A Symmetry Problem in Potential Theory

JAMES SERRIN

The following problem has been posed by Professor R. L. Fospick. Let Q be |
a bounded open connected domain in the Euclidean space R" having a smooth |
boundary éQ. Suppose there exists a function u=wu{x)=u(x,, ..., x,) satisfying the .

Poisson differential equation
(1) Au=—-1 in Q

together with the boundary conditions

3

cu
(2) u=0, a—:constam on ¢92.
n

Must Q then be a ball? We shall show here that the answer is affirmative, and that

u must have the specific form (5% —r?)/2n where b is the radius of the ball and r

denotes distance from its ceater. The precise result is as follows.

Theorem 1. Let Q be a domain whose boundary is of class C?. Suppose there exists
a function ue C*(Q) satisfying conditions (1) and (2). Then Q is a ball and u has the
specific form noted above,

The proof of this result is given in Section 1; in Section 3 we give various gen-
eralizations to elliptic differential equations other than (1). Before turning to the
detailed arguments it will be of interest to discuss the physical motivation for the
problem itself.

Consider a viscous incompressible fluid moving in straight parallel streamlines
through a straight pipe of given cross sectional form . If we fix rectangular coordi-
nates in space with the z axis directed along the pipe, it is well known that the
flow velocity u is then a function of x, y alone satisfying the Poisson differential
equation (for n=2)

Au=—A4 in Q

where A is a constant related to the viscosity and density of the fluid and to the rate
of change of pressure per unit length along the pipe. Supplementary to the differen-
tial equation one has the adherence condition

u=0 on Q.

Finally, the tangential stress per unit area on the pipe wall is given by the quantity
u dufdn, where pu is the viscosity. Our result states that the tangential stress on the
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pipe wall is the same at all points of the wall if and only if the pipe has a circular cross
section.

Exactly the same differential equation and boundary condition arise in the
linear theory of torsion of a solid straight bar of cross section Q; see [3] pp. 109-119.
Theorem 1 then states that, when a solid straight bar is subject to torsion, the mag-
nitude of the resulting traction which occurs at the surface of the bar is independent
of position if and only if the bar has a circular cross section.

A more sophisticated example occurs in the case of a liquid rising in a straight
capillary tube of cross section Q. The function u(x, y) describing the upper surface
of the liquid satisfies the differential equation '

(3) (L+u))u, = 2u u u +(1+udu,=xu(l+ui+u))’?
where x is a certain positive constant; also the requirement that the wetting angle
7 be constant leads to the boundary cdndition

du

(4) T —coty=constant on ¢Q2

(i being the inner normal direction). By the theorem of Section 3 it then follows
that provided the wetting angle v is different from nj2, a liguid will rise to the same
height at each point of the wall of a capillary tube if and only if the tube has circular
cross section. (When y==/2, the unique solution of (3), (4} is =0 for any cross
sectional form of the tube.}

In the final section of the paper we show that our results can be applied to
somewhat more general boundary conditions than (2). A curious consequence of
this generalization is the following result. Consider a viscous fluid flowing in
straight streamlines through a straight pipe whose cross section is non-circular.
Then there must be two points P and Q on the wall, such that the curvature of the
wall is greater at P than at O but the tangential stress is greater at @ than at P.
A similar result also holds for the torsion problem.

It may be noted in conclusion that (2) constitutes Cauchy data on the boundary
surface for the elliptic equation (1). It is of course well known that such data is
generally overdetermined with regard to solving (1) in a given domain ; in light
of this remark, our results provide a concrete example where the overdetermined
nature of the condition can be rigorously analyzed.

1. Proof of Theorem 1

Let T, by a hyperplane in R" not intersecting the domain Q. We suppose this
plane to be continuously moved normal to itself to new positions, until ultimately
it begins to intersect 2. From that moment onward, at each stage of the motion
the resulting plane 7 will cut off from Q a cap Z(7): that is, Z(7) will be that
portion of Q which lies on the same side of T as the original plane T,.

