Symmetry and non-symmetry for the overdetermined Stekloff eigenvalue problem II*

G. Alessandrini ${ }^{\dagger}$
R. Magnanini \ddagger

Abstract

We continue the study of the overdetermined Stekloff eigenvalue problem (1.1)(1.3) below. In [1], we constructed a variety of non-symmetric planar domains for which a solution of (1.1)-(1.3) exists. Here, we consider the problem in dimension $n \geq 3$, and prove that if there is a solution of (1.1)-(1.3) that satisfies an additional integral condition, then the domain Ω must be a ball.

1 Introduction

This article is the continuation of the research [1] originated by a paper of Payne and Philippin [14] concerning the Stekloff eigenvalue problem:

$$
\begin{align*}
& \Delta u=0 \quad \text { in } \Omega \tag{1.1}\\
& \frac{\partial u}{\partial \nu}=p u \quad \text { on } \partial \Omega . \tag{1.2}
\end{align*}
$$

Here, $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with sufficiently smooth boundary $\partial \Omega$, and ν denotes the exterior normal unit vector to $\partial \Omega$. It is well-known that this problem has infinitely many eigenvalues $0=p_{1}<p_{2} \leq p_{3} \leq \ldots$ (see [16]).

In [14], the authors proved, for $n=2$, that if there is an eigenfunction u of (1.1), (1.2), corresponding to the second eigenvalue p_{2}, which also satisfies the overdetermined condition:

$$
\begin{equation*}
|D u|=1 \quad \text { on } \partial \Omega, \tag{1.3}
\end{equation*}
$$

then u is linear and Ω must be a disk. They also pointed out that this result does not hold if $\partial \Omega$ is not of class C^{2}.

A natural question arises: if $\partial \Omega \in C^{2}$, suppose that for some $p>0$ there exists a solution of (1.1), (1.2) satisfying (1.3); does this imply that Ω is a ball?

In [1], we examined the two-dimensional case and constructed a variety of non-symmetric domains for which a solution of (1.1)-(1.3) exists.

In the present paper, we are concerned with the case $n \geq 3$. The problem shows quite different features; in order to understand this, it is worth looking at solutions of (1.1)-(1.3) in the unit ball B_{n} of \mathbb{R}^{n}.

In this case, $\nu(x)=x$ on ∂B_{n}; by (1.2), since $x \cdot D u(x)-p u(x)$ is harmonic in B_{n}, we have that $x \cdot D u(x)=p u(x), x \in B_{n}$, that is u must be a homogeneous harmonic polynomial

[^0]of degree p. Therefore, (1.1)-(1.3) can be transformed into the problem:
\[

$$
\begin{align*}
& \tilde{\Delta} u=g(u), \tag{1.4}\\
& |\nabla u|^{2}=f(u), \tag{1.5}
\end{align*}
$$
\]

on $S^{n-1}=\partial B_{n}$, where $g(u)=-p(p+n-2) u, f(u)=1-p^{2} u^{2}$. Here, $\tilde{\Delta}$ and ∇ denote the Laplace-Beltrami operator and tangential gradient on S^{n-1}, respectively.

When $n=2$, all solutions of (1.4), (1.5) are given by $\left\{\frac{1}{p} \cos \left(p s+s_{0}\right)\right\}_{p=1,2, \ldots}$, where s is the arclength parameter on S^{1}. Note that the above set is complete in the space $\left\{v \in L^{2}\left(S^{1}\right): \int_{S^{1}} v d s=0\right\}$, and describes all the traces of the Stekloff eigenfunctions in the disk.

If $n \geq 3$, solutions of a system of type (1.4), (1.5), with f and g smooth, are wellknown in the literature as isoparametric functions. Their level surfaces at regular values, the isoparametric surfaces, enjoy the nice geometric property of having all their principal curvatures constant.

Up to this date, a complete classification of these surfaces on the sphere is not available. Here, we want to stress the fact that they seem to be very rare. When $n=3$, for example, it can be shown that the solutions of (1.4), (1.5) are just the restrictions to S^{2} of linear functions on \mathbb{R}^{3}. More results and examples in this direction are contained in the works of E . Cartan [2], [3], who first considered the isoparametric surfaces on the sphere, Nomizu [12], [13], Munzner [11], Ferus-Karcher-Munzner [7], and Wang Q. M. [17], [18], who examined them on a complete Riemannian manifold. We refer the reader to [18] for a survey on the subject.

