Convex Solutions of Certain Elliptic Equations Have Constant Rank Hessians

Nicholas J. Korevaar \& John L. Lewis

Communicated by J. Serrin

1. Introduction

In this note we first consider solutions u of

$$
\begin{equation*}
\Delta u=f(u, \Delta u)>0 \tag{1.1}
\end{equation*}
$$

in a region Ω of Euclidean n space $\left(\mathbb{R}^{n}\right)$. Here ∇u and Δu denote the gradient and Laplacian of u. We assume that f has Hölder continuous second partial derivatives on some open set containing the range of the function $x \mapsto(u(x), \nabla u(x))$, $x \in \Omega$. We also assume that f is strictly positive, with

$$
\begin{equation*}
2\left(f_{u}\right)^{2}(\cdot, \nabla u)-f(\cdot, \nabla u) f_{u u}(\cdot, \nabla u) \geqq 0, \tag{1.2}
\end{equation*}
$$

that is, $1 / f(\cdot, \nabla u)$ is convex in u.
Let H denote the Hessian matrix of u. Our main result is
Theorem 1. Let u,f satisfy (1.1), (1.2), and suppose that H is positive semidefinite on Ω. Then H has constant rank in Ω.

Thus if H is positive definite in a neighborhood of the boundary of Ω, then H is positive definite in Ω. Caffarelli and Friedman [2] have proved Theorem 1 in \mathbb{R}^{2} when f has the form

$$
f(u, \nabla u)=h(u)+|\nabla u|^{2} k(u) .
$$

Our method is a generalization to $\mathbb{R}^{n}, n \geqq 2$, of their proof.
The minimum principle in Theorem 1 can be compared with an important recent result of Kennington [7, 8]. To state Kennington's result, suppose that u is a solution of

$$
\begin{equation*}
\sum_{i, j} a^{i j}(\nabla u) u_{x_{i} x_{j}}=f(u, \nabla u) \tag{1.3}
\end{equation*}
$$

in Ω, where the sum is taken over $1 \leqq i, j \leqq n$. Assume that each $a^{i j}, 1 \leqq i$, $j \leqq n$, has Hölder continuous second partial derivatives. We also assume that
($a^{i j}$) is symmetric and positive definite on some open set containing the range of the function $x \mapsto \nabla u(x)$. Define T on $\Omega \times \Omega \times(0,1)$ by

$$
T(x, y, \lambda)=\lambda u(x)+(1-\lambda) u(y)-u(\lambda x+(1-\lambda) y)
$$

If u and f satisfy (1.2), (1.3) and

$$
\begin{equation*}
\frac{\partial f}{\partial u}(\cdot, \nabla u)>0 \tag{1.4}
\end{equation*}
$$

then Kennington shows that T cannot have a negative relative minimum at an interior point of $\Omega \times \Omega \times(0,1)$. Previously, Korevaar [9] had obtained a similar conclusion under the assumption that f be a concave function of u, which is a stronger restriction than (1.2). Kawohl [6] has found results between those of Korevaar and Kennington.

Theorem 1, combined with the method of continuity (see [2]), can often be used to establish that certain solutions of (1.1) are convex functions in Ω. To illustrate the method, let Ω be a convex region and suppose that

$$
\begin{equation*}
\Delta w=-1 \quad \text { in } \Omega \tag{1.5}
\end{equation*}
$$

while $w=0$ on $\partial \Omega$ (boundary of Ω). Put $u=-w^{1 / 2}$. Then u satisfies the equation

$$
\begin{equation*}
\Delta u=-\left(|\nabla u|^{2}+\frac{1}{2}\right) / u=f(u, \nabla u)>0 \tag{1.6}
\end{equation*}
$$

in Ω. Note that $1 / f(\cdot, \nabla u)$ is convex. Now, if Ω is the unit ball B, then

$$
u(x)=-\left[\left(1-|x|^{2}\right) / 2 n\right]^{1 / 2}, \quad x \in B,
$$

so clearly u is a convex function. For an arbitrary convex region Ω, deform B continuously into Ω by a family $\left(\Omega_{t}\right), 0 \leqq t<1$, of strictly convex regions in such a way that $\Omega_{0}=B, \Omega_{1}=\Omega$, and $\partial \Omega_{t} \rightarrow \partial \Omega_{s}$ as $t \rightarrow s$ in the sense of Hausdorff distance, whenver $0 \leqq s \leqq 1$. The deformation also is chosen so that $\partial \Omega_{t}, 0 \leqq t<1$, can be locally represented for some $\alpha, 0<\alpha<1$, by a function whose norm in the space $C_{2, \alpha}$ of functions with Hölder continuous second derivatives depends only on δ, whenever $0<t \leqq \delta<1$.

Let $u(\cdot, t)$ be the solution of (1.6) in Ω_{t} with boundary value zero on $\partial \Omega_{t}$. Let H_{t} be the corresponding Hessian matrix. Then from standard estimates and the choice of deformation, it follows that for each $\delta, 0<\delta<1$, there exists $\varepsilon=\varepsilon(\delta)>0$ such that H_{t} is positive definite in an ε neighborhood of $\partial \Omega_{t}$, whenever $0<t \leqq \delta$. This fact, Theorem 1, and convergence of u_{t} to u_{s} locally in the $C_{2, \alpha}$ norm as $t \rightarrow s$ imply that $H=H(1)$ is positive definite. Indeed, using the above observations and the explicit nature of $u(\cdot, 0)$, it is easily seen that H_{t} is positive definite in $\Omega(t)$ when $t>0$ is sufficiently small. If H were not positive definite, then it would follow for some $\delta, 0<\delta<1$, that H_{δ} is positive semidefinite but not positive definite in $\Omega(\delta)$. From Theorem 1, H_{δ} has constant rank $<n$ in $\Omega(\delta)$, which is impossible since H_{δ} is positive definite in an ε neighborhood of $\partial \Omega(\delta)$. Hence, if w satisfies (1.5) in a convex region Ω and has boundary value zero on $\partial \Omega$, then $w^{1 / 2}$ is a strictly concave function in Ω. We note that Kennington [7, 8] used his previously mentioned minimum principle to show that
$w^{1 / 2}$ is concave in Ω. His method, though, does not appear to imply the strict concavity of $\boldsymbol{w}^{1 / 2}$.

