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1. Introduction 

In this note we first consider solutions u of 

(1.1) Au = f ( u ,  Au) > 0 

in a region ~2 of Euclidean n space (R"). Here Vu and Au denote the gradient 
and Laplaeian of u. We assume that f has H61der continuous second partial deri- 
vatives on some open set containing the range of the function x ~ (u(x), Vu(x)), 
x E ~ .  We also assume that f is strictly positive, with 

0.2) 2 ( L y  (., Vu) - f ( . ,  7u)f , , ( . ,  Vu) > 0, 

that is, 1If(., 7u) is convex in u. 
Let H denote the Hessian matrix of u. Our main result is 

Theorem 1. Let u, f satisfy (1.1), (I .2), and suppose that H is positive semidefinite 
on 12. Then H has constant rank in ~ .  

Thus if H is positive definite in a neighborhood of the boundary of /2 ,  then 
H is positive definite in Q. CA~ARELLI and FRIEDMAN [2] have proved Theorem 1 
in R 2 when f has the form 

f(u, Vu) = h(u) + lVul 2 k(u). 
Our method is a generalization to R", n ~ 2, of their proof. 

The minimum principle in Theorem 1 can be compared with an important 
recent result of KENNINGTON [7, 8]. To state KENNINGTON'S result, suppose that 
u is a solution of  

(1.3) ]~a aq(TM) uxixj = f(u,  Vu) 
i , j  

in s where the sum is taken over 1 --< i, j ~ n. Assume that each a o, 1 =< i, 
j < n, has H61der continuous second partial derivatives. We also assume that 
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(a U) is symmetric and positive definite on some open set containing the range 
of  the function x~--~ Vu(x). Define T on ,Q•163215 1) by 

T(x, y, 2) ---- 2u(x) + (1 --  2) u(y) -- u(2x + (1 --  2) y) .  

If  u and f satisfy (1.2), (1.3) and 

of, 
(1.4) ~ (- Vu) > 0, 

then KENNINGTON shows that T cannot have a negative relative minimum at an 
interior point of  $2 • s • (0, 1). Previously, KOREVAAR [9] had obtained a similar 
conclusion under the assumption that f be a concave function of  u, which is a 
stronger restriction than (1.2). Kawone  [6] has found results between those of  
KOREVAAR and KENN1NGTON. 

Theorem 1, combined with the method of continuity (see [2]), can often be 
used to establish that certain solutions of (1.1) are convex functions in O. To 
illustrate the method, let s be a convex region and suppose that 

(1.5) Aw = --1 in s 

W112 while w ---- 0 on 8s (boundary of s Put u = -- . Then u satisfies the equa- 
tion 

(1.6) Au = - ( IVu[  2 + �89 -~f(u,  Vu) > 0 

in s Note that I/f(., Vu) is convex. Now, if s is the unit ball B, then 

u(x) = --[(1 -- [x12)/2n] I/2, x~  B, 

so clearly u is a convex function. For  an arbitrary convex region s deform B 
continuously into s by a family (Qt), 0 ~ t < 1, of strictly convex regions in 
such a way that Oo = B, g2t ---- s and 8s ~ 8g2, as t-->- s in the sense of 
Hausdorff distance, whenver 0--< s _< 1. The deformation also is chosen so 
that 8s 0 --< t < 1, can be locally represented for some or 0 < o~ < 1, by a 
function whose norm in the space C2,~ of functions with H61der continuous second 
derivatives depends only on 6, whenever 0 < t ~ ~ < 1. 

Let u(., t) be the solution of (1.6) in s with boundary value zero on 8Ot. 
Let Ht be the corresponding Hessian matrix. Then from standard estimates and 
the choice of deformation, it follows that for each 6, 0 < 6 < 1, there exists 
e = e(~) > 0 such that Ht is positive definite in an e neighborhood of  ~s when- 
ever 0 < t --< 6. This fact, Theorem 1, and convergence of ut to us locally in 
the C2,, norm as t -+  s imply that H = H(1) is positive definite. Indeed, using 
the above observations and the explicit nature of  u(., 0), it is easily seen that Ht 
is positive definite in s when t > 0 is sufficiently small. If  H were not positive 
definite, then it would follow for some 6, 0 < ~ < 1, that H0 is positive semi- 
definite but not positive definite in s From Theorem 1, H~ has constant 
rank < n in s which is impossible since H~ is positive definite in an e neighbor- 
hood of  8s Hence, if w satisfies (1.5) in a convex region s and has boundary 
value zero on 8s then w 1/2 is a strictly concave function in s We note that 
KENNINGTON [7, 8] used his previously mentioned minimum principle to show that 
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W 1/2 is concave in 1?. His method, though, does not appear to imply the strict 
concavity of  w ~/2. 

