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1. Introduction 

In a simply connected plane domain  f~ with sufficiently smooth  boundary  
0f~, consider the Stekloff eigenvalue problem 

Au = 0 in f], (1.1) 

Ou 
~n pu on ~ . ,  (1.2) 

where n denotes the exterior normal  unit  vector to Of~. This problem has 
infinitely many  eigenvalues 0 = Pl < P2 -< P3 < " " " (see [S]). Payne and Philip- 
pin [P-P] have recently proven that  if u is an eigenfunction corresponding to 
the second eigenvalue P2 and satisfies the overdetermined condit ion 

]Vu I = 1 on ~f~, (1.3) 

then f2 is a disk of  radius R --P2. They also show that, for any h > 0, the 
domain  

Oh = {(X, y) ~ ~2: IX I < 1, --h/2 -- n i l  -- x 2 < y < h/2 + x/1 - x 2} 

is such that  u(x, y ) =  x satisfies (1 .1)-(1.3) ;  however, u is not  the second 
eigenfunction unless h = 0. 

Thus, they conjecture that, if c3f~ is of  class C 2, then for any non-trivial 
eigenvalue p and for any dimension, the existence of  a solution u of  
(1 .1)-(1.3)  implies that  f~ is a ball. 

In this paper, we treat the two-dimensional  case when Of~ is of  class C 2 
and u e C2(~). Observe that  if t3f~ is in C 2~, then any solution of  (1 .1 ) - (  1.2) 
belongs to CZ~(fi). 

Let us introduce the conjugate harmonic  function v to u in {~, chosen in 
such a way that  

f v d s = O ,  (1.4) 
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here ds denotes the arclength element. We let 

F =  u + iv (1.5) 

be the complex potential associated to u. We shall first prove the following 
necessary and sufficient condition for the Payne and Philippin conjecture to 
hold. 

Theorem 1.1. Let u E C2(~) be a solution of (1.1)-(1.3), and let F be 
the complex potential associated to u, as defined by (1.4) and (1.5). 

Then, f~ is a disk if and only if F vanishes at only one point in f~. 

We stress the fact that the conclusion of Theorem 1.1 does not involve 
the vanishing rate of F at its zero. In w we shall give a proof  of Theorem 
1.1 through a sequence of statements which may be of some interest of their 
own. In particular, Theorem 2.2 shows an interesting connection with 
another symmetry problem, involving Green's function, which has already 
been treated by Payne and Schaefer [P-S] and Lewis and Vogel [L-V]. 

The combination of Theorem 1.1 and of Theorem 1.2 below shows that 
Payne's and Philippin's conjecture fails to be true: the disk is not the only 
domain with C 2 boundary for which a solution of (1.1)-(1.3) exists. 

Theorem 1.2. Given the integers K > 1, and m ~ , . . . ,  m K -> 1, there exist 
a simply connected domain f~ with analytic boundary, and a function F 
holomorphic in f~ such that u - - R e ( F )  satisfies (1.1)-(1.3) and F has 
exactly K distinct zeros Z l , . . .  ,zK~f~ with respective multiplicities 
m l  , . . . , i n K .  

Section 3 contains a constrictive proof  of Theorem 1.2, which is based 
on the classical method of conformal mappings; such a proof  can also be 
adapted to provide an alternative proof  of Theorem 1.2. 

2. Proof  of  Theorem 1.1 

We shall denote by I~f~] the perimeter of ~, and by z =z(s), 
0 < s <- ]Of~], the arclength parametrization of ~3~ taken with the counter- 
clockwise orientation, so that ~(s) and - i t ( s )  are respectively the tangent 
and normal unit vector to ~?f~. As usual, a prime will denote the derivative 
with respect to the complex variable z, while we chose to indicate by the 
subscripts, s, n respectively the tangential and normal partial derivatives at 
points of ~?f~. 
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Theorem 2.1. Let u e C2(fi) satisfy (1.1)-(1.3) .  Then, there exists a 
positive integer N such that  we have: 

2nN 
p = it?f~], (2.1) 

F(z(s)) = F(z(O)) e ips, 0 < s < Ic~l, (2.2a) 

1 
IF(z(0)) ] = - .  (2.2b) 

P 

Moreover,  F and F" have respectively N and N -  1 zeros in F~, when 
counted according to their multiplicities. 

The p roof  of  this Theorem is mainly of  computa t ional  character and is 
left to the end of  this section. 