For any cap Z(7) thus formed, we let 2’(T) be its reflection in 7. Evidently
Z'(T) will be contained in Q at the beginning of the process; and indeed as T
advances into Q the resulting cap Z'(T)y will stay within  at least until one of the
following two events occurs:
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(i) Z'(T) becomes internally tangent to the boundary of Q2 at some point P

not on 7, or

(if) T reaches a position where it is orthogonal to the boundary of Q at some

point Q.
We denote the plane 7 when it reaches either one of these positions by 7.

We now assert that Q must be symmetric about 77, In fact, if this assertion is
proved the theorem follows immediately. To see this, we observe that for any
given direction in R" there would then be a plane 7” with normal in that direction
such that Q is symmetric about 7’'. Moreover, according to the construction @
would have to be simply connected. But the only simply connected domains which
have the symmetry property just noted are balls. Having thus proved that Q is
a ball we say that the function (5% —r?)/2n is then the unique solution of the given
boundary value problem ([2], pages 68-69).

In proving the assertion, we introduce a new function ¢ defined in 2'=2"(T")
by the formula

(3) v(x)=u(x) (xeZ’)

where x’ is the reflected value of x across 7', Evidently v satisfies the differential
equation

and the boundary conditions

D=u on éZ’'nT’

v=0, constant on 6Z’ N Comp(T"),

Tn
the constant being the same as in (2).

Since X’ is contained in Q by construction, we may cousider the function u—v
in 2’. Evidently

(6) A(u—v)=0 in X’

and

(7

uu—p=0 on GZ'DT'
u=5=0 on &I N Comp(T");

the latter condition is a consequence of the fact that >0 in Q.* If we apply the

strong version of the maximum principle ([2], page 53), it is easy to see from (6)
and (7) that either

(8) u—v>0 atall interior points of %’

or¢else u=vin Z’. In the latter casc it is clear that the reflected cap £’ must coincide
with that part of Q on the same side of T’ as Z’; that is, Q must be symmetric
about 77,

* For otherwise # would have a minimum at some interior point of £2, which is impossible
since du=—1,
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To complete the proof of the theorem it must therefore be shown that (8) is
impossible. Suppose first that we are in case (i), that is, Z’ is internally tangent to
the boundary of Q at some point £ not on 7", Then u—v=0 at P. Consequently,
using (6), (8) and the boundary point version of the maximum principle ([2],
page 65), we conclude that

t"

(u~—u)>0 at .

CL:'

This however contradicts the fact that du/én=3v/én=constant at P. Hence (8)
is impossible in case {i).

In case (i) the situation is more complicated, for even though u—v=0 at Q
the boundary point version of the maximum principle does not apply (this is
because Q is a right angled corner of Z’ and the requisite internally tangent ball
[see [2], page 65] is not available). Consequently we must proceed in an alternate
fashion. It will be shown (a) that u—v has a zero of second order at @ and then
(b) a contradiction will be obtained from a more delicate version of the boundary
point maximum principle.

(a) By hypothesis the boundary of 2 is of class C?. Consider a rectangular
coordinate frame with origin at 0, the x, axis being directed along the inward
normal to ¢Q at Q, and the x; axis being normal to 7. In this frame we can rep-
resent the boundary of 2 locally by the equation

Xpm(Xyyi: o X 1), ¢‘ecz-

Since u is in C*(£) the condition #=0 on 6Q can then be expressed as a twice
differentiable identity

) u(Xy, ..., Xy—1, $)=0.

Similarly, the boundary condition éu/én=constant=c on 8 can be written as an
identity,

el 5 2)1/2
(10) -y (2]

ax, 5 o0x ox;

where x, is to be replaced throughout by ¢(x, ..., x,_ ;).
At this stage some simple notation will be convenient: thus

. | cu
T SR NP |

Differentiating (9) with respect to x;, i=1, ..., n—1, we now obtain
(11) w,+u,d;=0.

