Convex Solutions to Nonlinear Elliptic and
Parabolic Boundary Value Problems

NICHOLAS J. KOREVAAR

When are solutions to elliptic or parabolic boundary value problems given by
convex functions? Extending a maximum principle derived in an earlier paper to
a slightly larger class of elliptic equations and to related parabolic equations yields
some new answers to this question as well as some new proofs of already known
results.

In particular this paper contains:

(a) A proof that a function on a convex domain {)} whose graph makes zero
contact angle with the bounding cylinder d{) X R and which satisfies an
elliptic equation of the appropriate type is convex.

(b) A generalization and direct proof of the Brascamp-Lieb result that the first
eigenfunction of the Laplacian on a convex domain is Log concave (and
so has convex level sets).

In order to get these results the nature of the maximum principle used requires
strong constraints on the boundary behavior of u. The reason these constraints are
necessary is illustrated with a simple counterexample.

The statements and proofs of the maximum principles are given in Section 1.
They are used in Section 2 to prove the convexity results. The counterexample
and some related unsolved problems are briefly discussed in Section 3.

I have learned that L. A. Caffarelli and J. Spruck have also (independently and
concurrently) extended the results of the earlier paper [7]. Their work will ap-
parently include much of what is presented here, as well as some further appli-
cations [2].

Section 1. Maximum principles. We introduce the concavity function and
prove several maximum principles for it.

The concavity function € was first introduced in [7]. It is a natural way to
measure by how much a function u fails to be convex. Let u be defined on the
closure of a bounded domain ). Let 0 < p =< 1. Then for

¢)) yi,y: €EQ suchthat y, = py; + (1 — )y, € Q

define

@) G(y1,y30) = u(y2) — pu(ys) — (1 — wuy).
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%(y1,y3,10) is the height difference between the graph S, of u and the line seg-
ment joining (y,,u(y;)) to (¥s,u(y;)), above the point y,. The function u is (non-
strictly) convex if and only if € = O for all y,, y,, y; as above.

Remark 1.1. Although we allow 6 to depend on varying p here, this is not
necessary for the maximum principles of this section. Essentially the same proofs
will hold for fixed 0 < . < 1. We let p vary because it is more convenient for
the applications of Section 2.

Notice that €6 is defined on a closed subset of {0 X 0 X [0,1] (1). Slightly
abusing our notation we say that:

Definition 1.2. The triple (y,,ys,) is in the interior if each of y,, y,, y; €
Q. 1t is on the boundary if at least one of y,, y,, y; € ).

The following theorem is the main result of this section for elliptic equations.
It links the concavity function to the elliptic equation that u satisfies.

Theorem 1.3. (Concavity maximum principle). Let u € C*(Q2) N C(Q) satisfy
the elliptic equation

3) 0 = Lu = a’(Duyu; — b(x,u,Du) inQ
where b satisfies

ab
&) (—9— =0, b jointly concave with respect to (x,u).
u
Then if € is anywhere positive, it attains its positive maximum on the boundary
(Definition 1.2).

(In equation (3) and throughout this paper subscripts on functions denote dif-
ferentiation and Du is the (spatial) gradient of u. Matrices are denoted with square
brackets. We assume [a] > 0 and a’ = a’. Repeated indices are summed. The
functions a” and b are assumed to depend smoothly on their arguments, although
it is clear from the proof that this is not necessary if b is strictly increasing in u.)

Notice that since u € C({)), € is defined and continuous on a closed (hence
compact) subset of {0 X X [0,1], so that it does attain its maximum value
somewhere.

Theorem 1.3 can now be proven in two stages: The proof is simple if the con-
straint 3b/du = 0 in (4) is replaced by ob/ou > 0. We prove this case first. (This
was essentially the case studied in [7], but we repeat the short proof here for
completeness.) A perturbation argument then allows the extension to db/du = 0.

Lemma1.4. Letu € C*(Q) satisfy (3), (4) and the stronger condition db/du >
0. Then € attains no local positive interior maximum (Definition 1.2) and must
therefore attain any positive maximum on the boundary.

