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Abstract
We continue the study of the overdetermined Stekloff eigenvalue problem (1.1)–

(1.3) below. In [1], we constructed a variety of non–symmetric planar domains for
which a solution of (1.1)–(1.3) exists. Here, we consider the problem in dimension
n ≥ 3, and prove that if there is a solution of (1.1)–(1.3) that satisfies an additional
integral condition, then the domain Ω must be a ball.

1 Introduction

This article is the continuation of the research [1] originated by a paper of Payne and

Philippin [14] concerning the Stekloff eigenvalue problem:

∆u = 0 in Ω,(1.1)

∂u

∂ν
= pu on ∂Ω.(1.2)

Here, Ω ⊂ IRn is a bounded domain with sufficiently smooth boundary ∂Ω, and ν denotes

the exterior normal unit vector to ∂Ω. It is well-known that this problem has infinitely many

eigenvalues 0 = p1 < p2 ≤ p3 ≤ . . . (see [16]).

In [14], the authors proved, for n = 2, that if there is an eigenfunction u of (1.1), (1.2),

corresponding to the second eigenvalue p2, which also satisfies the overdetermined condition:

(1.3) |Du| = 1 on ∂Ω,

then u is linear and Ω must be a disk. They also pointed out that this result does not hold

if ∂Ω is not of class C2.

A natural question arises: if ∂Ω ∈ C2, suppose that for some p > 0 there exists a solution

of (1.1), (1.2) satisfying (1.3); does this imply that Ω is a ball?

In [1], we examined the two–dimensional case and constructed a variety of non–symmetric

domains for which a solution of (1.1)–(1.3) exists.

In the present paper, we are concerned with the case n ≥ 3. The problem shows quite

different features; in order to understand this, it is worth looking at solutions of (1.1)–(1.3)

in the unit ball Bn of IRn.

In this case, ν(x) = x on ∂Bn; by (1.2), since x · Du(x) − pu(x) is harmonic in Bn, we

have that x ·Du(x) = pu(x), x ∈ Bn, that is u must be a homogeneous harmonic polynomial
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of degree p. Therefore, (1.1)–(1.3) can be transformed into the problem:

∆̃u = g(u),(1.4)

|∇u|2 = f(u),(1.5)

on Sn−1 = ∂Bn, where g(u) = −p(p + n − 2)u, f(u) = 1 − p2u2. Here, ∆̃ and ∇ denote the

Laplace–Beltrami operator and tangential gradient on Sn−1, respectively.

When n = 2, all solutions of (1.4), (1.5) are given by { 1
p cos(ps + s0)}p=1,2,..., where

s is the arclength parameter on S1. Note that the above set is complete in the space

{v ∈ L2(S1) :
∫

S1 vds = 0}, and describes all the traces of the Stekloff eigenfunctions in the

disk.

If n ≥ 3, solutions of a system of type (1.4), (1.5), with f and g smooth, are well–

known in the literature as isoparametric functions. Their level surfaces at regular values,

the isoparametric surfaces, enjoy the nice geometric property of having all their principal

curvatures constant.

Up to this date, a complete classification of these surfaces on the sphere is not available.

Here, we want to stress the fact that they seem to be very rare. When n = 3, for example,

it can be shown that the solutions of (1.4), (1.5) are just the restrictions to S2 of linear

functions on IR3. More results and examples in this direction are contained in the works of E.

Cartan [2], [3], who first considered the isoparametric surfaces on the sphere, Nomizu [12],

[13], Munzner [11], Ferus–Karcher–Munzner [7], and Wang Q. M. [17], [18], who examined

them on a complete Riemannian manifold. We refer the reader to [18] for a survey on the

subject.

The main result of this paper is an analogue to Payne and Philippin’s theorem.

Theorem 1.1. Let Ω ⊂ IRn be a contractible bounded domain with boundary ∂Ω ∈ C2.

Suppose that there exists a solution u of (1.1)–(1.3) which also satisfies:

(1.6)

∫

∂Ω

(u− x ·Du) u dσ = 0.