As another example, suppose Ω is a bounded convex ring. That is, $\mathbb{R}^{n}-\Omega$ consists of two components and if E denotes the bounded component of $\mathbb{R}^{n}-\Omega$, then E and $\Omega \cup E$ are convex. Let w be a solution of Laplace's equation in Ω, and suppose that w has boundary value zero on $\partial \Omega \cap E$, while w has boundary value 1 on the rest of $\partial \Omega$. Let $u=w^{k}$ and observe that

$$
\Delta u=\left(1-\frac{1}{k}\right)|\nabla u|^{2} / u=f(u, \nabla u)>0
$$

in Ω. Clearly f satisfies (1.2) but not (1.4). Again from standard estimates, it can be seen that if k is sufficiently large and $\partial \Omega$ is locally of class $C_{2, \alpha}$ for some α $(0<\alpha<1)$, then the Hessian matrix of u is positive definite in a neighborhood of $\partial \Omega$. Also, if $n>2$ and $\Omega=\left\{x \in \mathbb{R}^{n}: 1<|x|<2\right]$, then

$$
w(x)=\left[1-|x|^{2-n}\right] /\left(1-2^{2-n}\right),
$$

so clearly u is convex when k is large.
The method of continuity and Theorem 1 can now be applied to a strictly convex ring Ω of class $C_{2, \alpha}$, to deduce that u is strictly convex when $k=k(\Omega)$ is large enough. Thus in this case the level sets of $w=u^{1 / k}$ are strictly convex. Approximating a general convex ring by strictly convex rings with smooth boundaries, it follows that the corresponding w has convex level sets. This method, however, does not seem to be strong enough to show that the level sets of w are strictly convex, a fact which was proved by Gabriel in [3] from a rather involved computation. Also, we note that Kennington's method does not appear to imply that w as above has convex level sets, since (1.4) is false. For further applications of Theorem 1 in \mathbb{R}^{2}, as well as more details in the above examples, see [2].

We next consider solutions u of (1.3), under the assumption that $1 / f(\cdot, \nabla u)$ is strictly convex, that is

$$
\begin{equation*}
2\left(f_{u}\right)^{2}(\cdot, \nabla u)-f_{u u}(\cdot, \nabla u) f(\cdot, \nabla u)>0 . \tag{1.7}
\end{equation*}
$$

We prove
Theorem 2. Let u and f be as in (1.3) and (1.7). Then H has constant rank r on Ω. Moreover, u is constant in $n-r$ coordinate directions.

The proof of Theorem 2 is somewhat complicated and, in fact, will be deduced from some inequalities we derive in proving Theorem 1. If in addition to the above assumptions we also assume that

$$
\begin{equation*}
a^{i j}(1 \leqq i, j \leqq n) \text { and } f \text { are real analytic } \tag{1.8}
\end{equation*}
$$

(on their respective domains), then a straightforward and relatively simple proof of Theorem 2 can be given. Moreover, the proof parallels in several respects the ideas of Kennington's convexity minimum principle. This proof is given in Section 2. The proofs of Theorems 1 and 2 are given in Sections 3-4. In Section 5
we show that if H has rank r in Theorem 1, then through each point in Ω there is an ($n-r$)-dimensional plane on which u is linear. We also consider other implications of Theorems 1 and 2 in Section 5.

2. A Weak Form of Theorem 2

Let u and f satisfy (1.3), (1.7) and (1.8), and suppose that H has rank $r<n$ at x_{0} in Ω. By performing a translation and rotation, we may assume that $x_{0}=0$ and $u_{y_{i} y_{i}}(0)=0, \quad r+1 \leqq i \leqq n$, where $\hat{y}_{i}, \quad 1 \leqq i \leqq n$, is an orthonormal coordinate system. Given a function F, in the sequel we shall write $F_{i j}$ for $F_{y_{i} y_{j}}$.

Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be an arbitrary unit vector whose scalar projection on \hat{y}_{i} is $v_{i}, \quad 1 \leqq i \leqq n$. We know that $H(\varepsilon v) \geqq 0$ for small ε. In particular, if $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right)$ and $|\omega| \leqq 1$, we consider second derivatives of u in the directions $(\varepsilon \mu \omega, 1), \mu \in \mathbb{R}$, whence

$$
\begin{equation*}
u_{n n}(\varepsilon v)+2 \sum_{i<n} \varepsilon \mu u_{i n}(\varepsilon v) \omega_{i}+\varepsilon^{2} \mu^{2} \sum_{i, j<n} u_{i j}(\varepsilon v) \omega_{i} \omega_{j} \geqq 0 \tag{2.1}
\end{equation*}
$$

Since $u_{n n}(0)=0$ and u is convex, we have

$$
\begin{equation*}
u_{n n}(0)=u_{n n k}(0)=u_{n k}(0)=0, \quad 1 \leqq k \leqq n \tag{2.2}
\end{equation*}
$$

Since u has continuous fourth partials derivatives, we get (using (2.2) to eliminate some terms)

$$
\begin{align*}
u_{n n}(\varepsilon v) & =\frac{1}{2} \varepsilon^{2} \sum_{k, l} u_{n n k l}(0) v_{k} v_{l}+o\left(\varepsilon^{2}\right) \tag{2.3}\\
u_{i n} & =\varepsilon \sum_{k} u_{i n k}(0) v_{k}+o(\varepsilon) \\
u_{i j}(\varepsilon v) & =u_{i j}(0)+o(1)
\end{align*}
$$

where $o\left(\varepsilon^{l}\right)$ denotes a term which tends to 0 as $\varepsilon^{l} \rightarrow 0$.
Substituting (2.3) into (2.1), dividing by ε^{2} and letting $\varepsilon \rightarrow 0$ yields

$$
\begin{equation*}
\frac{1}{2} \sum_{k, l} u_{n n k l} v_{k} v_{l}+2 \mu \sum_{i<n} \sum_{k} u_{i n k} \omega_{i} v_{k}+\mu^{2} \sum_{i, j<n} u_{i j} \omega_{i} \omega_{j} \geqq 0, \tag{2.4}
\end{equation*}
$$

where all derivatives of u have been evaluated at the origin. Letting ω be the projection of $v, \omega=\left(v_{1}, \ldots, v_{n-1}\right)$, we find that

$$
\frac{1}{2} \sum_{k, l} u_{n n k l} v_{k} v_{l}+2 \mu \sum_{i<n} \sum_{k} u_{i n k} v_{i} v_{k}+\mu^{2} \sum_{i, j<n} u_{i j} v_{i} v_{j} \geqq 0 .
$$

