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Lemma 2.3 there is a function h analytic in D, except for a double pole at z =0,
that is

@.7) h(z)= PE'* b+ H(), HanalyicinD

satisfying h(z)=Z, z € dD. Observe first that there is no loss of generality in
assuming b, real and positive. Indeed, if b, = 0 we are back to the Epstein-Schiffer
case. If b, # 0, make the change of variables z = A{ where A is a complex number
of modulus one, and write Do=AD, ho()=Ah(AL), Ho{)= AH(AZ). Then
hoZ)= £ for { € 0D,, and (4.7) becomes

b,
AL?

4.7} ho(Z)= %‘ + + Ho(¢), Ho analytic in Do.

For suitable choice of A, the coefficient of ¢™? in (4.7') is real and positive. So, we
assume henceforth b, > 0.

Now, by Theorem 3, D is bounded by smooth curves; denoting by T the
positively oriented boundary of D we have, using (4.7)

2
T

(0o L _
J’zdar =5 I h(z)dz = b..
;
The left-hand integral is @' times the area of D, hence b,>0.
Using (4.7), we obtain, for z € aD

b,+23+ (H(z) = 22

%+—g—§+(z+H(z))=z'+z'

2
Zoibe ) Bt H(2) = a2V,

where the third of these equations is gotten by squaring the first; H, stands for a
certain function analytic in D. Multiplying these equations by — b, — b 1
respectively and adding causes the 2" and z 2 terms in the left hand members to
cancel. We therefore get a function analytic in D, which, on 3D is equal to the
real-valued function — b,zZ = ba(z + Z) + (27 )%, hence both functions are constant;
in particular,




= at z =0,

merality in
in-Schiffer
ex number
Af). Then

rive. So, we

g by I the

; stands for a
— by, — by 1
1 members to
_equal to the
are constant;

(zZV— by 22 — by(z + Z)=const,, z € ap.

Denoting the (real) constant on the right by ¢ and (for more uniform notation)
writing b, = a, b, = b, we have therefore shown: The boundary of D is a subset of the
curve C whaose equation s

(4.8) P(x,y)E(x2+y’)2—a(x2+ y-2bx —c=0.

Here a, b, ¢ are positive consiants (that ¢ >0 follows because P is positive in the
unbounded component of the complement of D-, hence negative on D, so that
—¢=P(0,0)<0).

Since no straight line can intersect C in more than four points, D cannot have
more than two components. If it has one component, D is simply connected, which
is what we wish to prove; so we shall assume that D has connectivity two, and
derive a contradiction. The assumption implies that € consists of two closed loops,
lying one within the other, and D is the domain between them. Let us denote the
inner and outer loops by Ci, C, respectively. Wwriting (4.8) as

227t —(az + b)Y —(bz +¢)=0
and solving for Z, we get
4.9) 27=zaz+b+Q(2)7), z€D
where

Q(z)=4bz’+(a*+4c)z" +2abz + b*.

Now, by assumption, Z coincides on 3D with the function h(z) which is analytic in
D except for a double pole at z =0, Let x,<x:< x;3< xq denote the four
intersections of C with the real axis. They are the four roots of

(4.10) px)=x*—ax’-2bx—c=0.

Since 0 € D, x.> 0, hence O(x.) > 0. If we take the positive squate root in (4.9) the
equation is valid at z = X.. Indeed, in the contrary case we should have

2x.= xi’(axs+ b - A)

where A is the positive square root of Q(x).
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Then
2xi-ax,— b= —A.

But, the left hand side is p'(x,)/2; thus p'(x.) < 0. However, since p has four real
roots, it is clear that p'(x,) > 0. It follows that 2k (2} coincides throughout D with the
function

Flz)=z%az + b+ O(2)"?).

Here F is defined by analytic continuation of that branch of Q(2)" which is positive
at z = x4 continuation along all paths in D must lead to a single -valued function.
From this we shall now derive a contradiction. Indeed, (z) cannot have a zero of
odd order on the interval (x;, x) (otherwise F would have a branching singularity
in D). There are now two alternatives: (a) Q does not vanish anywhere on (x, x.),
or (b} Q has at least one zero of even order on (x,, x.). Suppose first that (a) holds.
This implies that, continuing analytically the original branch of Q(z)"” from x, to
X3, we arrive at a non-negative value for Q(x;)"”. Thus

2x3=2h{x2)= F(x;) = x:%axa+ b+ B)

where B = Q(x;)"* 2 0. This implies, however, that p'(x;) = 0. But p'(x.) <0, and
we have reached a contradiction.