Proof. Suppose € attains a local interior maximum at (x;,x3,N). If x;, x5, x;
are not distinct then € = 0 and we are done. Hence we may assume they are



BOUNDARY VALUE PROBLEMS 605

distinct and in (the interior of) Q. Calculus and u € C'(Q)) imply
5) (Vy,6)(x1,x3,N) = (Vy;6)(x,x3,0) = 0.
But, using (2), (1)

(Vy€)(x1,x3,M) = (1 = N)Du(x,) — (1 — N)Du(x,)

6)

(Vy;€)(x1,x3,M) = NDu(x,) — NDu(x;)
so that
@) Du(x,) = Du(x,) = Du(x3).

The fact that the gradient of u is the same at these three points is crucial in
allowing consideration of general nonlinear equations of the form (3), (4).

Consider now the restricted concavity function € defined near (x,,x;,\) by
translating each of x;, x,, x; by the same vector v:

®) ‘é(v) =Q(x; + v,x3 + V,A) = u(x, + v) — Au(x; + v) — (1 = Nu(x; + v).
Since € has a local maximum at v = 0 and since u € C*(Q),
) V,€0)=0, [D>%(0)]=0.

(The symbols in (9) represent the gradient and Hessian of ® with respect to v.)
Let a” and b(x,u) be shorthand for a’(Du) and b(x,u,Du) at the common values
of Du (7). Since [a”] > O and symmetric, (9) and linear algebra imply

a’[D3%(0)]; =0,

i.e.
(10) a¥(u;(x;) = Nuy(x3) = (1 = Nuy(x)) = 0.
Using (10), (3) and then the joint concavity of b yields

b(x,u(xy)) = ANb(x3,u(x3)) + (1 — N b(x,u(x,))
an = BN (x3,u(x3)) + (1 — N)(xp,ux;)))

= b(x,,Au(x;) + (1 — Nu(x,)).
The chain of inequalities (11) and b strictly increasing in u imply
u(x;) = Au(xs) + (1 — Nu(xy)
i.e.
@ (x1,x3,\) = 0. Q.E.D.

In order to prove the result for db/du = 0 we need the following perturbation
lemma. (See [4] for the same technique.)

Lemma 1.5. Let Q' CC Q, 9Q' € C*, u € C*(Q) satisfying (3), (4). Then
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for small enough 0 < & < &, we can solve the perturbed problem
a’(DV*)VE = b(x,v*,DV®) + ev° inQ'
(12) Dv*)vy; = b( )
vi=u on o{}'
where AM > Q so that v° has the form
(13) VE=u+ ew®, [We 2o < M, independently of .

Proof. Using (13) to expand (12) in powers of ¢ and using the smoothness of
a” and b yields:

; ) J 0
(14) a’"(Duwyu; + ¢ (a"(Du)wfj + (uij F a’(Du) — :‘J——" b(x,u,Du)) Wi
/4 p

ob
- 5— (x,u,Du)w"’) = b(x,u,Du) + gu + e>G(w*,Dw*D*w*®).
u

Here G is a smooth function of its arguments (depending on «) and we have
used p = (p',...,p") for the gradient argument in a’ and b.

Since u satisfies (3) the expression (14) simplifies to the following almost linear
equation for w® (and we write w for w®):

. . d d
(15) Lw = a’(Duyw; + (“ija_pkaj(D“) - a_p" b(x,u,Du)) Wy

ab
- (;)(x,u,Du)w = u + G (w,Dw,D*w).
u
Notice that the operator L on the left of (15) is a uniformly elliptic linear operator
on {)', and the coefficient of w is nonposjtive (by (4)). For operators L of this
form it is well known that for a given f, Lw = f can be solved, and in addition
[6]:
Lw=f in{

(16) }:> Whao = Kill Flowa-
P e = Kilf s

(2,00 is the C**(©') norm).
Also, the fact that G is C' implies, given any K,, there exists K5 depending on
K, so that

an V2000 = K2 > |Gv,DV,D*V)||p.0r = Ks.

Using (16) and (17) one can solve for w in (15) by iterating: Let w' = 0 and
solve for k = 1:

Lw**! = u + eG (W*,Dw*,D*w*) in Q'
wl =0 on 9Q)'.

It is easy to find an g, > 0 and a K, so that 0 < & < g, implies
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(18) ”Wk”Z,a,Q’ = K4,
and using this fact, that 3¢, > 0 such that 0 < & < ¢, implies
(19) Wt = Wl = pllw* = W hao P <1

Both steps follow from estimates (16), (17), first applied (inductively) to Lw* and
then to L(w**' — w*). We omit the straightforward details.