As another example, suppose 1? is a bounded convex ring. That  is, R" --  ,Q 
consists of  two components and if E denotes the bounded component of  It" --  17, 
then E and 17 L / E  are convex. Let w be a solution of  Laplace's equation in g2, 
and suppose that w has boundary value zero on &Q #~ E, while w has boundary 
value 1 on the rest of  &Q. Let u = w k and observe that 

in 17. Clearly f satisfies (1.2) but not (1.4). Again from standard estimates, it cart 
be seen that if k is sufficiently large and 017 is locally of  class C2# for some ~ 
(0 < o~ < 1), then the Hessian matrix of  u is positive definite in a neighborhood 
of  017. Also, if n > 2  and 1 ? = { x E R " : l < l x l < 2 ] ,  then 

w(x) = [1 - Ix12-"]/(1 - 22-"), 

so clearly u is convex when k is large. 
The method of  continuity and Theorem 1 can now be applied to a strictly 

convex ring g2 of  class C2,~, to deduce that u is strictly convex when k = k(O) 
is large enough. Thus in this case the level sets of  w = u ilk are strictly convex. 
Approximating a general convex ring by strictly convex rings with smooth bound- 
aries, it follows that the corresponding w has convex level sets. This method, 
however, does not seem to be strong enough to show that the level sets of  w are 
strictly convex, a fact which was proved by GABRIEL in [3] from a rather involved 
computation. Also, we note that KENNINGTON'S method does not appear to imply 
that w as above has convex level sets, since (1.4) is false. For  further applications 
of  Theorem 1 in R 2, as well as more details in the above examples, see [2]. 

We next consider solutions u of (1.3), under the assumption that l / f( . ,  Vu) 
is strictly convex, that is 

(1.7) 2(L) = (., Vu) - L ~ ( ' ,  Vu)f( . ,  Vu) > o. 

We prove 

Theorem 2. Let  u and f be as in (1.3) and (1.7). Then H has constant rank r 
on 17. Moreover, u is constant in n --  r coordinate directions. 

The proof  of  Theorem 2 is somewhat complicated and, in fact, will be deduced 
from some inequalities we derive in proving Theorem 1. I f  in addition to the above 
assumptions we also assume that 

(1.8) a 0 (1 ~ i , j  ~ n) and f are real analytic, 

(on their respective domains), then a straightforward and relatively simple proof  
of  Theorem 2 can be given. Moreover, the proof  parallels in several respects the 
ideas of KENNINGTON'S convexity minimum principle. This proof  is given in 
Section2. The proofs of  Theorems 1 and 2 are given in Sections 3-4. In Section 5 
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we show that if H has rank r in Theorem 1, then through each point in O there is 
an (n --  r)-dimensional plane on which u is linear. We also consider other impli- 
cations of  Theorems 1 and 2 in Section 5. 

2. A W e a k  Form of  Theorem 2 

Let u and f satisfy (1.3), (1.7) and (1.8), and suppose that H has rank r < n 
at Xo in O. By performing a translation and rotation, we may assume that xo = 0 
and uym(O ) = 0 ,  r +  1 ~--i~--n, where .vi, 1 - - ~ i ~ n ,  is an orthonormal 

coordinate system. Given a function F, in the sequel we shall write F U for Fyiyj. 

Let v = (vz, v2 . . . . .  vn) be an arbitrary unit vector whose scalar projection 
on ~ is vi, 1 _< i --< n. We know that H(eo) >= 0 for small e. In particular, if 
~o = (091, co 2 . . . . .  c%_1) and I,ol < 1, we consider second derivatives o f u  in the 
directions (e/zoo, 1), /z E R, whence 

(2.1) u,~(ev) + 2 ~ e#Uin(eV ) to i + ez/z 2 ~ uij(ev) o)itoj > O. 
i<n i,j<n 

Since Un,(O) = 0 and u is convex, we have 

(2.2) u~,(0) = Unnk(O ) = Unk(O ) = O, 1 <-- k ~ n. 