Evaluating this at Q, where ¢, =0, we find

w;=0, u,=c (atQ).

Next differentiating (11} with respect to x;, j=1, ..., n—1, and evaluating at Q
yields

t;+cg,;=0 (at Q)
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where u, ;= 0%ujdx; éx;. Lastly, differentiating (10) with x, and evaluating at ¢
gives
- un i 0 (at Q) '

n=1

Since also u,,=— > u;;—1=cd@—1 at O, we have accordingly determined all
1

the first and second derivatives of u at Q.
Since the reflected cap X' lies inside 2, it is not hard to see that the second
derivatives of ¢ must also satisfy

Qslj':O at Q, f=2,...,n-—1.
Taking these relations into account, and observing that (5) implies
v(xl,xz,...,xn):u(_x}_, xz,...,xﬂ),

we find that the first and second derivatives of u and v agree at Q. This completes
the proof of (a).
Tuming now to (&), we require the following preliminary result.

Lemmal. Let D* be a domain with C* boundary and let T be a plane containing
the normal to dD* at some point Q. Let D then denote the portion of D* lying on
some particular side of T.

Suppose that w is of class C? in the closure of D and satisfies
Aw=0 in D,

while also w20 in D and w=0 at Q. Let § be any direction at Q which enters D non-
tangentially. Then either
ow 0w
H(f = 0 ar ﬁz— = 0 at Q

unless w=0,

The proof of this result will be given in Section 2. Assuming that the lemma
holds, we may apply it to the function w=#—v in Z’. Since w>0 there, and w=0
at Q, this yields

d(u—v) *(u—v)
T>O or T>O at Q

contradicting the fact that both # and ¢ have the same first and second partial
derivatives at . This completes the proof of the theorem.

2. Proof of Lemma 1

Let K, be a ball which is internally tangent to D* at Q, and which touches the
boundary of D* only at Q. Such a ball exists by virtue of the fact that the boundary
of D* is of class C2.

Construct a ball K, with center at Q and radius }r, where r, is the radius of X;.
Finally let X'=K, N K, n D, Now define the auxiliary function

z=z(x)=x1{e_“l—e"’¥)
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where « 13 a positive constant to be determined (we have chosen coordinates with
origin at the center of X; and with T being the plane x, =0; moreover it can be
assumed that D is on the side of 7 where x; >0). It is clear that

(12) z>0 in K, z=0 ondK, andon T

{at this stage we mcan by K’ the interior of the region described, i.e., X, X, and
D are taken to be open scts). We compute

dz=22x,¢"*" 20r = (n+2)}.

Now rx3r, in K’ so that by choosing « suitably large, say a=(n+2) r72, we
obtain Az>0in X',

Now suppose w is not identically zero in D. Then by the strong maximum prin-
ciple we have w>0 in D. We consider the part of the boundary of K’ lying on
9K,. This set intersects the boundary of D only on the plane 7. Moreover the
intersection set lies at a finite distance from the corners of D. By virtue of the
boundary point lemma ([2], page 65), therefore, it is not hard to see that there exists
a constant £>0 such that

w2ex; on dK'néok,.
Moreover
w20 on 6K'néK, and 6K'NnT.

On the other hand, it is clear that
{13) zZx, on ¢K'ndk,.

Consequently, by use of (12), the function w—ez is non-negative on the entire
boundary of K’, and is zero at Q. Moreover

Alw—ez)=Aw—e4z<0

in X', By the maximum principle, therefore, w—&z>0 in X', Hence at Q, where
w=¢ez=0, we have either

d{w—cez Flw—cz
¥>0 or ( 2_)20
ds
Since by direct calculation
dz 0%z
gl >0 at Q,
és & és? Q

this completes the proof of the lemma.

3. More General Elliptic Equations

If the proof of Theorem 1 is re-examined, one finds that the properties of the
Poisson equation which were applied are the following.

(A} It is invariant to the symmetric substitution x—x’.

