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DOMAINS ON WHICH ANALYTIC FUNCTIONS SATISFY
QUADRATURE IDENTITIES

By
DOV AHARONOV AND HAROQLD S. SHAPIRO

1. Introduction

1.1. One of the most basic properties of an analytic (or harmonic) function f is
its mean value property:

(1.1) flzo)= A" ffdcr.

Here D denotes a circular disc centered at z,, and A its area. By do, here and
throughout this paper, we denote the area element on R = C. We can also interpret
(1.1) as a “‘one point quadrature identity”: to integrate an analytic function over a
disc D, evaluate it at the center of the disc, then multiply by the area of the disc.
The papers [8,9, 10] have established, under successively more general hypoth-
eses, that circular discs are characterized by this property (a more detailed
accounting will be given below). In [1] (see also [2, 3]) the present authors were led
to the study of domains on which analytic functions satisfy exact guadrature
identities (q.1.) in terms of function values and a finite number of derivatives at a
fixed point; a natural generalization, moreover, is to allow function values and
derivatives at several points; and a method was given for determining all simply
connected domains admitting q.i. in this wider sense. OQur motivation for investigat-
ing this problem is that it arose in connection with certain extremal problems for
univalent functions, namely: among all functions univalent in the disc U and
normalized by prescribing their values and derivatives up to a certain order at the
origin, to find that function with least Diirichlet integral. The extremal functions can
be shown to map U on domains which satisfy q.i. Because, however, the admissible
functions f in these identities are subject to certain restrictions the results we have
obtained so far concerning q.i. yield only limited applications to the extremal
problems. It is our hope, of course, that further progress either in the general
theory of q.i., or in relaxing the newly mentioned restrictions on the test functions
(so as to make the present results fully applicable to the extremal problems} will
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40 D. AHARONOV AND H. §. SHAPIRO

lead to complete solutions of those problems. In the meantime we present here a
seif-contained account of our results on q.i, which we feel have intrinsic interest,
and which may be read independently of 11

1.2. The following notations will be employed. For a plane domain D, L*(D)
denotes the usual Lebesgue class (with respect to the areal measure do). By LE(D)
we denote the set of single-valued analytic functions in L?(D) and by LZ.(D) the
subset of LZ(D) consisting of functions with single-valued integrals (these classes
coincide when D is simply connected). We shall say that D admits a quadrature
identity (relative to some prescribed *test class™ of integrable analytic functions on
D) if there exist points zy," s 2n in D and complex numbers a;« where

1=j=n; 0sksn-1; nZl 4, #0
such that

r.—1

auf®(z;)
i=1k=0

(12) [ a0 =3,

for every f in the test class.

It would perhaps be more natural, as the previous authors who studied the mean
value property (one-point guadrature) have done, to use test classes of harmonic,
rather than analytic, functions. Our preference for the latter is motivated by a
search for results applicable to the above mentioned extremal problems.

1.3. Let us give a brief account of the known results about one-point q.i.
Epstein [8] proved:

Theorem A. Let D be a simply connected plane domain of finite area and 2o a
point of D such that (1) holds whenever f is harmonic and integrable on D. Then D is
a disc centered at 2o.

In his proof, Epstein in fact only required that (1.1) hold for fe LYD). In our
work, we shall always take as the “test class” either LYD) or L.AD). For D of
finite area and finite connectivity, the distinction between L!and L2 as test class is
not significant, since L4(D) is, for every 1< p =, dense in Li(D)(a proof of this
fact, using methods from [11], was kindly communicated to us by L. [. Hedberg.
(See also [17, p. 112].) The restriction on D to have finite area is, as we shall see, not
essential to Epstein’s result.




resent here a
nsic interest,

in D, L*(D)
r). By Li(D)
y L2,(D) the
(these classes
a quadrature
- functions on
vhere

lied the mean

of harmonic,
tivated by a
lems.

e -point q.i,

area and 2z, a
D, Then D is

¥ D). In our
D). For D of
as test class is
 proof of this
. [. Hedberg.
: shall see, not

ST —

ANALYTIC FUNCTIONS 41
Later, Epstein and Schifter [9] proved

Theorem B. Let D be any domain in R" of finite measure whose complement
has non-empty interior. Suppose there exists a point xo € D such that

(1.3) u(x)=V" j u(x)dx

fal

for every function u harmonic and integrable on D. Then D is q ball centered at xo.
(Here dx denotes Lebesgue measure on R, n 22, and V is the measure of D.)

