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ELLIPTIC EQUATIONS IN DIVERGENCE FORM, GEOMETRIC
CRITICAL POINTS OF SOLUTIONS, AND STEKLOFF

EIGENFUNCTIONS *

G. ALESSANDRINI AND R. MAGNANINI:

Abstract. The Stekloff eigenvalue problem (1.1) has a’ countable number of eigenvalues
(Pn}n= 1,2 ..... each of finite multiplicity. In this paper the authors give an upper estimate, in terms
of the integer n, of the multiplicity of Pn, and the number of critical points and of nodal domains of
the eigenfunctions corresponding to Pn.

In view of a possible application to inverse conductivity problems, the result for the general
case of elliptic equations with discontinuous coefficients in divergence form is proven by replacing the
classical concept of critical point with the more suitable notion of geometric critical point.
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1. Introduction. In this paper we are concerned with weak solutions of the
elliptic equation in divergence form:

(1.1a) div(AVu) 0 in,

and especially with Stekloff eigenfunctions, that is, those nontrivial solutions that,
for some constant p, the Stekloff eigenvalue, satisfy in the weak sense the boundary
condition

(1.1b) AVu v pu on.

Here is a simply connected bounded domain in the plane, with Lipschitz boundary
0, v is the exterior unit normal to 0, and A (aij) is a 2 2 symmetric matrix of
L() coefficients satisfying, for some constant , 0 < A <_ 1, the uniform ellipticity
condition

(1.2)
2

i,j=l

for every z E , E /i2.

Here and in what follows, we use the complex coordinate z x + iy in the plane.
The study of this eigenvalue problem was started by Stekloff [St] in 1902. In 3,

we recall the definitions of Stekloff eigenvalues and eigenfunctions; a review of their
known properties can be found in Bandle [B]. Research on this subject has been mainly
devoted to estimates on eigenvalues (see, for instance, In-P-S] and also [B] for further
references). Let us mention in passing that, in connection with applied problems in
fluid mechanics, mixed type problems also have been considered (see [F-K]). Typically,
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in such problems, we assume that (1.1b) holds only on one portion of 0t, whereas on
the rest of OFt, AVu. u 0 is assumed.

Our main results, which are summarized in Theorem 3.2, consist of estimates on
the multiplicities of Stekloff eigenvalues and the numbers of nodal domains and of
critical points of Stekloff eigenfunctions.

One up-to-date motivation of our study of the Stekloff eigenvalue problem comes
from the so-called inverse conductivity problem: suppose that the coefficient matrix A
(the conductivity) is unknown; we wish to determine it, or, more generally, to recover
partial information about it from the knowledge of the so-called Dirichlet to Neumann
map AA. Here, AA H1/2(0t) H-1/2(O) is defined as the operator that maps
the Dirichlet data ulo for (1.1a) into the corresponding Neumann data
(see, for instance, [Sy-V], [Sy]). Then it is evident that the Stekloff eigenvalues and
the boundary traces of the Stekloff eigenfunctions are exactly the eigenvalues and
eigenfunctions of AA. Such traces and eigenvalues can be approximately measured
by experiments and could be effectively used as the data of the inversion procedure.
For a discussion of a related spectral approach to the inverse conductivity problem,
see Gisser, Isaacson, and Newell [G-I-N]. A deeper understanding of the geometrical
features of Stekloff eigenfunctions would then be helpful in assessing uniqueness and
continuous dependence questions for the inverse conductivity problem and perhaps
also in the design of reconstruction algorithms.

In addition to the possible applications to inverse problems, the authors have been
inspired by the work of Payne and Philippin [P-P] on questions of symmetry related
to the Stekloff eigenvalue problem (see also [A-M2]). In this respect, we mention that
some of our results, when restricted to Laplace’s equation and to the second Stekloff
eigenvalue, have already been presented in [P-P].

The flavor of our results is similar to those of Cheng [C] for the eigenfunctions of
the Laplacian on surfaces; however, the methods in the proofs and the specific results
are different because of the intrinsic differences between the two eigenvalue problems.