Hence alternative (b} must hold, therefore QO has a zero of order at least 2 on
(x3, x.). An identical reasoning also establishes that Q has a zero of order at least 2
on (xi, xz). Thus Q has at least four zeros, contradicting the fact that it is of degree
3. This concludes the proof of Theorem 4 for bounded D.

It remains only to prove a priori that a domain satisfying the hypotheses of the
theorem is bounded. Boundedness entered in the proof that b, in (4.7) is positive;
we now permit by, b, in (4.7) to be any complex numbers. Consider the 7 functions
zh(z),(zh(2)), (zh(2}Y, z + h(2),i(z = h{(2)), zh (2)(z + h(2)), izh(z)(z — h{(2)).
Each of these is analytic in D except for a pole at z = 0 of order at most 3, and is
real on 8D, Hence, by the reasoning employed in proving Theorem 3, some
nontrivial linear combination of these functions with real coefficients is analytic in
D and, being real on 3D, is constant. Hence there are real constants ¢; not all zero,
such that

X+ yP+ea{x? + ¥y H (T Hy) (cx Fay)tes(x’Hy)Hcax + ey + =0
for all x + iy € dD. A simple enumeration of cases, which we omit, shows that for

every choice of the ¢; the resulting (real) locus either is bounded, or else fails to
bound a domain for which (4.2) holds. This completes the proof of Theorem 4.
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We can complete Theorem 4 by showing: Suppose D, and D, are plane open sets
satisfying (4.2), and each satisfies (4.6) (with the same a,, a,). Then D, = D,.

Proof. We have already shown that D, and D are images of U under
conformal maps by quadratic polynomials. The hypotheses imply

J'w"da= jw“dcr; n=012,---

i o

or, if Q,, Q. are the respective mapping functions

(4.11) I Oz Qi) de = J Q:z) | Q) do; n=0,1,2--.

Hence, we have only to prove: if Qi(z)= bz + c.z® and Qxz)= bz + ¢.2* are
univalent in U and satisfy (4.11), and arg b, = arg b,, then Q.= Q..

Clearly there is no loss of generality if we suppose #, = 1. By simple computa-
tions, the cases h =0, n =1 of (4.11}) yield

(4.12) [b:F+2]cf=b[+2]cf

(4.13) 28, = biG,.

Wl‘]tlng B| = I bi |2, Cg = [Ci lz, i= 1,2 we have

B, +2C, = B,+2C;
(4.14)
B%C‘l = Bng.

Now, the requirement of univalence implies that Q{(z) and Q3(z) have no zeroes in
U, which implies

b lz2l¢], j=1,2
or

(4.15) B z=4C, j=1,2.
It is enough to show, under these assumptions, that B, = B,, for then b, = b;, and

{from (4.13)) ¢, = ¢,, whence Q, = Q: follows. Thus, we have to show that for given
positive S, T' the equations
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B+2C=8, BC=T, B=z=4C

have at most one positive solution, i.e. B*(§ — B)=2T has at most one root B
satisfying B =2(§ — B), that is B = (2/3)S. Putting x = B/S this comes down to
showing that x*(1 —x)=2T/S> has at most one root with 2/3= x =1, which is
evident since x*(1 — x) is monotone on this interval. This completes the proof.

It should be emphasized that the univalence was used in an essential way: purely
algebraically the system (4.11) (which is equivalent to (4.12) and (4.13)) does not
imply | b,| =| b|. This is why the general uniqueness problem discussed at the end
of Section 3 appears difficult, and may well have a negative answer in general. For
example, the polynomials

Q2)=z+%, Ouz)= :

12° z+

z

%
[\
[FERN 8

satisfy (4.11). Q, is univalent in U, while Q, is not. This may be interpreted so, that
the doubly-sheered domain (Riemann surface) Q.(U) admits the same q.i. as does
the Jordan domain Q,(U/).

It follows from Theorem 3 that if D satisfies 2 q.i. it has finite connectivity, say ».
As is well known, there is a canonical conformal map w = ¢(z} of D onto an
n-times covered unit disc; ¢ can be chosen so that an arbitrary point of D maps
into w = 0, and then it is uniquely determined apart from a constant factor (see [4]}.
This function is sometimes called the Ahlfors function of D.