Kuran [13] then showed that the assumption that the complement of D has
non-empty interior is superfluous, giving moreover a new, very short and elegant
proof. The method of Epstein and Schiffer, when n = 2, can easily be modifted so as
to require only test functions u that are anralytic and integrable on D, that is
u€e LyD).

So far as we are aware, no study of the mean value property has been published
when the test classis LL,. If D is bounded and of finite connectivity, and (1.1} holds
for all f € L (D) then it can be shown that D is a disc centered at z,. A proof of
this was kindly shown to one of the authors by M. Schiffer; it is based on properties
of canonical slit mappings, and is considerably deeper than the corresponding proof
for L. With Prof, Schiffer’s kind permission, we include below (a modified version
of) this proof.

1.4. The plan of the paper is as follows. Section 2 presents a reformulation of
the q.i. problem, which is easier to work with. Section 3 treats the general g.i. in
simply connected domains. Here a fairly complete result is obtained, apart from the
question of uniqueness. The uniqueness question, i.e. whether two distinct domains
may admit the same q.i., appears to be the most difficult in the whole present circle
of ideas; some remarks concerning this will be made below.

Section 4 studies domains D (of arbitrary connectivity) which admit a q.i. relative
to test functions in L D). Our main result is that the boundary of any such D is a
subset of some irreducible algebraic curve. The proof of this is based upon a simple
but apparently new general theorem on meromorphic functions which are real on
the boundary of a domain, which also has other applications. As a concrete
application of our method, we find the most general D admitting a q.i. of the
special form

(1.4) jfda' = af(z0) + bf'(z0).

__
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A feature of our work is that D is not required a priori to have finite area, but only
to satisfy (2.4) below.

Section 5 studies domains D of any finite connectivity which admit a q.i. relative
to the narrower class of test functions L ;.. This is the case needed for application to
the above-mentioned extremal problems. The restriction to L), as already
remarked in connection with the very simplest (i.e., one-point) q.i. causes serious
difficulties, and even the complete description of domains D for which (1.4) holds
seems in this case not attainable by our methods. We do however deduce some
remarkable differential-geometric properties of the boundary of any domain D
admitting a q.i., e.g. the slope and curvature must be algebraically related. Of
course these results apply a fortiori to the domains studied in Section 4.

The final Section 6 deals with some open questions, digressions and variants of
the main problems.

Acknowledgements. The authors wish to express their gratitude to Profes-
sor M. M. Schiffer for several very illuminating discussions relating to the present
material. They also acknowledge with warm thanks their indebtedness to numerous
colleagues for stimulating discussions, useful information, improvements or correc-
tions, especially Bernard Epstein, Bjérn Gustafsson, Lars-Inge Hedberg, Alexei
Levin, Bernt @ksendal, Allen Shields, Uri Srebro, and John Wermer. Finally, we
apologize for the fact that certain overlapping prior work, especially of Philip
Davis, came to our attention too late to permit incorporation of detailed references
within the body of our article; instead, the appropriate credits, and comparison of
results, are given at the end of our paper.

2. Preparatory results and a reformulation of the problem

In this Section we first establish some basic properties of Cauchy transforms.
These are known in principle, but do not seem to have been enunciated elsewhere
in just the form in which we shall require them. With thie aid of these results we
shall reformulate the q.i. problem in a form which is analytically more tractable, an
overdetermined Dirichlet problem for the Cauchy—Riemann equations, with a free
boundary. This technique was employed by Epstein and Schiffer [9], and is a
modification of a method apparently first used by Schiffer [15].

