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1. Tntroduetion.

Let I =1I(z}), be u scalar, i.e., a real valued function of the point
T = (%, %, ..., x,) of the real Euclidean n-space E* frz3). We assume J
to have second continuous derivatives in some neighhorhood U, of the origin
e=(0,0,...,0) of E*. Moreover, we assume that o is an isolated eritical point
of I,1i.e., that .

{1.1) grad I =10 for x =0

while grad 7 =+ 0 for all @ + o of some neighborhood 7 of o whose closure Uis
contained in U,. The vector field g(x) = grad 7{x) has then o as an isolatad
singolarity. Let § be the index of this singularity!) and m’ (r=0,1,...,n)
be the r-th (Morse) type number?) of the eritical point o of I, The object of this
paper is the proof of the relation

n

:.Mv M”Mﬁlh—%gw

under the following : =
Hypothesis H. There exists a neighborkood U, of o such that for all  + o
ew the intersection U, {x|1(x) = I(0)} the veciors x —o and: grad [{x} are
linearly independents). _ .
..w_awE&nm the validity of the hypethesis H we malke the following remarks:
H is vacuously satisfied if o is a maximum or minimum since then (for & small
enough neighhorhood of o) the set {z |7{x) = I{0}} contains only o {ef, section 6).

!

If 0is an Intermediate’ oritical point, i.e., neither maximum nor minimum

!} For the definition of the index of the singularity of a vector field see 1], Kapitel XIV.2
(Numbers in brackets refer to the bibliography p. 27). .

%} [4), where also further literature about the critical point theory is to be found. Bxeept
mcn. the cocfficient domain, the definition wsed in thia paper is the one given in [6], p. 29.
bm '8 stated explicitly at the beginning of secticn 3 of the present; paper, For it agreement
with the definition given in [2], p. 267 sea p. 26, footnote 1 of the Present paper.
. %) For any point set U the closure is denoted by U. The symbol M denotes interscetion -
The m.ﬁpvm._ {y | Piy)} denotes the set of all y having the property P, Sometimes we will
shortly write (P}, e g., {{ = 0) = (y{ I(y) < 0).
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point, it has been proved by A. B. Brow~ and M, Morsgl) that H is always
satisfied if [ is an analytie function. Morecver it will be shown in a separate
pa ﬁoamu that H is also satisfied under the following circumstances; I has continuous
derivatives up to and including order p + 1 where p is an integer =2; all derivat-
ives of order less than p vanish at x = o while the hornogeneous form of degree p
giving the p-th dilfercntial at x = o is not degenerate in the algebraic sense?).

The proo! of (1.2} is straightforward in the case of a maximum or minimum
(section 6), The major part of the paper deals therefore with the proof in the
sintermediate” case which is based on a geometric diseussion of the “‘eylindrical
neighborhood™ of the critical point o as defined by SEIFERT and THRELFALLY)
(scetions 2 and 3), on the Lerscuerz fixed point formula®), and on Horr's ex-
tension theorem?®). To facilitate the exposition we give a rough outline of the
proof in this case: without loss of generality we assume that

(1.3} © I{e)y =10

and consider a sinall enough “‘cylindrical’” meighborhood C'(e, ;) {cf, section 2)
of o where g < g are positive numbers, The boundary & of C'{e, &) turns out
to he a simply closed connected complex consisting of a finite numhber of dif-
feventiable {» — 1)-manifolds, In addition the intersection y of & with the level
surface J = — &, consists of a finite number of components y,, ..., yz each of
which is a differentiable (n — I)-manifold. We define fori = 1,2, ., 8 subsets
I of C(e, g) as follows: through each point of ¥, we draw a “gradient line”,
i.e., a eurve to which the vectors of the gradient field g{x} = grad I'(x) are
tangential; Iy consists then of those points z of such a gradient line for which
—sz=I{zy = —¢,. In order to apply the Lefschetz fixed point formula we
construgt in section 4 a continucus map f(x) of C{e, e) into itself with the
following properties: f is homotopic to the identity map; f{x) has § + 1 fixed
points namely o, and exactly one interior point ¢; of I; f maps each I} into
itself ; finally the index of the fixed point o of f(z) is (—1)" times the index §
of the singularity o of the gradient field g(x). Since through each x #+ o of

#
{{e, ) there passes exactly one gradient line f () is easy to define in 0'(e g,y — 3 I7;
i=1

by displacing « by a proper amount along the gradient line through z in direction
of decreasing I, and by setting f{o) — 0. However in order to obtain a map of
h .
(e .&,) into itsclf the definition has to be different in the set 3 17 which is “near”
i=1

to the level surfage T = —¢,. It is here that we make essential use of the Hopf
eXtension thecrem (section 4). . .

