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1. INTRODUCTION

Suppose that D is an open connected bounded subset of Rd, d�1. Let
u(t, x), t�0, x # D, be the solution of the heat equation �u��t=(1�2) 2xu
in D with the Neumann boundary conditions and the initial condition
u(0, x)=u0(x). That is, u(t, x) is a solution to the following initial-bound-
ary value problem:

�u
�t

(t, x)=
1
2

2xu(t, x), x # D, t>0,

{u(0, x)=u0(x), x # D, (1.1)

�u
�n

(t, x)=0, x # �D, t>0.

Informally speaking, the hot spots conjecture of J. Rauch is as follows.
(This form of the conjecture is stated only for didactic reasons and was
never proposed by J. Rauch.)

Conjecture R1 . For ``most'' initial conditions u0(x), if zt is a point at
which the function x � u(t, x) attains its maximum, then the distance from
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zt to the boundary of D tends to zero as t tends to �. In other words, the
``hot spots'' move towards the boundary.

We will state several rigorous versions of this conjecture, review some
known results, and prove the conjecture under some additional assump-
tions. Let us, however, first observe that the conclusion cannot hold for all
initial conditions. Consider, for example, D=(0, 2?)_(0, 2?)/R2 and u0(x)
=u0(x1 , x2)=&(cos x1+cos x2). The function u0(x) is an eigenfunction
corresponding to the 4th eigenvalue +4 and so we have u(t, x)=u0(x) e&+4 t.
It is not true that dist(zt , �D) � 0 because zt=(?, ?) for all t.

The long term behavior of the solution of the heat equation considered
in the last example is determined by the 4th eigenfunction. However, the
long term behavior of the ``generic'' solution is obtained from the long term
behavior of the Neumann heat kernel which is determined by the second
eigenfunction. In other words, under suitable conditions on the domain,
such as convexity or Lipschitz boundary, and for a ``typical'' initial condi-
tion u0(x), we have

u(t, x)=c1+c2.2(x) e&+2 t+R(t, x), (1.2)

where c1 and c2{0 are constants depending on the initial condition, +2 is
the second eigenvalue for the Neumann problem in D, .2(x) is a corre-
sponding eigenfunction, and R(t, x) goes to 0 faster than e&+2 t, as t � �.
We will make this precise below in Proposition 2.1. The eignfunction
expansion (1.2) leads to a version of the ``hot spots'' conjecture which
involves the second eigenfunction. We will state several versions of the
conjecture, with varying strength of the analytic condition and for various
classes of domains. Consider the following statements for a domain D.

(HS1) For every eigenfunction .2(x) corresponding to +2 which
is not identically 0, and all y # D, we have infx # �D .2(x)<.2( y)<
supx # �D .2(x).

(HS2) For every eigenfunction .2(x) corresponding to +2 and all
y # D, we have infx # �D .2(x)�.2( y)�supx # �D .2(x).

(HS3) There exists an eigenfunction .2(x) corresponding to +2

which is not identically 0, and such that for all y # D, we have infx # �D .2(x)
�.2( y)�supx # �D .2(x).

The strongest statement (HS1) asserts that the inequalities are strict,
while the other two statements involve weaker assertions. Note that all
statements (HS1)�(HS3) make assertions about both ``hot spots'' and ``cold
spots'' of eigenfunctions. This is because if . is an eigenfunction, so is &.
and so maxima and minima are indistinguishable in the context of this
problem.
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Conjecture R2 (Rauch). The statement (HS1) is true for every domain
D/Rd.

The ``hot spots'' conjecture was made, as we recently learned from
Rauch, in 1974 in a lecture he gave at a Tulane University PDE conference.
Despite the fact that the conjecture has been around for so many years and
that it is very well known, it has never, according to Rauch, appeared in
print under his name. According to Kawohl [12], Conjecture R2 had been
proved for parallelepipeds, balls, and annuli (see [12, p. 46]). It seems that
the only published result which deals with less restrictive classes of domains
is the following theorem of Kawohl [12].

Theorem 1.1 (Kawohl [12]). Suppose that D=D1_(0, a) where D1/
Rd&1 has boundary of class C0, 1. Then (HS2) holds for D.

In Theorem 1.1, there is practically no restriction on the shape of D1

while the second factor of the product has the simplest possible form. We
will give an intuitive explanation for this product structure assumption in
Remark 3.1. Proposition 2.6 below contains a generalization of Kawohl's
result with a very simple proof.

Since there were some doubts that conjecture R2 was true, Kawohl
[12, p. 56] proposed the following.

Conjecture K (Kawohl). The statement (HS1) is true for convex domains
D/Rd.

Theorem 1.1 shows that (HS2) holds for some non-convex domains. In
Example 3.2 below, we will show that (HS1) holds for some other non-
convex domains.

The main purpose of the present paper is to present a method of proving
theorems rather than a single result. These techniques are discussed in
Sections 3 and 4 below. However, in order to give the reader some idea
about the main results, we state here two such theorem. A triangle is called
obtuse if one of its angles is obtuse, that is, greater than ?�2.

Theorem 1.2. The hot spots conjecture in the form (HS3) is true for
obtuse triangles. The ``hot'' and ``cold '' spots are located at the most distant
vertices.

Theorem 1.3. Suppose that D is a sufficiently long convex planar domain
which has a line of symmetry S which intersects �D at x and y. Suppose that
the ratio of the diameter of D to its width is greater than 1.54. The hot spots
conjecture in the form (HS1) holds under either of the following additional
assumptions.

3HOT SPOTS CONJECTURE OF J. RAUCH



(A1) D has another line of symmetry S1 which is perpendicular to S;

(A2) For every r>0, the intersection of the circle �B(x, r) with D is
either empty or it is a connected arc, and the same holds for �B( y, r).

See Theorem 3.3, Corollary 3.1, and Corollary 4.1 for a more precise
statement of these results.

We briefly outline the idea of the proofs. They are based on various
properties of eigenfunctions and eigenvalues, which may be of independent
interest, and on coupling arguments which have been developed by Burdzy
and Kendall [5]. Suppose that D is an obtuse triangle, A/D, u0(x)=1 for
x # A, and u0(x)=0 for x # D"A. Suppose that Xt and Yt are reflected
Brownian motions in D with X0=x and Y0=y. We construct the two
Brownian motions so that they are dependent in a very special way��their
dependence is a crucial element of the proof. Our goal is to choose A and
construct Xt and Yt in such a way that for every t both the processes Xt

and Yt are in A or in D"A, or Xt # A and Yt # D"A, but we never have
Xt # D"A and Yt # A for the same t. Then

u(t, x)&u(t, y)=P(Xt # A, Yt # D"A | X0=x, Y0=y)>0.