Lemma 2.1. Let u € L™(R?) satisfy

2.1) f

l2

do <% (z=1x+iy).

u!Z!
z

b
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Then the Cauchy transform
@2) )= [ 4o

where the integration is over the whole z-plane, exists as an absolutely convergent
integral for every complex {, is continuous, and satisfies

2.3) Uy=0(¢1"), {—=.
Moreover, the derivative

W_1 (1, 20)

9z 2\ox ay
in the sense of distribution theory, equals — mu.

Proof. The existence of the integral (2.2) for each ¢ is straightforward, and we
omit this verification.

As to the continuity of U, observe first that U is certainly continuous if u has
compact support, being the convolution of u with the function z ™' in L.(R?). For

the general case, write
u(z), lzi=n
e ()=
0, |z|>n,

and let U, denote the Cauchy transform of u, It suffices to prove U, — U
unifermly on compact sets. Now,

z
|z | lzl>n ﬁ’

IU(s")—Un(‘:)|=f- | ;‘J_%da|§[ [ x2dao) sup
|lz]|=n

lz]=n

(integrations with respect to z). For { in a fixed compact set and n large enough,
the sup is less than 2, therefore, by (2.1}, the right side is arbitrarily small for n large
enough.

To prove (2.3), we write

IU(c)rél#;J_%l[das(!i)ff{%m

where E, ={z:|z - ¢|=|Z["*} and E;={z:]z - ¢|>|{ "%,
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Now,
do, — . do 112
fetan [ g | f e
and
- z |. u(z)
N =swp | 25| [ |24

Now, the second factor on the right is finite (hypothesis (2.1)), and moreover, for

s1+| 5

i S 142 Thus, [ is 0021 as £,
E;
and combining this with the above estimate for f yields (2.3).
£y

We can note in passing that the exponent 1/2 in (2.3) is sharp. Indeed, let n; be a
rapidly increasing sequence of positive numbers, and let D), denote the intersection
with the upper half-plane of the disc {z:] z — n; | < j™" n[?}. Then, if D is defined as
the union of the D; (we could also make D connected if desired by joining up the D;
with sufficiently thin channels) and u is the indicator function of D, it is easily
verified that (2.1) holds, whereas | U(n;}| > const. j7'n}?, which is not O(n?) for
any a < 1/2 if »; increases rapidly enough, e.g. n, > 2/,

z € E, we have

Finally, to verify the distributional identity %’I: —wu, we have, for each

¢ € C™(R’) with compact support (all integrations are over R?):

(138w [ 2] 22

fun

and, by a standard variant of Green’s formula, the inner integral in the Iast
expression equals we(2).
Hence

—7 { )dc:l'z

(%—Jr,¢>= —(U,ig>=(— wu,qc'),_

which completes the proof of the lemma.
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Lemma 2.2. Ler D be any open subset of C such that

2.4) I do .
|2 ]
D
Let
(2.5) S()= J’;{{_?'? (integration with respect to z).

Then S is continuous on the whole complex plane, is 0(| £ {*) as{ >, and for{ €D
satisfies

(2.6) $()= —mi+g()
where g is a function continuous on D~ (the closure of D) and analytic in D.

Proof. The first two assertions follow by applying the previous lemma to
u = 1, the indicator function of D. Also, by that lemma, aS{aZ = - q on D, and so
g = 8 + w/ has a vanishing (distributional) { derivative on D. By Weyl's lemma
(see e.g. [18, p. 42]) g is an analytic function in D, and finally, since both $(¢) and {
are everywhere continuous, g is continrously extendible to D7,

Remark. For D bounded, a simple elementary proof of (2.6) can be given, as
was done in [9]. Namely, fix R so large that A = {z:| z | < R} contains D, and write
(for L E D)

so=[:%- [ %

& a\D

The first integral is easily evaluated and equals — 7{. The second defines a function,
— g(¢), continuous for all complex ¢ and analytic in D. This proves (2.6).