Since u has continuous fourth partials derivatives, we get (using (2.2) to eliminate 
some terms) 

(2.3) u,~(ev) =- �89 e 2 ~ u,~l(0 ) VkVt + O(e2), 
k,I 

Uin = 8 ~ ,  Ui~,(O ) V k + 0(8), 
k 

UdeV) = ud0) + o(I), 

where o(d) denotes a term which tends to 0 as d - +  0. 
Substituting (2.3) into (2.1), dividing by e 2 and letting e -+  0 yields 

(2.4) �89 s Unnkll3kVl + 21s s E UinkO)iVk + ILL2 E Uij('OiO')J ~ O, 
k,l i<n k i,j<n 

where all derivatives of  u have been evaluated at the origin. Letting co be the pro- 
jection of  v, co = (vl . . . . .  v,-1), we find that 

�89 s UnnklVkVl -~- 2t, ~ E UinkI3iVk ~- ~2 s UijViV j ~ O. 
k,I i<n k i,j<n 

From (2.2), we observe that this expression is unchanged if i and j are allowed to 
vary from 1 to n. Using this fact, we see that the above inequality can be expressed 
in terms of directional derivatives by 

(2.5) �89 (u=)vo + 2#(un)oo + #~uvo __> o, 

where all expressions are evaluated at the origin. 
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Before proceeding further, we mention that the key expression (2.5) was de- 
rived by looking at second derivatives of u(ev) in directions (e#(vl . . . . .  v,,_l), 1). 
The same idea is used in KENNINGTON'S proof of his convexity minimum principle. 
Near three colinear points (y, z, x = (1 -- 2 )y  + 2z} of  minimum convexity, 
he considers small perturbations and studies their effect on the function T(y, z, 4) 
defined in Section 1. One can derive his inequalities by perturbing each of (y, z, x) 
in the direction of a vector v, but different magnitudes determined by #. Thus if 
(y, z, x} are assumed to lie on a line in the 33" direction, then KENNINGTON studies 
the convexity of u along lines displaced by multiples of e in the v direction from 
{y, z, x} with direction vectors (e/zto, 1), a) = (vl,/22 . . . .  , Vn--l) .  

To continue the proof, choose an orthonormal system of vectors {v ~, . . . ,  v"} 
so that, with respect to these coordinates, [a;J(Vu(0))] is diagonal with eigenvalues 
21 ... 2,. By adding multiples of (2.5) n times, we get 

(2.6) �89 ~_, 2kU,,,,,,kok + 2t , ~ 2kU, vk,, k + #2 ~ 2kUvkd" ~ O. 
k 

From (2.2) we find that 

(2.7) (aii(Vu) uij),},=0 = 
I 

Also, 

(2.8) 

k k 

( ~ a~kUk,,) Uq + aiJUOn}x=o = aiJ(Vu(O)) uo,(O ) . 

(aO(gU) Uo),,nL=O=(k~.t a~,~u, Ukn')UiJ 

= a '7 (gu(0)) uij,m(O ) . 

From (1.3), (2.7) and (2.8) it follows that (2.6) can be written as 

�89 + 2/~f n + / ~ 2 f ~  0 at x = 0. 

This inquality can hold for all /z 6 R if and only if the discriminant is ~ 0, that 
is 

(2.9) 2(f,) a - - f , ,  ~ 0 at x = 0. 

But at 

(2.10) 

x = 0 we have 

f .  = Z Lk Uk. + Lu. = Lu., 
k 

L.  -- Z &.,uk.u,. + E (fuku~.. + 2f..ku~.u.) + L . . .  + L.~.  = = L . . .  =. 
k,l k 

Hence (2.9) becomes 

(2f  2 --flu,,) u 2 <--_ 0 at x = 0. 