To mention the most apparent peculiarity of Stekloff eigenfunctions, observe that,
by the maximum principle, every solution of (1.1a), and thus every Stekloff eigenfunc-
tion, can have neither interior maxima nor minima, and each of its level sets must
reach the boundary. Due to this observation, the geometric-topologic properties of
level lines and level sets of Stekloff eigenfunctions are quite different from those of the
vibrating membrane problems. In fact, in some respects, the study of such properties
is perhaps easier for equations like (1.1a), for which we have theorems that permit us
to estimate the number of interior critical points in terms of the boundary data [A],
[A-M1]. Theorems like this will be our basic tool, along with simple variations of the
fundamental Courant’s nodal domain theorem.

Still, in view of the application to the inverse conductivity problem, we have
chosen to treat the Stekloff eigenvalue proble.l when no moothness assumptio is
imposed on. the coefficients in (1.1a). In fact, there are practical cases when the con-
ductivity coefficients are discontinuous and we are especially interested in determining
the discontinuities (see, for instance, [B-F-I], [P], [Su-U]). This generMity causes ad-
ditional technical diificultes: solutions of (1.1a) need not to be differentiable i the
classical sense and thus the notion of critical point .mst be adapted to this nonsmooth
setting. For this reason, we introduce the concept of geometric critical point (see Def-
inition 2.3). Roughly speaking a point will be called a geometric critica| point ,r
a olution u of (1.13) if it is a critical point with repect to an. appropriate (possi-
bly nonsmooth) cha.nge of variables that makes u become smooth. We alamo give the
definition of geometric index, which generMizcs the notion of multipli.city of a critical
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point (see Definition 2.4).
These definitions are based on the crucial remark that the unique continuation

property and a representation theorem also hold for solutions of (1.1a). We have not
been able to find in the literature theorems of such a kind for equations like (1.1a),
whereas they are well known for equations with smoother coefficients (see [Sch]) and
for equations not in divergence form (see [B-N]). Although the method of proof of such
results may sound familiar to the experts in quasi-conformal mappings and complex
analytic methods, we include our own proofs of the unique continuation property and
of representation formulas for solutions of (1.1a) (Theorem 2.1 and Corollary 2.2). We
trust that these results might be of some independent interest and that they can find
useful applications, especially in the field of inverse problems.

We conclude this introduction by pointing out the following consequence of such
results. In [A], [A-M1], when the coefficients in (1.1a) are smooth, an estimate on
the maximum number of interior critical points of a solution u E CI(Ft) C? C2(f) of
(1.1a) was given in terms of the number of times some boundary data of u changes
its sign on Oft (see [A, Thm. 1.1], [A-M1, Thms. 2.1, 2.2], for details). Theorems 2.7
and 2.8 in this paper generalize the above results to equation (1.1a) with nonsmooth
coefficients.

2. Geometric critical points. Throughout this section, BR(O) will denote the
disk with radius R centered at z 0.

THEOREM 2.1 (representation formula). Let u W1,2(ft) be a nonconstant so-
lution of (1.1a).

There exists a quasi-conformal mapping X f ---+ BI (O) and a real-valued har-
monic function h on BI (O) such that

(2.1) u=hox in Ft.

The dilatation coefficient Xe/Xz of X is bounded by the constant (1
Proof. By (1.1a), the 1-form co -(a12ux + a22uy)dx + (allux + a12uy)dy is

closed in f. Therefore, we can find v W1,2(ft) such that dv co. The function v
will be called the stream function associated with u, in analogy with the theory of gas
dynamics (see, for instance, [B-S]).

In other words, u and v satisfy the following elliptic system:

(2.2) Vv ( O1 -1)
almost everywhere in ]. Note that (2.2) is just a special case of the elliptic systems
studied by Bers and Nirenberg in [B-N].