Theorem 5. If D satisfies the hypotheses of Theorem 3, the Ahlfors function of
D is algebraic.

Proof. The function occurring in the proof of Theorem 3 satisfies k(z)=Z on
aD. As we saw, there exists a nonconstant polynomial P(X, Y) such that P(h(z}+
z,h(2)— z)=0, hence h is an algebraic function.

Now, since | ¢(z)| =1 for 2 € 3U the function ¥(z) = i{e(z}+1) (¢(z)—1)"is
analytic in D and has real boundary values (it has poles at points of 4D where
¢(z)=1). By Theorem 3 there is a non-constant polynomial Q(X, Y) such that
Q(¥(z), h{z)+ 2}=10. Hence ¥, and finally also ¢, is algebraic.

Theorem 6. Under the hypotheses of Theorem 3, the leading form (ie.
homogeneous terms of highest degree) of P is divisible by X*+ Y*.

Proof. We know that P has real coefficients and
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(4.16) P(Z it 2 _21.(2)) - 0.

Let P, denote the leading form of P, say
PAX.Y)=2 ¢X'Y"'
)

where at feast one ¢; is non-zero. Now, (4.16) can be rearranged in the form
(Q(z, h{z)) = 0 where (Q is a certain polynomial of degree r. The coefficient of A" in
this expression must vanish, indeed, all other terms involve h’ with j < n, and this
would lead to a contradiction when z — z,, a pole of h, unless the A" term is absent.

The coefficient of " is clearly Pn(%, %) =27"Py(1, i), hence Py(l,i)=10. Writing
PoX,Y)=X"p(Y/X)

where p is a polynomial with real coefficients (in one variable) of degree n, we see
that p(i) = 0, hence p(¢t) = (¢*+ 1) g (¢) for some polynomial q of degree n — 2, and
PoX, Y)=(X?+ Y?)- X" ?q(Y/X) proving the assertion.
As a corollary, for instance, the domain bounded by an ellipse satisfies no q.1.
Combining Theorems 1, 3 and 6 we get the following corollary about rational
conformal maps, independent of the notion of q.i.:

Suppose D is the image of U under a conformal map by a rational function without
poles in U™, Then there is a non-constant polynomial P(X, Y) with real coefficients
irreducible over C, such that P(x,y)=0 for all x + iy € dD. Moreover, the leading
form of P is divisible by X*+ Y. '

This proposition, apart possibly from the last sentence, applies to any curve (not
necessarily simple) which is the image of a circle under the mapping by a rational
function, regardless whether it is univalent or where its poles lie; this can easily be
shown directly.

After our completion of this manuscript, Bjérn Gustalsson, using a Riemann
surface argument (some details of which are mentioned below in Section 6.2)
showed us a considerable improvement of Theorem 6, namely

Theorem 6 (Gustafsson). Under the hypotheses of Theorem 3, the leading
form of P is a non-zero constant times (X*+ Y?)". Here n is the order of the q.i., i.e.
the sum of the numbers r; appearing in (1.2), or what is the same thing, the number of
poles of the associated function h.
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Quite likely Gustafsson’s line of reasoning could culminate in a complete and
explicit description of all domains D for which (4.2) holds, which satisfy q.i. relative
to Li(D}.

5. Domains admitting g.i. in L.,

We begin with a special theorem for one-point q.i., communicated to us by M.
Schiffer: here a result of greater finality is attained than in the case of general ¢.1.

Theorem 7. Let D be a bounded domain of finite connectivity, and zo € D. If
(1.1) holds for all f € L.{D), then D is a circular disc centered at zu.

Proof. Let n denote the connectivity, and aD = UJ.,T; (we suppose none of
the [; is a point, the exceptional cases being left to the reader). By Lemma 2.4,
there is a function h analytic in D except for a simple pole at z, and continuously
extendible to D7, such that (2.12) holds. Let

o(z)=z +h(z), ¥(z)= —2+h(z).