By (1.7), we must  have u~(0) = 0. 
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Finally, observe from (1.8) and a theorem of  HoPr [5] that u is real analytic 
in ~ .  We shall use the real analyticity of  u to show that if u,(0) = 0, then u is 
constant on lines on the )3~ direction. Differentiating (1.3) and evaluating at a 
point x near 0, we obtain 

(2.11) ~ aiJ(Vu(O)) Unnij -~- 
i,j 

~_~ [aq(Vu(O)) --  ai;(Vu)] Unnij 
i,j 

Z ij ij 
- [2%Uk.Uu.]- ~ +An" [a~k~lUknUlnUij] 

i,j,k i,j,k,l 

Now, in a neighborhood of  the origin it follows from the real analyticity of  u 
that either u,n --: 0 or there exists a positive integer m sucll that 

u,,,(x) = P(x)  q- Q(x) ,  

where P is a homogeneous polynomial of  degree m and Q is the remainder in the 
power series expansion for Unn, starting with terms of  degree m + 1. Since unn 
has a minimum at 0, we see that m is even. From the positive semi-definiteness 
of  H, we deduce that 

(Uin) 2 ~ UnnUii, 1 <-- i ~-- n, 

so there exist c > 0 and Q > 0 small enough so that 

lu,,I ~ c Ixl m/2, In0. I ~ c [xl t~m/2)-11, lu, I ~ c Ix] t<mm+ll, 

lUnnkl ClX[ m-', luo.,jl<=clxl 
when I xl < Q. Representing f~n as in (2.10) and using the above inequalities in 
(2.11), we find that  

X aiJ(Du(O)) PiJ (X) ~ c Ix  [m-1 
i,j 

for I x] <-- ~. The left-hand side of  this inequality must be identically zero, since 
it is a homogeneous polynomial of  degree m - -  2. Thus 

S ai;(Vu(O)) Pi~ ~ O. 

Observe that P(0) = 0 and P -->__ 0, as follows from Unn ~ O. Using the strong 
minimum principle for uniformly elliptic equations, we conclude that P ~ 0. 
Hence Unn ~ 0 in a neighborhood of 0. Consequently u,~ ~ 0 in O. Moreover, 
since u is convex, we also have ui,, ~ 0 in $2, 1 ~< i --< n. Hence u, is constant. 
Since un(0) = 0, it follows that Un :-- O. Thus u is constant in O on lines parallel 
to in" 

Since u,(O) = 0 when r + 1 _< i --< n, we can repeat the above argument 
with un~ replaced by u,, 1 + r ~ i _< n. This completes the proof  of  Theorem 2 
under assumption (1.8). 

3. Proof of Theorem 1 

Let u a n d f b e  as in (1.1) and (1.2). As in Section 2, we assume that H(0) has 
rank r < n. Observe from (1.1) that r --> 1. Let qb be the sum of all r + 1 by 
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r + 1 principal minors of  H. We shall show that t h ~ 0. Following CAFFARELLI 
and FRIEDMAN, we say that h(y) <~ k(y) provided there exist positive constants 
c~ and c2 such that 

(h -- k) (y) --< (cl IV e l  + c # )  (y). 

We also write h(y) ~-~ k(y) if h(y) <. k(y) and k(y) ~< h(y). Next , we write 
h <~ k if the above inequality holds in a neighborhood of  the origin, with the 
constants, cl and c2 independent of  y in this neighborhood. Finally, h ~ k 
if h ~ k  and k<~h .  We shall show that 

(3.1) d ~  ~ 0. 

Since qb ~ 0 in ~2 and ~b(0) ---- 0, it then follows from the strong minimum prin- 
ciple (see [4], p. 34) that t b ~ 0 in a neighborhood of  the origin. 

Hereafter, if we say that a condition is satisfied "locally," we mean that there 
exists ~ > 0 such that the condition is satisfied for all [z] < r To begin the 
proof, pick c > 0 so that the r non-zero eigenvalues of H(0) are bounded below 
by 2c. Thus H(z) has r eigenvalues ~ c, locally. For  such a z, choose a coordinate 
system (-vl,---, 33,) as in Section 2 so that H(z) is a diagonal matrix. Then 

(3.2) ujj(z) ~ c, l ~ j <= r; uo(z) = O, l <= i ~ j <= n. 