By setting f u + iv and using the standard notation for complex derivatives,
(2.2) takes the forn

where

a22 a.t 2ia2
# 1 -t- a + a22 + alia22 a212’ "

1 all a22 -t- a2
1 + a- + a22 zr-all.a22 a122

and the following estima,te can be ea,sily deduced from (1.2)

1-A
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Consequently, since f E W1,2(’, C), then it is a quasi-regular mapping with dilatation
bounded by (1- A)/(1 + A). Since f is nonconstant, it can be factored as

(2.3) f Fo X ingt,

where F is a holomorphic function on the disk B1 (0) and X 12 -+ BI(0) is a quasi-
conformal homeomorphism (see [L-V]). Finally,

1-A
-I+A"

COROLLARY 2.2 (Unique continuation principle). If there exists zo ft and pos-
itive constants C1, C2,..., CN, such that

f
(2.4) ] [Vu[2 dxdy

_
CNRN VR > O, VN 1, 2,...,

B zo

then u is constant in .
Proof. Let us suppose by contradiction that u is nonconstant. Without loss of

generality, we may set z0 0 and u(0) v(0) 0.
Note that, by (2.2), the stream function v associated with u satisfies the following

equation:

(2.5) div (deltA AVv)=0 in,t,

in the weak sense. Such an equation satisfies the ellipticity condition (1.2) as well.
The local boundedness estimate [G-T, Thm. 8.17] is applicable to both (1.1a)

and (2.5). Thus, by this estimate, the Poincar inequality, and (2.4), we have

max [u-- uR[2 < KCNRN
BR/.(O)
max Iv vRI 2 < KCNRN

BR/2(0)

/N=1,2,.-. and VR, 0<R<R0.

Here R0 dist(0, OFt), K is a positive constant depending on A only, and ltR, VR denote
the mean values on the disk Ba(0) of u, v, respectively. Since u(0) v(0) 0, we
also have U2R, v2R <_ KCNRN, and hence

max (u2+v2) _8KCNRN VR, O < R < Ro, N l, 2,
Bn/2(O)

Now, we claim that there exist p, 0 < p < R0, a quasi-conformal homeomorphism
) of Bp(0) in itself, and a positive integer M such that the quasi-regular mapping
f -u + iv can be factored as

(2.7) f (z)= (z)]M Izl < p,

where has dilatation bounded by (1 )/(1 + A) and )(0) 0. This factorization
is readily obtained from (2.3), first, by choosing M as the order of the first nontrivial
term in the Taylor series for F- F(x(O)) at X(0), and, second, by noticing the local
invertibility of the branches of the multivalued function IF- F(x(O))]I/M.
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Since : is quasi-conformal, we have that --1 is H61der continuous at zero with
some exponent 0 < a _< 1. From (2.6), (2.7), we have that

Q Izl <- KCN Vz, Izl < p, VN 1 2,

for some positive constant Q, and this is impossible.
DEFINITION 2.3. We say that zo E is a geometric critical point for u, if we

have Vh(x(zo)) O, where h and X are, respectively, the harmonic function and the
quasi-con.formal mapping appearing in (2.1).

Remark. It is an obvious, but essential, consequence of this definition that geo-
metric critical points of nonconstant solutions of (1.1a) are isolated.

We now recall a classical definition of the index of a smooth function (see [Mi]).
For a C function h with isolated critical points in the disk B1 (0) and a subdomain
DcC B1 (0) such that OD is smooth and contains no critical point of h, the index of
h in D is

I (D, h) 2rl 0D d arg (Vh).

With such a choice of the sign, if h is harmonic, I(D, h) gives the number of critical
points of h in D, when counted according to their multiplicities. Moreover, I(D, h)
is constant under perturbations of D that contain the same critical points, and its
definition can be extended to the case when OD is nonsmooth.

We generalize this notion to nonconstant solutions of (1.1a).
DEFINITION 2.4. Let D CC be an open set. If u has no geometric critical

points on OD, we define the geometric index of u in D as

I (D, u) I (X (D), h),

where h and X are as in Theorem 2.1.
Moreover, we define the geometric index of u at zo as

I (z0, u) lim I (Br (z0) u).

Such a limit exists, since the geometric critical points of a solution of (1.1a) are iso-
lated.