Then, ¢, ¥ are analytic in D except for simple poles at @, and continuously
extendible to D . Because of (2.12), the boundary values of ¢ lie on a union of n
horizontal segments, those of ¥ lie on a union of n vertical segments. By a standard
application of the argument principle, ¢ and ¥ are univalent in D. Hence the n
horizontal segments are pairwise disjoint, likewise for the vertical segments, S0 that
¢ and ¥ are (apart from normalization) the canonical slit mappings of D. Each
of them has, at their common pole Zo, the same residue which we may assume is 1.
Now., ¢ —¥' has 2n—2 zeroes in D (see Nehari [14, p. 340}). However,
¢'— W' = 2. so we have a contradiction unless n = 1. Thus, D is simply connected
and hence, by Epstein’s theorem, a disc centered at Zo.

We turn next to some differential-geometric aspects of the domains D admitting
q.i. Henceforth in this chapter, unless otherwise specified, we shall always assume D
1o be of finite connectivity, hounded by continua I'y, " o

Lemma 5.1. Let D, bounded by the continua Ty, - . satisfy the g.i. (2.10).
Then each T, is an analytic arc or Jordan curve. Moreouer, the function h of Lemma
2.4 is analytic on D", and satisfies

(5.1) h'(z)=T(zy, z€8D

(5.2) h'(z)= -2ik(z)T(z)y, z€D.
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Here T(z) denotes a unit tangent vector to the (oriented ) boundary T of D at the poimt
z (represented as a complex number) and k(z) is the curvature of T at z.

Proof. The analyticity of the I'; follows from a local result to be proved in
Section 6. Since the boundary values of A{z)+ z on each I'; lie on a horizontal
segment, h(2)+ z, and hence h, is analytically continuable across the I';. Fix a point
za on the boundary component I';, and let us represent I'; by the equation z = z(s),
when 5 is arc length along I, measured from z,=2z(0). Then, from (2.12)
h(z(s)=2(s) + G,

Differentiating with respect to s, and denoting z-derivatives by dashes

(5.3) h’(Z(S))% :%_

Since dz/ds is a unit tangent vector at the point z(s), this is just {(5.1). Another
differentiation in (5.3) yields

wo(sndZ o, dz 47z
(5‘4) h (2(3)) ds - 2 d.s' ds:

and, since (d°z/ds”) = (d/ds)}(T(z(s)) is the curvature at z (s} times a unit normal
vector, we have (d*z/ds®) = ik(z) T(z). Substituting this into (5.4} gives (5.2).

Corollary. Under the stated hypotheses, the functions (defined on 3D}
?(“z-jz(T: unit tangent vector) and k(z¥ (curvature) are the boundary values of
functions analytic in D except for polar singularities (whose location moreover can be
specified for eack concrete q.i.).

Theorem 8. Let D be a domain of finite connectivity satisfying

do
(5.5) f (<
D
and admitting a q.i. for all f€ L, (D). Let u(z), z €T denote the slope of the
tangent line to T at the point z, and k(z) the curvature there (since, as we know, T’
consists of analytic arcs, these quaniities are well-defined). Then there is a

non-constant polynomial P(X, Y) with real coefficients, irreducible over the complex
field, such that P(u(z), k(zY¥)=0 forall z €T.

Remark. By the slope we mean, as is customary, the tangent of the angle
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made with the x-axis; replacing the x-axis by another reference line alters p{z)
rationally, and we would of course then get a different polynomial P(X, Y).

Proof. Suppose first that £ is bounded. Let o denote the angle, which the
tangent line to I' at z, makes with the x-axis. Then

p(zg)=tana = ie_::u —1_ i@:!_l.

e +1  T(zaf+1

As we see from (5.1), the last expression is the boundary value, at z = z, € 2D, of a
certain function analytic in D except for poles, and continuously extendible to 4D}
except for finitely many poles (where T(z) = — 1; their number is finite because of
the analyticity of the boundary). Since k (z ) is the boundary value of a function in
D of similar nature, the conclusion now follows from Theorem 2. The case when D
is unbounded but merely satisfies (5.5) follows by our standard Phragmén-Lindelsf
argoment.