Let G----(1 . . . . .  r} and B = ( r +  1 . . . . .  n} be the "good"  and "bad"  sets 
of  indices, and define 

O = I-[ u/j(z), 
jEG 

Qj = Q/uij(z), j E G; R = ~ Q~. 
jEG 

Let o~ and fl be two unit vectors. We compute ff and its first and second deriva- 
tives in the directions o~ and ft. (In this section only o~, fl E (.vl . . . . .  .~,}.) We find, 
for ~b and ~b~, 

<so 
\iEB / iEB 

(3.4) 0 ~ dp~(z)~-~ Q ~.~ u~n(z)~'~ ~_~ u~ii(z). 
iEB iEB 

Because of (3.2), the positive constants in the definition of  ,~  can be chosen 
locally, here and in what follows. To compute ~b~a, we use the second part of  (3.2), 
and then use (3.3) and (3.4) to discard terms uneffected by the ~ relation. We 
obtain 

dp~: :-. Q Z uii~t~(z) -- 2 Z Z QJuij~uiy: 
iEB iEB jEG 

+ R ~ '  [u.~ujj~ - -  uu~uuA , 
i,jEB 

where L ~' means the sum is taken over i ~ j .  Using (3.4), we may replace Si'~B uu~ 
with --uy]~, thus 

(3.5) dp~, ~.. Q ~ uii~a(z) - 2 ~_~ ~ Qjuiyaztij ~ - -  R Z uiy,,uiJ# �9 
iEB iEB jEG i,jEB 
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I f  we pick 0~ = fl = 5~k and sum over k, (3.5) yields 

(3.6) Aqb,~O y~ (Au),, --  2 E '~  IVuol 2 QJ - n E IVue[ 2" 

We relate the terms in (3.6) to derivatives of f as follows. If  i E B, then from 
(3.2), (3.3) and (3.4), we have 

(3.7) f = ~ L k  Ula -}- Lu~ '~Lui, 
k 

fit = Z (fukul)UkiUil -~- Z (fuktlkii "3i- 2fuukUkiUi) + fuUii + fuuU2' 
k,l k 

2 Z*,, Z u, .  
iEB iEB 

(3.8) 

Finally we show that 

(3.9) Q i~B~f2<(j~ iEa~lVu'ji2QJ) f" 

Indeed from (1.1), (3.4), the Schwarz inequality and (3.3), we find 

and (3.9) follows. Substituting (3.8) and (3.9) into (3.6), and using (3.7), we obtain 

Ack ~ Q(f~u - 2f2/f) ~ u2 
i(B 

at z. It then follows from (1.2) that Ack(z) ~ O. Since the constants can be chosen 
locally, we conclude that (3.1) is valid. From the remark following (3.1), we 
conclude that ~b ~ 0 locally. Thus, the set F = (x: rank H(x)= r} is open. 
I f  Xo E s is a boundary point of  F, then by continuity of qb we see that rank 
H(xo) ~= r. Applying the above argument, we get 

rank H---- constant = r 

in a neighborhood Of Xo. Thus Fis  also closed in g2 and so, by connectivity, F = f2. 

4. Proof of  Theorem 2 

Let u and f be as in (1.3) and (1.7). We again assume that 0 E ~Q and that 
H(0) has rank r < n. Define <h as in Section 3. We first show as in Theorem 1 
that <h ----0 in a neighborhood of the origin. We shall assume that 

(4.1) (a~ = (6ij), 
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where t~sj is the Kronecker ~, that is, (1.3) reduces to (I.1) at the origin. To see that 
this assumption is permissible, let u satisfy (1.3), where we have picked a fixed 
x coordinate system near the origin so that aq(Vu(0)) is diagonal, with positive 
eigenvalues ;t~ . . . . .  2~. Define 

w(z) u(r ..., r163 = ue). 

Then 

Hence, if we define 

�9 1 o [ P l  P,,~ be(p1 . . . . .  p,,) = ~ a - ,  

then 

wx, w~.] 
b,,(Vw) x = i  w, ..... v ;s 

Since the Hessians of  w and u are "conjugates", their positivity and rank are 
the same at corresponding points. By inspection, w satisfies an equation of  the 
type desired. We now re-label w again as u. 