By choosing appropriate x, y, A and a ``coupling'' (Xt , Yt), we can prove
that the function x � u(t, x) is monotone on every line segment in D
parallel to the longest side of the triangle D, for every fixed t. This implies
the monotonicity of .2(x) on the same family of line segments. Hence, the
maximum of .2(x) cannot be attained inside D.

The proof of Theorem 1.3 follows along similar lines but is a bit more
subtle. The choice of coupling in the proof of Theorem 1.2 is rather easy
and to a certain extent arbitrary. The proof of Theorem 1.3 is based on the
detailed analysis of the ``mirror coupling'' originally developed for a different
project by Burdzy and Kendall [5].

Our method of proof works best in cases in which the function u(t, x),
for some initial conditions, is monotone in a particular direction in x-space.
We are able to derive (HS3) from these results and even identify the loca-
tion of the ``hot'' and ``cold'' spots. In order to prove (HS2) or (HS1) we
need the following result which may have some independent interest. For
a precise statement, see Proposition 2.4.

Proposition 1.1. If D is convex and the ratio of its diameter to its width
is greater than 3.07 then the second eigenvalue corresponds to a 1-dimen-
sional subspace of L2(D).

A disc and a square are examples of domains which have two orthogonal
eigenfunctions corresponding to +2 . The diameter to width ratios for these
domains are 1 and - 2, respectively. The square seems to be the extreme
case and we
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Conjecture. If a convex domain has two orthogonal eigenfunctions corre-
sponding to +2 then its diameter to width ratio is not greater than - 2.

Remark 1.1. Several people have suggested the following approach to
the ``hot spots'' conjecture for convex domains. Take two copies of a
convex domain D and glue them together along their common boundary.
With some minimal smoothing, we obtain a compact manifold with no
boundary and with non-negative curvature. Then the ``hot spots'' conjec-
ture essentially says that the maximum for the second eigenfunction of the
Laplacian on this manifold cannot be attained at a point where the curvature
is zero.

This line of attack does not seem to be plausible in view of the following
example. Let D be the surface of the cylinder [(x1 , x2 , x3) : 0<x1<100,
x2

2+x2
3<1]. We smooth the edges [(x1 , x2 , x3) : x1=0, x2

2+x2
3=1] and

[(x1 , x2 , x3) : x1=100, x2
2+x2

3=1] so that D is a smooth Riemannian
manifold with non-negative curvature. It seems that the second eigenfunc-
tion for this domain should be antisymmetric with respect to the plane
[x1=50] and it should attain its maximum and minimum at the points
(0, 0, 0) and (100, 0, 0), where the curvature is zero.

Remark 1.2. R. Varadhan pointed out that one may be able to perturb
the domain D without destroying the property that the ``hot spots'' lie on
the boundary. This should be possible in the case when the second eigen-
value is non-degenerate, that is, when the second eigenvalue corresponds to
a 1-dimensional subspace of L2(D). Using this method we should be able
to relax the symmetry assumption of Theorem 1.3 but so far we have not
been able to implement it.

The rest of the paper consists of three sections. Section 2 collects several
preliminary results on eigenfunctions and eigenvalues for the Neumann
Laplacian which we believe will be of independent interest. These results
can be derived using either probabilistic or analytic methods (see Remark
2.1 below), and we indeed use both methods in our proofs. We find this
approach both interesting and appropriate, particularly in light of the fact
that historically eigenvalue estimates have been of interest to both analysts
and probabilists. Section 3 contains a rigorous version of Theorem 1.2 with
a proof and a sketch of several other results which can be proved using the
same method. It also contains an estimate for the direction of the gradient
of u(t, x). A probabilistic proof of Kawohl's theorem is given in the same
section (Remark 3.1). This proof only gives (HS3) but it has the advantage
that it gives some estimates on the gradient of the function as well. Section 4
starts with a discussion of mirror couplings. A rigorous version of Theorem 1.3
and its proof follow.
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We would like to point out some advantages of our method of proof. We
are able to show that the conjecture holds in some non-convex domains,
i.e., in the case which is usually considered harder than the case of convex
domains. We give estimates on the direction of the gradient of eigenfunc-
tions, and we identify the locations of the hot and cold spots in the domains
considered in our theorems. Finally, there has been some further progress
on the ``hot spots'' conjecture since the first draft of this paper appeared.
Burdzy and Werner [6] have used the methods previously developed in
this paper and an earlier idea of Werner to give a rigorous counterexample
to Conjecture R2 .

In this paper, we consider the solutions of the heat equation relative to
the ``one-half Laplacian'' operator, (1�2)2, which is a convenient normali-
zation for arguments involving Brownian motion. The results hold for the
usual Laplacian 2, by scaling. We caution the reader that because of this
normalization, some of the familiar formulas for eigenvalues change by a
factor of 1

2 .

2. SOME RESULTS ON EIGENFUNCTIONS AND EIGENVALUES

In this section we derive some basic facts about eigenfunctions that we
will need in the subsequent sections. As it has been pointed out to us by
several people, some of these results seem to be well known to the experts
in spectral geometry. However, we have not been able to find them in the
literature, particularly in the form that we need, and hence we present them
here. We begin by giving a precise meaning to (1.2). Let Pt(x, y) denote the
Neumann heat kernel for the domain D. Under some minimal smoothness
assumptions on the domain (convex or Lipschitz boundary is more
than enough by Bass and Hsu [3] or Davies [9, Theorems 1.7.9 and 3.2.9]),
we have the following bound for the heat kernel,

Pt(x, y)�
C1

tn�2 exp \&
|x&y| 2

c2t + ,

for all x, y # D and all 0<t�1. In particular

0�P1(x, y)�C1 . (2.1)

Here C1 and c2 are constants depending on the domain. It follows from
this that there are positive constants c$1 and c$2 such that

sup
x, y # D }Pt(x, y)&

1
vol(D) }�c$1e&c$2 t, (2.2)
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for t�1 (see Bass and Hsu [3], Davies [9, p. 112], or Smits [17]). It
follows from (2.2) that �D Pt(x, x) dx<�. That is, the semigroup is of
finite trace. By Theorems 1.7.9 and 1.7.12 of Davies [9], it also has a
discrete spectrum on L2(D). Let .1 , .2 , ... be an orthonormal basis for
L2(D) of eigenfunctions with eigenvalues 0=+1<+2�+3 } } } where we
repeat the eigenvalues if needed to take into account their multiplicity.
Recall that .1=1�vol(D). The following proposition provides the extension
of (2.2) needed in our paper.