Remark 1. All “familiar” domains, except the circular disc, seem to be
excluded as carriers of q.i. by the preceding results. In particular, no such D can
have a line segment on its boundary, nor a circular arc except in the case of a
circular disc. )

Remark 2. We can add to Theorem 8 the observation: the leading form of
P(X, Y) is divisible by Y, i.e. the X" term (n = degree P} vanishes. For otherwise
P(u(z), k(2)’) would have a term ¢ - u (z)" standing alone, ¢ # 0, and so could not
vanish at points where u{z)—>,

Theorem 9. If D is of finite connectivity, satisfies (5.5) and satisfies a q.i. for
all f€ L, (D) its Ahifors function ¢ satisfies a differential equation of the form
Qle’, ¢)=0 where Q is a non-constant polynemial,

Proof. By Lemma 5.1,

hngz !2

h,(z)3=4k(z)2, z €3D ;i

i.e. the function on the left has real boundary values on aD. Since also A’ and ¢
have absolute value one on 4D we deduce by our usual argument that any two of
the three functions (h"Y'/(h'), k', ¢ satisfy a non-trivial algebraic relation. In
particular, there exists an algebraic function F such that ¢ = F(h"), hence p
¢'=F'(h')h". Since h" is, in turn an algebraic function of h’, we see that both ¢

&‘
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and ¢’ are algebraic functions of &', and hence of one another, which implies the
assertion. (Of course, the theorem applies not only to the Ahlfors function, but to
any function analytic except for finitely many poles in D7, and with boundary
values of modulus 1, or with real boundary values.)

Theorem 10. Let D be as in the preceding theorem, and ¢, ¥ the canonical
conformal maps onto a horizontal resp. vertical slit domain. Then, there is a
nonconstant polynomial Q such that Q(¢’, ¥7)=0.

Proof. Writing M = (¢ —¥)/2, N = (¢ +¥)/2 it is known (see [14, p. 340])
that

a) M'/N’ has modulus one on apD

b) M'(z)N'(z) T(z) is real and positive on 4D (T(z) denotes, as before, a unit
tangent vector at z). Now, by (§.1), T(z ¥ = (h'(z))"* on 3D. Hence, any two of the
three functions M'/N’, M'N'/h' and h' are related by a nontrivial polynomial
identity. It is easy to see k' can be eliminated between these relations so as to
obtain a nontrivial identity between M'/N’ and M'N’, which implies the stated
result.

Theorem 11. Suppose D is of finite connectivity, satisfies (5.5) and satisfies a
q.i. for all f in L. (D). If there is any sub-arc of D which is algebraic then, in fact,
the q.i. holds for all f € LYD), and consequently the conclusion of Theorem 3 is
valid.

Remark. This theorem shows a striking difference between the L} and L.,
problems. Whereas in the former 8D is always an algebraic curve, in the latter no

portion of 3D can be algebraic unless the q.i. actually holds in the wider class L., in
other words, the constants C; in (2.12) are all equal.

The theorem will follow easily from the following two lemmas.

Lemma 5.2. Let G be a bounded domain and T',, T'; two continua lying in 3G.
Suppose h is an analytic function in G, continuously extendible to G~ and satisfying

(5.6) h(z)=Z-+C,; zEl—j, j=1,2.
Then, if F(X, Y) is any entire function of two complex variables such that
(3.7} F(x,y)=0, x+iy€l

we also have
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(5.8) F(x +ib, y+ia)=0, x+iye€Tl,
where C:— Ci=a +ib;, a and b real.

Remark. It suffices, as the proof will show, if F is meromorphic, and h
analytic and single-valued outside a compact subset of G.

Proof. By assumption

z+z z—-12
F( =3 2{.)—0, zeT,.

Substituting from (5.6)

F(z + h(z)—C., z —h(z‘)+ C1) -0, z€T,.

2 2i
Since the function on the left side is analytic throughout G, it vanishes identically.
In particular, it vanishes for z €', where h(z)=z + C;, hence

F(Z+5+C2_C|, Z_EF_C‘2+CI)=0, ZEF}.
2 2i

or

(5.8) F(x+A, y+iA)=0, x+iyerl,,

where A = (C,— C;)/2. Hence
(5.9) F¥x+A,y—iA)=0, x+iyeTl,,
where F*(X, Y) denotes the entire function F(X, Y).

Now, in exactly the same way as we derived (5.8) from (5.7), we can take (5.9) as a
starting relation and obtain from it a new equation which holds on I'y. The result is
(5.10) F*(x —A+A, y—iA—iA)=0, x+iyerl,.