The main result of this paper is an analogue to Payne and Philippin's theorem.
Theorem 1.1. Let $\Omega \subset \mathbb{R}^{n}$ be a contractible bounded domain with boundary $\partial \Omega \in C^{2}$. Suppose that there exists a solution u of (1.1)-(1.3) which also satisfies:

$$
\begin{equation*}
\int_{\partial \Omega}(u-x \cdot D u) u d \sigma=0 \tag{1.6}
\end{equation*}
$$

Then, Ω is a ball.
The proof of this result is based on Theorem 2.1, that essentially asserts that if u is a solution of equation (1.5) on a Riemannian manifold M, then the sets $\{x \in M: u(x)=c\}$, at critical values c, are smooth submanifolds of M. This quite surprising result is proved in [17], in a slightly different setting. In $\S 2$, we produce an alternative proof, based on some elementary arguments and with a more analytical flavour.

This paper is organized as follows. In §2, we state and prove Theorem 2.1. Section 3 is devoted to the proof of Theorem 1.1, as a consequence of Proposition 3.1 and Theorem 3.2.

2 Equation (1.5) on manifolds

We start with some preliminary notations. We consider a C^{2} manifold M, without boundary, of dimension m, endowed with a Riemannian metric, which is represented by $\left\{g_{i j}(x)\right\}_{i, j=1, \ldots, m}$ in the local coordinates $x=\left(x^{1}, \ldots, x^{m}\right)$. If $v=\left(v^{1}, \ldots, v^{m}\right)$ and $w=\left(w^{1}, \ldots, w^{m}\right)$ are tangent vector fields on M, we define:

$$
<v, w>=g_{i j}(x) v^{i} w^{j}, \quad|v|=\langle v, v\rangle^{\frac{1}{2}} .
$$

Here, we adopt the usual assumption on the sum over repeated indices.
Given a C^{1} function on M, we introduce the gradient of u on M as

$$
\nabla u=\left(\nabla_{1} u, \ldots, \nabla_{m} u\right), \quad \nabla_{i} u=g^{i j}(x) u_{x^{j}}, \quad i=1, \ldots, m ;
$$

here $\left\{g^{i j}(x)\right\}_{i, j=1, \ldots, m}$ is the inverse of the matrix $\left\{g_{i j}(x)\right\}_{i, j=1, \ldots, m}$.
We denote by $d: M \times M \rightarrow \mathbb{R}$ the geodetic distance on M; moreover, for any $x \in M$ and any closed subset $C \subset M$, it is well defined the number:

$$
d(x, C)=\min \{d(x, y): y \in C\}
$$

Let D be a bounded domain in M. We shall look at solutions of the following boundary value problem:

$$
\begin{align*}
& |\nabla \phi|^{2}=f(\phi) \text { in } D \\
& 0<\phi \leq \Phi \text { in } D \tag{2.1}\\
& \phi=0 \quad \text { on } \partial D . \tag{2.2}
\end{align*}
$$

Here $f \in C^{1}((0, \Phi])$ is a function satisfying

$$
\begin{align*}
& f>0 \quad \text { on } \quad(0, \Phi) \\
& f(\Phi)=0, \quad f^{\prime}(\Phi)<0 \tag{2.3}
\end{align*}
$$

Notice that (2.1) and (2.3) easily imply that

$$
\begin{equation*}
\max _{\bar{D}} \phi=\Phi \tag{2.4}
\end{equation*}
$$

ThEOREM 2.1. Let $D \subset M$ be a bounded domain with boundary $\partial D \in C^{2}$. Let f be a $C^{1}((0, \Phi])$ function satisfying (2.3).

If $\phi \in C(\bar{D}) \cap C^{2}(D)$ is a solution of (2.1)-(2.2), then for some integer $h, 0 \leq h \leq m-1$, the extremal level set

$$
\begin{equation*}
D_{\Phi}=\{x \in D: \phi(x)=\Phi\} \tag{2.5}
\end{equation*}
$$

is an h-dimensional C^{1} connected compact submanifold without boundary of M.
Moreover, D satisfies:

$$
\begin{equation*}
D=\left\{x \in M: d\left(x, D_{\Phi}\right)<L\right\} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
L=\int_{0}^{\Phi} \frac{d s}{\sqrt{f(s)}} \tag{2.7}
\end{equation*}
$$

Corollary 2.2. If D is contractible, then D_{Φ} consists of a single point, and D is a geodetic ball centered at D_{Φ}.