The application of the Lefschetz theorem which states that for a map of a
polyhedron into itself the algebraic sum of the fixed point indices is {~- 1)" times

1 [2), lemma 10; [4], p. 136, theorem 4.3,

1 E. H. RoTHE, A rcmark on isolated critical points. To eppear in the Amer. J. Math,

% If 3= 2, o is obvicusly a non degenerate critical point in the sense of Morse ([4],
P. 143). That in this case H is satisfied is shown in [4], p. 156, theorem 4.2. Moreover for
& nton degenerate critical point formula (1.2} (even in Hilbert space} waa established in [5].

%) [6], p. 38,

%) Bee e.g. [1], Kapitel 14, especially p. 542, Satz la.

#1117, p. 500,
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the “Lefschetz number” of the map, is now as follows: since fis roEoﬁoEa to
the identity the Lefschetz number is the Fuler characteristic, W@wqmum the
theorem io C(e, &) and to each I} we obtain the formulas

P
(L4 Tcaﬁ@?&:ﬂﬁ!:i;_.Mw.: (=D"xl)=j (=1,2,

if §; is the index of the fixed point o, C I'; of the map f, and if ¥ (P) densteg the
Euler charasteristic of the polyhedron P. Now y(Cfe, &)) =1 since Cfe, &) is
contractible to o (lemma 3.7), and .

8 2 n—t
,,WHRQS =x A‘WLJF »d_.v Hﬁw_c (—1)p"

#
where " is the r.th Betti number of 2 I':?). This together with (1.4) gives

i=1
(1.5) j=—(p—1) +,..HMW (—1yp-..

Now the.r-th type number m’ is defined as the r-th Betti number of the
(singuiar) complex K = Cle, &) N {I <0 modulo K — o (cf. section 5). From
this definition the following relations are easily established in the intermediate
case (section 5):

(1.6 m'=0, ml=p"—1, w=p"'t (rz2).

Combining (1.5) with (1.6) we obtain {1.2}.
Tn all that follows the assumptions of this introduction are supposed to hold
with the exception that the hypothesis H is not required for sections 2 and 6,

. The eylindrieal neighhorhoed € (2, £) 3.

Through each point 2* = (2, 2, ..., 22) + o of the neighborhood ¥ of the
introduction passes one and only one gradient line, i. 0., one and only one solution
o) = (2,0, 2308, .. ., z,(8) of the differential equations

@2.1) am%n L ?‘u%hcnrw.:;a_.
ZI i .
=i

Along such a gradient line it is possible to introduce I instead of { as parameter$),
The part of the gradient line ¢ = z(I) given by @ = I = b is called the segment
between & and . If a is positive and the gradient line x — x(I} is defined for

all positive I < ¢ and if WMS z(I) = o we call the set of points x on this gradient
-0

line for which 0 < I <& plus the point o the segment below o endin, at o.
The term “segment above b starting at o” for negative b is d>fined correspond-
ingly.

We formulate as lemma 2.1 the following important property of a gradient
line the proof of which is given in [6], § 9, section 3: .

}) Lemnmas 3.9 and 3.10 assert that Clc, &) and the I are polyhedra.
%) p* = 0 as the n-th Betti number of a polyhedron in B
®) CL [8], p. 38. %) [8], p. 36.

By

0

———
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Lemma 2.1. Let 2° & o be o point of U and let & — x({I) be the gradient line
through #° auch that 3° = x(1) where, by definition, I, =1(2"). Then one (and
only one) of the following two cases must take place if we consider the gradient line
x=a(l)for I< Iy case 1: «(D)C U for all I < I,; in this case we muat have
I{zg) >0 and lim z(I) < o; case 2: there ewists o I, << I, such that z(l}) 42 a

I—=0
poundary point of U. The corresponding siatements are true if we consider z — x(f)
for I=1,.
The following notation will be used throughout: ;= denotes the norm

dM__ amvw &?mv&uﬂa.hﬁa:au....vaafwo_. mn%hVo“ﬂmmm%mwozmmgmg
W=1 —

r <R, Vg its closure, and Sy its boundary “z' = R, With these con.
ventions let B, > 0 be such that

2.2) Ve, C Vg CU
and let
(2.3) Z{(Vp)= Vg 0 (I=0}.