Finally, writing 2A = a + ib, and taking complex conjugates in (5.10) we get

F{x+ib, y+ia)=0, x+iyel,

as was to be proved.
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Lemma 5.3. Let P(x,y) be a polynomial with complex coefficients which
satisfies the identity

(5.11) Px+a, y+B)=P(x,¥y)

where o, B are complex numbers not both zero. Then there exists a polynomial p(t) (in
one variable) such that

(5.12) P(x,y}=p(Bx —ay).
(The converse is trivially true.)
Proof. From (5.11) we get, inductively
P(na,nB)=P0,00, n=12,---

and since P is a polynomial this implies that P(et, 8t)— P(0,0) vanishes identically
in t. Thus, the polynomial P{x, y)— P(0,0) vanishes whenever gx — ay =0, and so
is a multiple of Bx — ey. Thus

P(x,y)=P0,0)+(Bx —ay)Pi(x,y)

for some polynomial P, of degree one less than the degree of P. It is readily verified
that P, in turn satisfies (5.11), and now an obvious induction yields (5.12).

Proof of Theorem 11. Suppose there is an algebraic arc y, lying on aD;
we may suppose y; CI'. We have to prove (referring to (2.12)) that G, = C, for
j =2, -, n Consider (say) j = 2. We suppose C, # C, and shall derive a contradic-
tion.

Let G CD be a bounded domain in which h is analytic, and whose boundary
contains both y, and some non-trivial subcontinuum vy, of I',. By hypothesis there is
some nonconstant polynomial P such that P(x, y} =0 for x + iy € y,. There is no
loss of generality if we assume P is irreducible over C {since we can achieve this by
passing to a sub-arc of y,). We now apply Lemma 5.2 with F = P, and obtain

Plx+a, y+8)=0, x+ivEry,

where o = ib, B = ia are by hypothesis not both zero (G, # C,). Since P(x, y) and
P(x + a, y + 8) both vanish on vy; they have a2 common factor; but since P is
irreducible, and the two polynomials have the same leading form, they are
indentical,
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Px+a y+B)=P(xy).

But now, by Lemma 5.3, (5.12) holds. However, a polynomial of the form given by
(5.12) is reducible over C, unless it is of degree one. Therefore P is linear and ¥, is a
line segment. But we have already seen that a q.i. implies D cannot have any line
segment in its boundary. We have now reached a contradiction, and the theorem is
proved.

Lemma 5.2 can also be used to yield other information on the structure of the
boundary of domains satisfying q.i. We give only one example:

Theorem 12. Suppose D is of finite connectivity, satisfies (5.5) and satisfies a
q.i. for all f in L.{D). Suppose there is a nonconstant meromorphic function ¢,
real-valued on the real axis, such that y = ¢(x) for all x + iy on some sub-arc y, of
[y Then if, in (2.12), G # C, for some j, then b = Im(C, — C\) # 0, and ¢' has period
ib. Consequently, all the numbers {Im{C, — C\)}j-. are integer multiples of some fixed
number.

Proof. Applying Lemma (5.2) to F(x,y) =y — ¢(x) vields
(5.13) yvtia—e(x+ib)=0, x+iyEwy
where a + ib = C; — ), which we shall suppose is not 0. Then b# 0 for b =0 and

(5.13) imply a =0, a contradiction. Replacing y by ¢(x) in {5.13) and separating
into real and imaginary parts gives

(5.14) ¢(x)=(p(x +ib)+ ¢(x —ib))/2

(5.15) 2ia = {x + ib)— o(x — ib).

Since ¢ is entire, and (5.14) and (5.15) hold for some interval of x values (since v,
cannot be a vertical segment) they hold for all complex z and differentiating gives

' (z+ib)-2¢'(2)+¢(z —ib)=0
@ (z+ib)—p'(z—ib)=0.

These equations imply that ¢’ has period ib. Since a meromorphic function cannot
have two pure imaginary incommensurable periods, the proof is complete.
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6. Further remarks
6.1. Analyticity of the Cauchy transform

If D is a domain satisfying (2.4) we can define its Cauchy transform §(¢) by (2.5}
Then $ is an analytic function outside of D™, and continuously extendible to all of
C. A basic question that has arisen in Section 5 is: when is S({) analytically
continuable across a boundary arc v of D? The answer is: when and only when vy is
an analytic arc. Indeed, by virtue of (2.6) this follows from the following well known
lemma, whose proof we include for completeness (cf. Davis (7, p. 21]).