But (18) and (19) imply that the sequence {w*} converges in C>*()’) to a
solution w of (15) satisfying

[Wl2,0.0 = K. Q.E.D.

We can now prove the entire Theorem 1.3: Pick an increasing sequence of C*
domains {Q"} whose union is ) and such that d(9{2,0Q2™) — 0. For any fixed
Q™ and small enough ¢ > 0, Lemmas 1.4 and 1.5 imply that the solution v° to
(12) attains its maximum concavity (if positive) on the boundary. As ¢ — 0,
v* — u uniformly (13). Hence -any positive maximum concavity of u for the do-
main ()° is attained on the boundary.

Letting m — o, and since u € C({)), the maximum concavity of u for the
domain () (if positive) is attained on the boundary. Q.E.D.

As was kindly shown to me by L. C. Evans (in the form of a proof of Theorem
2.8 for the heat equation), the concavity maximum principle extends naturally to
parabolic equations. Given a function u(x,) defined on Q0 X [0,T], define
@ (t,y1,y3,1) to be 6(y;,y3,p) for the function u(x,?) of the section ) X {r}. Then
if u satisfies an appropriate parabolic equation, the maximum concavity is attained
either initially or on the boundary.

Theorem 1.6. (Concavity maximum principle for parabolic equations). Let
u € C(Q x [0,T]) be such that

u(x,) EC*(Q)  Vte (0,T]
ux,t) EC'((0,T]) Vx€eEQ.
Suppose u satisfies the equation
(20) u, = Lu

in Q, where for fixed t, L has the form (3), (4). (In other words, a’ and b may
have any t-dependence.) Then if ‘€(t,y,,y;,1n) is anywhere positive, its positive
maximum value is attained at some (t,,x,,x3,\) satisfying

21 tv=0 oroneof x,x,,x; € 3.

Proof. We first give the proof for 9b/du > 0, then extend to db/du = 0. The
extension for parabolic equations is much easier than for elliptic ones.

Let u satisfy (20) with db/du > 0. Let € have a local maximum at (fy,%;,X3,\)
not satisfying (21). As in Lemma 1.4 we show that this maximum value cannot
be positive. We may assume
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(22) X1, X3, X3 € Q, distinct, 0<if =<T.

Arguing exactly as in Lemma 1.4, from (5)-(10), and using the fact that u sat-
isfies (20) instead of (3) one arrives at the analog of (11):

(23)  w(xy) = Mg (x3) = (1 = M, (xy) + (bOxp,u(x,))
= Nb(x3,u(x3)) — (1 = Mb(x1,u(x1))) = 0.
(t, and Du = Du(x;) = Du(x,) = Du(x;) are suppressed as before.) But 0 <

ty = T implies

]
u(x2) = Nty (x3) — (1 = Muy(x1) = a—t‘ﬁ(t,xl,xs,)\) =0

so that

24 b(x,u(x3)) = Nb(x3,u(x3)) — (1 = Nb(xy,u(x,)) = 0.
Hence as in (11)

(25) © (t0,x1,%3,0) = 0,

as was to be shown.

As in the elliptic case 6 attains its maximum somewhere, so any positive max-
imum must therefore be attained at points satisfying (21).

If b(x,u,Du) only satisfies db/du = 0 consider the function

(26) v(x,t) = e " u(x,r)
for small positive €. (20) and (26) imply that v satisfies
v, = a’(e"Dv)v; — (e *b(x,e*v,e”’Dv) + &v)

which is of the form just discussed. Thus the maximum concavity of v, if positive,
is attained at some (#y,x;,X3,\) satisfying (21). As € — 0, v — u uniformly, im-
plying that Theorem 1.6 holds for u. Q.E.D.

Remark 1.7. The same proof of Theorem 1.6 holds for the more general equa-
tion

27N f(t,x,u,u,Du) = a”(t,Du)u;
where [a’] > 0, a/ = ¢’ and
of of - ,
(28) a— =0, 5—— >0, f jointly concave with respect to (x,u,u,).
u u,

There is also no need to restrict to “tubular” domains ) X [0,T7] in the (x,?) plane.

Section 2. Boundary conditions and applications. In order to prove con-
vexity for solutions of the equations discussed in Section 1 we must find boundary
conditions for u that prevent € from attaining its (positive) maximum on the
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boundary. As a first step we require (), which was only bounded in Section 1,
to be (smooth and) strictly convex. This prevents x, from being a boundary point.