Let ~, z and (~)  be chosen as in Section 3. We use the notation of  Section 3, 
and recall formulas (3.3), (3.4) and (3.5) with 0~, fl chosen to be Jk, xt. Multiplying 
(3.5) by a kl and summing yields 

(4.2) akt(Vu) ckXkXt - Q ~a ~ akt(Vu) Uxkxtii 
k,I iEB k,l 

, . ~  -2  Z Z X Q,a~'(vu) uxko%,j -- R Z Z d"(Vu) Uxk,~ux~o 
k,l iEB ]EG k,l idEB 

= --22"t --2'2, say. 

Differentiating aktUxk~t as in (2.7) and (2.8), and using (3.2) and (3.3), we see that 
for i E B 

(4.3' (akt(Vu)Uxkx')'= , i  (~" ~Uxfl)Uxkxt  + akl(Vu)Uxkx"'~' akt(Vu)Uxkxl' 

(4.4) 

,.-, akluiixk,,l, 
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where all expressions have been evaluated at z. Using (1.3) and summing (4.4) 
over k, 1 and iE B improves (4.2) to 

(4.5) ~ akl(VU)CkXkXt "~Q ~ f ,  - 2S1 - .$2. 
k,I iEB 

We seek to estimate ~ f~ in terms of ~1 as in Section 3, using the fact that 
iEB 

a ~  ~0 near 0. Write 

E f2  = ~ (du,)2 _{_ Eo ' 
iEB i~B 

(4.6) 2~. ---- ~ ~ ([Vu0l 2 Qj) + El ,  
J~G iEB 

f = Au + E2. 
Here, the first term on the right-hand side of each equation was obtained by 
replacing Cl k l  with ~ki in the definition of the corresponding term on the left-hand 
side of the equation. 

The error terms can be estimated using (4.2), (4.3) and (4.1). Given ~ > 0, 
we obtain locally 

(4.7) IE~ + [Ell <~ (~  ,,n~ 'Vu~ ' 'E21 ~< t~" 

Now using (4.6) to modify the inequality following (3.9), we see that 

(4.8) Q/f ,~ f2 = Q/f ( ,~ (An,)2 + Eo) ,~Q/ f ( ,~  ( j~  u,j,)2+ Eo) 

1/ f [ (27 t -  EL)(f-- E2) + OEo] 

=2~t  + E. 

E can be estimated using (4.7). Indeed given t~ > 0, we have locally 

(4.9) E <~t~ ( ~ .  ~ l V u o l 2 )  �9 
j iEB 

Using (4.8) judiciously in (4.5), along with (3.7) and (3.8), we have 

( (4.10) '~. akt(vu) dPXkX t < O f~u u~ + 2rlE -- 2(1 -- ~/) Z', -- 2~'2, 

for any 0 ~ ~ / ~  1. But by inspection of (4.2), we see that there exists a constant 
c > 0 such that locally 

(4.11) y~ ~ IVuol 2 <: e(X~ + ~2). 
j iCB 
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Furthermore by the strict convexity of  I/f(.,  Vu) at the origin, there is a neigh- 
borhood of  0 and an r / <  1 such that, in this neighborhood, 

For  this 7, we see from (4.9), (4.10) and (4.11) that there exists c 3> 0 so that 
locally 

(4.13) ~ akt(Vu)~xk ~, ~ Q(~,, - 2Bf] / f )  ~ u 2 - c ~_~ ~ IVu,jl  = . 
k,l  iEB j iEB 

In particular 

a~t(Vu) ~xk~l < o ,  
k,l  

and it follows from the strong maximum principle used in Section 3 that ~b ----- 0 
in a neighborhood of  the origin. As in Section 3, we conclude that rank H ---- r 
in .(2. 