Let us now come back to q.i. It is notationally convenient to designate the right
hand member of (1.2) by {a, f) where « is a distribution with finite support in D, ot
what is the same thing, a finite linear combination of §-functions 8., and their
partial derivatives; we will for brevity call such a distribution an elementary
distribution. Of course, distinct elementary distributions may determine the same
q.i., that is, have the same action on analytic functions; for example the distribu-
tions a, B defined by
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_%
<ay 4’) - 6x fay =

(&m=—%ﬁww (0 €C3)

satisfy {a, f) = (B, f) = f'(0} for f analytic in the neighbourhood of 0, because of the
Cauchy-Riemann equations.

If « denotes any distribution with compact support K, it is meaningful to
evaluate

A{y={a, k), (ECK

where k;(z) = (z — {)7". The function A({), which is analytic and single-valued off
K, is called the Cauchy transform of a. Obviously the Cauchy transform of an
elementary distribution with support in D is a rational function, with poles outside
D" and vanishing at <. The converse is easily established, too. We now have:

Lemma 2.3. Let D be any open subset of C satisfying (2.4). The following are
equivalent:

i) D satisfies a q.i. (1.2) for all f € LYD).

ii) There is an elementary distribution o supported in D such that

2.7 fmaszL}ELuDy

(We call a formula of this type a quadrature idenu‘ty.i

iit) The Cauchy transform S of 15 is a rational function. More precisely: there is a
rational function R such that S({)= R({) for all { € C\D. (R has then necessarily all
its poles in D.)

iv) There is a function h, analytic in D except for finitely many poles, continuously
extendible to D™, and satisfying

(2.8) h()=L (€D
(2.9) |h(z)— 2| =M, + M, |z |'*, z € Dy,

where Dy is a domain obtained from D by omitting a small disc around each pole of
h{M, are constants).
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Proof. We have already discussed the equivalence of (i) and (ii), and (iii}
follows from (i) by taking f(z)=(z — ¢)" in (2.7). Conversely, (iii) implies that
(2.7) holds, initially for f(z)=(z — ¢}y " with {& D, and hence for all fE€ LYD)
since finite linear combinations of the former functions are dense in L)) (see
[12]). Hence (i), (ii) and (iii) are equivalent.

(iii) = (iv). Suppose $({}= R({) on C\D. Define
h{z)=w"'(g{z)~ R(2)), z2ED.

This function has the analytic behaviour required in (iv). From (2.6) we see that
(2.8) holds. Moreover, (2.6) shows that g(z)— oz = O (| z ['"*}on D, and since R(z)
is bounded on D,, (2.9} holds.

{iv) = (iii}. Let V denote the open set Ci4D. The function F defined by

S{(z), z€C\D"
F(z)=[

g(zYy—mh(z}, z€D

(where g is the function defined in Lemma 2.2) is analytic on V except for a finite
number of poles in D, and continucusly extendible to the whole complex plane by
virtue of (2.6) and (2.8). Suppose now, for the moment, that 3D consists of smooth
arcs. Then, by Painlevé’s theorem, F is analytically continuable across all points of
aV. Since it is bounded in a neighbourhood of ®, and has only polar singularities, it
is a rational function,

The fact that 3D consists of smooth arcs, in fact that it is a subset of an algebraic
curve, is nontrivial and will be proved later, in Section 4. (There is no danger of
circularity in our reasoning, since in fact the implication (iv) = (iii) is never used in
the sequel, and was included here only for the sake of completeness.)

Remark. Itis formulation (iv) which we actually work with below, that is, we
ask: for which domains D is the function Z|.p the boundary value of a function
analytic in D, except for a finite number of polar singularities? This is equivalent to
the boundary value problem: Find a function analytic in D, which on 3D coincides
with Z + R(z) (R a given rational function). For a given domain D this problem is
in general senseless (overdetermined); we have to find those special domains D for
which it is solvable,

To put the problem in perspective, we may also make this observation: the
function Z |,p is analytically extendible to some neighbourhood of aD, intersected
with D, if and only if 2D is an analytic curve (see Section 6). We are here interested
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in those special analytic curves for which the extension is to all of D, apart from
finitely many polar singularities.