If u is C' then it is convex if and only if its graph S, lies above all of its tangent
planes. Conversely, the lemma below shows that if this property can be verified
for all “boundary” tangent planes m, (planes tangent to S, above x € 9(}), then
€ cannot attain a positive maximum on the boundary.

Lemma 2.1. Let Q) be strictly convex, smooth and bounded. Let u be such
that S, has tangent planes w, Vx € 0Q). If each of these boundary planes lies
beneath S, (contacting it only at (x,u(x))), then € does not attain any positive
maximum concavity on the boundary (Definition 1.2). (We also allow m, to be
vertical as long as S, makes contact angle zero with 9} X R there, and not
contact angle ).

(Recall that the contact angle at the intersection of two surfaces is defined to
be the angle between their normals there. In particular, the contact angle between
S, and the cylinder Q) X R at a point of contact is the angle between the down-
ward normal to S, and the exterior normal to d{) X R.)

Proof. Let € attain a positive maximum at the (therefore distinct) points x;,
X, X3. Since () is strictly convex we need only show that neither x; nor x; € 9().
Suppose x; € 3€). Consider the graph of u above the line segment X;x;. By hy-
pothesis (x3,u(x3)) lies above the tangent line to this curve through (x;,u(x,)). Thus
by keeping x, and x; fixed and moving x, to %, a little nearer x; on the same line
segment, the height u will be roughly the height of the tangent line through (x;,u(x,)).
Thus (at x,) the line segment joining (£,,u(%;)) to (x3,u(x;)) will be lower than
the one joining (x;,u(x,)) to (x3,u(x3)). Thus the concavity for {%,,x,,x;} will be
greater than the concavity for {x,,x,,x;}. This is a contradiction. The same ar-
gument shows that x; is not in 9(}. Q.E.D.

Combined with the results of Section 1 (Theorems 1.3 and 1.6) Lemma 2.1
immediately yields:

Tzheorem 2.2. Let Q be a C', strictly convex bounded domain. Let u €
c) N cHQ) satisfy an equation of the form (3), (4). Suppose S, makes contact
angle zero with 3} X R. Then u is a convex function.

Theorem 2.3. Let Q) be as in Theorem 2.2 and let u satisfy the hypotheses of
Theorem 1.6. If for every fixed 0 < t = T the graph of u makes zero contact
angle with its bounding cylinder and if u, = u(x,0) is convex, then u(x,t) is a
convex function of x for every fixed 0 =t = T.

A natural example of Theorem 2.2 applying is in capillarity, where the contact
angle boundary condition is natural. In this case [a¢”] is a multiple of the mean
curvature operator:

. 1
[a’(p)] = W (1 + |p»1-pp]
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and

Ku + M k > 0 in a (downward-pointing)
b(x,u,Du) = gravitational field
M in no gravitational field.

In [7] we mentioned this result for capillary surfaces in gravitational fields.
With the strengthened maximum principle we get it for the constant mean cur-
vature case too.

J. T. Chen and W. Huang [3] have recently found a cute comparison technique
to prove the constant mean curvature result in two dimensions. It does not seem
to generalize to more dimensions or other equations, however.

In [7] we showed that if the constant contact angle is not zero, there exist
convex domains for which the solution to the (gravitational) capillary problem is
not a convex function. Finn has recently found a counterexample for the constant
mean curvature case [5].

What other boundary conditions on # do enable one to verify Lemma 2.1? The
counterexamples for constant nonzero contact angle that were just mentioned, as
well as the counterexample for constant Dirichlet data that is discussed in Section
3 indicate that for general convex domains there are not many suitable boundary
conditions.

At least some do exist though. They arise by transforming functions with con-
stant Dirichlet data and lead to a new proof that the first eigenfunction of the
Laplacian on a convex domain is Log concave (i.e. its logarithm is a concave
function) (Theorem 2.5 below).