Then, Ω is a ball.

The proof of this result is based on Theorem 2.1, that essentially asserts that if u is a

solution of equation (1.5) on a Riemannian manifold M, then the sets {x ∈ M : u(x) = c},

at critical values c, are smooth submanifolds of M. This quite surprising result is proved in

[17], in a slightly different setting. In §2, we produce an alternative proof, based on some

elementary arguments and with a more analytical flavour.

This paper is organized as follows. In §2, we state and prove Theorem 2.1. Section 3

is devoted to the proof of Theorem 1.1, as a consequence of Proposition 3.1 and Theorem

3.2.

2 Equation (1.5) on manifolds

We start with some preliminary notations. We consider a C2 manifold M, without boundary,

of dimensionm, endowed with a Riemannian metric, which is represented by {gij(x)}i,j=1,...,m

in the local coordinates x = (x1, . . . , xm). If v = (v1, . . . , vm) and w = (w1, . . . , wm) are tangent

vector fields on M, we define:

< v,w >= gij(x)viwj , |v| =< v, v >
1
2 .
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Here, we adopt the usual assumption on the sum over repeated indices.

Given a C1 function on M, we introduce the gradient of u on M as

∇u = (∇1u, . . . ,∇mu), ∇iu = gij(x)uxj , i = 1, . . . ,m;

here {gij(x)}i,j=1,...,m is the inverse of the matrix {gij(x)}i,j=1,...,m.

We denote by d : M ×M → IR the geodetic distance on M ; moreover, for any x ∈M and

any closed subset C ⊂M, it is well defined the number:

d(x,C) = min{d(x, y) : y ∈ C}.

Let D be a bounded domain in M. We shall look at solutions of the following boundary

value problem:

|∇φ|2 = f(φ) in D,

0 < φ ≤ Φ in D,
(2.1)

φ = 0 on ∂D.(2.2)

Here f ∈ C1((0,Φ]) is a function satisfying

(2.3)
f > 0 on (0,Φ),

f(Φ) = 0, f ′(Φ) < 0.

Notice that (2.1) and (2.3) easily imply that

(2.4) max
D

φ = Φ.

Theorem 2.1. Let D ⊂ M be a bounded domain with boundary ∂D ∈ C2. Let f be a

C1((0,Φ]) function satisfying (2.3).

If φ ∈ C(D)∩C2(D) is a solution of (2.1)–(2.2), then for some integer h, 0 ≤ h ≤ m− 1,

the extremal level set

(2.5) DΦ = {x ∈ D : φ(x) = Φ}

is an h–dimensional C1 connected compact submanifold without boundary of M.

Moreover, D satisfies:

(2.6) D = {x ∈M : d(x,DΦ) < L},

where

(2.7) L =

Φ
∫

0

ds
√

f(s)
.

Corollary 2.2. If D is contractible, then DΦ consists of a single point, and D is a

geodetic ball centered at DΦ.

Remark. The thesis of Theorem 2.1 provides us with a nearly sufficient condition on

D for the existence of a solution of (2.1)–(2.3). In fact, let 0 ≤ h ≤ m − 1; given any C2

h–dimensional compact submanifold without boundary DΦ in M, let K be the maximum
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of the absolute value of all its principal curvatures. Then, for any L < 1/K, the domain D

defined by (2.6) is such that a solution of (2.1)–(2.3) exists; take for instance

(2.8) φ(x) =
√

L2 − d(x,DΦ)2;

in this case we have Φ = L and f(φ) = L2φ−2 − 1.

Lemma 2.3. The closed set DΦ defined in (2.5) has no interior points.

Proof. Suppose by contradiction that int(DΦ) is not empty.

Pick a point x0 ∈ int(DΦ) \ int(DΦ); then x0 ∈ ∂DΦ, since int(DΦ) ⊆ DΦ. Let U be a

coordinate neighborhood of x0 and let x ∈ (D \DΦ) ∩U. By (2.1), for every k = 1, . . . ,m, we

have:

f ′(φ(x))φxk (x) = ∂xk |∇φ|2 = 2φxixk(x)gij(x)φxj + gij
xk(x)φxi(x)φxj (x).