From (2.2), we observe that this expression is unchanged if i and j are allowed to vary from 1 to n. Using this fact, we see that the above inequality can be expressed in terms of directional derivatives by

$$
\begin{equation*}
\frac{1}{2}\left(u_{n n}\right)_{v v}+2 \mu\left(u_{n}\right)_{v v}+\mu^{2} u_{v v} \geqq 0 \tag{2.5}
\end{equation*}
$$

where all expressions are evaluated at the origin.

Before proceeding further, we mention that the key expression (2.5) was derived by looking at second derivatives of $u(\varepsilon v)$ in directions $\left(\varepsilon \mu\left(v_{1}, \ldots, v_{n-1}\right), 1\right)$. The same idea is used in Kennington's proof of his convexity minimum principle. Near three colinear points $\{y, z, x=(1-\lambda) y+\lambda z\}$ of minimum convexity, he considers small perturbations and studies their effect on the function $T(y, z, \lambda)$ defined in Section 1. One can derive his inequalities by perturbing each of $\{y, z, x\}$ in the direction of a vector v, but different magnitudes determined by μ. Thus if $\{y, z, x\}$ are assumed to lie on a line in the \hat{y}^{n} direction, then Kennington studies the convexity of u along lines displaced by multiples of ε in the v direction from $\{y, z, x\}$ with direction vectors $(\varepsilon \mu \omega, 1), \omega=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right)$.

To continue the proof, choose an orthonormal system of vectors $\left\{v^{1}, \ldots, v^{n}\right\}$ so that, with respect to these coordinates, $\left[a^{i j}(\nabla u(0))\right]$ is diagonal with eigenvalues $\lambda_{1} \ldots \lambda_{n}$. By adding multiples of (2.5) n times, we get

$$
\begin{equation*}
\frac{1}{2} \sum_{k} \lambda_{k} u_{m n v^{k} v^{k}}+2 \mu \sum_{k} \lambda_{k} u_{n v} k_{v} k+\mu^{2} \sum_{k} \lambda_{k} u_{v} k_{v} k \geqq 0 \tag{2.6}
\end{equation*}
$$

From (2.2) we find that

$$
\begin{equation*}
\left.\left(a^{i j}(\nabla u) u_{i j}\right)_{n}\right|_{x=0}=\left(\sum_{k} a_{u_{k}}^{i j} u_{k n}\right) u_{i j}+\left.a^{i j} u_{i j n}\right|_{x=0}=a^{i j}(\nabla u(0)) u_{i j n}(0) \tag{2.7}
\end{equation*}
$$

Also,

$$
\begin{align*}
\left.\left(a^{i j}(\nabla u) u_{i j}\right)_{n n}\right|_{x=0}= & \left(\sum_{k, l} a_{u_{k} u_{l}}^{i j} u_{k n} u_{l n}\right) u_{i j} \tag{2.8}\\
& +2\left(\sum_{k} a_{u_{k}}^{i j} u_{k n}\right) u_{i j n}+\left.a^{i j} u_{i j n n}\right|_{x=0} \\
= & a^{i j}(\nabla u(0)) u_{i j n}(0)
\end{align*}
$$

From (1.3), (2.7) and (2.8) it follows that (2.6) can be written as

$$
\frac{1}{2} f_{n n}+2 \mu f_{n}+\mu^{2} f \geqq 0 \quad \text { at } x=0 .
$$

This inquality can hold for all $\mu \in \mathbb{R}$ if and only if the discriminant is $\leqq 0$, that is

$$
\begin{equation*}
2\left(f_{n}\right)^{2}-f_{n n} \leqq 0 \quad \text { at } x=0 \tag{2.9}
\end{equation*}
$$

But at $x=0$ we have

$$
\begin{align*}
f_{n} & =\sum_{k} f_{u_{k}} u_{k n}+f_{u} u_{n}=f_{u} u_{n} \tag{2.10}\\
f_{n n} & =\sum_{k, l} f_{u_{k} u_{l}} u_{k n} u_{l n}+\sum_{k}\left(f_{u_{k}} u_{k n n}+2 f_{u u_{k}} u_{k n} u_{n}\right)+f_{u} u_{n n}+f_{u u} u_{n}^{2}=f_{u u} u_{n}^{2}
\end{align*}
$$

Hence (2.9) becomes

$$
\left(2 f_{u}^{2}-f f_{u u}\right) u_{n}^{2} \leqq 0 \quad \text { at } x=0
$$

By (1.7), we must have $u_{n}(0)=0$.

Finally, observe from (1.8) and a theorem of Hopf [5] that u is real analytic in Ω. We shall use the real analyticity of u to show that if $u_{n}(0)=0$, then u is constant on lines on the \hat{y}_{n} direction. Differentiating (1.3) and evaluating at a point x near 0 , we obtain

$$
\begin{align*}
\sum_{i, j} a^{i j}(\nabla u(0)) u_{n n i j}= & \sum_{i, j}\left[a^{i j}(\nabla u(0))-a^{i j}(\nabla u)\right] u_{n n i j} \tag{2.11}\\
& -\sum_{i, j, k}\left[2 a_{u_{k}}^{i j} u_{k n} u_{i j n}\right]-\sum_{i, j, k, l}\left[a_{u_{k}}^{i j} u_{l} u_{k n} u_{l n} u_{i j}\right]+f_{n n}
\end{align*}
$$