Lemma 2.4. Let Q) be smooth, bounded and strongly convex (i.e. all the prin-
cipal curvatures of 3Q) are positive). Let u € C 2(Q) satisfy

29) u=0 onof, u>0 in(Q, Du-v>0 ond,

where v is the interior normal to 0§}. Let

(30) Qs ={x€Q suchthat d(x,00Q) > 8}

and let v = —log u. Then for small enough d > O the function v satisfies Lemma

2.1 on the domain Qs. More generally, this holds for any smooth transformation
v = f(u) where f is defined for positive u and satisfies

(i) f' <0, (ii) lim f'(u) = —,  (iii) f' >0,
u—0"
(31) '

(iv) lim— =0, (wn%£=a

+ fll . fl
Proof. Let x € 9Q); and let A, be the set of points y for which m, does not
lie beneath S,:

A, ={y€ Qs suchthat . (y)=u(y)}
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We must show that for small enough, 8, A, = J Vx € 9();. First we show that
for points x near enough d(2, A, is also near 9{):

Fact 1. Given € > 0 38, > 0 such that for 0 < 8 < §, and x € 9();, we
have A, N Q, = J. Since v = f(u),

32) Dv(x) = f'(u) Du(x).

From (29) and (31) it follows that for x near d{2, m, is practically vertical and its
gradient practically points in the exterior normal direction. (Extend v smoothly in
a neighborhood of 4() and you may talk about normal directions in the entire
neighborhood.) Fact 1 now follows from elementary geometry, the convexity of
Q) and equations (29), (31(ii)(v)), and (32).

Now we show that v is convex in a boundary strip about 9{):

Fact2. 3e > 0 such that x € Q\Q, = [D*v(x)] > 0. To show this we study
the two terms comprising [D*v]:

(33) [D*V] = f'WID*u] + f" W) [(Dw)(Du)'].

The matrix [(Du)(Du)'] is positive semidefinite. If x € 08}, Du is a positive
multiple of the interior normal v(x) (29). Hence for x € 9Q, [(Du)(Du)'] is pos-
itive in a direction 7 if and only if ) is nontangential (to 9(}).

On the other hand, if x € d{) the matrix [D’u] is negative definite in all tan-
gential directions. (This follows from the strong convexity of d{} and conditions
(29). The calculation is straightforward.)

Extending the normal vector field v(x) smoothly into a strip about 9{) one can
continue to talk about tangential (v(x) - m = 0) and nontangential directions. Since
D*u is continuous it follows that for directions m sufficiently close to tangential
and for x in a sufficiently narrow strip Q\(),, [D*u] is negative in those directions
m. Hence f'(u)[D*u] is positive in those directions.

Because D’u is continuous one may then pick a possibly narrower strip Q\(Q,
on which f’(u)/f"(u) is small enough (31(iv)) and on which Du is close enough
to the normal direction, so that for all other directions m

@0 [(Du)Du)'1m > f' (w)n'[D*ulm.

On this strip we have shown that [D?v] is positive in any direction 7.

Taken together Facts 1 and 2 imply Lemma 2.4: Pick € > 0 so that [D*v(x)] >
0 for x € Q\Q),. For that & pick §, so that for 0 < 8 < §, and x € (5, A, N
Q. = . But because [D?v] is positive in Q\Q,, A, N (Q:\Q,) = & too. Thus
for 0 < d < ¥, A, = J as was to be shown. Q.E.D.

In particular we consider the transformation v = —log u and show:

Theorem 2.5. Let Q) be a smooth, bounded, strongly convex domain. Let
u € C*(Q)) be a nonnegative solution to the generalized eigenfunction equation

. (Du Du
(34) a’\ — Ju; = —ub|x,—log u,— |,
u u
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where the function b(x,v,p) satisfies (4) and where u satisfies the boundary con-
ditions

35) u>0 in(, u=0 onod
(36) u-v>0 on ).
Then v = —log u is a convex function.

Proof. u satisfies (34) if and only if v satisfies
a’(=Dv)v; = a’(=Dv)v,v; + b(x,v,—Dv)

which is of the form (3), (4). From (35), (36) Lemma 2.4 applies, so that for

small enough & and the (convex) domain ()5, no positive maximum of concavity

can occur on the boundary. Hence v is convex in {);. Hence v is convex in ().
Q.E.D.

Remark 2.6. Equation (34) is in general form. It applies in particular to equa-
tions like

(37) Au= —u(\ + V(x)) A > 0, V concave
(38) Au = —ug(u), gW=0 and g"Wu+g'@m)=0.
(e.g. gw)=M—pu” p,n>0).