Since {gij(x)} is uniformly positive definite, by the boundedness of the gij
xk(x)’s and the

Schwarz inequality, we may find positive constants c1 and c2 such that

[
m

∑

i,j=1

φxixj (x)2]
1
2 ≥ c1|f ′(φ(x))| − c2|∇φ(x)|,

for all x ∈ (D \DΦ) ∩ U. Hence,

lim
D\DΦ∋x→x0

[

m
∑

i,j=1

φxixj (x)2]
1
2 ≥ c1|f ′(Φ)| > 0,

whereas, obviously

lim
int(DΦ)∋x→x0

[

m
∑

i,j=1

φxixj (x)2]
1
2 = 0.

This is a contradiction.

Let us set now:

(2.9)
F (t) =

∫ t

0

ds
√

f(s)
, t ∈ [0,Φ],

δ(x) = F (φ(x)), x ∈M.

Notice that δ ∈ C(D) ∩ C2(D \DΦ), and also

(2.10)

|∇δ| = 1 in D \DΦ,

δ = 0 on ∂D, δ = L on DΦ,

0 < δ < L in D \DΦ,

where L is given by (2.7).

The next lemma shows the relationship between δ and the distance function. We shall

use the following definition.

Definition 2.4. Let x ∈ D \ DΦ. The stream line γ(x; ·) of δ passing through x is the

maximal solution of the initial value problem:

(2.11) γ′(x; t) = ∇δ(γ(x; t)), γ(x; 0) = x.

We denote by (α(x), β(x)), α(x) < 0 < β(x), the maximal existence interval for γ(x; t).
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Lemma 2.4. For any x ∈ D \DΦ, we have:

(2.12) α(x) = −δ(x), β(x) = L− δ(x);

moreover

(2.13) lim
t→−δ(x)+

γ(x; t) = x0, lim
t→[L−δ(x)]+

γ(x; t) = xL,

for some x0 ∈ ∂D, xL ∈ DΦ, and

(2.14) lim
t→−δ(x)+

γ′(x; t) = ξ0, lim
t→[L−δ(x)]+

γ′(x; t) = ξL,

for some ξ0, ξL such that |ξ0|, |ξL| = 1.

The stream line γ(x; t), t ∈ [−δ(x), 0] (resp. t ∈ [0, L − δ(x)]) is the unique minimal

geodesic joining x0 to x (resp. x to xL).

Finally, we have:

(2.15) δ(x) = d(x, ∂D), L− δ(x) = d(x,DΦ), x ∈ D.

Remark. Solutions of the eikonal equation in (2.10) have been studied by several

authors and from different viewpoints (see [9], and the references therein). For instance, it

is not difficullt to prove (2.15) in a small one–sided neighborhood of a smooth hyprsurface

(see e. g. [4], II.9). The above lemma gives a global version of this type of result adapted

to the specific problem (2.10). Observe that, in this case, no smoothness is required on ∂D

or DΦ.

Proof. By (2.10) and (2.11), we have d
dtδ(γ(x; t)) = 1, for any t ∈ (α(x), β(x)), that is

(2.16) δ(γ(x; t)) = δ(x) + t, t ∈ (α(x), β(x)).

Since (2.11) is an autonomous system with bounded right–hand side, γ(x; t) is defined for

all (possible) t’s, that is for all −δ(x) < t < L− δ(x), since 0 < δ < L in D \DΦ. This implies

(2.12).

The existence of the limits in (2.13) is a consequence of the fact that γ(x; t) is uniformly

Lipschitz continuous in t, by (2.10) and (2.11). Therefore, γ(x; t) can be extended contin-

uously to [−δ(x), L − δ(x)], and also, by (2.16), we obtain that x0 ∈ ∂D and xL ∈ DΦ, since

δ = 0 only on ∂D and δ = L only on DΦ.