For any pair of positive numbers ¢, & we define the sets G (VR,), G(Vy,),
G_o(Vg,) 8s follows: @ (V) is the set of all points on the segments
—¢ £ 1 5 e of those gradient lines which pass through poinss of Z(V p ); G (Vg,)
is the set of ail points on the segments below & ending at o, and G_,. (¥, ) the
set of all points on the segments above —go starting at o, Then it is knownl)
that there exists a positive g, such that the union Coer(Vr,) +G.(Vg) +6G_, (Vxr.)
is contained in I for any couple ¢, ¢ satisiying

(2.4) 0<<e<<e <g.

This union is, by definition, a eylindrical neighborhood of 0. We denote it hy
Cfe, &) and have, under the assumption (2.4},

(2.5) Cle, e C U,
bLemma 2.2, Tkere exists an R, >0 such that
(2.6) . VaC0l@,¢) and 0< R <R,

For the proof we refer to [6], p. 96, footnote 16,

Lemma 2.3. Let £ ={(s, ;) be the set of points on the segments —g, = I < ¢
of the gradient lines through the points of Sp,M{I =0} =8, N Z(Vp).
Let {7, 8~ be the subsels of & lying on the segmenis 0= I <eand —g=1<0
respectively of these gradient lines such thal

(2.7) b={"+{7, (il =8gn{I=0}.

Finally let " .

{2.8) yolee)=y = Qﬁm_ &) N AH = |mL“ “t..r (e, &) = Qmm.u &) M Ah« =¢},
und 8 = 8C(e, ,) the boundary of C(e, r,). Then

2.9) B=C4y +pt

1y [6), p. 38.
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Proof. We prove first that each point of £ + v~ <+ ™ is a point of 3 Te
then « C v~ Since by definition 3+ C C(e, g), = is a point of Ce, ). Om s._n
other hand since 7 = const — ¢ on 7, the components of grad 7 tangent tg ,__,w
arc zero which together with the fact that grad [ + 0 at » shows thag ﬂﬂm
derivative of I normal to y* is different fram zero. Consequently in each neigh
borhood of x there are points &’ in whieh I (2} > I{x) = ¢, L. e,, points o/ éEnr.
are not in C{g, ¢). This proves that a point = of ¥ is & boundary peint and
the proof for points of y~ is obviously quite analogous. '
Now let 2’ be a point of {*. Then 2’ C (e, ¢,) and we have to show thas

each neighborhood U, of 2’ contains points & not in C(g, &,). Now ' lies on the .

segment 0 < [ < e of the gradient line through some point 2° of 85, M {7 = oY
It follows from. classical theorems eoncerning the continuous dependence cm.
a solution of the system (2.1} of ordinary differential equations on the initjg]
values that there is a neighborhood U, of 2® such that if z = #(I) is a gradien
line with x(0) C Uy~ {I =0}, then (I} C U, where I, = I(z’). I{ we now
choose a point (0) C Uy M {I = 0} with i#(0): > By = 2", then the point
2 = x(L;) on the gradient line through £(0) will be in T and outside Of, &),
Since the proof for a point of £~ is obviously analogous we have finished the
proof that each peint of £ 4 ¥~ 4 v+ is a point of 2.

We now have to show that these are the only points of 8, i. 0., that every
other point &' of Cfe, &) is an interior point. That 2/ = o is an interior point
Tollows from lemma 2.2. To deal with the case 2’ 4 o we first state the following ;

Lemma 2.4, Let o' & 0 be a point in C(z, &) which iz not on {. Then there
exists o positive g of the follmving property: if W, is the spherical neighborkood of
at a..« radius ¢ and if x = x(I) is o gradient line through o point of w, =
WA (I () = I(2')}, then either im x(I) = o, or the gradient line x= x(I) inter-

I—0

sects {I == 0} in o point 20 with aa__ < Ry.