REmARK. The thesis of Theorem 2.1 provides us with a nearly sufficient condition on D for the existence of a solution of (2.1)-(2.3). In fact, let $0 \leq h \leq m-1$; given any C^{2} h-dimensional compact submanifold without boundary D_{Φ} in M, let K be the maximum
of the absolute value of all its principal curvatures. Then, for any $L<1 / K$, the domain D defined by (2.6) is such that a solution of (2.1)-(2.3) exists; take for instance

$$
\begin{equation*}
\phi(x)=\sqrt{L^{2}-d\left(x, D_{\Phi}\right)^{2}} ; \tag{2.8}
\end{equation*}
$$

in this case we have $\Phi=L$ and $f(\phi)=L^{2} \phi^{-2}-1$.
Lemma 2.3. The closed set D_{Φ} defined in (2.5) has no interior points.
Proof. Suppose by contradiction that $\operatorname{int}\left(D_{\Phi}\right)$ is not empty.
Pick a point $x_{0} \in \overline{\operatorname{int}\left(D_{\Phi}\right)} \backslash \operatorname{int}\left(D_{\Phi}\right)$; then $x_{0} \in \partial D_{\Phi}$, since $\overline{\operatorname{int}\left(D_{\Phi}\right)} \subseteq D_{\Phi}$. Let U be a coordinate neighborhood of x_{0} and let $x \in\left(D \backslash D_{\Phi}\right) \cap U$. By (2.1), for every $k=1, \ldots, m$, we have:

$$
f^{\prime}(\phi(x)) \phi_{x^{k}}(x)=\partial_{x^{k}}|\nabla \phi|^{2}=2 \phi_{x^{i} x^{k}}(x) g^{i j}(x) \phi_{x^{j}}+g_{x^{k}}^{i j}(x) \phi_{x^{i}}(x) \phi_{x^{j}}(x) .
$$

Since $\left\{g^{i j}(x)\right\}$ is uniformly positive definite, by the boundedness of the $g_{x^{k}}^{i j}(x)$'s and the Schwarz inequality, we may find positive constants c_{1} and c_{2} such that

$$
\left[\sum_{i, j=1}^{m} \phi_{x^{i} x^{j}}(x)^{2}\right]^{\frac{1}{2}} \geq c_{1}\left|f^{\prime}(\phi(x))\right|-c_{2}|\nabla \phi(x)|,
$$

for all $x \in\left(D \backslash D_{\Phi}\right) \cap U$. Hence,

$$
\lim _{D \backslash D_{\Phi} \ni x \rightarrow x_{0}}\left[\sum_{i, j=1}^{m} \phi_{x^{i} x^{j}}(x)^{2}\right]^{\frac{1}{2}} \geq c_{1}\left|f^{\prime}(\Phi)\right|>0,
$$

whereas, obviously

$$
\lim _{\operatorname{int}\left(D_{\Phi}\right) \ni x \rightarrow x_{0}}\left[\sum_{i, j=1}^{m} \phi_{x^{i} x^{j}}(x)^{2}\right]^{\frac{1}{2}}=0 .
$$

This is a contradiction.
Let us set now:

$$
\begin{align*}
& F(t)=\int_{0}^{t} \frac{d s}{\sqrt{f(s)}}, \quad t \in[0, \Phi], \tag{2.9}\\
& \delta(x)=F(\phi(x)), \quad x \in M .
\end{align*}
$$

Notice that $\delta \in C(\bar{D}) \cap C^{2}\left(D \backslash D_{\Phi}\right)$, and also

$$
\begin{align*}
& |\nabla \delta|=1 \quad \text { in } D \backslash D_{\Phi}, \\
& \delta=0 \quad \text { on } \partial D, \delta=L \quad \text { on } D_{\Phi}, \tag{2.10}\\
& 0<\delta<L \quad \text { in } D \backslash D_{\Phi},
\end{align*}
$$

where L is given by (2.7).
The next lemma shows the relationship between δ and the distance function. We shall use the following definition.

Definition 2.4. Let $x \in D \backslash D_{\Phi}$. The stream line $\gamma(x ; \cdot)$ of δ passing through x is the maximal solution of the initial value problem:

$$
\begin{equation*}
\gamma^{\prime}(x ; t)=\nabla \delta(\gamma(x ; t)), \quad \gamma(x ; 0)=x . \tag{2.11}
\end{equation*}
$$

We denote by $(\alpha(x), \beta(x)), \alpha(x)<0<\beta(x)$, the maximal existence interval for $\gamma(x ; t)$.