Next, we give a reformulation of the q.i. problem in the case when the test class is
L. To avoid certain approximation problems, we content ourselves with necessary
conditions for q.i., which will suffice for our purposes.

Lemma 2.4. Let D be any open subset of C satisfving (2.4), and suppose that
D satisfies a q.i. (1.2) for all f € L. {D); or (what is the same thing), there is an
elementary distribution a supported in D such that

(2.10) jfdo' ={a,f), fEL.(D).

[x]

Then, on any connected subset K of 3D, S$({) (the Cauchy transform of 15) and
A(L), the (rational) Cauchy transform of e, differ by a constant. Moreover, there
exists a function C({) continuous on 3D and constant on each connected subset of
3D, and a function h with all the properties enunciated in Lemma 2.3. (iv) except that
(2.8) is to be replaced by

(2.11) RO =C+C{), (€ID.

Proof. Let {,, {; belong to the connected subset K of aD. Then, since the
function

F(z)zlogv-——z :g;

is single-valued on D, its derivative f(z) =(z — {,)"' — (z — {») ' belongs to L. (D).
Substituting this f into (2.10) gives

S(£)—S{&Ly=A) - A(£2)1

or S())— A({1)=S({:)— A({z), showing that § — A is constant on K. Write
B =S - A. Then, from (2.6),

A+ B = -l +g()

showing that h = #7(g — A} and C = 7 'B have the asserted properties and
satisfy (2.11).

Remark. The special difficulties of the L., problem arise from the presence of
the term C({}in (2.11). In a pathological case, say if some portion of 3D is totally
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disconnected, we know only that C({) is some continuous function there. Usually
we shall assume that aD consists of a finite union of continua, say I';, - - -, I'.. In that
case C({) is a constant C; on each I'; and (2.11) becomes

(2.12) RO=(+G, €T (=12, n).

Here we arrive at a boundary value problem like that discussed in the previous
paragraph, but with the difference that on each boundary component the boundary
values { may be adjusted by an arbitrary additive constant. Thus, a priori there is
more chance to solve this boundary value problem than (2.8), corresponding to the
fact that D is now required to satisfy a q.i. for a smaller class of test functions.
Despite the similarity of the two problems, it will turn out that there is a profound
difference in the character of the possible domains D ; for instance, in case (2.8) D
is part of some algebraic curve, whereas for (2.12), unless all the C; are equal, no
sub-arc of 3D can be algebraic.

3. The simply connected case

Theorem 1. Let D be a simply connected domain such that

d
(3.1) fﬁw.

The necessary and sufficient condition that D satisfy a quadrature identity (1.2) for all
f € LL(D) is that some (and hence every) conformal map of the unit disc U on D be
a rational function with all poles outside U~. More precisely: let ¢ map U
conformally on D, and let t be the preimage of z; (j=1,2,---,n). Then ¢ is a
rational function whose poles lie at the points t* = 1/1;. The order of the pole at t7 isr;.
Conversely, if ¢ is any rational function univalent in U, with poles of order r; at points
t%,{t*|> 1 and no other poles, then D = o(U) admits a q.i. of the form (1.2).

Proof. In the proof we shall use the fact, already referred to (and proved in the
following Section) that the hypotheses imply aD is a subset of an algebraic curve. It
would not be hard to avoid this “'loan™ at the expense either of a more complicated
proof, or weakening the theorem slightly by assuming a priori that D is bounded.