Lemma 6.1. Let ¥ be an open Jordan arc, and z,€ . The following three
assertions are equivalent:
i) There is a function f analytic in a neighborhood W of zo such that

f(z)=%, zEWny.

ii) There is a function f analytic in a one-sided neighborhood V of z, (that is, the
part of a full neighborhood which lies on one side of v) and continuously extendible to
y such that

f(z)=2, z€V Ny,
iii) There is a neighborhood V' of 2, such that V' N y is an analytic arc.

Proof. That (i) implies (ii) is trivial. We prove now (ii) implies (iii). Assuming
(ii) holds, let z, and 2, be points of V™ N ¥ including z, between them, and join z,
to z, by a smooth arc lying in V and having no other point in common with y. This
arc, together with v, bounds a Jordan domain D. Let ¢ map the unit disc U upon
D, and let t, € 38U be the point which maps into z,. We have to show ¢ is
analytically continuable across fo. Now, the hypothesis implies f(z)=Z on some
open arc of 3D containing z,, and hence

(6.1) fle(t)=e(1), tEc

where ¢ is some open subarc of ¢U containing ¢,
Now,

(6.2) v()=e(l/t), [t|>1

is analytic for |#|>1 and tends to ¢(s) as t > s € JU.
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mention that A. Levin has constructed an explicit example (unpublished) of a
domain D of connectivity 2 such that

(*) j fdo = af(z.) + bf'(z,)

holds for all f € LL{D); here z, is a suitable point in D. Because of Theorem 4, (*}
cannot be true here for all f in L. Domains of arbitrary connectivity which satisfy
q4. in L%, but not in all of L! have been constructed by Gustafsson.

6.3. The Schwarz function

After the completion of our manuscript we became aware of the book [7] by
Philip J. Davis. There is some overlap between this book and our paper, which we
shall now discuss briefly. Inasmuch as our principal results seem still to be new, this
retrospective accounting scems to us adequate; a complete rewriting of the paper
would have enabled us to refer to [7] for a few computations and lemmas.

Given an analytic Jordan arc y, the unique analytic function S{z)equalto Z on y
is called by Davis the Schwarz function of ¥ (this is the function we have usually
called h(z)). Extending an earlier investigation of Davis and Pollak [6], Davis
develops a series of interesting connections between conformal maps of D and the
Schwarz function of aD. For the most part these complement, rather than
anticipate, our results, but the following priorities should be especially noted.

a) Our Lemma 2.3 and Davis’ theorem on p. 154 of [7] are quite similar; Davis
however assumes an analytic boundary. Our method of proof is different and, as in
most other places where our results overlap those in [7), we are able to get by with
much weaker regularity assumptions.

b) Our Theorem 1 follows from combining the theorems on pages 154 and 138 of
[7), assuming however that the domain is bounded and has an analytic boundary.

¢) Various examples mentioned by us, €.g. that no triangle, annulus, or ellipse
admits a q.i. are also given, or implicit, in 7.

d) The computations made by us in Sections 5, expressing the tangent vector and
curvature in terms of the Schwarz function, are contained in chapter 7 of (7).

e) The elegant result proved on p. 107 of [7], that the Schwarz function of an arc
extends meromorphically to the entire complex plane if and only if it is a linear
fractional function, was rediscovered by us, and had been our Theorem 13; since
our method of proof was exactly that of Davis, Theorem 13 has now been
suppressed.

In conclusion, we remark (inspired by another paper of Davis, cf. also [7, p. 128])
that there might be some interest in studying by our methods q.i. of a more general
type than those considered herein; for example, there is an identity due to Motzkin
and Schoenberg and (independently) Grunsky, which states that

ot
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3

8 [ rae = 3 arz)

holds for all f with f* € L (D), whenever D is a triangle with vertices at z,, z,, 2.
Here the ¢, depend only on D and can easily be given explicitly. The identity (*} is
reflected in the fact that the Cauchy transform of a triangle has logarithmic
singularities of a particular kind at the vertices, and no other singularities. It
suggests a general study of domains whose Cauchy transforms (or, what comes to
the same thing, whose Schwarz functions) have only finitely many singularities of
prescribed (not necessarily polar) type, some of which may be on the boundary.
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