Note too that condition (36) is implied by (35) and the Hopf boundary point
lemma [9] provided that b(x,—log u,Du/u) is nonnegative for the solution u. This
is true for (37) if V = —N\ and is also true for (38) as one can see by noting that
Au = 0 at the maximum value of u.

The answer to when solutions of (34), (35), (36) exist is not known in general,
however. If the solutions arise from variational problems in which the candidate
functions can be taken to be nonnegative, positive results are known (e.g. the first
eigenfunction of the Laplacian).

Theorem 2.5 was first shown for (37) by H. J. Brascamp and E. H. Lieb [1]
using completely different techniques. Extending their method, P. L. Lions has
recently (concurrent to this work) shown it for (38).

Remark 2.7. One might at first suspect that the first (positive) eigenfunction
of the Laplacian is itself concave. This is false for any domain: If () is strongly
convex at x, then . = 0 and u-v > 0 on 9() imply that D’u is negative in all
tangential directions. Since Au = 0 at x, it follows that D?u must be positive in
the normal direction. Thus u is not concave.

The method of Brascamp-Lieb and Lions employs the parabolic equation cor-
responding to (34). They use the following theorem in the special case of the heat
equation (proving it by an unrelated method):

Theorem 2.8. If € is a smooth, bounded, strongly convex domain and if
u(x,t) € C(Q x [0,T)) is such that
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u(x,f) € C*(Q) VO<t<T
u(x,t) € C'[(0,T]] VxEQ

and such that (35), (36) are satisfied by the functions u(x,t) VO <t =T. If u
satisfies u, = Lu with L as in (34) and if uy = u(x,0) is Log concave, the u(x,t)
is Log concave VO = ¢t = T.

Proof. Argue as in Theorem 2.5, using Theorem 1.6. Q.E.D.

Remark 2.9. 1 do not know of any other transformations of the form (31) that
can be applied to any other natural boundary value problems. It would be inter-
esting to find such problems. Unfortunately, once a function u satisfies an equa-
tion of the form (3), (4), a transformation v = f(—u) of the form (31) will no
longer satisfy such an equation. (The eigenfunction equation (34) does not satisfy
(4) but its transformed equation does.)

Section 3. Counterexamples, related questions. We briefly describe a coun-
terexample for constant Dirichlet data analogous to the one discussed in [7] for
constant contact angle. In both cases convex domains with sharply rounded cor-
ners breed nonconvex solutions to reasonable elliptic equations.

Specifically, consider a convex domain ) C R?, symmetric about the x-axis,
lying to the right of the y-axis, so that () is smooth except at (0,0), where it has
a corner. Let ()., also symmetric about the x-axis, be the same as () except with
the sharp corner rounded off inside B,,(0), and with the left-most point of 3€}, at
(€,0). Let A, denote the (positive) curvature of (), at (¢,0). We round off (), in
such a way that the A, > © as ¢ = 0.

Let u* € C*(),) be zero on (), and nonpositive inside (),. A straightforward
computation yields

39) uy,(€,0) = —A.uz(g,0).

Assume now that u° has positive bounded Laplacian in ),. (This example would
also work for mean curvature and practically any solution of (3) with b positive
in Q,.)

As ¢ — 0, equation (39) implies that either some of the uj,(e,0) approach
infinity, or else the u; approach zero (since the A, — ). In the first case some
of the u;,(¢,0) must approach — since Au® is bounded. In particular they would
become negative and u°® would not be convex. In the second case the tangent
plane to the graph of u° at (¢,0) becomes horizontal which, if the u® were convex,
would imply that u° — O uniformly on (the bounded) {).. But one can easily
construct barriers (e.g. a paraboloid with less Laplacian than u#* whose zero height
level is a circle contained in all the (),’s) that lie above u°® to show that the #° do
not approach zero. Hence some of the u® are not convex.

This example indicates that what is needed to find convex solutions to elliptic
boundary value problems in general is some relation between the boundary cur-
vature of ), the boundary data of u and the elliptic operator L. This appears to
be a difficult question, especially for nonlinear operators L.
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Another interesting problem is to find natural conditions which force the level
sets of u to be convex even though the function itself may not be.

Acknowledgements. 1 am indebted to R. Caflisch and H. Sexton for their
proficiency in the perturbation techniques needed for Lemma 1.5, and to L. C.
Evans for his parabolic proof.
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