(B) The sccond partial derivatives u,, in an arbitrary rectangular coordinate
frame can be determined in terms of the remaining second partial derivatives.

2la  Acch. Rational Mech. Anal., Vol, 43
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(C) The difference of two solutions obeys the strong maximum principle, and

(D) The difference of two solutions obeys both boundary point versions of the
maximum principle.

Now conditions (A) and (B) are satisfied by any nonlinear efliptic differential
equation of the form

(14) adu+huuu;=f

provided that a, f and 4 are functions only of « and |p{, where p=(u,, ..., u)
denotes the gradient vector of the solution.* To see this, note that (14} is invariant
under coordinate rotations as well as under substitutions {x,, ..., x,)=>(—x,, ...,x,)
which change the sign of a single coordinate.

On the other hand, the strong maximum principle does not hold for differences
of solutions of (14) in the form which was applied in the proof of Theorem I,
Nevertheless, a somewhat restricted version does remain valid. Suppose in fact
that the functions @, f and A p; p; are continuously differentiable in u and p,
and that ¥ and v are two solutions in a domain D such that u—v20 in D and
u—v=0 at some interior point of D. Then according to a theorem of E. HOpF
([1], pages 149-150) we have u=v,

In the proof of Theorem 1 the maximum principle was used only to show that
either (8) holds or that w=p in X’. This conclusion can be reached by an alternate
argument, however, using only the restricted version of the maximum principle.

Deferring this proof for a moment, it remains only to consider the two boundary
point versions of the maximum principle. In this regard, the standard boundary
point lemma ({2], page 65) applies immediately to the difference of solutions of
(14) since this difference is zero at the point P. (The argument is the same as for
the restricted version of the maximum principle above.) Finally, the required
genralization of Lemma 1 needed for application to the difference of solutions
of (14) will be proved in the following section.

We may thus turn our attention to showing that either (8) holds or else u=v
in £’. For this purpose we shall make an additional assumption about the behavior
of the solution, namely **

(15) u>0 in Q.

(We note that this assumption applies automatically in the case of Theorem I, as
a consequence of (1), (2).) Letting c denote the constant which occurs in the bound-
ary condition (2), we assert to begin with that either ¢> 0 or else 8% u/én* >0 at each
point of the boundary. Thus suppose ¢=0. Then, according to the formulas given
in part (a) of the previous proof, if we introduce at any fixed point P of the bound-
ary a special coordinate frame with x, axis directed along the inner normal to
the boundary, all the first and second derivatives of w« vanish at P except
&% ujon® =u,,, and this derivative has the value

0,0 _,
a(0, 0)

* From here onward we adopt the standard convention that repeated indices are to be
summed frem { to #,
** Recall that £2 is assumed to be open so that (15) is not in conflict with the given boundary
condition (2).




A Symmetry Problem 311

according to (14). {Note that >0 for all values of u and p because (14) is
elliptic.)

Since ¢=0 by supposition, the inequality d<0 is obviously contradictory to
(15); it remains to show that #=0 also cannot occur. In such a case, however,
we would have f{0,0)=0. Then the function #=0 would be a solution of (14),
and correspondingly the solution u under consideration could be regarded as the
difference of two solutions. Then in view of (15) we could apply the standard
boundary point lemma to infer that du/én>0 at every point of the boundary,
contradicting the original supposition that ¢=0. Hence d>0.

From what has just been proved it is now clear that u increases monotonically
as one cnters 2 along any non-tangential direction s, for some positive distance
so into the domain. Moreover, s, can be chosen independent of position on ¢€2,
depending only on a bound for § away from the tangent dircction,

Let us now return to the opening stages of the proof of Theorem 1. By what
has been shown it is clear that immediately after 7 has penetrated € not only will
Z'(T) be contained in Q but also

(16) u>v  atinterior points of Z'(T).

Here we construct v in Z'(7) in cxactly the same way as the previous construction
of vin Z°(77).