Let r = d(x, ∂D) and let x∗0 ∈ ∂D be such that d(x, x∗0) = r. Since γ(x; t) → x0 as

t→ −δ(x)+, we obtain that d(γ(x; t), ∂D) → 0 as t→ −δ(x)+; thus,

lim inf
t→−δ(x)+

d(x, γ(x; t)) ≥ d(x, ∂D) = r.

Notice that (2.10) and (2.11) imply that γ(x; ·) is parametrized by arclength, and hence

|t| ≥ d(x, γ(x; t)), for every t ∈ (−δ(x), L− δ(x)), thus, letting t→ −δ(x), we obtain δ(x) ≥ r.

Let γ̃ be the minimal geodesic joining x to x∗0, parametrized by arclength as follows:

γ̃ = γ̃(t), −r ≤ t ≤ 0, γ̃(−r) = x∗0, γ̃(0) = x. We have:

r ≤ δ(x) =

∫ 0

−r

< ∇δ(γ̃(t), γ̃′(t) > dt ≤

∫ 0

−r

|γ̃′(t)| dt = r.
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Consequently, δ(x) = r and also γ̃′(t) = ∇δ(γ̃(t)), for all t ∈ (−r, 0). hence, the first formula

in (2.15) holds for x ∈ D \DΦ, and by lemma 2.3, for all x ∈ D. The geodesic γ̃(t) is uniquely

determined and coincides with γ(x; t) when t ∈ [−δ(x), 0]. This also implies that x∗0 = x0

and that γ(x; t), with t ∈ [−δ(x), 0], is the minimal geodesic joining x0 to x. Thus, γ(x; t),

t ∈ [−δ(x), 0], solves the second order differential equation for geodesics (see e.g. [5], Ch. 3),

which has continuous coefficients, M being C2-smooth. We deduce that γ′(x; t) is uniformly

Lipschitz continuous and (2.14) follows. Likewise, we obtain the latter formulas in (2.12),

(2.13), (2.14), and (2.15).

Lemma 2.5. The set DΦ is a deformation retract of D.

Proof. It suffices to verify that the mapping τ : D × [0, 1] → D, defined by

τ(x, r) =

{

γ(x; r[L − δ(x)]), for (x, r) ∈ (D \DΦ) × [0, 1],
x, for (x, r) ∈ DΦ × [0, 1],

is continuous. In fact, since τ(·, 0) = idD, τ(D, r) = DΦ, and τ(·, r) = idDΦ
, for all r ∈ [0, 1],

we have that τ(·, 1) : D → DΦ is retraction homotopic to idD.

Remark. By the above lemma and [8], Ch. 1, we obtain:

(i) DΦ is connected,

(ii) if D is contractible, then also DΦ is contractible.

Proof of Corollary 2.2. By Theorem 2.1 and the above lemma and remark, if D is

contractible, then DΦ is contractible compact manifold without boundary. Classical results

imply that h = dimDΦ = 0 (see [10], theorem 4.1 and example p. 21, and [6], corollary

17.6.1).

Proof of Theorem 2.1. It is enough to prove that DΦ is locally a submanifold of M,

since DΦ is connected by the above remark and is compact by (2.10).

Let P ∈ DΦ and fix local coordinates x1, . . . , xm near P such that P = (0, . . . , 0) and

gij(P ) = δij , the Krönecker delta.

Observe that, by (2.15), and by rephrasing the arguments of lemma 2.5, if we choose

Q ∈ ∂D such that d(P,Q) = d(P, ∂D), then there exists a unique minimal geodesic γ joining

P to Q which is a stream line of δ (and also of φ, by (2.9)).

Let TP (M) be the tangent space to M at P and define:

Ξ(P ) ={ξ ∈ TP (M) : |ξ| = 1,

and ∃ a stream line γ(t), t ∈ [0, L] of δ : γ(L) = P, γ′(L) = ξ};

this set is not empty by (2.14). Let us continue each ξ ∈ Ξ(P ) as a constant vector field in

a neighborhood V of Q, with respect to the chosen coordinates x1, . . . , xm.