Suppose then that D admits the g.i. {1.2), which we may for brevity write in the
form (2.7). By Lemma 2.3 there is a function k analytic in D except for poles of
order r, at the points z; continuously extendible to D, and satistying

(3.2) h()={, (€D.
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Let ¢ map U conformally on D. Then the regularity of 3D ensures that ¢ is
continuously extendible to aU except perhaps for a finite subset E of aU

{consisting of points 7 such that lim,_., | o (1)] = ); it will turn out that E 1s, in fact,
empty but we do not assume a priori that D is bounded. From {3.2) we have

(3.3) he(t) = (1), t€ JU\E.

Now, the function ¢ defined by

bis)=¢(1/5), [s|>1
is analytic in | s | > 1, continuously extendible to | s | = 1 except for points s € E, and
satisftes i (¢) = @ (¢) for t € 3U\E. From (3.3) we see therefore that the function

[h(fp(f)), [t]<1
(3.4) F()=

$(1),  [t]>1

is analytically continuable across all points of ¢U\E and is thus analytic and
single-valued on the Riemann sphere except for

a) poles of order r, at the points ¢ € U. where ¢(z) = z;

b) singularities at points of E.
We now show that E must be empty. Indeed, suppose ~E E, and let V be a
neighbourhood of 7 containing no other point of E, nor any 1. Observe that (3.1)is
equivalent to

w1

frel-ﬂ 2r -
3.5) !!Mmmi*’)[ drdf <.

Since ¢ is univalent, the distortion theorem (5, p. 394] implies | o (re ™)' > ¢ (1 — ry
for < r <1, and hence

w1

f f(l — Y@ (re®) rdrde < .

oo

By simple estimates, the details of which are left to the reader, the last inequality
implies | '(re“)|= O (1= r) hence | p(re®)] = O (1 - r)', and feeding this im-
proved estimate back into (3.5) and repeating the reasoning yields [¢(re™)|=
O (1-r) ' But this, together with (2.9) and (3.4) imply that F(t)= O(1— |¢])"?

-4
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on VN U, so v cannot be a pole of F. Since moreover ¢ is univalent in |¢|>1,
F(@®)=0(/t— 7|} in a full neighborhood V, hence 7 cannot be an essential
singularity either. We conclude that E is empty, and consequently F is a rational
function. From the relation

¢(t)=F(/1), t€U

we see that @ too is a rational function and its poles are at the points t* = 1/1,, with
multiplicities »,.

To complete the proof we have only to show that if ¢ is a univalent function in U
of this form, then D = ¢ (U) satisfies a q.i. of the form (1.2). In view of Lemma 2.3
we have only to show that I |.o is the (continuous) boundary value of a function
analytic in D except for poles of order r; at the points z,. This is the same as saying
there is a function analytic in I/ except for poles of order r; at the points 1, and
attaining (continuously) the boundary values ;(t_) on |¢t|=1. The function ¥(¢) =
@(1/1) does just this. The proof is finished.

The question of uniqueness. Consider a specific g.i. of the form (1.2). Is it possible
for each of two distinct domains D,, D, to admit this g.i. for all f € L.(D, U D,)?
Even asseming D, and D, are simply connected, in which case Theorem 1 tells us
much about the nature of these domains, we could not prove uniqueness. Possibly
uniqueness does not hold in general. If we restrict attention to the even more
special case when D, and D, are Jordan domains, the problem is equivalent to the
following: Let D, and D, be smoothly bounded Jordan domains with non-empty
intersection, and suppose there exists an elementary distribution o with suppert in
D, N D; such that

(3:6) [ fao = | tao = e

holds for all pelynomials f. Must we have D, = D,?

If we only consider the first equality in (3.6), we are led to the following moment
problem, an affirmative answer to which would imply an affirmative answer in the
preceding problem:

Let D, and D, be smoothly bounded Jordan domains such that

fz"da= fz"do- n=0,1,2,---.

& [

Must we have D, = D,?
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As a moment problem in its own right, there is no need to assume a priori that
D\ N D, is non-empty. It is easy to prove the answer is “yes” if Dy and D; are
disjoint, or intersect in just one point.

4. Domains admitting quadrature identities in L!
We begin with a general proposition which is the cornerstone of our method.