Lemma 2.4. For any $x \in D \backslash D_{\Phi}$, we have:

$$
\begin{equation*}
\alpha(x)=-\delta(x), \quad \beta(x)=L-\delta(x) ; \tag{2.12}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\lim _{t \rightarrow-\delta(x)^{+}} \gamma(x ; t)=x_{0}, \quad \lim _{t \rightarrow[L-\delta(x)]^{+}} \gamma(x ; t)=x_{L} \tag{2.13}
\end{equation*}
$$

for some $x_{0} \in \partial D, x_{L} \in D_{\Phi}$, and

$$
\begin{equation*}
\lim _{t \rightarrow-\delta(x)^{+}} \gamma^{\prime}(x ; t)=\xi_{0}, \quad \lim _{t \rightarrow[L-\delta(x)]^{+}} \gamma^{\prime}(x ; t)=\xi_{L} \tag{2.14}
\end{equation*}
$$

for some ξ_{0}, ξ_{L} such that $\left|\xi_{0}\right|,\left|\xi_{L}\right|=1$.
The stream line $\gamma(x ; t), t \in[-\delta(x), 0]$ (resp. $t \in[0, L-\delta(x)]$) is the unique minimal geodesic joining x_{0} to x (resp. x to x_{L}).

Finally, we have:

$$
\begin{equation*}
\delta(x)=d(x, \partial D), \quad L-\delta(x)=d\left(x, D_{\Phi}\right), \quad x \in \bar{D} \tag{2.15}
\end{equation*}
$$

REMARK. Solutions of the eikonal equation in (2.10) have been studied by several authors and from different viewpoints (see [9], and the references therein). For instance, it is not difficullt to prove (2.15) in a small one-sided neighborhood of a smooth hyprsurface (see e. g. [4], II.9). The above lemma gives a global version of this type of result adapted to the specific problem (2.10). Observe that, in this case, no smoothness is required on ∂D or D_{Φ}.

Proof. By (2.10) and (2.11), we have $\frac{d}{d t} \delta(\gamma(x ; t))=1$, for any $t \in(\alpha(x), \beta(x))$, that is

$$
\begin{equation*}
\delta(\gamma(x ; t))=\delta(x)+t, \quad t \in(\alpha(x), \beta(x)) \tag{2.16}
\end{equation*}
$$

Since (2.11) is an autonomous system with bounded right-hand side, $\gamma(x ; t)$ is defined for all (possible) t 's, that is for all $-\delta(x)<t<L-\delta(x)$, since $0<\delta<L$ in $D \backslash D_{\Phi}$. This implies (2.12).

The existence of the limits in (2.13) is a consequence of the fact that $\gamma(x ; t)$ is uniformly Lipschitz continuous in t, by (2.10) and (2.11). Therefore, $\gamma(x ; t)$ can be extended continuously to $[-\delta(x), L-\delta(x)]$, and also, by (2.16), we obtain that $x_{0} \in \partial D$ and $x_{L} \in D_{\Phi}$, since $\delta=0$ only on ∂D and $\delta=L$ only on D_{Φ}.

Let $r=d(x, \partial D)$ and let $x_{0}^{*} \in \partial D$ be such that $d\left(x, x_{0}^{*}\right)=r$. Since $\gamma(x ; t) \rightarrow x_{0}$ as $t \rightarrow-\delta(x)^{+}$, we obtain that $d(\gamma(x ; t), \partial D) \rightarrow 0$ as $t \rightarrow-\delta(x)^{+}$; thus,

$$
\liminf _{t \rightarrow-\delta(x)^{+}} d(x, \gamma(x ; t)) \geq d(x, \partial D)=r
$$

Notice that (2.10) and (2.11) imply that $\gamma(x ; \cdot)$ is parametrized by arclength, and hence $|t| \geq d(x, \gamma(x ; t))$, for every $t \in(-\delta(x), L-\delta(x))$, thus, letting $t \rightarrow-\delta(x)$, we obtain $\delta(x) \geq r$.

