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ABSTRACT

We extend and apply a concavity maximum principle from [i0, 3,
7] to some nonlinear elliptic boundary problems and free boundary
problems on convex domains R R"™. In particular we extend "convex
dead core” results from n=2 as in [4] to arbitrary n. We alsa

show the convexity of the coincidence set in the obstacle problem
under suitable assumptions,
INTRODUCTION

A few years ago N. Korevaar [10] found a nice way of proving

that if u soclves

(1) Au + dhu =0, u>0 in &, 2 =0,
(2) u =49 on 3% ,
1213
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1214 KAWOHL

with e R™ convex, then v=-logu is a convex function, His ap-
proach was extended by A. Kennington [9] and the author [7] to

show that if u solves

(3) Au + AuP u>0 in 9, x>0, 0<p<l,

1
[

(2) w=0 on 30 ,
with GcR" convex, then V‘=u(P-l)/2 is convex, In both cases
the result was derived via a maximum principle for the concavity

.
function C of v, which is defined by

(4) Cx),%,) 1= v(—5) “%V(xl)—-%v(xz) in @x0

and using the appropriate differential equation for v. The motiva-

tion for this paper was to find fairly general assumptions on £

and suitable funetions v =g{u} such that if u solwves

]
o]
=

W
)
I
=
=0

{5) Au + £(u)

(2} us=0 on 3% ,

with < ®r" convex, then g(u{x))} is convex in {I . An answer to
this problem will be stated in Cerollary 3 below, If one substi-

tutes v =g(u) one derives from (5}

{6) Ay = —g'f + ——E:E-IVVJZ = kiv,Vv) ,
(g")

Moreover in the cases (1)} and {3) the funcrion k satisfies

g

NONLINEAR ELLIPTIC BOUI

) k(v,%) = h(v)

where K is a suitable I
it is therefore desiral

multiples of each other

(8) o' = —8 g
2
(g")

in which case (6) becom

(9) Av = h(v) (K +

L. Caffarelli and A. Fri
tial equation (8) for g
tinuation method which i
veglu) is even strictly
tricted to dimension two
triction.

In the first part of
the main result of [10,9,
equation (9). We want to
ton's theorem is smail b

In the second part we

theorem for various examp

(2} and
(10) bu = f(u) ,
(11) R
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(7} kiv,Vv) = h{v) (K + |VV[2) ,

where K is a suitable positive constant. For general f as in (3)
it is therefore desirahle that -g'f and g"/(g')2 are positive

multiples of each other:

(8) _g'f = 8"2 K, K>0 ,
(")

in which case {6} becomes

) &v = h(v) (K + ]WIE) ’ K>0

L. Caffarelli and A. Friedman observed in [1], that the differen-
tial equation {8) for g' can be solved, Then they showed by a con-
tinuation method which is unrelated to our approach that
v=glu) is even strictly convex. Their result was however res- E
tricted to dimension two, while eur paper contains no such res-
triction,

In the first part of the paper we recall and slightly extend
the main result of [10,9,7] on the couvexity of sclutions to
equation (9). We want to point out that our extemsion of Kenning~
ton's theorem is small but crucial for our new applications.

In the second part we verify the assumptions of the main

theorem for various examples which include problems of type (5)

(2) and
{10) Ay = £(u) , u<M in £ , !
{11 u=M on .
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Problem (10) (11} was studied recently by A. Friedman and

D. Phillips [4], They derived the existence and counvexity of a
"dead core" {x €0 | u(x) = 0} for convex Qc R’ under suitable
assumptions on [ by a continuation method. We reduce problem {i1)
(10) to (5) (2) by substituting w=M-u and derive the analogous
result for arbitrary dimensioens by maximum principles only.

Let us remark in passing that an extension of ocur results to
parabolic equations is not a trivial exercise. It is however
easily possible to weaken N. Korevaar's monotonicity assumption
db

EEO [10,4Thm. 1.6] in the parabolic case to %E—M, with M a

nonnegative constant.

I. THE CONCAVITY MAXIMIM PRINCIFLE

A continuous function v defined on a convex set R R™ is ob-
viously convex if and only if its concavity function C defined
by (4) is nonpositive in 2%, In order to formulate the following
theorem we have to define harmonic concavity. We call a function
h defined on an interval IC IR harmonic concave if and only if
Y1*Y2 0
(12)  nlyPh(yy) € b —5—) + 5(hly}) +hly,)

for every y ,y, €1 .