Proposition 2.1. Let D be a domain in Rd whose Neumann heat kernel
satisfies (2.1). Let u0 # L�(D) and let u(t, x) be the solution of (1.1). Suppose
that +2=+3= } } } =+k&1<+k . Then,

u(t, x)= :
k&1

j=1

aje&+j t .j(x)+R(t, x), (2.3)

and there is a constant C depending on u0 and k such that

|R(t, x)|�Ce&+k t,

for all t�2 and all x # D.

Proof. Let Tt be the semigroup generated by the kernel Pt . By (2.1), T1

maps L2(D) into L�(D). Let C1=&T1&2, � be the operator norm. Since
Tt .j=e&+j t.j , we have (by the normalization of our eigenfunctions) that
&.j &��C1e+j. Writing u0(x)=��

j=0 aj.j , where the coefficients aj are
square summable, we obtain for all t�2

|R(t, x)|= } :
�

j=k

aj.j(x) e&+j t }
�C1 :

�

j=k

e +j e&+j t

=C1e&+k (t&1) :
�

j=k

e(&+j++k )(t&1)

�C1e&+k (t&1) :
�

j=k

e(&+j++k )

=\C1 e2+k :
�

j=k

e&+j+ e&+k t.
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The last inequality follows from the fact that (&+j++k)(t&2) is non-
positive and takes its largest value at t=2. Finally, the last sum converges
since

:
�

j=0

e&+j=|
D

P1(x, x) dx<�,

by our bounds above on the kernel Pt(x, y). K

We proceed with a sequence of results which leads to a geometric criterion
for a convex planar domain to have only one eigenfunction corresponding
to +2 .

The following result is a special case of ``bracketing'' and well known to
specialists (Reed and Simon [16, pp. 270�271]). The proof of this lemma
is almost exactly the same as the proof of the Courant Nodal Line Theorem.
We supply it for the convenience of the reader.

Lemma 2.1. Suppose that a domain D in R2 is divided by a smooth curve
1 into two subdomains D1 and D2 . Let *j be the first eigenvalue for the
mixed Neumann�Dirichlet problem on Dj , with the Neumann boundary
conditions on �D & �Dj and the Dirichlet boundary conditions on 1. If +2 is
the second Neumann eigenvalue for D then +2�max[*1 , *2].

Proof. First, let us recall that the second Neumann eigenvalue +2(D)
for (1�2)2 in any domain D of Rd is given by

+2(D)=min \(1�2) �D |{u(x)|2 dx
�D |u(x)|2 dx + , (2.4)

where the minimum is taken over all functions in W1, 2(D) (the gradient in
L2(D)) and with integral zero over the domain. (See Bandle [1, p. 101] or
Kawohl [12, p. 45].) Let �1 and �2 be the first eigenfunctions for the
mixed boundary value problem for the domain D1 and D2 , respectively.
Both of these eigenfunctions are positive [1, p. 112]. Choose constants :1

and :2 such that the function �=:1�1+:2 �2 has integral zero over
the domain. Using this function in the variational formula (2.4) for +2

and the similar characterization for the mixed boundary value problem
proves the lemma. K

One may generalize Lemma 2.1 to certain higher eigenvalue problems
using a similar argument. For example, suppose that 1 is the union of a
finite number of smooth curves which divide a domain D into three disjoint
subdomains D1 , D2 , and D3 . Let +3(D) be the third Neumann eigenvalue
for D and let +1(Dj ) be the first eigenvalue for the mixed problem in Dj ,
with the Dirichlet boundary conditions on 1 and the Neumann boundary
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conditions on �Dj"1. Then +3(D)�max[+1(D1), +1(D2), +1(D3)]. Heuristic
arguments and computer simulations of Burdzy et al. [4] suggest that for
some related eigenvalue minimization problems, the higher Dirichlet eigen-
values are not optimal.

We remind the reader that the nodal set of an eigenfunction u is the set
of all points in D� where the function u vanishes. By the famous Courant
Nodal Line Theorem (Chavel [7, p. 19]; or Bandle [1, p. 112]), the nodal
set of a second eigenfunction for a domain in R2 is a smooth curve, called
the nodal line, dividing the domain into two subdomains. In the case of a
Neumann second eigenfunction, there are no closed nodal lines [1, p. 128].
Note that if 1 is the nodal line for a second Neumann eigenfunction in D,
then +2=*1=*2 , in the notation of Lemma 2.1.

Let B(x, r) denote the open ball with center x and radius r. We recall
that the first Dirichlet eigenvalue for B(x, r) is j 2

0�2r2 where j0 is the
smallest positive zero of the first Bessel function [1, p. 92].

Proposition 2.2. Suppose that D is a planar domain with piecewise smooth
bounday, zL , zR # D� , \>0, and a smooth curve 1 divides D into two subdomains
D1 and D2 with zL # D� 1 and zR # D� 2 . Assume that the distance from zL to 1
is greate than or equal to \, and the same for zR . Suppose that B(zL , \) & D1

and B(zR , \) & D2 are star-shaped domains with respect to zL and zR , respec-
tively. If +2 is the second Neumann eigenvalue for D then +2�j 2

0�2\2.