Now, in a neighborhood of the origin it follows from the real analyticity of u that either $u_{n n} \equiv 0$ or there exists a positive integer m such that

$$
u_{n n}(x)=P(x)+Q(x)
$$

where P is a homogeneous polynomial of degree m and Q is the remainder in the power series expansion for $u_{n n}$, starting with terms of degree $m+1$. Since $u_{n n}$ has a minimum at 0 , we see that m is even. From the positive semi-definiteness of H, we deduce that

$$
\left(u_{i n}\right)^{2} \leqq u_{n n} u_{i i}, \quad 1 \leqq i \leqq n
$$

so there exist $c>0$ and $\varrho>0$ small enough so that

$$
\begin{aligned}
\left|u_{i n}\right| & \leqq c|x|^{m / 2}, \\
\left|u_{n n k}\right| \leqq\left. c|x|_{i n}|\leqq c| x\right|^{[(m / 2)-1]}, \quad\left|u_{n n i j}\right| \leqq c|x|^{m-2} &
\end{aligned}
$$

when $|x| \leqq \varrho$. Representing $f_{n n}$ as in (2.10) and using the above inequalities in (2.11), we find that

$$
\sum_{i, j} a^{i j}(D u(0)) P_{i j}(x) \leqq c|x|^{m-1}
$$

for $|x| \leqq \varrho$. The left-hand side of this inequality must be identically zero, since it is a homogeneous polynomial of degree $m-2$. Thus

$$
\Sigma a^{i j}(\nabla u(0)) P_{i j} \equiv 0
$$

Observe that $P(0)=0$ and $P \geqq 0$, as follows from $u_{n n} \geqq 0$. Using the strong minimum principle for uniformly elliptic equations, we conclude that $P \equiv 0$. Hence $u_{n n} \equiv 0$ in a neighborhood of 0 . Consequently $u_{n n} \equiv 0$ in Ω. Moreover, since u is convex, we also have $u_{i n} \equiv 0$ in $\Omega, 1 \leqq i \leqq n$. Hence u_{n} is constant. Since $u_{n}(0)=0$, it follows that $u_{n} \equiv 0$. Thus u is constant in Ω on lines parallel to \hat{y}_{n}.

Since $u_{i i}(0)=0$ when $r+1 \leqq i \leqq n$, we can repeat the above argument with $u_{n n}$ replaced by $u_{i i}, 1+r \leqq i \leqq n$. This completes the proof of Theorem 2 under assumption (1.8).

3. Proof of Theorem 1

Let u and f be as in (1.1) and (1.2). As in Section 2, we assume that $H(0)$ has rank $r<n$. Observe from (1.1) that $r \geqq 1$. Let ϕ be the sum of all $r+1$ by
$r+1$ principal minors of H. We shall show that $\phi \equiv 0$. Following Caffarelli and Friedman, we say that $h(y) \leqq k(y)$ provided there exist positive constants c_{1} and c_{2} such that

$$
(h-k)(y) \leqq\left(c_{1}|\nabla \phi|+c_{2} \phi\right)(y)
$$

We also write $h(y) \sim k(y)$ if $h(y) \leqq k(y)$ and $k(y) \leqq h(y)$. Next, we write $h \lesssim k$ if the above inequality holds in a neighborhood of the origin, with the constants, c_{1} and c_{2} independent of y in this neighborhood. Finally, $h \sim k$ if $h \leqq k$ and $k \leqq h$. We shall show that

$$
\begin{equation*}
\Delta \phi \leqq 0 \tag{3.1}
\end{equation*}
$$

Since $\phi \geqq 0$ in Ω and $\phi(0)=0$, it then follows from the strong minimum principle (see [4], p. 34) that $\phi \equiv 0$ in a neighborhood of the origin.

Hereafter, if we say that a condition is satisfied "locally," we mean that there exists $\varrho>0$ such that the condition is satisfied for all $|z|<\varrho$. To begin the proof, pick $c>0$ so that the r non-zero eigenvalues of $H(0)$ are bounded below by $2 c$. Thus $H(z)$ has r eigenvalues $\geqq c$, locally. For such a z, choose a coordinate system $\left\{\hat{y}_{1}, \ldots, \hat{y}_{n}\right\}$ as in Section 2 so that $H(z)$ is a diagonal matrix. Then

$$
\begin{equation*}
u_{j j}(z) \geqq c, \quad 1 \leqq j \leqq r ; \quad u_{i j}(z)=0, \quad 1 \leqq i \neq j \leqq n \tag{3.2}
\end{equation*}
$$

Let $G=\{1, \ldots, r\}$ and $B=\{r+1, \ldots, n\}$ be the "good" and "bad" sets of indices, and define

$$
\begin{gathered}
Q=\prod_{j \in G} u_{j j}(z), \\
Q_{j}=Q / u_{i j}(z), \quad j \in G ; \quad R=\sum_{j \in G} Q_{j}
\end{gathered}
$$

Let α and β be two unit vectors. We compute ϕ and its first and second derivatives in the directions α and β. (In this section only $\alpha, \beta \in\left\{\hat{y}_{1}, \ldots, \hat{y}_{n}\right\}$.) We find, for ϕ and ϕ_{α},

$$
\begin{gather*}
0 \sim \phi(z) \sim\left(\sum_{i \in B} u_{i i}(z)\right) Q \sim \sum_{i \in B} u_{i i}(z) \quad\left(\text { so } u_{i i}(z) \sim 0, i \in B\right) \tag{3.3}\\
0 \sim \phi_{\alpha}(z) \sim Q \sum_{i \in B} u_{\alpha i i}(z) \sim \sum_{i \in B} u_{\alpha i i}(z) \tag{3.4}
\end{gather*}
$$

Because of (3.2), the positive constants in the definition of \sim can be chosen locally, here and in what follows. To compute $\phi_{\alpha \beta}$, we use the second part of (3.2), and then use (3.3) and (3.4) to discard terms uneffected by the \sim relation. We obtain

$$
\begin{aligned}
\phi_{\alpha \beta} \sim Q \sum_{i \in B} u_{i i \alpha \beta}(z) & -2 \sum_{i \in B} \sum_{j \in G} Q_{j} u_{i j \alpha} u_{i j \beta} \\
& +R \sum_{i, j \in B}^{\prime}\left[u_{i i \alpha} u_{j j \beta}-u_{i j \alpha} u_{i j \beta}\right]
\end{aligned}
$$

where Σ^{\prime} means the sum is taken over $i \neq j$. Using (3.4), we may replace $\Sigma_{i \in B}^{\prime} u_{i i \alpha}$ with $-u_{j j x}$, thus

$$
\begin{equation*}
\phi_{\alpha \beta} \sim Q \sum_{i \in B} u_{i i \alpha \beta}(z)-2 \sum_{i \in B} \sum_{j \in G} Q_{j} u_{i j \alpha} u_{i j \beta}-R \sum_{i, j \in B} u_{i j \alpha} u_{i j \beta} . \tag{3.5}
\end{equation*}
$$