We now show that u is constant in n -- r directions. Since ~b ---- 0 we can re- 
place ~< by ~< in each of our inequalities. It follows from (4.13) that 

(4.14) ~_~ ~.~ IVu,jl 2 (z) --  O. 
j iEB 

Equation (4.14) implies that the coordinates 33i, r q- 1 < i < n, can be chosen inde- 
pendently o fz  locally. To see this, note from (4.14) that there exists c 3> 0 such that 

(4.15) lu0(w) -- u,j(z)l = [u,j(w)l ~ c Iz --  wl 2 

locally, when iE B. Also, if i 4: j ,  

(4.16) lu,j(w)l <-_ c Iz - wl, 
for c large, since uij(z )--- 0 for i=~j .  Let v be a null vector of  H(w).  I f  
v = ~ biyi, then from (4.15), 

i 

0 =  E b,u,j(w) = y_, b, u,j(w) + ~,  b,u,j(w), j ~ ~ .  
i iEB lEG 

Choose j so that Ibjl = max Ibkl. Using (4.15), (4.16), the above inequality 
kEG 

and the fact that ujj(z) ~ c (see (3.2),) we get locally 

Ibjl  < c~ Iw - el  2 

for c~ 3> 0 large enough. Note that q = ~ biyi is a null vector for H(z)  
i~B 

since H has rank r and (3.2) holds. From the last inequality it follows that 

(4.17) Iq/lql - v[ ~ c2 lw - zl ~ 

locally, for an appropriate choice of  c2 3> 0. Note that c2 is independent of  w 
and z locally. From (4.17) we conclude that each unit null vector of H(w)  lies 
within c2 ] z --  w 12 of a null vector of  H(z).  Since w and z are arbitrary (subject 
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to [z[, [w[ < ~), it follows from a simple argument that actually the null- 
spaces of  H(w) and H(z) are the same. (Divide the line segment f rom z to w into 
N equal parts, N large, and use (4.15) in each subsegment.) From (4.14) and 
our choice of  coordinate system, it follows that u;j = 0 in a neighborhood of 
the origin whenever i E B. Thus u~ is constant in a neighborhood of  the origin, 
and so must  equal zero by (4.13). Repeating the argument, it follows that  the 
set 

(x E/2: ui(x) = uii(x) = 0 for all i E B} 

is open. Since this set is clearly closed in /2 ,  we conclude from the connectivity 
o f / 2  that u is constant in n - -  r coordinate directions. 

5. Remarks 

Remark 1. Let u and f be as in Theorem 1 and suppose that H has constant 
rank r < n. I f / 2  is convex, then it follows as in [2] that through each Xo E/2  
there is an (n - -  r)-dimensional plane on which u is linear in /2 .  To give the p roof  
(following [2]), suppose xo = 0 and put 

v ( x )  = u ( x )  - u(0) - Vu( 0 ) -  x,  x E / 2 .  

Since v(0) = 0, Vv(O) = 0, and v is convex, we have v > 0. Also, the set 

e = {x: v(x) = 0} = {x: v (x )  < 0} 

is convex in /2. Next choose an orthogonal coordinate system (~j) so that, in 
this system, u0(0 ) = 0  when i ~ j  or r - k l < _ i _ < n .  We claim that E i s  
contained in the (n - -  r)-dimensional vector space L generated by fr+l  . . . .  ,33" �9 
Indeed, suppose v(x )=O,  where x . f j ~ 0  for some j, l ~ j ~ r .  Then 
v(tx) ~ 0 for small t > 0, as follows from the fact that u j j (0)~ 0. Since E 
is convex, we have reached a contradiction. Thus E C L. I f  E = L A / 2 ,  then 
u is linear on E and we are done. Otherwise, since E considered as a convex subset 
of  L is the intersection of  (n - -  r)-dimensional half-spaces, there is a point z in E 
and a ray l emanating from z with l -  {z} C_ L --  E. By making a rotation if 
necessary, we may assume that l = { z -  tfn: 0 =< t < cx~). Let z~ denote the 
(r q- 1)-dimensional plane through z generated by f l ,  Y2 . . . . .  33, 33", and let v~ 
be the restriction of  v to this plane. I f  BQ = {x: Ix - -  z[ < 0} C_ /2, we claim 
that for some eo > 0, 

(5 .1)  w(y)  = - v , ( y )  - t ( y  - z ) .  f" < 0 ,  

whenever y E  zt A {x: ]x - -  z[ = ~} and 0 < t < to. Observe that  (5.1) holds 
for y in a neighborhood of  z q- o f ' ,  since vx > 0. It  also holds in a neighborhood 
of  z - -  0fn for to sufficiently small, since v(z -- Of,,) > O. Thus we need only 
consider the set of  y E ~ A {x: ] x --  z] ---- O) such that 