Remark.  Notice that  Theorem 2.1 can be interpreted as follows: if a 
solution u of  (1 .1)-(1 .3)  exists in f~, then p is a Stekloff eigenvalue for a 
disk BR which has the same perimeter as f~; also, the restriction of  u to Of~, 
as a function of  the arclength s, coincides with the restriction to ~?BR of  a 
Stekloff eigenfunction for BR. 

Corollary 2.1. There exists u ~ C2(~) satisfying (1 .1)-(1 .3)  if and only 
if there exists a ho lomorphic  function F in f~ such that  

1 
[F I = -  on ~f~, (2.3a) 

P 

]F'] = 1 on Of~. (2.3b) 

Moreover,  F is the complex potential  defined in (1.5). 

Proofi I f  u satisfies (1.1)-(1.3) ,  then by Theorem 2.1 the associated 
complex potential  F satisfies (2.3). Vice versa, condit ions (2.3) imply that  
0f~ is analytic (see [F]) and F is analytic up  to ~3f~. Let 

1 f l~lF' (z(s))  . . . .  1 fe F'(z) 
N :  ~i~i jo ~ zts) as =2ni~i n--F~-~ dz" 

By the logarithmic residue formula, N is the number  of  zeros of  F in f~; N 
is not  zero, otherwise IF] = 1/1) in fL which would imply F '  - 0, contrary to 
(2.3b). By differentiating (2.3a) by s, we have R e ( F ' : ~  = 0 on ~f~, thus, by 
(2.3) we obtain F'~ = § on ~f~. This implies 2~zN = ___plOf~l, so that  we 
must  choose the positive sign. Therefore, by setting F = u + iv, we have 

us + iun = F'~ = ipF = ip(u + iv), 
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hence un =pu  on c~f~, and also ]Vul = IF'[ = 1 
(1.1)-(1.3) .  

47 

on Of~, that  is u satisfies 

Theorem 2.2. Let F be a ho lomorphic  function in f~ satisfying (2.3) and 
suppose F vanishes at only one point  in f2. 

Then f~ is a disk BR(zo) and, for some positive integer N, we have: 

F ( z )  = o~(z - -  Zo) N, 

p = N/R,  (2.4) 

l~ I = 1/NR N- l. 

Proof. Let Zo be the only zero of  F in ~), and let N be its multiplicity. 
We may factor F ( z ) =  ( z -  zo)Ncb(z) where �9 is ho lomorphic  which never 
vanishes in ~.  Then the function w(z )= log plF(z)] has the following 
properties: Aw = 2 ~ N 6 ( . -  Zo) in f~, w = 0 on 0f~, and also ]Vw I = IF'I/IFI = 
p on c3fL 

In other words, w ( z ) = - 2 r c N G ( z ,  zo) where G(z, Zo) is the Green's  
function for ~ with pole at z0. Therefore, IVG(., 4) 1 = p /2nN  on Of 2, and, 
by Theorems III. 1,111.2 in [P-S], we have that  f2 is a disk centered at Zo, and 
(2.4) follows easily. 

Remark.  We observe that  another  p roof  of  the spherical symmetry for 
the above ment ioned overdetermined problem for the Green's function can 
be found in Lewis and Vogel [L-V]. As is observed in [P-S], still another  
p roof  could be obtained by the method  of  moving parallel planes of  Serrin 
[Se]. 

Proof  of Theorem 1.1. Let f~ be a disk of  radius R centered at z0. As is 
well-known (see [B]), the Stekloff eigenfunctions of f~ are given by the real 
or the imaginary part  of  the ho lomorphic  functions 7(z -Zo)  x, where N is 
an integer and e is a complex number.  Therefore, the complex potential  
associated to a solution of (1 .1)-(1 .3)  in f~ takes the form F = o~(z--ZO) N 

with 1cr I = 1/(NR N-  l). 
Vice versa, if u satisfies (1 .1)-(1 .3)  in f2 and the function F in (1.5) 

vanishes only at one point  z0 e f~, then Corollary 2.1 and Theorem 2.2 imply 
that  f~ is a disk centered at Zo. 

Remark.  We point  out  an interesting connect ion between the overdeter- 
mined problem (1 .1)- (1 .3)  and the field of quadrature  identities. 

F r o m  Corollary 2.1 and by the arguments  of  Theorem 2.2, we readily 
see that, if u satisfies (1.1)-(1.3) ,  and F has K distinct zeros zl, �9 �9 �9 ZK with 
respective multiplicities m l , . . .  ,ink, then the function w = l o g p l F  I sa- 
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tisfies Aw = 2re ~ f = ,  i nk6 ( " -  zk ) in  f~, w = 0  on ~f~, and also [Vw I = p  on 
~f~. L e t f b e  any holomorphic  function in a ne ighborhood of  ft. By applying 
Green's identity for f and w, we have: 

f ds = Zk). 
k = l  

A standard density argument  allows to extend the validity of the above 
identity to any holomorphic  function f in ~,  whose non-tangential  limit at 
the boundary  exists in the space L ' ( a~ ) .  