If we pick $\alpha=\beta=\hat{y}_{k}$ and sum over k, (3.5) yields

$$
\begin{equation*}
\Delta \phi \sim Q \sum_{i \in B}\left(\Delta u u_{i i}-2 \sum_{i \in B} \sum_{j \in G}\left|\nabla u_{i j}\right|^{2} Q_{j}-R \sum_{i, j \in B}\left|\nabla u_{i j}\right|^{2}\right. \tag{3.6}
\end{equation*}
$$

We relate the terms in (3.6) to derivatives of f as follows. If $i \in B$, then from (3.2), (3.3) and (3.4), we have

$$
\begin{gather*}
f_{i}=\sum_{k} f_{u_{k}} u_{k i}+f_{u} u_{i} \sim f_{u} u_{i} \tag{3.7}\\
f_{i i}=\sum_{k, l}\left(f_{u_{k} u_{l}}\right) u_{k i} u_{i l}+\sum_{k}\left(f_{u_{k}} u_{k i i}+2 f_{u u_{k}} u_{k i} u_{i}\right)+f_{u} u_{i i}+f_{u u} u_{i}^{2} \\
\sum_{i \in B} f_{i i} \sim f_{u u} \sum_{i \in B} u_{i}^{2} \tag{3.8}
\end{gather*}
$$

Finally we show that

$$
\begin{equation*}
Q \sum_{i \in B} f_{i}^{2} \leq\left(\sum_{j \in G} \sum_{i \in B}\left|\nabla u_{i j}\right|^{2} Q_{j}\right) f \tag{3.9}
\end{equation*}
$$

Indeed from (1.1), (3.4), the Schwarz inequality and (3.3), we find

$$
\begin{aligned}
f_{i}^{2}=\left(\sum_{j} u_{j i j}\right)^{2} \sim\left(\sum_{j \in G} u_{j i j}\right)^{2} & \leqq\left[\sum_{j \in G}\left(u_{j j i}\right)^{2} / u_{j j}\right]\left(\sum_{j \in G} u_{j i}\right) \\
& \sim(1 / Q)\left[\sum_{j \in G}\left(u_{j i j}\right)^{2} Q_{j}\right] f
\end{aligned}
$$

and (3.9) follows. Substituting (3.8) and (3.9) into (3.6), and using (3.7), we obtain

$$
\Delta \phi \leq Q\left(f_{u u}-2 f_{u}^{2} / f\right) \sum_{i \in \boldsymbol{B}} u_{i}^{2}
$$

at z. It then follows from (1.2) that $\Delta \phi(z) \leqq 0$. Since the constants can be chosen locally, we conclude that (3.1) is valid. From the remark following (3.1), we conclude that $\phi \equiv 0$ locally. Thus, the set $F=\{x$: rank $H(x)=r\}$ is open. If $x_{0} \in \Omega$ is a boundary point of F, then by continuity of ϕ we see that rank $H\left(x_{0}\right) \leqq r$. Applying the above argument, we get

$$
\operatorname{rank} H=\operatorname{constant}=r
$$

in a neighborhood of x_{0}. Thus F is also closed in Ω and so, by connectivity, $F=\Omega$.

4. Proof of Theorem 2

Let u and f be as in (1.3) and (1.7). We again assume that $0 \in \Omega$ and that $H(0)$ has rank $r<n$. Define ϕ as in Section 3. We first show as in Theorem 1 that $\phi \equiv 0$ in a neighborhood of the origin. We shall assume that

$$
\begin{equation*}
\left(a^{i j}(\nabla u(0))\right)=\left(\delta_{i j}\right), \tag{4.1}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker δ, that is, (1.3) reduces to (1.1) at the origin. To see that this assumption is permissible, let u satisfy (1.3), where we have picked a fixed x coordinate system near the origin so that $a^{i j}(\nabla u(0))$ is diagonal, with positive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Define

$$
w(z)=u\left(\sqrt{\lambda_{1}} z_{1}, \ldots, \sqrt{\lambda_{n}} z_{n}\right)=u(z)
$$

Then

$$
w_{x_{i}}(z)=\sqrt{\lambda_{i}} u_{x_{i}}(z), \quad w_{x_{i} x_{j}}(z)=\sqrt{\lambda_{i} \lambda_{j}} u_{x_{i} x_{j}}(\bar{z})
$$

Hence, if we define

$$
b^{i j}\left(p_{1}, \ldots, p_{n}\right)=\frac{1}{\sqrt{\lambda_{i} \lambda_{j}}} a^{i j}\left(\frac{p_{1}}{\sqrt{\lambda_{i}}}, \ldots, \frac{p_{n}}{\sqrt{\bar{\lambda}_{n}}}\right)
$$

then

$$
\sum_{i, j} b^{i j}(\nabla w) w_{x_{i} x_{j}}(z)=\sum_{i, j} a^{i j}(\nabla u) u_{x_{i} x_{j}}(z)=f\left(w, \frac{w_{x_{1}}}{\sqrt{\lambda_{1}}}, \ldots, \frac{w_{x_{n}}}{\sqrt{\lambda_{n}}}\right) .
$$

Since the Hessians of w and u are "conjugates", their positivity and rank are the same at corresponding points. By inspection, w satisfies an equation of the type desired. We now re-label w again as u.