We postpone the proof of this lemma and show first that it implies that o -

is an interior point if z' {{ £ 4- y* 4 p~. Since the argument is essentially the
same in the fwo cases (') =0 and [ {#') = 0, we testrict ourselves to tho case
in which
{2.10) I{x') = Q.
TFirst of all it follows from lemma 2.4 and the definition of C'(e, e,) that all points
of w, are in C'(e, £,). Moreover since 2’ C O{e, &,) but not on 47 it follows from
(2.10) that 0 =< I(a’) <" ¢. Consequently we may choose an A such that 0< &
< min(e, e— HHa')), Then —g < I/} —h < I{z') + b < g. Therefore all
points on the segments f{x') — A=< P I{2') + 2 of gradient lines through
points of w, wili still be in C(e, ¢,). However the set of all these points is a
“eylindrieal neighborhood of a non eritical point” {namely z') in the sense of
Seifert and Threlfalll), and such a cylindrical neighborhood is known to containa
spherical neighborhood of # 2).

We return to the proof of lemma 2.4 restricting ourselves again to the
case (2.10) without loss of generality, We distinguish 2 cases:

{i} The gradient line through &’ meets {I = 0} in a poini 2° = o. By definition
of Cle,e;) we have then 0 < 2" < R,, and since 2f ﬂ £, we have even

1} {6], p. 37.

%y [6), p. 95, footnote 14.
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oA acAma.e?u._.io_.aémcpba:oommﬂ.QVOmcowﬁrmﬁ.“ﬁfﬁwa?a
all @ of the intersection v, of the spherieal neighborhood about 2 of radius o
with {{ = 0}. Since the coordinates of a point on a gradient line for 1 =0
%mm:& continuously on the soordinates of the values taken at 7 — I, we can
choose & 9 =™ (y such ;m&. the gradient lines through the points of the intersection
w, of {I(@) =1 (z}} with the spherieal neighborhood about #° of radius p go
through points of #,. This proves that w, C Cle, ¢).

iy If & =g¢'(f) is the gradient line through &', then lim g'({) = 0. In this

et
case we consider the sphere ¥, with the property given in lemma 2.2, 1f o/ CV¥a,
¢his lemma shows that 2 is an interior point of Cle, &). Suppose then z' = R,.

Let B be a positive number <CRB,. Bevause lim ¢'(J) = 0 the segment below

T—ib _
:H‘v snding at o of our gradient line interscets the sphere Sg. Let I be the

greantest I-value {in the intervul J{2/), ) for which z = ¢/(]) is' u point of Sg.
Let v = Vg, 0 {I{x) = I[{£)}}. By lemma 2.2 we have that

(2.11) vCCO(e,8) -8 and Ixg)=I@E >0 for 2Cw.

By an argument similar to the cne used above we can choose a sphericul neigh-
porhood of 2 such that its interseetion w, with {7 (x) = I(a’)} has the following
property: the gradient lines x — g{I) through points of w, go through v. It
follows from (2.11) and the definition of C{s,£,) that for each ‘such gradient line
we have either lim g(7) = o or that g{0) + o with g{0) < R,. Consequently

et
all points of w, satisly the assertion of lemma 2.4.

3. Consequences of the hypothesis H.

From now on, except in section 6, we will always suppose that o is an inter-
mediate eritical point and that all assumptions of the introduction, including
hypothesis H, are satisfied. The present section is a discussion of the geometric
nature of C'{e, &) under these assumptions. -

Lemma 3.1, Let Z, denote the set Z(V g} defined in (2.3) minus the point o.
Then each component of Zy 13 o differentinbdle (n — 1)-manifold and conlains points
v with x =r for all r satisfying :

(3.1) _ 0<rs R,

Proof. Since o is an intermediate point, i.e., neither maximum nor mininium
for I, it follows from (1.3) that each neighborhood of ¢ contains points at which
I < 0 and also the points at which 7 > 0, and therefore also points « =+ oat which

(3.2) (@) = 0.

This shows that Z, is not empty. Let, then, = be a point of Z;, and let ;. @,,
.., @y be a system of coordinates on the unit sphere which together with
r= x form a “spherical”’ coordinate system of X", regulur in some neigh-

borhood of #2, and let 2, ¢}, o%, . . ., ¢hi_, be the coordinates of 2° in this sytem.

We claim that at lerst one of the derivatives LA (t=1,2,...,n—1) is

dpi
different from 0 at 2°. Indeed otherwise we would have not only % = 0at 2t

(since grad I + 0 at z = &) bul it would also follow that the r-component
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