The next lemma gives a sort of justification for the term "geometric" in the
previous definitions and shows that these do not depend on the particular choice of
the representation (2.1).

LEMMA 2.5. Let u be a nonconstant solution of (1.1a). If zo is a geometric
critical point for u with geometric index I I(zo, u), then there exists a neighborhood
U c of zo such that the level line {z e U: u(z) u(z0)} is made of I + 1 simple
arcs, whose pairwise intersection consists of {z0} only.

Proof. By the representation (2.1), since X is a quasi-conformal homeomorphism,
it is enough to look at the level line { e BI(0): h h(x(zo))} near X(zo).

Since I(x(zo), h) I(zo, u) I, then h-h(x(zo)) is asymptotic to a homogeneous
harmonic polynomial of degree I + 1 near X(zo).

Remark. Observe that, if u is C in a neighborhood of z0 (which happens, for
instance, when A is Hhlder continuous; see [Sch]), then z0 is a geometric critical point
with geometric index I if and only if Vu(z0) 0 with standard index I. This is a

consequence of Lemma 2.5 above and Lemma 3.1 in [A-M1]. Note that in [A-M1] the
opposite sign is chosen in the definition of the index.
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PROPOSITION 2.6 (Continuity of the geometric index). Let {Am}m=1,2,... be a se-
quence of symmetric matrices with L(t) entries satisfying (1.2). Let Um
be weak solutions of

div (AmVum) 0 in

which converge to u in Wlo’2
If D Cc is such that u has no geometric critical point on OD, then we have

(2.8) lim I (.D, u,) I (D, u).
m---,c

Pvof. By the proof of Theoreln 2.1, for each Um we may construct a stream
function Vm such that fm Um + iVm are quasi-regular mappings with dilatation
coefficients uniformly bounded by (1 A) / (1 + A). By (2.1), we also have Um hm o

and the dilatation coefficients of the quasi-conformal mappings Xm are also uniformly
bounded. Since Um -- U in Wllo’c2(), by using the uniform interior bounds for fm and

Xm in Ca (see [G-T, Thm. 8.24]), we have that, possibly passing to subsequences, hm
and Xm converge, respectively, in Clo(Bl(0)) and Coc(t)N Wllo’c2 (Ft), to the functions
h and X corresponding to u in the representation (2.1).

By definition, I(D, u) I(x(D), h) and I(D, urn) I(Xm(D), hm). Furthermore,
by our hypothesis, Vh does not vanish on Ox(D), so that IVhml is uniformly bounded
away from zero on Ox(D), for m large enough. Thus,

I (X (D), h) lim I (X (D), hm),

and hence, by the Cloc(f) convergence of Xm, we arrive at (2.8). Observe now that,
since the very beginning of our argmnent, we could have replaced the sequence {urn}
with any of its subsequences. Therefore, the limit in (2.8) exists and the stated equality
holds.

THEOREM 2.7. Let g H1/2(O) be of bounded variation onO and such that Ogt

can be split into 2M arcs on which altenatively g is a nondecreasing and nonincreasing

function of the arclength parameter.
Let u W1,2(gt) be the unique solution of (1.1a) satisfying the Dirichlet condition

u g on 0.
Then the geometric critical points of u in , when counted according to their

indices, are at most .M- 1.

.Proof. In view of Lemma 2.5 above, this is just a rephrasing of Theorem 1.1 in

[.A1]. We omit the details.
THEOREM 2.8. Let g H-1/2(O) be such that Ot can be split into 2M closed

arcs F1,...,F2M such that (-1)Jg 0 on Fy,j- 1,...,2M, in the sense of distribu-
tions.

.Let u W,2(t) be a solution of (1.1a) satisfying the Neumann condition AVu.
v =g on Ogt.

Then, the geometric critical points of u in , when counted according to their
indices, are at most M- 1.

Proof. We may suppose that c9 is Ca. If it were not so, we could construct a
Lipschitz napping that transibrms Ft into a disk. Such a mapping does not alter the
nature of the eq.uaion nor the sign conditions on the Neumann data g.