Let ϱ, z and $\left\{\hat{y}_{i}\right\}$ be chosen as in Section 3. We use the notation of Section 3, and recall formulas (3.3), (3.4) and (3.5) with α, β chosen to be \hat{x}_{k}, \hat{x}_{l}. Multiplying (3.5) by $a^{k l}$ and summing yields

$$
\begin{align*}
& \sum_{k, l} a^{k l}(\nabla u) \phi_{x_{k} x_{l}}-Q \sum_{i \in B} \sum_{k, l} a^{k l}(\nabla u) u_{x_{k} x_{l} i i} \tag{4.2}\\
& \quad \sim-2 \sum_{k, l} \sum_{i \in B} \sum_{j \in G} Q_{j} a^{k l}(\nabla u) u_{x_{k} i j} u_{x_{l} i j}-R \sum_{k, l} \sum_{i, j \in B} a^{k l}(\nabla u) u_{x_{k} i j} u_{x_{l} j} \\
& \quad=-2 \Sigma_{1}-\Sigma_{2}, \quad \text { say. }
\end{align*}
$$

Differentiating $a^{k l} u_{x_{k} x_{l}}$ as in (2.7) and (2.8), and using (3.2) and (3.3), we see that for $i \in B$

$$
\begin{equation*}
\left(a^{k l}(\nabla u) u_{x_{k} x_{l}}\right)_{l}=\left(\sum_{j} a_{u_{x_{j}}}^{k l} u_{x_{j} i}\right) u_{x_{k} x_{l}}+a^{k l}(\nabla u) u_{x_{k} x_{l} i} \sim a^{k l}(\nabla u) u_{x_{k} x_{l} i} \tag{4.3}
\end{equation*}
$$

$$
\begin{align*}
\left(a^{k l}(\nabla u) u_{x_{k} x_{l}}\right)_{i l}= & \left(\sum_{j, m} a_{u_{x_{j}} u_{x_{m}}}^{k l} u_{x_{j}} u_{x_{m^{l}}}\right) u_{x_{k} x_{l}} \tag{4.4}\\
& +2\left(\sum_{j} a_{u_{x_{j}}}^{k l} u_{x_{j} i}\right) u_{x_{k} x_{l} i}+a^{k l} u_{i i x_{k} x_{;}} \\
\sim & a^{k l} u_{i l x_{k} x_{l}}
\end{align*}
$$

where all expressions have been evaluated at z. Using (1.3) and summing (4.4) over k, l and $i \in B$ improves (4.2) to

$$
\begin{equation*}
\sum_{k, l} a^{k l}(\nabla u) \phi_{x_{k} x_{l}} \sim Q \sum_{i \in B} f_{i i}-2 \Sigma_{1}-\Sigma_{2} \tag{4.5}
\end{equation*}
$$

We seek to estimate $\sum_{i \in B} f_{i}^{2}$ in terms of Σ_{1} as in Section 3, using the fact that $a^{i j} \approx \delta_{i j}$ near 0 . Write

$$
\begin{gather*}
\sum_{i \in B} f_{i}^{2}=\sum_{i \in B}\left(\Delta u_{i}\right)^{2}+E_{0}, \\
\Sigma_{1}=\sum_{j \in G} \sum_{i \in B}\left(\left|\nabla u_{i j}\right|^{2} Q_{j}\right)+E_{1}, \tag{4.6}\\
f=\Delta u+E_{2} .
\end{gather*}
$$

Here, the first term on the right-hand side of each equation was obtained by replacing $a^{k l}$ with $\delta_{k l}$ in the definition of the corresponding term on the left-hand side of the equation.

The error terms can be estimated using (4.2), (4.3) and (4.1). Given $\delta>0$, we obtain locally

$$
\begin{equation*}
\left|E_{0}\right|+\left|E_{1}\right| \leq \delta\left(\sum_{j} \sum_{i \in B}\left|\nabla u_{i j}\right|^{2}\right), \quad\left|E_{2}\right| \leq \delta \tag{4.7}
\end{equation*}
$$

Now using (4.6) to modify the inequality following (3.9), we see that

$$
\begin{align*}
Q / f \sum_{i \in B} f_{i}^{2} & =Q / f\left(\sum_{i \in B}\left(\Delta u_{i}\right)^{2}+E_{0}\right) \sim Q / f\left(\sum_{i \in B}\left(\sum_{j \in G} u_{i j j}\right)^{2}+E_{0}\right) \tag{4.8}\\
& \leqq Q / f\left[\left(\sum_{i \in B} \sum_{j \in G} u_{i j l}^{2} / u_{j j}\right)\left(\sum_{j \in G} u_{j j}\right)+E_{0}\right] \\
& \leqq 1 / f\left[\left(\Sigma_{1}-E_{1}\right)\left(f-E_{2}\right)+Q E_{0}\right] \\
& \leqq \Sigma_{1}+\left|E_{1}\right|\left(1+\frac{\left|E_{2}\right|}{f}\right)+\frac{\left|E_{2}\right|}{f} \Sigma_{1}+\frac{Q\left|E_{0}\right|}{f} \\
& =\Sigma_{1}+E .
\end{align*}
$$

E can be estimated using (4.7). Indeed given $\delta>0$, we have locally

$$
\begin{equation*}
E \leqq \delta\left(\sum_{j} \sum_{i \in \boldsymbol{B}}\left|\nabla u_{i j}\right|^{2}\right) \tag{4.9}
\end{equation*}
$$

Using (4.8) judiciously in (4.5), along with (3.7) and (3.8), we have

$$
\begin{equation*}
\sum_{k, l} a^{k l}(\nabla u) \phi_{x_{k} x_{l}} \lesssim Q\left(f_{u u}-\frac{2 \eta f_{u}^{2}}{f}\right) \sum_{i \in B} u_{i}^{2}+2 \eta E-2(1-\eta) \Sigma_{1}-2 \Sigma_{2} \tag{4.10}
\end{equation*}
$$

for any $0 \leqq \eta \leqq 1$. But by inspection of (4.2), we see that there exists a constant $c>0$ such that locally

$$
\begin{equation*}
\sum_{j} \sum_{i \in B}\left|\nabla u_{i j}\right|^{2} \leqq c\left(\Sigma_{1}+\Sigma_{2}\right) \tag{4.11}
\end{equation*}
$$

Furthermore by the strict convexity of $1 / f(\cdot, \nabla u)$ at the origin, there is a neighborhood of 0 and an $\eta<1$ such that, in this neighborhood,

$$
\begin{equation*}
\left(f_{u u}-\frac{2 \eta f_{u}^{2}}{f}\right)<0 \tag{4.12}
\end{equation*}
$$

For this η, we see from (4.9), (4.10) and (4.11) that there exists $c>0$ so that locally

$$
\begin{equation*}
\sum_{k, l} a^{k l}(\nabla u) \phi_{x_{k} x_{l}} \leqq Q\left(f_{u u}-2 \eta f_{u}^{2} / f\right) \sum_{i \in B} u_{i}^{2}-c \sum_{j} \sum_{i \in B}\left|\nabla u_{i j}\right|^{2} \tag{4.13}
\end{equation*}
$$

In particular

$$
\sum_{k, l} a^{k l}(\nabla u) \phi_{x_{k} x_{l}} \leq 0
$$

and it follows from the strong maximum principle used in Section 3 that $\phi \equiv 0$ in a neighborhood of the origin. As in Section 3, we conclude that rank $H \equiv r$ in Ω.