We assert that (16) persists as 7 advances into @, for all positions of 7 prior
to T'. Suppose in fact that therc is some instant where (16} fails prior to 7 reaching
7', Then there would be a position 77 of 7 such that either

(17 wu=v in Z(T"), wu=v atsome intcrior point of X'{T'")
oF
U>v at interior points of Z'(7T"")
18 du dJv L i &
(%) & ={:—b at some interior pointof 7" " Q2.
én on

If (17) holds we reach a contradiction with the restricted version of the maximum
principle, and if (18) holds, with the boundary point principle. Thus the assertion
is proved.

It follows by continuity that when 7 reaches 7' we have
u=v atinterior points of Z°.

By applying the restricted maximum principle once more we see that either the
strict inequality holds or else #=wv. But this is what we originally set out to dem-
onstrate. Summing up, we have proved the following result.

Theorem 2. Let Q@ be a domain whose boundary is of class C?. Suppose there
exists a function ue C*{(Q) satisfying the elliptic differential equation

(19) a(u,|p)Au+hu, | phuu;u=f(u,[pl) in Q

where a, f and hp;p; are continuously differentiable functions of u and p (here
p=(uy, ..., u,) denotes the gradient vector of u). Suppose also that

(20) u>0 in Q

2ib  Arch. Rational Mech, Anal,, Vol, 43
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and that u satisfies the boundary conditions

(2) e u=0, a—:=constant on ¢Q.

Then Q must be a ball and u is radially symmetric.

Remarks 1. It is clear that condition (20) can be replaced by the alternate
assumption that u<0 in Q. Also (20) can be deleted from the statement of the
theorem if it is assumed that fis never zero. To see this, note that if f<0, say, then
u cannot take on an interior minimem value, so that the boundary condition u=0
on ¢Q implies u>0 at interior points of . In particular, one has /= —1 for equa-
tion (1), explaining why it was unnecessary to make the explicit assumption #>0
in Theorem 1.

2. Equation (3) describing the upper surface of a liquid in a capillary tube
(i.e. a liguid under the combined influence of gravity and surface tension) is a
special case of (19). The result stated at the end of the introduction is therefore a
consequence of the following remark. Ler u be a solution of (3), (4) in Q, such that |
u=a=constant on 0S2. Suppose that y¥n/2. Then usa in Q. Proof. Assume first
0<y<nf2. Then by (4), since solutions of (3) can take on neither a positive maxi-
mum nor a negative minimum in Q, we have >0 and 0Zu <« in Q. Similarly if
y>nf2 then «<0 and a<u<0in Q.

A further class of equations to which Theorem 2 is applicable can be obtained
from regular variational problems of the form

2n d[F(u,|pl)dx=0.

Indeed if we assume that F(w, ¢) is three times differentiable, and that F’(u, 0)=
F'"(u, 0)=0 for consistency, then the Euler-Lagrange equation for (21) can be
written in the form (19) with

o F"
a=i, Jolp] ("':L—— ). s=L2ler—ipiE)

where primes here denote differentiation with respect to the second argument of F.

i

3. Under the hypotheses of the theorem we cannot conclude any more about
the form of u then that it must be a function of the radial distance r from the
center of €. If we write u=u(r) and use primes to denote differentiation with
respect to 7, then one obtains the differential equation

(22) a(u, ') (u”+ L5

u’) +h(u, |0 Duu' =f(u,|ud']),
for 0=<r<b with the end conditions

(23) u'(0)=0, wu(b)=0.
The ellipticity of (20) implies

alu, | &' )+ A, v )|u'}?>0
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so that in any case (22) is non-singular and can be written in the form
(229 ' =F(r,u,u).

To make further progress it may be assumed that a and 4 are independent of
and that 8f/0u=0, as is the case for the equation describing a capillary surface.
Then standard arguments show that there cannot be more than one solution A.
There would be some interest in pursuing the discussion of equation (22) further,
as JoHNSON and Perko have done in the case of the capillary equation (Arch.
Rational Mech. Analysis, vol. 29).