Let $\tilde{\gamma}$ be the minimal geodesic joining x to x_{0}^{*}, parametrized by arclength as follows: $\tilde{\gamma}=\tilde{\gamma}(t),-r \leq t \leq 0, \tilde{\gamma}(-r)=x_{0}^{*}, \tilde{\gamma}(0)=x$. We have:

$$
r \leq \delta(x)=\int_{-r}^{0}<\nabla \delta\left(\tilde{\gamma}(t), \tilde{\gamma}^{\prime}(t)>d t \leq \int_{-r}^{0}\left|\tilde{\gamma}^{\prime}(t)\right| d t=r\right.
$$

Consequently, $\delta(x)=r$ and also $\tilde{\gamma}^{\prime}(t)=\nabla \delta(\tilde{\gamma}(t))$, for all $t \in(-r, 0)$. hence, the first formula in (2.15) holds for $x \in D \backslash D_{\Phi}$, and by lemma 2.3 , for all $x \in \bar{D}$. The geodesic $\tilde{\gamma}(t)$ is uniquely determined and coincides with $\gamma(x ; t)$ when $t \in[-\delta(x), 0]$. This also implies that $x_{0}^{*}=x_{0}$ and that $\gamma(x ; t)$, with $t \in[-\delta(x), 0]$, is the minimal geodesic joining x_{0} to x. Thus, $\gamma(x ; t)$, $t \in[-\delta(x), 0]$, solves the second order differential equation for geodesics (see e.g. [5], Ch. 3), which has continuous coefficients, M being C^{2}-smooth. We deduce that $\gamma^{\prime}(x ; t)$ is uniformly Lipschitz continuous and (2.14) follows. Likewise, we obtain the latter formulas in (2.12), (2.13), (2.14), and (2.15).

Lemma 2.5. The set D_{Φ} is a deformation retract of D.
Proof. It suffices to verify that the mapping $\tau: D \times[0,1] \rightarrow D$, defined by

$$
\tau(x, r)= \begin{cases}\gamma(x ; r[L-\delta(x)]), & \text { for }(x, r) \in\left(D \backslash D_{\Phi}\right) \times[0,1], \\ x, & \text { for }(x, r) \in D_{\Phi} \times[0,1],\end{cases}
$$

is continuous. In fact, since $\tau(\cdot, 0)=\operatorname{id}_{D}, \tau(D, r)=D_{\Phi}$, and $\tau(\cdot, r)=\operatorname{id}_{D_{\Phi}}$, for all $r \in[0,1]$, we have that $\tau(\cdot, 1): D \rightarrow D_{\Phi}$ is retraction homotopic to id_{D}.

Remark. By the above lemma and [8], Ch. 1, we obtain:
(i) D_{Φ} is connected,
(ii) if D is contractible, then also D_{Φ} is contractible.

Proof of Corollary 2.2. By Theorem 2.1 and the above lemma and remark, if D is contractible, then D_{Φ} is contractible compact manifold without boundary. Classical results imply that $h=\operatorname{dim} D_{\Phi}=0$ (see [10], theorem 4.1 and example p. 21, and [6], corollary 17.6.1).

Proof of Theorem 2.1. It is enough to prove that D_{Φ} is locally a submanifold of M, since D_{Φ} is connected by the above remark and is compact by (2.10).

Let $P \in D_{\Phi}$ and fix local coordinates x^{1}, \ldots, x^{m} near P such that $P=(0, \ldots, 0)$ and $g_{i j}(P)=\delta_{i j}$, the Krönecker delta.

Observe that, by (2.15), and by rephrasing the arguments of lemma 2.5, if we choose $Q \in \partial D$ such that $d(P, Q)=d(P, \partial D)$, then there exists a unique minimal geodesic γ joining P to Q which is a stream line of δ (and also of ϕ, by (2.9)).

Let $T_{P}(M)$ be the tangent space to M at P and define:

$$
\begin{aligned}
\Xi(P)= & \left\{\xi \in T_{P}(M):|\xi|=1,\right. \\
& \text { and } \left.\exists \text { a stream line } \gamma(t), t \in[0, L] \text { of } \delta: \gamma(L)=P, \gamma^{\prime}(L)=\xi\right\} ;
\end{aligned}
$$

this set is not empty by (2.14). Let us continue each $\xi \in \Xi(P)$ as a constant vector field in a neighborhood V of Q, with respect to the chosen coordinates x^{1}, \ldots, x^{m}.

Pick $\xi \in \Xi(P)$ and differentiate (2.1) along ξ; in a neighborhood of P, we have:

$$
2 g^{i j} \phi_{x^{i} \xi} \phi_{x^{j}}+g_{\xi}^{i j} \phi_{x^{i}} \phi_{x^{j}}=f^{\prime}(\phi) \phi_{\xi} .
$$

We obtain the same formula (with ξ replaced by η) by differentiating (2.1) along any direction η orthogonal to ξ.