Pick ξ ∈ Ξ(P ) and differentiate (2.1) along ξ; in a neighborhood of P, we have:

2gijφxiξφxj + gij
ξ φxiφxj = f ′(φ)φξ .

We obtain the same formula (with ξ replaced by η ) by differentiating (2.1) along any

direction η orthogonal to ξ.

Restricting these formulas to a stream line γ(t) of δ through P with γ′(L) = ξ, dividing

by |∇φ(γ(t))|, and letting t→ L, yield:

φξξ(P ) =
1

2
f ′(Φ) < 0, ∀ξ ∈ Ξ(P ),(2.17)

φξη(P ) = 0, ∀ξ ∈ Ξ(P ), ∀η,< η, ξ >= 0.(2.18)
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Let k = k(P ) be the maximum number of linearly indipendent elements in Ξ(P ) and let

ξ1, . . . , ξk ∈ Ξ(P ) be a choice of such elements. By (2.17) and (2.18), we get for i, j = 1, . . . , k

(2.19) φξiξj
(P ) =< ξi, ξj > φξiξi

(P ) =
1

2
< ξi, ξj > f ′(Φ).

Therefore, the C1 mapping ψ : V → IRk defined by ψ(x) = (φξ1
(x), . . . , φξk

(x)) has rank k at

P, by (2.19) and (2.18), and also ψ(P ) = (0, . . . , 0) since P ∈ DΦ. By the implicit function

theorem, we may find a neighborhood U ⊆ V of P such that N = {x ∈ U : ψ(x) = (0, . . . , 0)}

is a C1 submanifold. Furthermore, the normal space to N at P is spanned by ξ1, . . . , ξk.

Obviously DΦ ∩ U ⊆ N, since |∇φ| = 0 on DΦ. In order to conclude the proof, we need

to show that DΦ ∩ U = N, by possibly restricting U. The number h in the statement of the

theorem will be given by m− k.

Let us denote by Bε(P ) the geodetic ball in M centered at P and of radius ε > 0. Suppose

by contradiction that for any ε > 0 there exists Pε ∈ (N \DΦ) ∩Bε(P ). Let P ∗
ε ∈ DΦ be such

that d(Pε, P ∗
ε ) ≤ d(Pε, P ) < ε, and hence d(P, P ∗

ε ) < 2ε.

Let γε be the stream line of δ through Pε; by lemma 2.5 we have that its endpoint on DΦ

is P ∗
ε . Let us parametrize γε by arclength in such a way that γε(L) = P ∗

ε , and let ξε = γ′ε(L);

ξε is a unit vector in TP∗

ε
(M). By possibly passing to subsequences, Pε and P ∗

ε → P, and

ξε → ξ as ε → 0, where ξ ∈ TP (M) is a unit vector. By the continuous dependence on

the Cauchy data, for all t ∈ [0, L], γε(t) converges to γ(t), where γ is a geodesic such that

γ(L) = P and γ′(L) = ξ. Thus, γ is a stream line of δ, since all γε’s are stream lines of δ. In

particular, we deduce ξ ∈ Ξ(P ).

We will show now that ξ ∈ TP (N), contradicting the fact that Ξ(P ) is contained in

the normal space to N at P. We choose a local coordinate system near P such that N is

represented by the equations xh+1 = · · · = xm = 0. In this system Pε = (x1
ε, . . . , xh

ε , 0, . . . , 0),

and analogously for P ∗
ε . Since by Taylor’s formula, we have:

P ∗
ε = Pε + d(P ∗

ε , Pε)ξε + o(d(P ∗
ε , Pε)), as ε→ 0,

we obtain that ξi
ε → 0 as ε→ 0, ∀i = h+ 1, . . . ,m.

This means that ξi = 0, i = h+ 1, . . . ,m, that is ξ ∈ TP (N).

Finally (2.6) and (2.7) follow from (2.10) and (2.15).