If h happens to be positive in I, then h is harmonic concave if
and only if 1/h is convex. In the following theorem R{v) denotes
the cleosure in IR of the range of v in & and R(v) denotes R(v)

minus 1ts left end point,

NONLINEAR ELLIPTIC BOUNE

Theorem 1

Let DeRY be Convex

(13) Av = k{v, %)

Suppose that a) b} and c

a) C(x],xz) cannot becom
b) k > 0 on R{v} xR" an

c) For every £ € R" the |

monotone increasing ai

Jg 1= {t €R(v) k(e
Ihen v has to be convex i

A. Kennington gave a p
slightly stronger assumpt
harmonic concave on R{v),
pendix] that R(v) can be ;
the applications in rhe s
point out that assumption
C(x],xz) should be nonposi

every fixed %y A

11, APPLICATIONS

A) Let u : I +1R be a class

(5) Au + f(u) =0 ,

(2) u=20
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Theorem |
n
Let <R te convex and let v ECE(Q) be a solution of
et —=20ex and let —= Z solution of
(13) Av = kiv, W) in

Suggose that a) b) and c¢) hold:
a) C(x],xz) £annot become positive ag (x],xz) approaches 3( =)
P .

P) k20 on RO XR™ and k>0 in R(v) x 1

n . .
e) For every £ €TR the mapping defined by t>k(t,£) is positive,

menotone 1ncreasing and harmonic concave in

Jg = {t €R(v) | k(t,8) 50},
Then v has to be convex in {3
2as_to be convex in .

A. Kenningron gave a proof of this theoreq [9] under the

511 i
1ghtly stronger assumption that k ;g monotone increasing and

harwonic toncave en R(v),

but one sees from the proof ia [7, Ap-

pendix] that R(w is wi
(v) can be replaced by JE' This will be crucial for

the applicationg in the second Part of our paper. Let us also

olnt ut at ass ti1 a 1 1 al in naty i th 5 1
P [s] h 5 ump on ) 5 B oh ra a ense that
1 1 - - - BQ
i lxz) SIIOU d e nonpositive fOI’_ EUEI)‘ xl 31313103'3111118 and

every fixed %5 e

II. APPLICATIONS

A) Let u: G-R be a classical solution of

(5) Au + f(u) = o

(2} u

R u>g in o

=0 on  3f
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where GER" is a strictly convex, bounded domain which satisfies

the interior sphere condition. Recall that § is strictly convex

if and only if (:vcl +x2){'2€Q for every x| EQ, x2€§_2 with % +x2.
t

0 Il .
Furthermore let F{t) := ff(s)ds and let R{u) be the interior of
o
the range R{u).

Corollary 2
Let f:R{u) +[0,®) be in CO(R(u)) ﬂCz(ﬁ(u)) and suppose that f

satisfies the conditions i) ii) and iii):

o
for £t ER{u).

1) £(t) >0
2
ii) gFES - £7(t) >0 for t €R(u).

(EEN 2 ()

o]
Flo) > 0 for t €ER(u).

1i1)  2(£'(e))% - £(YE"(e) -

Then the function

u(x

) -
g(u(x)) = ~ | [7(s)1 s

is convex in {I and consequently the level sets Qc i={x€q |

lu(x) > c} of u are comvex,

The proof of this corollary follows from Theorem 1, In fact v

gatisfies
2
(14)  Av = h(v) (2 + |W]9) ,

where h(v) is impliecitly defined by the relation

Rl

NONLINEAR ELLIPTIC BOUNDA

(15) hiv) = %—F(u)-1/2f

Condition ¢) of Theorem |

Tule from noting that

Condition b) of Theorem ]
b) and ¢) the concavity fu
maximum in &% and it Tem:

is a consequence of the fo!

Lemma 3
Let u be a solution of (

strictly convex with bounda

32, where n denotes the ext

glu) sarisfies
g'(u) <0 for u>0

Finally suppose that ¢ canne

f1xq.