Theorem 2. Let D be a bounded plane domain. Suppose f and g are
holomorphic in D except for finitely many polar singularities. Suppose moreover that f
and g are continuously extendible to 3D and there take only real values. Then there is
a non-trivial polynomial P(X, Y) such that P(f(z), g(z)) = 0. Moreover, P can be
taken to have real coefficients, and be irreducible over the complex field,

Proof. The proof is very similar to one of the known proofs of the classical
theorem [5] that, on a compact Riemann surface, any two meromorphic functions
satisfy a polynomial relation. Let m denote the total number of poles {counting
multiplicities) of f and g, and denote by P the set of these poles. Choose a positive
integer n, and consider the functions

4.1 fig*s jz0, k=20, 1=j+k=n.

Their number is n(n + 3)/2. Each is analytic in D except for poles which lie in the
set P, their total number (counting multiplicities) not exceeding mn. If each of these
functions is expressed in the canonical way as the sum of a rational function (its
“principal part”) and a function analytic in D, all these principal parts lie in a
certain vector space whose dimension is at most mn over the complex scalars, at
most 2mn over the real scalars. Now, fix n so large that n(n + 3)2 exceeds 2mn,
Then, there exists a nontrivial linear combination of the functions (4.1} with real
coefficients whose principal part vanishes, i.e. without poles in D. Being real on ¢D,
this function must be a (real} constant. In other words, there is a nontrivial
polynomial @ with real coefficients such that Q(f, g) = 0. Among all such polyno-
mials choose one, which we denote by P,, that has least degree d. To complete the
proof we have only to show that P, is irreducible over the complex field. Suppose
not, then P, = P, P, where P, and P, are polynomials (with complex coeflicients) of
degree less than d. Since Pi(f, g) and Pyf, g) are meromorphic in 2 and their
product is zero, one of them, say P.(f, g}, is 0. Write P, = P, + iP, where P, and P,
are polynomials with real coefficients, and each has degree less than d. Then

P;U(Z),g(l))+jP4(f(Z),g(Z))=0, z €48D.
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Because f(z) and g(z} are real on 8D, so are Pi(f(z),g(z)) and P.{f(z).g(z)),
therefore both of these functions vanish on 3D, and hence identically. Thus Py(f, g)
and P.(f,g) are zero, and since at least one of them is non-constant, we have
contradicted the supposed minimality of d. The proof is complete.

Remark. For later purposes, observe that the proof goes through unchanged
even if f, g have a finite number of polar singularities on éD.

We are now in a position to prove

Theorem 3. Let D be any plane open set such that

do
[
)
and suppose that D admits a q.i. with respect to all f € Li(D). Then there exists a
non-constant polynomial P(X, Y) with real coefficients, irreducible over the complex
field, such that P(x,y)=0 for all x + iy € D,

Before giving the proof, let us point out some simple corollaries (the first of
which is unfortunate from the standpoint of possible utility of these q.i. in
numerical analysis):

Corollary 1. A triangle admits no q.i.

Corollary 2. An annulus admits no gq.i.

Indeed, in each of these cases there is no irreducible polynomial which vanishes
on the whole boundary.

Proof of Theorem 3. By Lemma 2.3 there is a function h analytic in D
except for poles, continuously extendible to 4D and satisfying h(z)= 7 for z € dD.
Hence the functions defined by

flz) =5 +h(2))

and

8(z)=5-(z — h(2))

are analytic in D> except for poles, continuously extendible to D™, and moreover

(4.3) f(z)=x, g{z)=y forall x+iy€aD.
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Now, suppose first that D is bounded. Applying Theorem 2, we get a nonconstant
polynomial P with real coefficients, irreducible over C, and satisfying P(f, g)=0
whence by (4.3), P(x,y) =0 for all x + iy € 4D, and the theorem is proved in this
case.