Proof. By Lemma 2.1, it is enough to prove that max[*1 , *2]�*=
j2
0�2\2 where *i is the first eigenvalue for the Di with Dirichlet boundary con-

ditions on 1 and Neumann conditions elsewhere on the boundary. Let D3=
B(zL , \) & D1 and let '1 be the first eigenvalue for the domain D3 with
Dirichlet boundary conditions on �1D3=�B3 & �B(zL , \) and Neumann
on �2D3=�D3"�1 D3 . By domain monotonicity, *1�'1 . We now prove
that '1�*. Towards this end, let Xt be a Brownian motion in D3 starting
from a point y # D3 , killed on �1D3 and reflected on �2D3 . Without loss of
generality assume that zL is the origin. The radial component of the inward
normal vector at any point of �2D3 points towards the origin (or vanishes)
because D3 is star-shaped with respect to zL . It follows that |Xt | is a
2-dimensional Bessel process plus a non-increasing process corresponding
to the local time push on �2D3 . Hence, the time { when the process |Xt |
reaches the level \ and gets killed is not smaller than the analogous time
for the 2-dimensional Bessel process. The probability that the 2-dimensional
Bessel process does not hit \ by the time t is the same as the probability that
the exit time for disc of radius \ is larger than t. Such probability, starting
from y, is bounded below by c( y) e&*t, for large time. Here we may take
c( y) to be the first Dirichlet eigenfunction for the disc by verifying that the
semigroup of the Dirichlet Laplacian is ``intrinsically ultracontractive'' and
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FIGURE 2.1

applying Theorem 4.2.5 in Davies [9]. The same estimate applies to { and
it follows that '1�*. A similar bound holds for D2 and the proposition
follows. K

An example of a domain D, points zL and zR , and a curve 1 satisfying
the assumptions of Proposition 2.2 is given in Fig. 2.1.

For any domain D in Rd let dD denote its diameter.

Corollary 2.1. Let D be a convex domain in the plane and let +2 be its
second Neumann eigenvalue. Then +2�2 j 2

0�d 2
D .

Proof. Consider any points zL , zR # �D with |zL&zR |=dD . Let 1 be
the intersection of D with the line of symmetry for these points. Then we
can apply Proposition 2.2 with \=dD�2. K

The estimate of Corollary 2.1 follows from Cheng [8]. Indeed, using the
construction described in Remark 1.1, we can translate the estimate in
Theorem 2.1 in Cheng [8] into a statement about the second Neumann
eigenvalue for a convex domain. Note that Cheng's result holds for compact
Riemannian manifolds with Ricci curvature bounded below by (n&1)k,
where n is the dimension of the manifold. If we take k=0, we obtain the
bound in Corollary 2.1.

It is well known that the bound in Corollary 2.1 is the best possible
estimate in the class of all convex planar domains. It is nearly sharp for
isosceles triangles with vertices (&1, 0), (1, 0), and (0, a), with very small
a>0. For small a, the second eigenvalue +2 for this triangle is bounded
below by tan&1(a) j 2

0�(2a), by a simple reflection argument; see Bandle
[1, p. 114]. A version of Corollary 2.1 without the sharp constant is proved
in [17].
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Let us define the width of the domain, which we will denote by
width(D), to be the infimum of the widths of all strips containing D. We
let wV

D be the length of the projection of D on the vertical axis and wH
D its

projection on the horizontal axis. We assume, without loss of generality,
that our domains are always oriented so that wV

D�wH
D and we set wD=wV

D .
Observe that wD�width(D) but in general wD is not necessarily the same
as width(D). We will say that a function h(x1, x2) is antisymmetric with
respect to the horizontal axis if h(x1, x2)=&h(x1, &x2) for all (x1, x2).

Proposition 2.3. Suppose that D is a convex planar domain which is
symmetric with respect to the horizontal axis. Let j0 be the smallest positive
zero of the first Bessel function. Suppose the ratio dD �wD is greater than
2 j0 �?r1.53096. Then there is no eigenfunction .2(x) corresponding to the
second eigenvalue which is antisymmetric with respect to the horizontal axis.

Proof. Let zL=(z1
L , 0) and zR=(z1

R , 0) be the points of intersection of
�D with the horizontal axis. Without loss of generality,

D=[(x1, x2) : z1
L<x1<z1

R , &f (x1)<x2<f (x1)],

where f is a positive concave function on [z1
L , z1

R]. Suppose we have an
eigenfunction .2 corresponding to +2 such that

|
f (x 1 )

&f (x1 )
.2(x1, x2) dx2=0,

for every x1 # (z1
L , z1

R). Since +2(a, b)=?2�[2(b&a)2], for any interval
(a, b), applying (2.4) we get

|
f (x 1 )

&f (x1 )
|.2(x1, x2)|2 dx2�

(2 f (x1))2

?2 |
f (x1 )

&f (x 1 ) }
�.2

�x2 (x1, x2) }
2

dx2

�
w2

D

?2 |
f (x 1 )

&f (x1 )
|{.2(x1, x2)|2 dx2.

Integrating this inequality from z1
L to z1

R with respect to x1 gives that

?2

2w2
D

�+2 .

However, by Corollary 2.1,

+2�
2 j 2

0

d 2
D

.
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Thus, if there is antisymmetric eigenfunction corresponding to +2 we must
have d 2

D�w2
D�4 j 2

0�?
2
r2.3438. Therefore if dD �wD>2 j0 �?r1.53096, there

is no antisymmetric eigenfunctions corresponding to +2 , as stated in the
lemma. K

Proposition 2.4. (i) Suppose that D is a convex domain with the ratio
dD �width(D) greater than 4 j0�?r3.06. Then there exists only one eigenfunc-
tion corresponding to +2 , up to a multiplicative constant.

(ii) Suppose that D is a convex domain which is symmetric with
respect to the horizontal axis. If dD�wD>2 j0 �?r1.53 then the subspace of
L2(D) corresponding to +2 is one-dimensional.

Proof. (i) Assume without loss of generality that D is oriented in such
a way that its projection on the vertical axis is equal to width(D). Choose
points zL=(z1

L , z2
L) and zR=(z1

R , z2
R) in �D with the smallest z1

L and the
largest z1

R . The choice might not be unique and it is not necessarily true
that |zL&zR |=dD or that zL and zR lie on the horizontal axis. Suppose
that there exist two independent eigenfunctions .̂2(x) and .~ 2(x) corre-
sponding to the second eigenvalue +2 . First we will show that there exists
an eigenfunction .2(x) corresponding to +2 and such that .2(zL)=0. If
.̂2(zL)=0 or .~ 2(zL)=0 then we are done. Otherwise we let

.2(x)=.̂2(zL) .~ 2(x)&.~ 2(zL) .̂2(x).

Recall that the nodal line 1 for .2(x) divides D into two subdomains D1

and D2 and does not form a closed loop. One of the endpoints of 1 is zL ;
let the other be called v. Without loss of generality we will assume that v
lies on the lower part of the boundary, between zL and zR (we may have
v=zR). Let D1 be the subdomain which lies ``below'' 1. The function .2(x),
restricted to D1 , is the first eigenfunction for the mixed Neumann�Dirichlet
problem in D1 , with the Neumann boundary conditions on 4=�D & �D1

and Dirichlet boundary conditions on 1. We will estimate the first eigen-
value for this problem, which is the same as +2 .