Restricting these formulas to a stream line $\gamma(t)$ of δ through P with $\gamma^{\prime}(L)=\xi$, dividing by $|\nabla \phi(\gamma(t))|$, and letting $t \rightarrow L$, yield:

$$
\begin{align*}
& \phi_{\xi \xi}(P)=\frac{1}{2} f^{\prime}(\Phi)<0, \quad \forall \xi \in \Xi(P), \tag{2.17}\\
& \phi_{\xi \eta}(P)=0, \quad \forall \xi \in \Xi(P), \forall \eta,<\eta, \xi>=0 . \tag{2.18}
\end{align*}
$$

Let $k=k(P)$ be the maximum number of linearly indipendent elements in $\Xi(P)$ and let $\xi_{1}, \ldots, \xi_{k} \in \Xi(P)$ be a choice of such elements. By (2.17) and (2.18), we get for $i, j=1, \ldots, k$

$$
\begin{equation*}
\phi_{\xi_{i} \xi_{j}}(P)=<\xi_{i}, \xi_{j}>\phi_{\xi_{i} \xi_{i}}(P)=\frac{1}{2}<\xi_{i}, \xi_{j}>f^{\prime}(\Phi) \tag{2.19}
\end{equation*}
$$

Therefore, the C^{1} mapping $\psi: V \rightarrow \mathbb{R}^{k}$ defined by $\psi(x)=\left(\phi_{\xi_{1}}(x), \ldots, \phi_{\xi_{k}}(x)\right)$ has rank k at P, by (2.19) and (2.18), and also $\psi(P)=(0, \ldots, 0)$ since $P \in D_{\Phi}$. By the implicit function theorem, we may find a neighborhood $U \subseteq V$ of P such that $N=\{x \in U: \psi(x)=(0, \ldots, 0)\}$ is a C^{1} submanifold. Furthermore, the normal space to N at P is spanned by ξ_{1}, \ldots, ξ_{k}.

Obviously $D_{\Phi} \cap U \subseteq N$, since $|\nabla \phi|=0$ on D_{Φ}. In order to conclude the proof, we need to show that $D_{\Phi} \cap U=N$, by possibly restricting U. The number h in the statement of the theorem will be given by $m-k$.

Let us denote by $B_{\varepsilon}(P)$ the geodetic ball in M centered at P and of radius $\varepsilon>0$. Suppose by contradiction that for any $\varepsilon>0$ there exists $P_{\varepsilon} \in\left(N \backslash D_{\Phi}\right) \cap B_{\varepsilon}(P)$. Let $P_{\varepsilon}^{*} \in D_{\Phi}$ be such that $d\left(P_{\varepsilon}, P_{\varepsilon}^{*}\right) \leq d\left(P_{\varepsilon}, P\right)<\varepsilon$, and hence $d\left(P, P_{\varepsilon}^{*}\right)<2 \varepsilon$.

Let γ_{ε} be the stream line of δ through P_{ε}; by lemma 2.5 we have that its endpoint on D_{Φ} is P_{ε}^{*}. Let us parametrize γ_{ε} by arclength in such a way that $\gamma_{\varepsilon}(L)=P_{\varepsilon}^{*}$, and let $\xi_{\varepsilon}=\gamma_{\varepsilon}^{\prime}(L)$; ξ_{ε} is a unit vector in $T_{P_{\varepsilon}^{*}}(M)$. By possibly passing to subsequences, P_{ε} and $P_{\varepsilon}^{*} \rightarrow P$, and $\xi_{\varepsilon} \rightarrow \xi$ as $\varepsilon \rightarrow 0$, where $\xi \in T_{P}(M)$ is a unit vector. By the continuous dependence on the Cauchy data, for all $t \in[0, L], \gamma_{\varepsilon}(t)$ converges to $\gamma(t)$, where γ is a geodesic such that $\gamma(L)=P$ and $\gamma^{\prime}(L)=\xi$. Thus, γ is a stream line of δ, since all γ_{ε} 's are stream lines of δ. In particular, we deduce $\xi \in \Xi(P)$.