An  identity of this kind is known as a "quadra ture  identity for the 
arclength" (see [G]). 

Proof of Theorem 2.1. Let f(z)  = F'(z), z e f~. We have f =  ux - ib ly  in ~,  
and also f ( z ( s ) )~ ( s )  = us + iu,, on ~f~. Differentiating by s in (1.2), gives: 

Im[(2~fk +f ' )~]  = U,,s =pUs  = p  Re[f~], on ~?f~. (2.5) 

Here k = k(s) denotes the curvature of Of~ at z(s),  or in other words 
k = - f f / s  Formula  (2.5) can be rearranged as 

Re{[(p - k ) f + / f ' ~ ] ~ }  = 0, on ~f~. (2.6) 

Since (1.3) can be rewritten as If] = 1 on Of~, we have: 

0 =  2dss I l l2= Re[f'~J] = - I m  i . 

Therefore, we obtain: 

(p - k) + i ~ ~ Re[f~] = 0 on ~n.  (2.7) 

Let A be the subset of  0f~ where ( p  - k)  + i ~ f ' / f  = 0, and let B be the subset 
where us = Re[f~] = 0. By continuity,  A and B are closed subsets of  ~ ,  and 
(2.7) gives A w B = Of~. Notice that  B cannot  coincide with ~f2 otherwise, 
by the max imum principle, u would be constant  in f~, violating (1.3). 
Moreover,  in B we have f =  _+iJ thus, since ~?f~\A is in the interior of  B, by 
differentiation we obtain: 

f ' ~  = +_ i~ = -4- k J  = - ikf ,  in ~ n \ A .  

Consequently,  we have: 

f, 
- -  ~ = i ( p  - k )  in A, (2.8) 
f 

f, 
- -  ~ = - ik  in O~\A. (2.9) 
f 
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If A r 0f~, then (2.8), (2.9) would hold simultaneously at some point, which 
is impossible because p > 0, by (1.2), ( 1.3). Thus, A = c?fl and (2.8) holds in 

By the logarithmic residue formula, we obtain: 
L 

1 f lan l f ,  ~ ds = Z #J, (2.10) 
2~zi Jo f j =1 

where #1, �9 . . ,  #L are the multiplicities of the zeros of f i n  ~ (possibly, there 
are none!). By (2.8), we deduce: 

1 t Lanl L 
- -  ( p - k )  d s =  ~ #j, 
2~z jo j= l 

and since ~lo~ k ds = 2re, we obtain (2.1) with 

N = (number of zeros of U )  + 1. (2.11) 

Now, writing (2.8) as f ' ~ / f  = ip + ~/~ and integrating, we have: 

f ( z ( s ) )2 (s )  =f(z(O))~(O) e ips,  0 <-- ,7 <-- pal. 
By further integrating and noticing that 

[lanl flanl Clara[ 1 flanl flanl 
F(z(s ) )  ds = . u ds + i v ds = - u,, ds + i v ds = O, 

jo jo oo P j o  jo 

we arrive at 

r(z(s)) - e 'p', 0 < s < ]at) I, 
ip 

and (2.2) follows. 
Finally, we notice that the number of zeros of F in ~ is given by 

lfeF" 1 Cl~lfz p f levI = = d s = N .  
2h i  n--F dz  ~ i J o  ~ d s  ~ , o o  

3. Proof of Theorem 1.2 

We fix distinct points ~1, ' ' ' ,  ~K, K > 1, in the unit disk BI(0), and 
positive integers m l , . . . ,  me. Our aim is to find a univalent function 
Z: B l ( 0 ) - , f l  and a holomorphic function �9 on B1 such that the func- 
tion F = q b o ) c - l ,  defined on f2, satisfies conditions (2.3) and vanishes 
at zl . . . .  , ZK, Zk = Z(~k), k = 1 . . . .  , K, with respective multiplicities 
m l  , �9 . . , m K .  