4, It is of interest to observe that without some assumption of the type described
in the preceeding remark, equation (22) may have more than one solution (or
even infinitely many solutions) satisfying the end conditions (23). In consequence,
the property of having unique solutions corresponding to given boundary data is
not a prerequisite for Theorem 2 to hold for a given equation.

4. The Boundary Point Lemma at a Corner

Here we shall prove a generalization of Lemma I suitable for application to
non-linear elliptic equations. We then use this result to obtain the conclusion

2 3
24) a(%’i‘lw or a—g‘s;ﬂw at 0

which is needed, just as in the case of Theorem 1, for completing the proof of
Theorem 2.

Lemma 2. Let D be a domain of the type described in Lemma 1. Suppose that w
is of class C* in the closure of D and satisfies the elliptic differential inequality

Lw=a;;(x)w;;+b,(x)w; <0  in D
where the coefficients are uniformly bounded. We assume that the matrix a;; is
uniformly definite
(25) a;;(x)&EZx €] (k=constant>0),
and that

(26) la; ;& | SK( € 0|+t 1d])  (K=constant>0)

where {=(&,, ..., C,) i5 an arbitrary real vector, n=n;, ..., n,) is the unit normal
to the plane T, and d is the distance from T.

Suppose also that w20 in D and w=0 at Q. Then either

ow & w
W>0 or _-6_-52_>0 at Q

unless w=0, where § is any direction at Q which enters D non-tangentialfy.

Proof. We proceed in the same way as in the proof of Lemma 1, except that
the comparison function z and the ball X, must be chosen with greater care.

As in the proof of Lemma 1, we introduce the ball K, and then construct X,
to have center at Q and radius 6r,, where <1/2 is a constant to be determined.
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Then in KX'=K,; n K, n D we define the auxitiary function

z=z(x)___{e—«(xl‘r:)’__e"zrf} ) {e-—:r’_e-—ar%}

where « 1s also to be determined. With the choice of coordinates as before, it is
clear that

z>0 in K, z=0 on ¢K, andon T, ;
We compute i

Lz:e—dﬂ(e—:‘(n"n)Z_e—ar%)_ {4cz2 a,-jx;xj—Za[a,»;+b;x;]}

eI T e (At a5y Y - 2afay +by(r —r)])

+8aze_”1e_”‘*""2-(xl—rl)a”xj.
Because of the ellipticity condition (25)
a ;% x; 2kt 23krd v K
and, for the same reason, a,({(x; —r,)22% xr? in K'. Morcover by (26),
lay;x;l=|a;;mx;| S K(xq[+[x,])
since in the present casc n=(1,0, ..., 0). Thus
((xy=ra;;x;|£2x, 1K in K, i
Finally we observe that by the mean value theorem
e““[‘l_”’z-—e_""%§2:(l—G)r,e_‘”%x,;_oexlrle"z’e’f_’("_“)z.

Inserting these inequalitics into the earlier expression for Lz, and using the fact
that the terms [a;;+ 5, x;] and [a,, + b, (x, —r,}] are bounded, we find for large «

- (r? —r)2 - 3
LZ;DZZX-,FIE airt+(x, r”)'{(il’CTE—BJG 2a9r1_16K}

+oe T (e _ ey (2 B)

where B is an appropriate constant. By choosing =1/ and then « suitably large
it is clear that we can make the quantities in braces positive. That is, we have
now constructed a function z such that Lz>0 in X',

The remaining part of the proof is the same as for Lemma 1, since both the
maximum principle and the boundary point lemma apply to the elliptic operator L
in the same way as to the Laplace operator ({2], pages 61 and 65). The only slight
difference to be noted is that (13) must now be replaced by

(13) zS2ar Xy,

which follows easily from the mean value theorem and the definition of z. Conse-
quently the function w—gz of Lemma 1 must be replaced by w—(g/2ar,) z but
otherwise the argument is left unchanged. This completes the demonstration of
Lemma 2.
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To complete the proof of Theorem 2 we must show that the final argument in
the proof of Theorem 1 can be carried over to the more general case of equation (19).
Thus let # and ¢ be, respectively, the original solution and the reflected solution in
the region X’. It has alrcady been cstablished that either u—v>0 or u=2 in 2.
We must show in the former case that (24) holds (the plane 7=T7" being in the
position indicated by case (i) of the proof of Theorem 1). We begin by obtaining
an appropriate second order differential equation for the difference function w—v.