We will show now that $\xi \in T_{P}(N)$, contradicting the fact that $\Xi(P)$ is contained in the normal space to N at P. We choose a local coordinate system near P such that N is represented by the equations $x^{h+1}=\cdots=x^{m}=0$. In this system $P_{\varepsilon}=\left(x_{\varepsilon}^{1}, \ldots, x_{\varepsilon}^{h}, 0, \ldots, 0\right)$, and analogously for P_{ε}^{*}. Since by Taylor's formula, we have:

$$
P_{\varepsilon}^{*}=P_{\varepsilon}+d\left(P_{\varepsilon}^{*}, P_{\varepsilon}\right) \xi_{\varepsilon}+o\left(d\left(P_{\varepsilon}^{*}, P_{\varepsilon}\right)\right), \quad \text { as } \varepsilon \rightarrow 0
$$

we obtain that $\xi_{\varepsilon}^{i} \rightarrow 0$ as $\varepsilon \rightarrow 0, \forall i=h+1, \ldots, m$.
This means that $\xi^{i}=0, i=h+1, \ldots, m$, that is $\xi \in T_{P}(N)$.
Finally (2.6) and (2.7) follow from (2.10) and (2.15).

3 Overdetermined Stekloff eigenfunctions

In the sequel, we will denote by $x=\left(x^{\prime}, x^{n}\right)$ a point of \mathbb{R}^{n}, where $x^{\prime} \in \mathbb{R}^{n-1}$ has coordinates $\left(x^{1}, \ldots, x^{n-1}\right) ; \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ will indicate the exterior normal unit vector to $\partial \Omega$.

We begin with the following result, which has its own interest.
Proposition 3.1 Let $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfy (1.1) and (1.3). If

$$
\begin{equation*}
\int_{\partial \Omega}[u-x \cdot D u] \frac{\partial u}{\partial \nu} d \sigma=0 \tag{3.1}
\end{equation*}
$$

then u is linear.
Proof. By Rellich's identity (see [15]),

$$
\int_{\partial \Omega}\left\{2(x \cdot D u) \frac{\partial u}{\partial \nu}-|D u|^{2}(x \cdot \nu)\right\} d \sigma=\int_{\Omega}\left\{2(x \cdot D u) \Delta u+(2-N)|D u|^{2}\right\} d x
$$

By (1.1) and (1.3), we obtain via the divergence theorem:

$$
\int_{\partial \Omega}\left\{2(x \cdot D u) \frac{\partial u}{\partial \nu}-(x \cdot \nu)\right\} d \sigma=2 \int_{\partial \Omega} u \frac{\partial u}{\partial \nu} d \sigma-N \int_{\Omega}|D u|^{2} d x
$$

Thus, (3.1) yields:

$$
\begin{equation*}
N \int_{\Omega}|D u|^{2} d x=\int_{\partial \Omega} x \cdot \nu d \sigma=N|\Omega| \tag{3.2}
\end{equation*}
$$

where $|\Omega|$ is the Lebesgue measure of Ω.
Since $|D u|^{2}$ is subharmonic in Ω, by (1.3), we have $|D u| \leq 1$ in Ω, so that (2.2) implies $|D u| \equiv 1$ in Ω. Therefore, $2 \sum_{i, j=1}^{n} u_{i j}^{2}=\Delta|D u|^{2} \equiv 0$ in Ω, and hence u is linear in Ω.

Theorem 1.1 will be a consequence of the following more general result.
ThEOREM 3.2 Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with boundary $\partial \Omega \in C^{2}$. Suppose that u is a linear solution of (1.1)-(1.3).

Then, up to a rigid change of coordinates, for some $h=0,1, \ldots, n-2$, there exists a C^{1} h-dimensional submanifold $D_{\Phi} \subset\left\{x \in \mathbb{R}^{n}: x^{n}=0\right\}$, such that

$$
\begin{equation*}
\Omega=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}\left(x, D_{\Phi}\right)<\frac{1}{p}\right\} . \tag{3.3}
\end{equation*}
$$

Furthermore, if Ω is contractible, then Ω is a ball.
Proof. Up to a rigid change of coordinates, we may assume that $u(x)=x^{n}$. By (1.2), we have:

$$
\begin{equation*}
\nu_{n}=p x^{n} \quad \text { on } \partial \Omega \tag{3.4}
\end{equation*}
$$

If we consider $\Gamma=\left\{x \in \partial \Omega: x^{n}>0\right\}$, we have that $\nu_{n}>0$ on Γ, hence Γ is the graph of a function $\phi=\phi\left(x^{\prime}\right)$, where x^{\prime} ranges over $D=\left\{x \in \Omega: x^{n}=0\right\}$. The vector ν is then given by $\left\{1+|\nabla \phi|^{2}\right\}^{-1 / 2}(-\nabla \phi, 1)$ on D, where ∇ denotes the gradient in the variable $x^{\prime} \in D$.