Let a1=inf[ y2 : ( y1, y2) # D] and a2=sup[ y2 : ( y1, y2) # D]. Let Xt=
(X 1

t , X 2
t ) be a Brownian motion in D1 , starting from (a, b) # D, which is

reflected on 4 and killed upon hitting 1. Note that the vertical component
of the inward normal vector points upward at every point of 4. Thus, the
process X 2

t is the sum of a one-dimensional Brownian motion and a non-
decreasing process, corresponding to the upward component of reflection
when Xt is reflecting on 4. The process X 2

t cannot take values outside
[a1 , a2 ]; it is killed at the hitting time of a2 or before hitting this value, it
is pushed upward when it hits a1 and, possibly, when it is strictly inside
(a1 , a2). A standard comparison argument for the solutions of stochastic
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differential equations shows now that the distribution of X2 at time t is
minorized by the distribution of the one-dimensional Brownian motion in
[a1 , a2 ], starting from a, reflecting on a1 , and killed upon hitting a2 . The
probability that such a process does not exit [a1 , a2] by the time t is
bounded by ce&*t, where * is the eigenvalue for the Laplacian on [a1 , a2]
with the Neumann condition at a1 and the Dirichlet condition at the other
endpoint. Hence,

*=
?2

8(a2&a1)2=
?2

8(width(D))2 .

For large t, the probability that X 2
t has not hit 1 by the time t is also

bounded by ce&*t, and so the first eigenvalue for the mixed problem in D1

cannot be smaller than ?2�8(width(D))2. Recall that this eigenvalue is the
same as +2 .

By Corollary 2.1, +2�2 j 2
0�d 2

D , so we have

?2

8(width(D))2�
2 j 2

0

d 2
D

,

which gives dD �width(D)�4 j0 �?. If this inequality is not satisfied, we only
one eigenfunction corresponding to +2 .

(ii) In this part we let zL and zR be the points of intersection of �D
with the horizontal axis. We assume, as in part (i), that there are two
independent eigenfunctions corresponding to +2 and we construct an eigen-
function .2*(x) which vanishes at zL . This means that the nodal line of
.2*(x) has one of its endpoints at zL . It follows that .2*(x) cannot be
symmetric with respect to the horizontal axis. Hence, the function

.2(x1, x2)=.2*(x1, x2)&.2*(x1, &x2)

cannot be identically equal to zero. Note that .2(x) is an antisymmemtric
eigenfunction, i.e., .2(x1, x2)=&.2(x1, &x2) for all (x1, x2) # D. Now we
use Proposition 2.3 to conclude that dD�wD>2 j0�?. Alternatively, we can
repeat the proof in part (i) with [a1 , a2 ] replaced by [a1 , 0], since we
know in the present case that the nodal line for .2(x) lies on the horizontal
axis. K

Remark 2.1. As we have just mentioned, the probabilistic proof of
Proposition 2.4 can also be adapted to give a probabilistic proof of Proposition
2.3. On the other hand, one can give an analytic proof of Proposition 2.4, based
on the following result from Sperb [18, Corollary 5.2]. Suppose D is a convex
domain in Rd. Let .2 be a Neumann eigenfunctions corresponding to +2 .
Then the function

P(z)=|{.2(z)|2+2+2 |.2(z)|2
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must have its maximum where .2 assumes its maximum M or its minimum
m. (Again, recall that we are dealing with (1�2)2.) Let M� =max[M, m].
Then

|{.2 |�- 2+2 - M� 2&.2
2 . (2.5)

Now, continuing with the notation of the proof of Proposition 2.4(i), let zM

be a point where .2 (the .2 of the proof of the proposition) reaches its
maximum and zm a point where it reaches its minimum. We may assume
that zM # D� 1 (otherwise take &.2). Let z0 be the point on 1 directly above zM .
Clearly, |zM&z0 |�width(D). Dividing (2.5) by - M� 2&.2

2 and integrating
on the segment from z0 to zM and doing the same for point zm , leads to

?
2

�width(D) - 2+2 ,

which gives the crucial estimate for the Proposition 2.4.

Also, an analytic proof of Proposition 2.2 is possible. Once again, with
the notation of the proposition we need to show that '1�*. We again
assume that the point zL is the origin. We let .(z) be the Dirichlet eigen-
function for B(0, \). Using this as a test function in the variational charac-
terization for '1 , the result follows. (The fact that the intersection of D1

with B(0, \) is star-shaped with respect to 0 is used to write the integrals
in the variational characterization for '1 in polar coordinates and to reduce
to a simple inequality about Bessel functions. We leave the details to the
interested reader.)

The argument in Remark 2.1, together with Cheng's estimate for +2 , has
the following corollary which gives some information on the location of the
``hot spots'' relative to the nodal line. We leave the formal proof to the
reader.

Corollary 2.2. Let D be a planar convex domain of diameter dD . Let
.2 be any Neumann eigenfunction corresponding to +2 and let zM and zm be
points in D� where .2 has a maximum and a minimum, respectively. If
d(zM , 1 ) and d(zm , 1 ) denotes the distance for these points to the nodal line
1, then

max[d(zM , 1 ), d(zm , 1 )]�\ ?
4 j0+ dDr0.327dD .

The following questional naturally arises from the above results. For an
arbitrary convex domain D in the plane, what is the dimension of the
eigenspace corresponding to +2? In the case of the Dirichlet problem, it is
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known [13] that the number of linearly independent eigenfunctions corre-
sponding to the second eigenvalue is at most two. A similar result has been
proved by Nadirashvili [14, 15] for the Neumann problem. We give a new
and, perhaps, a little easier proof of Nadirashvili's theorem.

Proposition 2.5 (Nadirashvili). Let D be a simply connected planar
domain with smooth boundary. The multiplicity of the second Neumann
eigenvalue +2 is at most 2.

Proof. Suppose we have three independent eigenfunctions .1 , .2 , and
.3 corresponding to +2 . Let z� be a point on the boundary of D with
.1(z�)=0. Such a point exists since the nodal line does not form a closed
loop. As in the proof of Proposition 2.4(i) we find a linear combination .4

of .2 and .3 with the property that .4(z�)=0.
Let zk # �D be a point at the distance 1�k from z� . We will show that

for every k there exists an eigenfunction �k vanishing at both zk and z� .
If .1 or .4 has this property then we are done. Otherwise we take

�k(x)=.1(zk) .4(x)&.1(x) .4(zk).