Since both « and v satisfy (19) we have
alu] Au+h[u]uwu;u,=f[u]
alv]dv+h[v]v0;0,;,=f[v]

where a(ul=a(u, |p|) and similarly for the other square brackets. Differencing
these equations yields easily

-

{a[u]+a[v]} A(u—v)+ {h[u]u;u;+h[v]v;e;} (w—1);
+{a[u]—a[v]}Adu+o)+ {h[uuwu;—h[v] o0} (u+o); ;=2{f[u]—f[v]}.

Now by the mean value theorem of multidimensional calculus

alu]—alv]= (?z )o{u—v)ﬁl— (g

[

L) @-)

with similar expressions for & [u]u; u;—i[e} v, v; and f [u]—f [¢]. Thus if we define
a;j(x)={alu]+a[v]} s+ {h[u]wu;+h[v]v;v;}

it follows from the above identity that

@7 aij(-“)(“—U)ij+bi(x)(“—”):+c(xj (u—~v)=0

where b,(x) and c¢(x) are certain bounded functions.
Here the matrix a;; is uniformly definite:

aij§:€j§K|§|2

since both expressions a[u] é;;+ 4 [u] u, u; and a[v] é,;+4[v] v; v; have this prop-
etty (recall that equation (19) is elliptic). Consider next the expression a;; &, #;
for which the estimate (26) must be established. We have by computation

@) a;;¢im={alu]+a[v]}¢-n+ (hlul(p-O(p-m+h[v](q- & (g m}

where p=(u,, ..., ¥,) and g=(v,, ..., v,). Now v is the reflection of u in the plane
T=T'. Hence u=v on T, and moreover (in the usual rectangular coordinate frame
centered at Q with x, axis normal to T)

p=(ul!u23---:un)v q=(_ulsu2)'“suﬂ) on T.

Thus on 7 there holds
lpl=lgl, a[u]=a[r], hlu]=h[v];
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and, since #=(1, 0, ..., 0),
Ishlul(p-O)(p-m)+h{v]l(qg - O(g-n)

’ =h[u]uy(p~q)-E=2h[uJuil =2h[u]ui 7.
By continuity it then follows that off 7
(29) HISM(E -] +181-x,])

for some constant M. Noting that also {a[u]+a[v]} < M’ for some M’, we have
finally from (28) and (29)

la S SK(E-n|+18]-1x, 1) (K=M+M')
as required.

The differential equation (27) for #—uv is not quite in the form to which Lem-
ma 2 applies. Hence as in the proof of the restricted maximum principle we make
HopF's substitution w=(u—v} ¢#*, Then obviously

aij(x)wfﬁ'z’s(x) w;+c(x)w=0

where b,=b,—28a,;, t=a,, f>—b, B+c. Since u—v20 by assumption it follows
that for g sufficiently large

a; ; (x)w;;+ b(x)w; 20,
Consequently Lemma 2 may be applied dircctly to w (note that w satisfies the hypo-
theses of Lemma 2 since u—v=0 at 0); we find therefore

ow 0% w
—a's—>0 or Rz-)'o at Q

since w£0. But at Q

d(u—1) aw 61(:1—1;)_62}9_2‘85 aw
és  Os°’ ds®  8s? 18"
so that also
é(u—v) &*(u—v)
- 33 >0 or _—é?_->0 at Q-

Thus the difference u—uv satisfies (24), and the proof of Theorem 2 js complete.