Let us choose a sequence {Am} of C() symnetric matrices satisfying (1.2)
and such that .A --. A in LP(t), for some 1. _< p < . It is a straightforward exercise
now to construct a sequence (gin} C C(O) converging to g in H-1/2(Ot) and such



ELLIPTIC EQUATIONS AND GEOMETRIC CRITICAL POINTS 1265

that fon g’ ds 0 and (--1)Jgm > 0 in the interior of each Fj, j 1,..., 2M, for all
m= 1,2,

For any integer m, let Um E C() be the unique solution of the following
problem:

div (AmVum) 0 in, AmVum. =gm on0/,

such that f u, dx dy fa u dx dy. Since Um is smooth on OFt, we can apply
Theorem 2.2 in [A-M1] and obtain I(D, urn) _< M- 1 for every integer m.

Moreover, we can easily see that, by possibly passing to subsequences, Um u
in Wllo’2(t), and hence Proposition 2.6 is applicable. Therefore, for any D CC Ft
such that OD does not contain any geometric critical point of u, we have I(D, u)
limm-+ I(D, u,), and hence I(D, u) <_ M- 1. By the arbitrariness of D in Ft, we
obtain our thesis.

3. Multiplicity of Stekloff eigenvalues and geometric critical points of
Stekloff eigenfunctions. As is well known, by observing that the trace imbedding
W1,2() L2(0) is compact, the Stekloff eigenfunctions and eigenvalues in W1,2(gt)
are characterized as the critical points and critical values of the Rayleigh quotient

(3.1) R(u) f AVu Vudxdy.
u2 d8

here ds denotes the arclength element on 0fl (see [St]). The nth Stekloff eigenvalue
Pn can be recursively defined as the minimum of the quotient (3.1) over all functions
of class W1,2(gt) that are orthogonal in L2(0Ft) to the subspaces Vk, k 1,..., n- 1,
where

(3.2) Vk {u Wi,2 (t) u is a weak solution of (1.1) with p Pk}.

In this way, we can form a divergent sequence 0 pl < p2 < < Pn < Of
eigenvalues, each of them of finite multiplicity.

DEFINITION 3.1. Let Pn be the nth Stekloff eigenvalue; we denote by # its mul-
tiplicity, that is,

(3.3) #n dim V.

For n > 2, we will also set

(3.4) n, max @- {
geometric critical points of u in
counted according to their index

A nodal domain of u V., is a connected component of the set
{z u(z) 0}, while a connected component of a set Ok 0 will be rc.rred to
as a boundary nodal domain of u.

We then define

(3.5) A,,, max
v,, ’\ 0

[nodal domains of

rr { boundary nodal domains of u }.
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THEOREM 3.2. The following inequalities hold"

n

(3.7) in+l _< 1 + #}, n---- 1, 2,
k--1

(3.8) gn _< An- 2, n- 2, 3,...,

(3.9) n _< 2 (an -t- 1), n- 2, 3,

COROLLARY 3.3. For every integer n >_ 2, we have

(3.10) #n _< 2.3n-2,
(3.11) an _< 3n-2 1,

(3.12) A. < 3n-. + 1.

Proof. By applying (3.7)-(3.9) we obtain the recurrence relation #n+l

_
2 x

nk=l #k,n- 1,2, Since # I, we obtain (3.10); (3.11) and (3.12) then easily
follow from (3.8)and (3.7).

Remark. When n 2, (3.11) gives a2 0. This provides a different proof of
Lemma 3 in [P-P].

The proof of Theorem 3.2 requires the following lemma, which will be proved at
the end of this section.