Then

lim sup C
(x] »X,) >3 (% 2)
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i
. . o ' 1 -1/2
unded domain which satisfies (15)  h(v) = 5 F (u) flu) . !‘
4[]
that @ is strictly convex |
. €5 with x, 4x § Condition ¢) of Theorem | can easily be established by the chain |
¥ xl ’ xz 1 2° '
o . , rule from noting that |
et Rfu) be the interior of !
‘
k>0 [ i) . I
h (2 ) 20 e iii)
— (+ ii) ,
(ﬁ(u)) and suppose that f 32 k7=
111):
6?{( ) Condition b) of Theorem ] holds by assumptions. Under conditions
for t u).

o b} and ¢) the concavity function € cannot attaig a positive local |'
for t €R{u}.

meximum in @ %Q and it remains te verify condition a). But this

. iy
) £ (t) > 0 for tEK(u)-

1) is a consequence of the following "boundary point lerma'; b
[ Lemma 3 i
l Let u be a solution of (5) (2), let 2 B™ be bounded and
=EL U 3e 2 solution of set 2€_Dbounded and
. . 1 du
strictly convex with boundary of class ¢'. Suppose that Fn <0 on
\ M, where n denotes the exterjor normal to 37, and suppose that
level sets Qr_ i={x €0
g{u) satisfies
g£'(u) <0 for u>0  and 1im g'(u) = —= |
ws from Theorem !. In fact v 1[ urot
| Finally suppose that C canmot attain a pesitive local maximum in
ull QXQ. i
' |
| Then !

elation Y : i
the lim sup C(XI'XZ) <0 . |
(x),%,) (0 xQ)
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Under additional assumptions on g and on 30 this Lemma is due
to N. Korevaar [1Q0]. A proof feor the version presented here can

be found in [8, p. 132-134].

Remark 4
A slightly weaker version of ii) is £2 - 2p¢" >0, which is

. .. 172 . .
cquivalent to the condition that F / (t) is concave in t. If

£' >0 and >0, then 1ii) implies £' —f2/2F >0 and contradicts ii).

Remark 5

If (in addition to i)} we have f(t) »0 on R{u), then it follows
from the work [11] of N. Korevaar and J.L. Lewis that the rank of
the Hessian matrix of g{u(x)) is constant in .
Remark 6

Notice that g(u(x)) may or may not be finite on a7. The proof
of Lemma 3 takes care of both cases,
Remark 7

Using the continucus dependence of u on the domain {I one can
sometimes weaken the strict convexity assumption on § to mere con-
vexity.
Remark B8

Known examples of nonlinear problems (5) (2) which have solu-

tions with convex level sets are provided by f(u) =AuP, OD<p<l,

L >0, A new cxample seems to be

(16) flu) = =hu + 1, Py

1
=
-

for which arec sin (1l —ku) is a convex function.

NONLINEAR ELLIPTIC BOUNDA

Remark 9 on cpen problems

If @ is convex and u i

(17) F(u) = 2t

(18) fuy = Au-~-n"
(19) Fu) = 1 ~adb
(20) £Qu) = Au+1

then it is believed that

that u is quasi concave, I
P. Sacks., Problem (18} was
A, Acker and it was shown

is quasiconcave. Problem {
supported by numerical exp
was posed by J. Hersch [5]
of a conjectured isoperime
lowing conjecture can be re
a convex domain and that v
Mear a maximum of v the ley
close to ellipsoids, Suppas
that the ser R,o= {xeq|y

o

nent, say D. Then for c > ¢
—_— o

all be convex., If one subst

solution to Problem (203,

B) The problem

(10} Au = f(u) , u

(11) =M
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f2 -2F{' >0, which is

) is concave in t. If

fszF >0 and contradicts ii}.
>0,0n R(u), then it follows
I.L. Lewis that the rank of
ant in i .

be finite on 3fi. The proof

u on the domain & one can

assumption on {I to mere con-

s (53) (2) which have solu-

P
ded by f(u) =hu , 0<p=l,

‘unction.

S —

all be convex. If gne substitutes y = (V‘-co)fAcO
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Remark 9 on open problems.

If {i is convex and u is a solution of problem (5} (2) with

)\uP o+?