If D is unbounded, a more elaborate argument of Phragmén-Lindelsf type is
needed, since Theorem 2 is not generally applicable to unbounded domains, and we
proceed as follows. As in the proof of Theorem 2, we can in any case find 2
nonconstant polynomial P with real coefficients, irreducible ovet C, such that
P(f, g} is analytic in all of D. Thus the function v(z) = Im P(f(z). g(z))is harmonic
in D, continuously extendible to I -, and vanishes on D. We have to show v = 0.

Observe first that (because of (2.9)) v is of polynomial growth, that is, for some
N >0,

(4.4) v(z)=0(z|");, lz]o», zE€D.

Now, let D, be the domain obtained from D by omitting a small disc around e¢ach
pole of h. By (2.9) we have for z € D,

h(z)=z+0(]z2]")
h(z)=|z[+0(1z]"), 2—>=,
and hence for each positive integer m
(zhZ)" =z +O(|z"Y, zeED,.

Now, fix m > N/2. The function U(2)=Re(zh(z))" is harmonic in D,, non-
negative on 3D and satisfies

(4.5 Ui)={z"+0(z2"h; lz|-®, z€D,.

Fix a number ¢, 0 < £ < 1. By virtue of (4.4) and (4.5), the function v — U, which is
harmonic in Dy, tends to — o as | z >, z € D, hence it is bounded above in .
By the (extended) maximum principle it is therefore bounded there by its
supremum on df,. Now, on 4D it is less than or equal to zero, and therefore for all
ze D,

v(z) - eU(z) S max[|v(2){ +| U(z)]] = M

where K denotes the compact set dD\3D (i.e. the union of the little circles).
Letting ¢ —0 we obtain
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supe(z)=M.

EZ=N AN

Thus we have proved v is bounded above on D,, and hence on D. A similar
argument applied to — v shows v is bounded below on D. Since v is bounded on D
and vanishes on aD, v =0 and the proof is complete.

Strictly speaking, Theorem 3 does not contain the Epstein-Schifter result (in two
dimensions), however it is easy to deduce the latter by adapting the reasoning to the
special situation. Suppose, indeed, that 0 € D and [, fdo = af(0) forall f € L (D).
Then h is analytic in D except for a simple pole at z =0, and h(z)=Z on 4D.
Therefore zh(z) is analytic in D and real on 3D. Therefore it is constant, i.e. zZ is
equal to some constant R? on aD. Since 4D is a subset of the circle {|z |= R} it
follows easily that D is the disc |z | < R, and substituting f =1 in the g.i. gives
7R*=a. This is exactly the Epstein-Schiffer proof, except that the
“Phragmén—Lindelsf” part of the argument, which is new, enables us to dispense
with their hypothesis that D has finite area, in favour of the weaker hypothesis
(4.2). The ultimate generalization, no doubt, is that the same conclusion holds
under the weakest hypothesis for which the theorem is meaningful, i.e. whenever D
is such that L (D) contains at least one function not identically zero. Qur method,
however, essentially requires (4.2) in order to be able to define the Cauchy
transform of 1.

If we wish to make a derailed analysis of a specific q.i. by the method employed
in Theorem 3, we must carry out the “elimination of poles™ step explicitly. This we
shall now do in a concrete case.

Theorem 4. Ler D be a plane open set containing 0 and satisfying (4.2).
Suppose for some constants ao, a,

4.6) j fdo = anf(0)+ a,f0), all feLMXD).

Then, there is a quadratic polyromial Q(z} satisfyving Q(0) = 0, and univalent in U,
such that D = Q(U). Conversely, if Q is any such polynomial, D = Q(U) admits
the q.i. (4.6).

Proof. Suppose first D is simply connected. Then the theorem follows at once
from Theorem 1, since it tells us that any (simply connected) domain for which (4.6)
holds is the image of U under a univalent rational function whose only singularities
are a double pole at infinity, i.¢. a quadratic polynomial; and conversely. Thus, to
complete the proof we have to establish that D is simply connected. We shall first

prove this under the additional assumption that D is bounded. Now, by virtue of




