Compito di Analisi Matematica I: Calcolo differenziale, 27 giugno 2002 Corso di Laurea in Informatica

PRIMA PARTE

- 1) Sia $f(x) = 2x + \sin x$ e sia $f^{-1}(x)$ la sua funzione inversa.
 - (a) Disegnare il grafico di f^{-1} ;
 - (b) Calcolare:

$$\frac{d}{dx}\{[f^{-1}(x)]^2 - \cos[f^{-1}(x)]\}.$$

2) Calcolare:

$$D\left\{(\log_2 x)^x\right\}.$$

3) Determinare i numeri c_1 e c_2 in modo che

$$c_1 x^2 + c_2 x^4 + 2\sin(x^2) + \cos x - 1 = o(x^4)$$
 per $x \to 0$.

- 4) Sia $f(x) = -(2 + \sqrt{3}) x + \log(1 \sin x)$.
 - (a) Determinare il dominio di f ed i limiti ai bordi del dominio.
 - (b) Determinare gli eventuali asintoti di f.
 - (c) Calcolare f'(x) e f''(x).
 - (d) Studiare la monotonia di f ed individuare gli eventuali estremi relativi di f.
 - (e) Studiare la convessità o concavità di f ed individuare gli eventuali flessi.
 - (f) Disegnare il grafico di f.

NOME E COGNOME:

mi).

Compito di Analisi Matematica I: Calcolo differenziale, 27 maggio 2002 Corso di Laurea in Informatica

SECONDA PARTE

SECONDA LARTE
1) Dimostrare che se f cresce nell'intervallo $(-3,5)$ allora $f'(x) \geq 0$ per ogni $x \in (-3,5)$.
2) Si dice che una successione a_n non diverge a $+\infty$ se:
3) Si dice che una funzione f ha un flesso in 1 se:
4) Con degli esempi, mostrare che la forma 1^{∞} è indeterminata.
5) Con un esempio, mostrare che per una funzione continua f nell'intervallo $(-2,3]$ non vale il Teorema di Weierstrass (sull'esistenza di massimi e mini-

Compito di Analisi Matematica I: Calcolo differenziale, 27 giugno 2002 Corso di Laurea in Informatica

PRIMA PARTE

- 1) Sia $f(x) = 4x + \sin x$ e sia $f^{-1}(x)$ la sua funzione inversa.
 - (a) Disegnare il grafico di f^{-1} ;
 - (b) Calcolare:

$$\frac{d}{dx} \{ 2 [f^{-1}(x)]^2 - \cos[f^{-1}(x)] \}.$$

2) Calcolare:

$$D\left\{(\log_4 x)^x\right\}.$$

3) Determinare i numeri c_1 e c_2 in modo che

$$c_1 x^2 + c_2 x^4 + 4\sin(x^2) + \cos x - 1 = o(x^4)$$
 per $x \to 0$.

- 4) Sia $f(x) = (2 + \sqrt{3}) x + \log(1 \sin x)$.
 - (a) Determinare il dominio di f ed i limiti ai bordi del dominio.
 - (b) Determinare gli eventuali asintoti di f.
 - (c) Calcolare f'(x) e f''(x).
 - (d) Studiare la monotonia di f ed individuare gli eventuali estremi relativi di f.
 - (e) Studiare la convessità o concavità di f ed individuare gli eventuali flessi.
 - (f) Disegnare il grafico di f.

NOME E COGNOME:

mi).

Compito di Analisi Matematica I: Calcolo differenziale, 27 maggio 2002 Corso di Laurea in Informatica

SECONDA PARTE

SECONDA PARTE
1) Dimostrare che se f cresce nell'intervallo $(-3,5)$ allora $f'(x) \geq 0$ per ogni $x \in (-3,5)$.
2) Si dice che una successione a_n non diverge a $+\infty$ se:
3) Si dice che una funzione f ha un flesso in 1 se:
4) Con degli esempi, mostrare che la forma 1^{∞} è indeterminata.
5) Con un esempio, mostrare che per una funzione continua f nell'intervallo $(-2,3]$ non vale il Teorema di Weierstrass (sull'esistenza di massimi e mini-