[(y- z).fA => 
; = I  
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Since EC_ L, we see by  cont inui ty tha t  (5.1) holds on this set also if  eo > 0 is 
small.  Hence  (5.1) is true. We now apply  a m a x i m u m  principle o f  ALEXA~ROV 
and BAKELMAN [1] to W in .(2/% z~. I f  A ---- (wo) denotes the r -k 1 by  r q- 1 
mat r ix  with i, j E  (1, . . . ,  r, n), we obtain  )..1. 

w(y) <= c [ det A l dx  = 0 ,  y E z~ f~ B o, 

by Theo rem 1. However ,  this inequali ty is clearly false when l y  - z l  is small  
and y E/ ,  since v(z) = 0 and 7v(z)  = 0 (v has a m i n i m u m  at  z). We have 
reached a contradict ion.  Hence  E = L #~ s and u is linear on L / 5  ~ .  

F r o m  Theo rem 1 and the preceding discussion, we see tha t  either 

(i) the Hessian o f  u is positive definite in ~ ,  or 
(ii) through each point  in g2 there is at least one line on which u is linear. 

Moreover ,  f rom Theo rem 2 we see that  if  l/f(-, Vu) is strictly convex in s then 
case (ii) m a y  be improved  to 

(iii) u is constant in at least one direction. 

We now show there are functions which satisfy (ii) bu t  not  (iii). We const ruct  
i n R  2 a solution u of(1.1) ,  with f (u )  = --1/u,  which is convex in a suitable domain  
and whose graph  is pa r t  o f  a cone. To  do so, we use po la r  coordinates  and write 
u(r, O) : rg(O). I f  

then 

Au ---- u,, + r -l  ur + r --2 Uoo = - -1 /u ,  

g(O)/r q- g"(O)/r = --1/(rg(O)), 

which simplifies to 

(5.2) g"(O) = [--1 - -  g2(O)]/g(O). 

N o w  it is easy to see tha t  (5.1) can be solved locally with, say, initial condit ions 
g(0) = - -go  < 0, g ' (0)  = 0. As long as g < 0, we see tha t  g "  > 0. I t  can be 
shown f rom this inequali ty tha t  u = rg(O) is a convex funct ion in a suitable domain .  
Clearly u is l inear on rays th rough  the origin. 

I f  1/f(., 7u)  is strictly convex at  some point  in ~ ,  then f rom the p r o o f  o f  
Theo rem 2 it follows that  u is constant  a long an entire line in s In  appl icat ions 
this possibili ty can often be eliminated. In  these eases, if  (1.2) holds and  u is not  
strictly convex, it mus t  be the case tha t  ( l / f ) , ,  = 0 in s Thus 

1 
uA(Vu)  -k B(Vu) .  

f (u ,  Vu) 

In  a future  pape r  we hope  to characterize those values o f  A and B for  which 
the lines in (ii) intersect in a cone. In  R 2 we believe tha t  a necessary and sufficient 
condi t ion for  this to happen  is tha t  B be a cons tant  mult iple  o f  A. 
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Remark 2. We conjecture that Theorem 1 remains valid when (1.1) is replaced 
by (1.3). The conjecture is true in R 2, as can be deduced from the proofs in [2] 
or in this paper. 

There are also sharp results w h e n f i s  allowed to have a suitable x dependence, 
just as KENNINGTON'S method works for f = f ( x ,  u, Vu) when 1/f(.,., Vu) is a 
convex function of (x, u) for fixed 7u. For  example, Theorem 1 generalizes to 

Theorem 1. Let the hypotheses of Theorem 1 hold, except that now f --- f(x, u, Vu) 
and 1If is a convex function of  (x, u) for fixed Vu. Then H has constant rank 
ing2. 

The proof  is essentially unchanged. Indeed, the proof  in Section 3 showed, 
without considering any dependence on f ,  that 

Aqb <~ Q ~ ( f ,  - 2f2/f) = Q f2 ~ (1/f)ii. 
i~B iEB 

Using the explicit dependence o f f ,  it is easily checked that dqb ~< 0. 
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