Let u/(~) = F'(Z(~)), ~ ~ B1 (0). We have: 

�9 ' (C) = F ' ( Z ( r  = 
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hence 

, : I , ' (O 
z ' ( O  - 

~ ( 0  
On ~B1 (0), we impose: 

1 
I*1 = -  and Ivl  = 1, 

P 

so that (2.3) will be satisfied. We also require that @ vanishes at the points 
~1, �9 �9 �9 ~k with multiplicities ml, �9 �9 �9 mK. It follows that �9 should vanish at 
~ ,  �9 �9 �9 ~k, with multiplicities ml - 1 , . . . ,  mK -- 1 and at some other points 
r h , . . . ,  qz with multiplicities n ~ , . . . ,  nz such that ~ ~= ~ nl = K - 1. 

Thus, up to constant rotations �9 and �9 must have the following 
Blaschke product  representation: 

1 K / ~ _ ~  ~m~ 

(I)(~) = P k=~l t } l  Z ~-C;) ' (3.1) 

/-~-~_~-' fl (~-.,~' (3.2~ 
Therefore 

~'(0 pk=, j~ " \ i - ~ / "  Z : - -  k = 1  ]'Elk (~" - -  ~ k ) (  l - -  ~ ' & ) "  

Consequently 

1~ ~-~-- fl t '~ '~  ~''~z ., '-I~12 
Z'(0 = ~  1 - - ~ k ' = '  k~ --Y/l/ k=l - -  

k = ,  (r r - r  

Denoting by P the following polynomial 

[ 1 1  33, P(~)= k = l  ~ (~"- ~'k)(1- g~k)k=l ~" mk(( -- (k)(1 - ~Ck)' 

we may factor Z' as follows 

, fl (:-<-, Z'(() =p  P(O I ]  (1 - (('k)-2 . (3.4) 
k=l l=1 ~ - - ~ l )  

The degree d of  P is at most 2 ( K -  1), and P has the following property: 

p ( ~ )  = (()20 - K)p(~). (3.5) 

Therefore, if ~ r 0 is a root  of  P, also ~--1 is a root  of  P. Notice also that 
P does not  vanish on OB1. In fact, if I~1 = 1, then Z'(O r 0, since W(~) is 
bounded and ~'(ff) r 0. 
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Consequently, we may factor P as follows: 

J 

P(~) = A~ e I~ [(~ - ~l)( 1 - ~)1~' ,  
]=  1 

where: A r 0, ~j E Bl(0), {j r 0 j = 1 , . . . ,  J, and ~o + 2 ~J=~ vl = d. 
By (3.5), letting ~---,c~ yields: - ~  = 2 ( 1 - K )  + d ,  and hence 

0 + Z / : ,  = K -  1. 
We choose n t , . . . , n c ,  r / l , . . . , r / c  as functions of rn~ , . . . ,m~: ,  

It . . . . .  [K by imposing 

L = J + I ,  n j = v i ,  j = l  . . . .  , J ,  nL=~o, 
(3.6) 

r / /={l ,  j = l , . . . , J ,  /TL=0. 

With such a choice, we have: 

h Z'(.~) =A ( 1 -  ~.fk) 2 H (1 __~j)2v/, (3.7) 
P ~=t .i=t 

which is regular and never vanishes on all Bt (0). 
By Nehari 's  Theorem (see [D], Theorem 8.12), if ~ , . . . ,  ~ are close 

enough to zero, the primitive Z(~) of the rational function in (3.7) is 
univalent and provides us with the desired conformal mapping. Thus, by 
setting 

f~ = z(B~ (0)), z~. = Z(~-), k = 1 . . . .  , K, F = qb c~ Z 1, 

the proof  of  Theorem 1.2 is completed. 

Another Proof of Theorem 1.1. Given f2, if F has only one zero, say zt, 
with multiplicity mr, then K = 1 and N = m~. We can choose the mapping 
Z to be such that Z(0) = zt, that is ~t = 0. Hence, (3.7) becomes Z'(() = N/p, 
so that Z(~) = (N/p)~ + zt, that is f~ = z(Bt (0)) is a disk centered at zt with 
radius Nip = 10f~[/2rc. 

Vice versa, if f2 is a disk centered at z0 and with radius R, up to 
rotations, the univalent function Z: B t ( 0 ) - , f 2  is given by g ( ~ ) = z 0 + R ~ .  
Therefore g'(-~) = R, and hence G = 0, k = 1 , . . . ,  K, that is F vanishes only 
at Zo. 
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Abstract 

We consider the Stekloff eigenvalue problem (1.1)-( 1.2); Payne and Philippin conjectured that if 
u is an eigenfunction which satisfies the overdetermined condition IVu[ = 1 on ~ ,  then fl should be a 
disk. In this paper we show that this conjecture holds if and only if the complex potential F associated 
to u vanishes only at one point. Then we show how to construct non-symmetric domains in the case 
where F vanishes at more than one point. 
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