(17 flu) = s With 2 >0, 1<p <E:§ ,  Or
(18) E(u) = Au-17 | with A>0 , or
(19) flu) =1 —huP » With A >0, p>0 s, ar
{200 flu) = Au+1 s, With A >0 ,

then it is believed that the level sets QC of u are convex, i.e.
that u is quasi concave. Problem (17) was pointed out to me by

P. Sacks, Problem (18) was attacked in (2] by a method due to

A. Acker and it was shown that one out of possibly many solutions
is quasiconeave. Problem (19} is a generalization of (16) and
supported by numerical experiments of R. Rannacher. Problem (20)
vas posed by J. Hersch [5]. Its solution is relevant for the proof
of a conjectured isoperimetric inequality, Furthermore the fol-
lowing conjecture can be reduced to (20). Suppose that 7 is not

4 convex domain and that v is the solution of (1) {2). Locally
near a maximum of v the level sets of v have components that are

close to ellipsoids. Suppose there is a positive number c, such

that the set SEC
o

nent, say D. Then for c¢ >c0 the sets Dc i={x €D |v(x) >¢} should

1= {2 €0 | vix) ico} has a strictly convex compo-

, then u is a

solution to Problem (20).

B) The problem

]

(10} Au fFlu) , u<M in

(11) u

M . ’ on 3% ,
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can be reduced to the previous one (5) (2) by the substitution
W=M-u. For the reader's convenience let us give the analogue

of Corellary 2,

Corollarz 10
i
Let u€ci() nc(d) be a solution to (10) (11). Let R=RR" be a

bounded strictly convex domain which satisfies the interior sphere

2,0 .. L e
condition, Suppose that £ EC{R{u)) NC (R{u)) satisfies i} 1i) and

iii):

iy E(e) vo for t ER(U) ,

2 Q

£7(t) ,
)8 ok T 0 For £ €R(u)
(£ ()

LEDTEE) 5 5 for e €R(w)
FOO) - F(t) -

iii)y  2{f' (1:))2 -f(e)E" () +

Then the function

ulx) ds

gluf{x)) := | m

c
is convex in { and consequently the level sets o : {x € | u(x)<c}

of u are convex,

Remark 11

It is sufficient for the validity of i} 1i) and iii) thet f is
positive, momotone increasing and harmonic cencave.
Remark 12

The previous result [1] differs from ours in the following

points. There is a restriction to n=2, {nstead of ii) one requi-

res

NONLINEAR ELLIPTIC BOUNDARY

g
M-t

—r

' (e) + > 0

and then g(u{x)) is strictly

Main results

BI1) In problem (10) (11) let
0 <A. This problem was studi
ciently large A there exists
positive measure and that fo
can now show that the dead ¢

since this follows from Coro

B2) Let u€ C]’l(ﬂ) be a soclu

(u-Y)au = 0

-~fu >0
u -y > 0

and
u-=1

For strictly convex {I and if

We can conclude that the coin
convex. This result was previ
Proof one intreduces U =y -y
this reduces the problem to B
of U as a limiting case of (U
ze that quasiconvexity , i, e,

c .
§7 are convex, is preserved ur
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{2) by the substitution

let us give the analogue

(10) (11). Let ReR” be a

atisfies the interior sphere

(R(u)) satisfies i) ii) and

o
for ¢ €R{u) ,

o
for t ER(u) ,

(e

o
——~ > 0 for t €R{u)
t)y -

vel sets 27 : {x €0 | u(x)<ch

f 1) ii) and 1ii) thet f is

wnic concave.

ym ours in the following

’, instead of ii) one requi-

NONLINEAR ELLIPTIC BOUNDARY PROBLEMS

£y + Lo for  tER(u)

and then p(u(x)) is strictly convex in the support of u,

Main results
—=-n Tesu’ts

B1) In problem (10) (11) let M=1 and f(u) =A(w™?, 0<p <

1223

0<X. This problem was studied in [4]. It is known that for suffi-

ciently large A there exists a dead core D={x €0 |u(x) =0} with

positive measure and that for n=2 the dead core ig convex,

¢an mow show that the dead core is convex for arbitrary n>2,

since this follows from Corollary 10.

B2} Lat uEC]‘](Q) be a solution to the obstacle problem

(u-1yY)au = g a.e. in &,
-4y > 0 d.e, in &,
u-¢ >0 a,e. in 2,
and
u =i =1 on 3l

For strictly convex 9 and if A

We can conclude that the coincidence set {x€Q |u(x) =y(x)} is

convex. This result was previously known for n=7 (4]

proof one introduces U :=

this reduces the problem to Bl) with £(U) =C - Heaviside function

) e +
of U as 3 limiting case of (U+)p, p+0
ze that quasiconvexity , {.e,

c . : ,
" are convex, 1s preserved under pointwise CcOonvergence.

¥ =-C for some positive constant ¢

. For the

U-y as a new function and notes that

the property that the level sets

- Finally one has to reali-
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