Therefore, (3.4) yields $\left\{1+|\nabla \phi|^{2}\right\}^{-1 / 2}=p x^{n}=p \phi$, that is

$$
\begin{align*}
& |\nabla \phi|^{2}=\frac{1}{p^{2} \phi^{2}}-1 \quad \text { in } D \tag{3.5}\\
& \phi=0 \quad \text { on } \partial D
\end{align*}
$$

Since $\partial \Omega \in C^{2}$, we also have that $\phi \in C(\bar{D}) \cap C^{2}(D)$; hence, by setting $m=n-1$, theorem 3.1 applies to the (flat) domain D. Note that $D_{\Phi}=\left\{x^{\prime} \in D: \phi\left(x^{\prime}\right)=\frac{1}{p}\right\}$ and that

$$
\begin{equation*}
\phi\left(x^{\prime}\right)=\sqrt{\frac{1}{p^{2}}-\operatorname{dist}\left(x^{\prime}, D_{\Phi}\right)^{2}} \tag{3.6}
\end{equation*}
$$

Therefore,

$$
\left\{x \in \Omega: x^{n}>0\right\}=\left\{x \in \mathbb{R}^{n}: x^{n}>0, \operatorname{dist}\left(x, D_{\Phi}\right)<\frac{1}{p}\right\}
$$

and, by the same argument,

$$
\left\{x \in \Omega: x^{n}<0\right\}=\left\{x \in \mathbb{R}^{n}: x^{n}<0, \operatorname{dist}\left(x, D_{\Phi}\right)<\frac{1}{p}\right\} .
$$

Consequently, we obtain (3.3).

Finally, one easily sees that D is a deformation retract of Ω, and hence D is contractible, if Ω is so. Corollary 2.2 implies that D is an $(n-1)$-dimensional ball, that is, by (3.6), Ω is an n-dimensional ball

Proof of Theorem 1.1. By (1.1)-(1.3), (1.6), and proposition 3.1, we have that u is linear, and hence Theorem 3.2 applies.

References

[1] G. Alessandrini and R. Magnanini, Symmetry and non-symmetry for the overdetermined Stekloff eigenvalue problem, Journ. Appl. Math. Phys.(ZAMP), 45 (1994), pp. 44-52.
[2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat., 17 (1938), pp. 177-191.
[3] ——, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., 45 (1939), pp. 335-367.
[4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Wiley Interscience, New York, 1962.
[5] M. DoCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.
[6] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-Methods and Applications. Part II. The Geometry and Topology of Manifolds, Springer Verlag, New York, 1984.
[7] D. Ferus, H. Karcher, and H. F. Munzner, Cliffordalgebren und neue isoparametrische Hyperflachen, Math. Z., 177 (1981), pp. 479-502.
[8] S. T. Hu, Elements of General Topology, Holden-Day, San Francisco, 1964.
[9] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, New York, 1982.
[10] W. S. Massey, Singular Homology Theory, Springer-Verlag, New York, 1980.
[11] H. F. Munzner, Isoparametrische Hyperflachen in Spharen, Math. Ann., 251 (1980), pp. 57-71.
[12] K. Nomizu, Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. AMS 79 (1973), pp. 1184-1188.
[13] ——, Elie Cartan's work on isoparametric families of hypersurfaces, Proc. Symp. Pure Math. 27 (1975), pp. 191-200.
[14] L. E. Payne and G. A. Philippin, Some overdetermined boundary value problems for harmonic functions, Journ. Appl. Math. Phys.(ZAMP), 42 (1991), pp. 864-873.
[15] F. Rellich, Darstellung der eigenwerte $\Delta u+\lambda u$ durch ein randintegral, Math. Z., 46 (1940), pp. 635-646.
[16] M. W. Stekloff, Sur les problèmes fondamentaux en physique mathématique, Ann. Sci. Ecole Norm. Sup., 19 (1902), pp. 455-490.
[17] Q. M. Wang, Isoparametric functions on Riemannian manifolds. I, Math. Ann., 277 (1987), pp. 639-646.
[18] —_ Isoparametric maps of Riemanniann manifolds and their applications, Advances in science of China. Mathematics, 2 (1986),pp. 79-103.

[^0]: * Work partially supported by MURST 40%.
 \dagger Università di Trieste, Dipartimento di Scienze Matematiche, Piazzale Europa 1, 34100 Trieste.
 \ddagger Università di Firenze, Dipartimento di Matematica "U. Dini", Viale Morgagni 67/A, I-50134 Firenze.