The function �k is not identically equal to 0 because .1 and .4 are
independent. By multiplying �k by a constant, if necessary, we may assume
that

�k=C1, k .1+C2, k.2+C3, k.3 ,

where

C 2
1, k+C 2

2, k+C 2
3, k=1.

By passing to a subsequence, if necessary, we may assume that the sequence
[C1, k] converges as k � �, and so do the sequences [C2, k] and [C3, k].
Hence, the functions �k converge to an eigenfunction �� . Let 1k be the
nodal line for �k and let Dk be the component of D"1k which touches the
smaller component of �D"[zk , z�]. We can assume without loss of
generality that �k is positive on Dk . Let D� be the set where �� is positive
and D�(=)=[x # D� : ��(x)>=]. Fix some small =>0 such that D�(=)
{<. Since the �k converge to �� , we must have D�(=)/Dk , for large k.
Recall that zk � z� . This implies that the cluster set for 1k's is contained
in the nodal line for �� and it contains a closed loop around D�(=). We
obtain a contradiction, since the nodal line for the second eigenfunction
cannot contain a closed loop. K

The following proposition extends Kawohl's result (Theorem 1.1). The
proof is the same as the one for D_(0, a) given in [12, Remark 2.37, p. 56].
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Proposition 2.6. Consider domains D1/Rd1 and D2/Rd2. If (HS2)
holds for D1 then D1_D2 also satisfies (HS2).

Proof. Let [. j
k ]k�1 be a complete orthonormal system of Neumann

eigenfunctions for the domain Dj . Let + j
k be the eigenvalue corresponding

to . j
k . In this notation, 0=+ j

1<+ j
2=+ j

3= } } } =+ j
m<+ j

m+1� } } } , i.e., the
functions . j

k , k=2, 3, ..., m, correspond to the second lowest eigenvalue.
We will use x and y to denote generic elements of D1 and D2 .

The family of functions [.1
k(x) .2

n( y)]k, n�1 is a complete orthonormal
system of Neumann eigenfunctgions for D1_D2 . The eigenfunction .1

k(x)
.2

n( y) corresponds to the eigenvalue +1
k++2

n . The lowest eigenvalue is
+1

1++2
1=0+0=0, as expected. The only candidates for the second lowest

eigenvalue for this system are +1
1++2

2=+2
2 and +1

2++2
1=+1

2 . If +1
2<+2

2 then
every eigenfunction corresponding to +1

2 has a form .~ (x), i.e., it is a func-
tion of the x variable only, x # D1 . Such a function satisfies the condition
in (HS2). The proof is similar when +1

2>+2
2 .

Now suppose that +1
2=+2

2 . Then a second eigenfunction for D1_D2 may
have the form .~ (x)+.̂( y), where .~ (x) is a second eigenfunction for D1

and .̂( y) is a second eigenfunction for D2 . Fix arbitrary x1 # D1 and
y1 # D2 . We have assumed that D1 satisfies (HS2) so there exists x2 # �D1

with .~ (x2)�.~ (x1). Then .~ (x1)+.̂( y1)�.~ (x2)+.̂( y1), which proves
(HS2) for D1_D2 since (x2 , y1) # �(D1_D2). K

3. RESULTS BASED ON ``SYNCHRONOUS COUPLINGS''

We start this section with a review of basic properties of the ``synchronous
coupling'' of reflected Brownian motions.

In this section, we will choose the value of the angle MK formed by a
straight line K with the horizontal axis so that MK # (&?�2, ?�2].

Let Xt=(X 1
t , X 2

t ) be a 2-dimensional Brownian motion with X0=(x1, x2)
where x2>0. Let W X

t =0 7 mins�t X 2
s . Then the Skorohod Lemma [11,

Lemma 3.6.14] implies that X� t=(X 1
t , X 2

t &W X
t ) is a reflected Brownian

motion in the upper half-plane. The process X� t has the same distribution
as (X 1

t , |X 2
t | ), which is one of the most popular definitions of reflected

Brownian motion in the half space. It is essential for our coupling argu-
ments that we use a representation derived from Skorohod's lemma. Let
Yt=(Y 1

t , Y 2
t )=(X 1

t +( y1&x1), X 2
t +( y2&x2)), where y2>0. Then Yt is

a Brownian motion starting from ( y1, y2). If we let W Y
t =0 7 mins�t Y 2

s ,
we obtain a reflected Brownian motion Y� t by the means of the formula
Y� t=(Y 1

t , Y 2
t &W Y

t ). Let Kt be the straight line passing through X� t and Y� t

and recall that MKt denotes the angle between Kt and the horizontal axis.
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It is elementary to check that MKt converges in a monotone way to 0 as
t � � and, moreover, MKt is constantly equal to 0 after Xt and Yt hit the
horizontal axis simultaneously. The pair (X� t , Y� t) of reflected Brownian
motions is called a synchronous coupling. A straightforward generalization
of the above construction gives for every polygonal domain D and every
pair of starting points x, y # D� , a pair of reflected Brownian motions
(X� t , Y� t) with (X� 0 , Y� 0)=(x, y), and such that X� t&Y� t remains constant on
every interval during which both process stay in the interior of the domain.
It should be noted that none of the processes X� t and Y� t can hit any vertices
of �D, by the results of Varadhan and Williams [19]. It is not hard to
prove that with probability 1 there will be u such that Xu=Yu if and only
if �D contains perpendicular line segments. If such a u exists then Xt=Yt

for all t�u.
Our first result is concerned with the direction of the gradient of u(t, x)

in obtuse triangles. Consider an obtuse triangle D, i.e., a triangle whose
one angle is greater than ?�2. We will assume that the longest side of the
triangle lies on the horizontal axis, the triangle lies in the first quadrant,
and one of its vertices is at the origin. The smaller sides of the triangle form
angles a and b with the horizontal axis, with a # (&?�2, 0) and b # (0, ?�2)
(see Fig. 3.1).

Let M{xu(t, x) be the angle formed by the gradient {xu(t, x) with the
horizontal axis.

Theorem 3.1. Suppose that u(0, x) is C1 and c<M{xu(0, x)<d for all
x # D, where c>b&?�2 and d<?�2+a. Then for every t and x we have

min(a, c)�M{xu(t, x)�max(b, d ).