We now show that u is constant in $n-r$ directions. Since $\phi \equiv 0$ we can replace \leqq by \leqq in each of our inequalities. It follows from (4.13) that

$$
\begin{equation*}
\sum_{j} \sum_{i \in B}\left|\nabla u_{i j}\right|^{2}(z)=0 \tag{4.14}
\end{equation*}
$$

Equation (4.14) implies that the coordinates $\hat{y}_{i}, r+1 \leq i \leq n$, can be chosen independently of z locally. To see this, note from (4.14) that there exists $c>0$ such that

$$
\begin{equation*}
\left|u_{i j}(w)-u_{i j}(z)\right|=\left|u_{i j}(w)\right| \leqq c|z-w|^{2} \tag{4.15}
\end{equation*}
$$

locally, when $i \in B$. Also, if $i \neq j$,

$$
\begin{equation*}
\left|u_{i j}(w)\right| \leqq c|z-w| \tag{4.16}
\end{equation*}
$$

for c large, since $u_{i j}(z)=0$ for $i \neq j$. Let v be a null vector of $H(w)$. If $v=\sum_{i} b_{i} \hat{y}_{i}$, then from (4.15),

$$
0=\sum_{i} b_{i} u_{i j}(w)=\sum_{i \in B} b_{i} u_{i j}(w)+\sum_{i \in G} b_{i} u_{i j}(w), \quad j \in G .
$$

Choose j so that $\left|b_{j}\right|=\max _{k \in G}\left|b_{k}\right|$. Using (4.15), (4.16), the above inequality and the fact that $u_{j j}(z) \geqq c$ (see (3.2),) we get locally

$$
\left|b_{j}\right| \leqq c_{1}|w-z|^{2}
$$

for $c_{1}>0$ large enough. Note that $q=\sum_{i \in B} b_{i} \hat{y}_{i}$ is a null vector for $H(z)$ since H has rank r and (3.2) holds. From the last inequality it follows that

$$
\begin{equation*}
|q /|q|-v| \leqq c_{2}|w-z|^{2} \tag{4.17}
\end{equation*}
$$

locally, for an appropriate choice of $c_{2}>0$. Note that c_{2} is independent of w and z locally. From (4.17) we conclude that each unit null vector of $H(w)$ lies within $c_{2}|z-w|^{2}$ of a null vector of $H(z)$. Since w and z are arbitrary (subject
to $|z|,|w| \leqq \varrho$), it follows from a simple argument that actually the nullspaces of $H(w)$ and $H(z)$ are the same. (Divide the line segment from z to w into N equal parts, N large, and use (4.15) in each subsegment.) From (4.14) and our choice of coordinate system, it follows that $u_{i j} \equiv 0$ in a neighborhood of the origin whenever $i \in B$. Thus u_{i} is constant in a neighborhood of the origin, and so must equal zero by (4.13). Repeating the argument, it follows that the set

$$
\left\{x \in \Omega: u_{i}(x)=u_{i i}(x)=0 \text { for all } i \in B\right\}
$$

is open. Since this set is clearly closed in Ω, we conclude from the connectivity of Ω that u is constant in $n-r$ coordinate directions.

5. Remarks

Remark 1. Let u and f be as in Theorem 1 and suppose that H has constant rank $r<n$. If Ω is convex, then it follows as in [2] that through each $x_{0} \in \Omega$ there is an $(n-r)$-dimensional plane on which u is linear in Ω. To give the proof (following [2]), suppose $x_{0}=0$ and put

$$
v(x)=u(x)-u(0)-\nabla u(0) \cdot x, \quad x \in \Omega
$$

Since $v(0)=0, \nabla v(0)=0$, and v is convex, we have $v \geqq 0$. Also, the set

$$
E=\{x: v(x)=0\}=\{x: v(x) \leqq 0\}
$$

is convex in Ω. Next choose an orthogonal coordinate system $\left(\hat{y}_{j}\right)$ so that, in this system, $u_{i j}(0)=0$ when $i \neq j$ or $r+1 \leqq i \leqq n$. We claim that E is contained in the $(n-r)$-dimensional vector space L generated by $\hat{y}_{r+1}, \ldots, \hat{y}_{n}$. Indeed, suppose $v(x)=0$, where $x \cdot \hat{y}_{j} \neq 0$ for some $j, 1 \leqq j \leqq r$. Then $v(t x)>0$ for small $t>0$, as follows from the fact that $u_{j j}(0) \geqq 0$. Since E is convex, we have reached a contradiction. Thus $E \subseteq L$. If $E=L \cap \Omega$, then u is linear on E and we are done. Otherwise, since E considered as a convex subset of L is the intersection of $(n-r)$-dimensional half-spaces, there is a point z in E and a ray l emanating from z with $l-\{z\} \subseteq L-E$. By making a rotation if necessary, we may assume that $l=\left\{z-t \hat{y}_{n}: 0 \leqq t<\infty\right\}$. Let π denote the $(r+1)$-dimensional plane through z generated by $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{r}, \hat{y}_{n}$, and let v_{1} be the restriction of v to this plane. If $B_{\varrho}=\{x:|x-z|<\varrho\} \subseteq \Omega$, we claim that for some $\varepsilon_{0}>0$,

$$
\begin{equation*}
w(y) \equiv-v_{1}(y)-\varepsilon(y-z) \cdot \hat{y}_{n}<0, \tag{5.1}
\end{equation*}
$$

