1}{\sqrt{x}+1} dx, \qquad \int_{1}^{2} \frac{e^{2x}}{e^{4x}+5} dx, \qquad \int_{4}^{9} x e^{\sqrt{x}} dx$$

$$\left[\text{R: } 2 \left[(\sqrt{3}-\sqrt{2}) - \ln\left(\frac{\sqrt{3}+1}{\sqrt{2}+1}\right) \right], \qquad \frac{1}{2} \ln\left(\frac{6}{5}\right), \qquad 4(6e^{3}-e^{2}) \right]$$

15.14. Calcolare i seguenti integrali definiti

$$\int_{1}^{e} \frac{\ln x}{x(\ln x + 1)} dx, \qquad \int_{0}^{1} \frac{e^{2/(2+x)}}{(2+x)^{3}} dx, \qquad \int_{0}^{\pi/2} \frac{\cos x}{\sqrt{\sin x + 2}} dx$$

$$[R: (1 - \ln 2), \qquad \frac{1}{12} e^{2/3}, \qquad 2(\sqrt{3} - \sqrt{2})]$$

©L. Fusi, Univ. di Firenze

web.math.unifi.it/users/fusi/

15.15. Calcolare i seguenti integrali definiti

$$\int_0^{\pi} x \cos x dx, \qquad \int_0^{\pi/4} \cos(2x) \sin x dx, \qquad \int_0^1 x e^{3x} dx$$
[R: -2, $\sqrt{2} - 1$, $\frac{1 + 2e^3}{9}$]

15.16. Calcolare i seguenti integrali definiti

$$\int_0^{\frac{3\pi}{2}} (\sin x)^2 dx, \qquad \int_1^3 x^2 \ln x dx, \qquad \int_0^{\pi/4} (\cos x)^2 dx$$

$$[R: \frac{3\pi}{4}, \qquad \frac{27}{6} \ln 3 - \frac{26}{9}, \qquad \frac{\pi}{8} + \frac{1}{4}]$$

15.17. Calcolare l'area della regione piana delimitata dalle curve di equazione $y=-x^2-2x+1$ e xy+2=0.

[R:
$$\frac{5}{3} - 2 \ln 2$$
]

15.18. Calcolare il valor medio della funzione $f(x) = \sin \sqrt{x}$ nell'intervallo [0, 4]

$$[R: \frac{\sin 2}{2} - \cos 2]$$

15.19. Sia $f(x) = \frac{1 - e^x}{e^{2x} + 1}$. Dopo aver calcolato $\int_0^k f(x) dx$ calcolare $\lim_{k \to \infty} \int_0^k f(x) dx$

$$[R: -\frac{\pi}{4} - \ln \frac{1}{\sqrt{2}}]$$

15.20. Determinare l'area della regione di piano delimitata dall'asse x, dalla retta x=1 e dalla funzione $f(x)=\sqrt{x}e^{\sqrt{x}}$.

[R:
$$2(e-2)$$
]

15.21. Disegnare la regione delimitata da $f(x) = |\sqrt{x} - 1|$, da $g(x) = 2 - (x - 1)^2$ e dalla retta x = 2. Calcolare poi l'area di tale regione.

[R:
$$\frac{52}{3}$$
]

15.22. Calcolare l'area della regione di piano compresa tra le parabole $y=2x^2$ e $y=-x^2+1$

$$[R: \frac{2}{3\sqrt{3}}]$$