Proof. Consider a line K with

max(b, d )&?�2�MK�min(a, c)+?�2.

Suppose that x, y # K & D, x=(x1, x2), y=( y1, y2), and x1<y1. Let Xt and
Yt be a pair of reflected Brownian motions in D with X0=x and Y0=y.
We assume that (Xt , Yt) is a synchronous coupling as explained at the
beginning of this section. Let Kt be the line passing through Xt and Yt .
Since the sides of the obtuse triangle are not perpendicular to each other,
we will never have Xt=Yt and so Kt is defined in a unique way for all t,
a.s. Recall that the direction of Kt either remains constant or approaches
the direction of the side on whch one of the process is currently reflecting.
This implies that MKt can never leave the interval [max(b, d )&?�2,
min(a, c)+?�2] and in fact it will be confined to the subinterval [a, b] for
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FIGURE 3.1

large t. Moreover, we will always have X 1
t <Y1

t . The last two observations
and the assumption that c<M{xu(0, x)<d imply that u(0, Xt)<u(0, Yt)
for all t, a.s.

The function u(t, x) may be probabilistically represented as u(t, x)=
Eu(0, Xt) and, by analogy, u(t, y)=Eu(0, Yt). This and the inequality
u(0, Xt)<u(0, Yt) imply that u(t, x)=u(t, (x1, x2)) is a strictly increasing
function of x1 for (x1, x2) # K & D. Since this is true for every line K with

max(b, d )&?�2�MK�min(a, c)+?�2,

the gradient {x u(t, x) must satisfy

min(a, c)�M{xu(t, x)�max(b, d ). K

The assumption that u(0, x) is C1 is needed in Theorem 3.1 only so that
we can define M{xu(0, x). The same method of proof gives the following
result.

Theorem 3.2. Suppose that 1 is a piecewise smooth curve such that
for any tangent line K1 at any point of 1 we have MK1 # (c+?�2, ?�2] _
(&?�2, d&?�2) for all x # D, where c>b&?�2 and d<a+?�2. Let A be the
set to the right of 1 and let u(0, x)=1A (x) for x # D. Then for every fixed
t we have

min(a, c)�M{xu(t, x)�max(b, d ).

Proof. The proof is the same as for Theorem 3.1. We will indicate some
minor adjustments to the proof needed in the present case. We have shown
that MKt can never leave the interval [max(b, d )&?�2, min(a, c)+?�2]
and we always have X 1

t <Y 1
t . This and the assumption that for any line K1

tangent to 1 we have MK1 # (c+?�2, ?�2] _ (&?�2, d&?�2) imply that
u(0, Xt)<u(0, Yt) for all t, a.s. The rest of the proof is the same as in the
case of Theorem 3.1. K
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Theorem 3.3. For every obtuse triangle D there exists an eigenfunction
.2(x) corresponding to the second eigenvalue +2 for the Neumann problem in
D such that for every y # D we have

inf
x # �D

.2(x)<.2( y)< sup
x # �D

.2(x).

Proof. Fix some eigenfunction .2*(x) corresponding to the second
eigenvalue +2 and fix x

*
# D such that .2*(x

*
)>0. We will consider two

curves 1 and 11 and the corresponding regions A and A1 to the right of
1 and 11 , as in Theorem 3.2. We let 1 be the vertical line passing through
x

*
. We choose 11 in such a way that A/A1 and B=A1"A is a small

triangle which contains x
*

in its boundary. We make B so small that, by
continuity of .2*, we have .2*(x)>0 for x # B. We also require that the
sides of B are close to vertical; more precisely, we require that for every line
K1 tangent to 11 we have MK1 # (a+?�2, ?�2) _ (&?�2, b&?�2).

We set u0(x)=1A(x) and u1
0(x)=1A1

(x) for x # D. Let u(t, x) and u1(t, x)
be the solutions of the Neumann problem in D with initial conditions u0(x)
and u1

0(x), respectively. By Proposition 2.1,

u(t, x)=:1+:2*.2*(x) e&+2 t+:~ 2 .~ 2(x) e&+2 t+R(t, x),

where R(t, x) converges to 0 faster than e&+2 t as t � �. Here .~ 2(x) is an
eigenfunction corresponding to +2 which is orthogonal to .2*(x). The
analogous formula for u1(t, x) is

u1(t, x)=;1+;2*.2*(x) e&+2 t+;� 2.~ 2(x) e&+2 t+R1(t, x).

We have

;2*&:2*=|
A1 & D

.2*(x) dx&|
A & D

.2*(x) dx=|
B

.2*(x) dx>0,

so at least one of the coefficients :2* or ;2* is non-zero. Let us assume that
;2*{0, the other case being analogous. Then

u1(t, x)=;1+;2.2(x) e&+2 t+R1(t, x), (3.1)

where .2(x) is a second eigenfunction and ;2{0.
Suppose that ;2>0; the other case can be dealt with in a similar way.

Theorem 3.2 implies that u1(t, x) is monotone on every horizontal line
passing through D, for every fixed t. Without loss of generality, let us
assume that u1(t, (x1, x2)) is an increasing function of x1. For every x # D,
let V(x) be the set of y # D such that the angle between the vector x, y� and
the horizontal axis lies within (b&?�2, a+?�2). By Theorem 3.2 and our
choice of 1 and 11 , we have u1(t, y)�u1(t, x), for all x # D, y # V(x), and
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FIGURE 3.2

t>0. Since R1(t, x) converges to 0 faster than e&+2 t, the last fact and (3.1)
imply that .2( y)�.2(x) for y # V(x). The remark following Corollary
(6.31) in Folland [10] may be applied to the operator 2++2 to conclude
that the eigenfunctions are real analytic and therefore they cannot be
constant on an open set unless they are constant on the whole domain D.
It follows that the maximum of .2(x) cannot be attained on an open subset
of D and thus it can be attained only at the right vertex. The proof that
the minimum is attained at the left vertex is completeley analogous. K

Corollary 3.1. If D is an obtuse triangle with dD�width(D)>3.07 then
(HS1), the strongest form of the ``hot spots'' conjecture, holds for D.

Proof. The result follows from Theorem 3.3 and Proposition 2.4(i). K

The assumption that D is a triangle plays no role in the arguments��all
we need is a bound on the angles formed by the sides of D. We will
present a few examples of domains to which Theorems 3.1�3.3 can be easily
extended. We leave it to the reader to formulate the corresponding theorems
in a rigorous way.