LEMMA 3.4. Let An and n be defined as in Definition 3.1. Then

(3.13) 5n _< 2 (A 1), n- 2, 3,

Proof of Theorem 3.2. Step 1. We prove (3.7) by contradiction. This argument
has been used already in [K-S] for the case of the Laplace operator. Suppose there
exists a nontrivial eigenfunction u E Vn+l with A nodal domains

nand A > 2 + k=l #k Let us denote by uk) (k)
,...,k a basis of the vector space

Vk, l <_k<_n.
Now consider the function v --J-=aj(ulnj); here lj denotes the character-

istic function of the set j. The real numbers a,..., aA_ can be chosen not all zero
and such that

fo k) for allg=l, ..,#k, k=1,2, n;(3.14) vu ds O,

in fact (3.14) provides E=I k _< A- 2 linear homogeneous conditions on A- 1
parameters.

In view of (3.14), the function v is admissible for the variational characterization
(3.1) of Pn+I. From the definition of v, we have

f
AVv Vv dx dy ] (AVv ) v ds

Jo

2/ (AVu. ) uds,Oj
JO2

Hence, (1.1b) implies

AVv Vv dx dy pn+laj
fJ

j=I,...,A-1.

u2 ds, j 1, A 1
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and, by adding the above A 1 relations, we obtain

AVv Vv dx dy Pn+l o v2 ds.

Therefore, v is a nontrivial Stekloff eigenfunction corresponding to the eigenvalue pn+1.

Now, since v 0 on /x, by the unique continuation property, we have v 0 on
which is a contradiction.

Step 2. Let Un E V; by (1.1b) and by Lemma 3.4, AVUn’p satisfies the hypotheses
of Theorem 2.7 with M _< An 1; thus, (3.8) follows easily.

Step 3. By contradiction, suppose n 2(an q- 1) + 1.
Let u(J),j 1,..., tin, be a basis of V and fix an + 1 distinct points zl,..., Zn+

in t. As we did in the proof of Theorem 2.8, we approximate A by a sequence of ma-
trices {A,},=l,2,... with C()-coefficients satisfying (1.2). For each j, 1 <_ j <_
the weak solutions U(mj) of the Drichlet problem

div (AmVu)) -0 in’t, e

are C(a)-functions and form a sequence U(mj) that converges to u(J) in Wlo’c2(a). By
our hypothesis on ttn, for each j, 1 _< j _< #n, we can find real numbers a(mj) such that

"nEj--1 1, m 1, 2,... and, also

(3.15) E a(mY)VU(mJ)(ze)= 0, for all t? 1, an q- 1, m 1, 2,
j=l

For each j 1,..., #n, the sequence C(mj) can be chosen to converge to some number
c(J) so that we have

E (c(J))2- 1.
j=l

Now, let D be an open set with D c ,zl,... ,Ztn+l D, and such that OD
does not contain any geometric critical point of the function v -jn__=l o(J)u(J). The

m c)u)sequence of functions Vm y=l is such that I(Vm, D) + 1, by (3.15).
Moreover, by possibly passing to a subsequence, Vm v in Wo’(), as m , so
that Proposition 2.6 implies that I(v, D) gn + 1, that is, v is a nontrivial eigen-
function in Vn with at least gn + 1 geometric critical points in D C . This is a
contradiction.

We conclude by giving a sketch of the proof of Lemma 3.4. To this end, we
introduce the following definitions.

DEFINITION 3.5. We say that a simply connected open subset A of is a cp, if
O OA is connected and nonempty.

Let ,... ,K be open subsets of ; we say that {k}k=l K is an admissible
K

covering of , if ,...,K are pairwise disjoint, C =k, and Ok O 0,
for every k- 1,...,K.

Proof of Lemma 3.4 (Sketch). Let u Vn, u nontriviM, and let ,...,g be the
nodal domains of u in ; these sets form an admissible covering of .

Now, let N be the number of boundary nodM domains of u in 0. Then (3.13)
is implied by N 2(K- 1). This inequality is readily proved by induction on the
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number K of nodal domains and by using the following facts, the proofs of which are
straightforward:

(i) Every nodal domain fk is simply connected.
(ii) The covering {ftk}=l K contains at least one cap.
(iii) If ft/( is a cap, then f \ fK is a simply connected open set and

{ftk}k=l K-1 is an admissible covering of Ft. Moreover, Na <_ Nfi + 2.
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