whenever $y \in \pi \cap\{x:|x-z|=\varrho\}$ and $0 \leqq \varepsilon \leqq \varepsilon_{0}$. Observe that (5.1) holds for y in a neighborhood of $z+\varrho \hat{y}_{n}$, since $v_{1} \geqq 0$. It also holds in a neighborhood of $z-\varrho \hat{y}_{n}$ for ε_{0} sufficiently small, since $v\left(z-\varrho \hat{y}_{n}\right)>0$. Thus we need only consider the set of $y \in \pi \cap\{x:|x-z|=\varrho\}$ such that

$$
\sum_{i=1}^{r}\left[(y-z) \cdot \hat{y}_{j}\right]^{2} \geqq \delta>0
$$

Since $E \subseteq L$, we see by continuity that (5.1) holds on this set also if $\varepsilon_{0}>0$ is small. Hence (5.1) is true. We now apply a maximum principle of Alexandrov and Bakelman [1] to w in $\Omega \cap \pi$. If $A=\left(w_{i j}\right)$ denotes the $r+1$ by $r+1$ matrix with $i, j \in\{1, \ldots, r, n\}$, we obtain

$$
w(y) \leqq c\left(\int_{B_{Q} \cap \pi}|\operatorname{det} A| d x\right)^{1 /(r+1)}=0, \quad y \in \pi \cap B_{Q}
$$

by Theorem 1. However, this inequality is clearly false when $|y-z|$ is small and $y \in l$, since $v(z)=0$ and $\nabla v(z)=0$ (v has a minimum at z). We have reached a contradiction. Hence $E=L \cap \Omega$, and u is linear on $L \cap \Omega$.

From Theorem 1 and the preceding discussion, we see that either
(i) the Hessian of u is positive definite in Ω, or
(ii) through each point in Ω there is at least one line on which u is linear.

Moreover, from Theorem 2 we see that if $1 / f(\cdot, \nabla u)$ is strictly convex in Ω, then case (ii) may be improved to
(iii) u is constant in at least one direction.

We now show there are functions which satisfy (ii) but not (iii). We construct in \mathbb{R}^{2} a solution u of (1.1), with $f(u)=-1 / u$, which is convex in a suitable domain and whose graph is part of a cone. To do so, we use polar coordinates and write $u(r, \theta)=r g(\theta)$. If

$$
\Delta u=u_{r r}+r^{-1} u_{r}+r^{-2} u_{\theta \theta}=-1 / u
$$

then

$$
g(\theta) / r+g^{\prime \prime}(\theta) / r=-1 /(r g(\theta)),
$$

which simplifies to

$$
\begin{equation*}
g^{\prime \prime}(\theta)=\left[-1-g^{2}(\theta)\right] / g(\theta) \tag{5.2}
\end{equation*}
$$

Now it is easy to see that (5.1) can be solved locally with, say, initial conditions $g(0)=-g_{0}<0, g^{\prime}(0)=0$. As long as $g<0$, we see that $g^{\prime \prime}>0$. It can be shown from this inequality that $u=r g(\theta)$ is a convex function in a suitable domain. Clearly u is linear on rays through the origin.

If $1 / f(\cdot, \nabla u)$ is strictly convex at some point in Ω, then from the proof of Theorem 2 it follows that u is constant along an entire line in Ω. In applications this possibility can often be eliminated. In these cases, if (1.2) holds and u is not strictly convex, it must be the case that $(1 / f)_{u u} \equiv 0$ in Ω. Thus

$$
\frac{1}{f(u, \nabla u)}=u A(\nabla u)+B(\nabla u)
$$

In a future paper we hope to characterize those values of A and B for which the lines in (ii) intersect in a cone. In \mathbb{R}^{2} we believe that a necessary and sufficient condition for this to happen is that B be a constant multiple of A.

Remark 2. We conjecture that Theorem 1 remains valid when (1.1) is replaced by (1.3). The conjecture is true in \mathbb{R}^{2}, as can be deduced from the proofs in [2] or in this paper.

There are also sharp results when f is allowed to have a suitable x dependence, just as Kennington's method works for $f=f(x, u, \nabla u)$ when $1 / f(\cdot, \cdot, \nabla u)$ is a convex function of (x, u) for fixed ∇u. For example, Theorem 1 generalizes to

Theorem 1. Let the hypotheses of Theorem 1 hold, except that now $f=f(x, u, \nabla u)$ and $1 / f$ is a convex function of (x, u) for fixed ∇u. Then H has constant rank in Ω.

The proof is essentially unchanged. Indeed, the proof in Section 3 showed, without considering any dependence on f, that

$$
\Delta \phi \leqq Q \sum_{i \in B}\left(f_{i i}-2 f_{i}^{2} / f\right)=Q f^{2} \sum_{i \in B}(1 / f)_{i i}
$$

Using the explicit dependence of f, it is easily checked that $\Delta \phi \leqq 0$.
Acknowledgment. This work was supported in part by the National Science Foundation under Grants No. MCS-8301906 and DMS-8401702.

References

1. Alexandrov, A. D. Majorization of solutions of second order linear equations Vestrik Leningrad Univ., 21 (1966), 5-25. English translation in Am. Math. Soc. Transl. (2) 68 (1968), 120-143.
2. Caffarelli, L. \& A. Friedman, Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52 (1985) 431-456.
3. Gabriel, R. A result concerning convex level surfaces of 3 -dimensional harmonic functions, J. London Math. Soc. 32 (1957), 286-294.
4. Gilbarg, D. \& N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1977.
5. Hopf, E. Über der Funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen Zweiter Ordnung, Math. Z. 34 (1932), 194-233.
6. Kawohl, B. A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem, Lefschetz Center for Dynamical Systems, \# 84-6, Brown University, 1984.
7. Kennington, A. An improved convexity maximum principle and some applications, Ph. D. thesis, University of Adelaide, South Australia, 1984.
8. Kennington, A. Power concavity and boundary value problems, Indiana Univ. Math. J. 34 (1985) 687-704.
9. Korevara, N. Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), 603-614.

Department of Mathematics
University of Kentucky
Lexington