3 Overdetermined Stekloff eigenfunctions

In the sequel, we will denote by x = (x′, xn) a point of IRn, where x′ ∈ IRn−1 has coordinates

(x1, . . . , xn−1); ν = (ν1, . . . , νn) will indicate the exterior normal unit vector to ∂Ω.

We begin with the following result, which has its own interest.

Proposition 3.1 Let u ∈ C2(Ω) ∩ C1(Ω) satisfy (1.1) and (1.3). If

(3.1)

∫

∂Ω

[u− x ·Du]
∂u

∂ν
dσ = 0,

then u is linear.

Proof. By Rellich’s identity (see [15]),

∫

∂Ω

{2(x ·Du)
∂u

∂ν
− |Du|2(x · ν)} dσ =

∫

Ω

{2(x ·Du)∆u+ (2 −N)|Du|2} dx.
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By (1.1) and (1.3), we obtain via the divergence theorem:

∫

∂Ω

{2(x ·Du)
∂u

∂ν
− (x · ν)} dσ = 2

∫

∂Ω

u
∂u

∂ν
dσ −N

∫

Ω

|Du|2 dx.

Thus, (3.1) yields:

(3.2) N

∫

Ω

|Du|2 dx =

∫

∂Ω

x · ν dσ = N |Ω|,

where |Ω| is the Lebesgue measure of Ω.

Since |Du|2 is subharmonic in Ω, by (1.3), we have |Du| ≤ 1 in Ω, so that (2.2) implies

|Du| ≡ 1 in Ω. Therefore, 2
∑n

i,j=1 u
2
ij = ∆|Du|2 ≡ 0 in Ω, and hence u is linear in Ω.

Theorem 1.1 will be a consequence of the following more general result.

Theorem 3.2 Let Ω ⊂ IRn be a bounded domain with boundary ∂Ω ∈ C2. Suppose that

u is a linear solution of (1.1)–(1.3).

Then, up to a rigid change of coordinates, for some h = 0, 1, . . . , n− 2, there exists a C1

h-dimensional submanifold DΦ ⊂ {x ∈ IRn : xn = 0}, such that

(3.3) Ω = {x ∈ IRn : dist(x,DΦ) <
1

p
}.

Furthermore, if Ω is contractible, then Ω is a ball.

Proof. Up to a rigid change of coordinates, we may assume that u(x) = xn. By (1.2),

we have:

(3.4) νn = pxn on ∂Ω.

If we consider Γ = {x ∈ ∂Ω : xn > 0}, we have that νn > 0 on Γ, hence Γ is the graph of a

function φ = φ(x′), where x′ ranges over D = {x ∈ Ω : xn = 0}. The vector ν is then given by

{1 + |∇φ|2}−1/2(−∇φ, 1) on D, where ∇ denotes the gradient in the variable x′ ∈ D.

Therefore, (3.4) yields {1 + |∇φ|2}−1/2 = pxn = pφ, that is

(3.5)
|∇φ|2 =

1

p2φ2
− 1 in D,

φ = 0 on ∂D.

Since ∂Ω ∈ C2, we also have that φ ∈ C(D) ∩ C2(D); hence, by setting m = n − 1, theorem

3.1 applies to the (flat) domain D. Note that DΦ = {x′ ∈ D : φ(x′) = 1
p} and that

(3.6) φ(x′) =

√

1

p2
− dist(x′, DΦ)2.

Therefore,

{x ∈ Ω : xn > 0} = {x ∈ IRn : xn > 0, dist(x,DΦ) <
1

p
}

and, by the same argument,

{x ∈ Ω : xn < 0} = {x ∈ IRn : xn < 0, dist(x,DΦ) <
1

p
}.

Consequently, we obtain (3.3).
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Finally, one easily sees that D is a deformation retract of Ω, and hence D is contractible,

if Ω is so. Corollary 2.2 implies that D is an (n − 1)–dimensional ball, that is, by (3.6), Ω

is an n–dimensional ball

Proof of Theorem 1.1. By (1.1)–(1.3), (1.6), and proposition 3.1, we have that u is

linear, and hence Theorem 3.2 applies.
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