5. A Different Boundary Condition

The previous results can be extended to more general boundary conditions
than (2) without changing the basic method. We let H denote the mean curvature
of the boundary surface 42, chosen so that H is positive when the surface is
“convex.” Analytically, if a portion of the boundary is locally represented by the
equation

Xa=@{(Xg, -er s Xy—1)

with the x, axis directed into @, then on this part

He (I+dpd)AD—:b;;; .

0 (=D (T+ 20"
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We now replace (2) by the more general condition

du
(31) H—O, H—-C(H} on ¢Q
where ¢ is a continuously differentiable non-decreasing function of A, Then the

following result holds

Theorem 3. The conclusions of Theorems | and 2 remain valid under the more
general boundary condition (31).

Proof. It will be enough to show how the proof of Theorem 1 needs to be
modified to cover the more general boundary condition (31), and then to make
several comments concerning the further modification required for the case of
equation {19).

For the generalization of Theorem I, then, we proceed as in the initial steps of
the proof given in Section 1 to show that either (8) holds or #=v in X', To prove
then that (8) is impossible, suppose first that case (/) holds in the definition of X’
Then u#~v=0 at P, and by the boundary point version of the maximum principle
we conclude as before that

' 0
(32) W(R—U)>0 at P,

. On the other hand, if A is the mean curvature of € at P and H' is the mean cur-
vature of 6Z’ at P, then H< H' since X' = Q. Consequently

du du

ion ™ ol

an c(H) el on
which contradicts (32). Hence (8) is impossible in case {i).

In case (7} we must further analyze the second partial derivatives of # and »
at Q. For this purpose we assume for simplicity that the boundary of Q is of class
C3, though by taking more care one can weaken this assumption. Fixing co-
ordinates as before, we obtain then

u,-:O, u,=¢, u{j+c¢;j (at Q}

. where #, j range from 1 to n— 1. Moreover, differentiating (10) and evaluating at Q
gives
dc

uni=?j{“"H

i {at Q)
since ¢ is no longer constant, Also from (30),

Hi=(4¢)/(n—-1) (at Q).

' Since v is the reflection of , it now follows that all the first and second partial
derivatives of these functions agree at Q, with the possible exception of «, , and v,
. which have the values

dc

.. (33) uln:_ulnzmHl (at Q)
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Now X’ is contained in Q; continuing the analysis of this situation (which has
already yielded the relations ¢, ;=0 at Q), we find that the third partial derivatives
of ¢ at Q must satisfy the condition

E{Ptm1 LilmtP111350  (e=signx, in X)

where {=({,, ..., {,_,) is an arbitrary real vector and the indices / and m are to
be summed from 2 to n—1. It follows that

(34) 11120, ¢, 20 (at Q)
since 2’ may be assumed to lie in the space x; >0. Clearly (34) implies
H,=(4¢),/(n—1)=0.
Thus by (33), recalling that de¢/d =0, we find
4, S0, 2,20 (at Q).

But these are the only (possibly) unequal partial derivatives of w, » at Q. Since
u>ypin X', it follows that in fact %, ,=v,=0, at Q. Hence all the first and second
partial derivatives of ¥ and v agree at Q. The remainder of the proof is the same as
before. \

The argument for the elliptic equation (19) proceeds almost exactly as it did |
earlier in Section 2, though of course taking into account the modificaticns in the
proof of Theorem 1 which were described above.

The only slight change required involves the demonstration that « increases
monotonically as one enters Q along any non-tangential direction s, The difficulty
is that one might have ¢(H)=0 at some points of the boundary and ¢(H)>0
at others (of course ¢ (# ) can never be negative at any boundary point because #>0
in Q). In any case, just as in Section 3 one can show that at any point where
dujén=0 all the first and second partial derivatives of u vanish except for 6% ufdn?,
and this is positive. A not too difficult compactness argument then yields the
required monotonicity property of u near the boundary. This completes the proof
of Theorem 3.
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