Example 3.1. Theorems 3.1�3.3 apply to any convex polygonal domain
which has an ``upper'' and ``lower'' sides such that there is an interval of
length less than ?�2 which contains all angles formed by edges of �D with
the horizontal axis. See Fig. 3.2.

Example 3.2. The assumption of convexity does not play an essential
role in Theorems 3.1�3.3. It is elementary to check that if two reflected
Brownian motions in the domain in Fig. 3.3 are related by a ``synchronous
coupling'' then the ``left'' particle will always stay to the left of the other one.
This is the main property of the coupling used in the proofs of Theorems
3.1�3.3.

FIGURE 3.3
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FIGURE 3.4

Example 3.3. The results can be further extended from polygonal domains
to domains with piecewise smooth boundaries. Figure 3.4 shows an example
of a domain with piecewise smooth boundaries, similar to that in Fig. 3.3.
Note that the leftmost and rightmost vertices must stay sharp. Our proofs
are based on the fact that the ``left'' and ``right'' particles have to preserve
these relative positions forever. The reflected Brownian motion can be
thought of as Brownian motion with a ``push'' at the boundary which has
the direction of the inward pointing normal vector at the current position
of the particle. This observation can be used to show that the reflected
Brownian motions coupled in a synchronous way will not switch from the
left to the right side and vice versa in the domain in Fig. 3.4. We leave the
details of the proof to the reader.

Example 3.4. Wendelin Werner pointed out to us that our method can
be applied to reflected Brownian motion with oblique angle of reflection.
This corresponds to the heat equation with oblique boundary conditions.
We first indicate how oblique reflection changes the properties of the
synchronous coupling.

Suppose that N=[(x1, x2) : x2=ax1], and let N+ be the region above N.
Let Xt=(X 1

t , X 2
t ) be a 2-dimensional Brownian motion with X0=

(x1
0 , x2

0) # N+. Let W X
t =0 7mins�t X 2

s &aX 1
s . Then X� t=(X 1

t , X 2
t &W X

t )
is a reflected Brownian motion in N+ with the vector of reflection pointing
upward. The angle of reflection % is equal to ?�2&MN. Let Yt=(Y 1

t , Y 2
t )

=(X 1
t +( y1

0&x1
0), X 2

t +( y2
0&x2

0)), where ( y1
0 , y2

0) # N+. Then Yt is a
Brownian motion starting from ( y1

0 , y2
0). If we let W Y

t =0 7 mins�t Y 2
s &

aY1
s , we obtain a reflected Brownian motion Y� t by the means of the formula

Y� t=(Y 1
t , Y2

t &W Y
t ). The vector of reflection for Y� is the same as for X� .

Assume that y1
0>x1

0 . Let Kt be the straigth line passing through X� t and Y� t .
Then MKt converges in a monotone way to MN as t � �. By rotating the
above picture we can obtain similar statements for arbitrary directions of
the line N and vector of reflection.

The proof of the following statement is left to the reader. It is completely
analogous to that of Theorem 3.1 except that we have to apply synchronous
coupling for reflected Brownian motions with oblique reflection, as discussed
above.
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Proposition 3.1. Assume that %<?�2&(b&a). Suppose that D is an
obtuse triangle as in Theorem 3.1 and at each point z # �D we have a vector
of reflection vz such that its angle with the inward normal vector at z is less
than % (the angle does not have to be the same for all z). Let u(t, x) be the
solution to the heat equation with the oblique reflection defined by vz .
Suppose that u(0, x) is C1 and c<M{xu(0, x)<d for all x # D, where
c>b&?�2 and d<?�2+a. Then for every fixed t we have

min(a, c)&%�M{x u(t, x)�max(b, d )+%.

Remark 3.1. We sketch an argument which can be used to prove a
weak version (HS3) of Kawohl's theorem (Theorem 1.1) but it has an
advantage over the proof of Proposition 2.6 in that it yields some estimates
for the gradient of u(t, x). Suppose that D=D1_(0, a) where D1/Rd&1.
Take any points z=(z1, z2, ..., zd ) and y=( y1, y2, ..., yd ) in D with the
property that zk=yk for k<d and zd<yd. Let Xt be a Brownian motion
in Rd starting from z and let Yt=Xt+( y&z). For simplicity, we may
assume that D1 is a polygonal domain. Then we can construct reflected
Brownian motions X� t and Y� t in D from Xt and Yt by the means of a multi-
dimensional analogue of the Skorohod lemma (see the beginning of the
section). It is evident that the two processes will hit (�D1)_(0, a) at the
same time. The reflection on this part of the boundary will preserve (locally)
the vector Xt&Yt . When one of the processes hits D1_[0] or D1_[1], the
vector Xt&Yt will decrease in length but it will remain vertical. Eventually,
we will have Xt=Yt but before this happens the particle Yt will be always
directly above Xt . Now the same argument as in the proof of Theorem
3.1 shows that if the initial temperature u0(x)=u0(x1, x2, ..., xd ) is an
increasing function of xd for fixed x1, x2, ..., xd&1, then the same is true of
u(t, x1, x2, ..., xd ) for all fixed t, x1, x2, ..., xd&1. This implies the weak
version (HS3) of Theorem 1.1 via an argument similar to that in the proof
of Theorem 3.3.

4. RESULTS BASED ON ``MIRROR COUPLINGS''

First we will review some properties of ``mirror couplings'' for reflected
Brownian motions. These results have been obtained by Burdzy and
Kendall [5] in the course of study of ``efficient Markovian couplings,'' i.e.,
couplings for which the probability of non-coupling by the time t is of
order e&+t, where + is the spectral gap for a given Markov process.

Let us start by defining the mirror coupling for free Brownian motions
in R2. Suppose that x, y # R2, x{y, and that x and y are symmetric with
respect to a line M. Let Xt be a Brownian motion starting from x and let
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{ be the first time t with Xt # M. Then we let Yt be the mirror image of Xt

with respect to M for t�{, and we let Yt=Xt for t>{. The process Yt is
a Brownian motion starting from y. The pair (Xt , Yt) is a ``mirror coupling''
of Brownian motions in R2.

Next we turn to the mirror coupling of reflected Brownian motions in a
half-plane H, starting from x, y # H. Let M be the line of symmetry for x
and y. The case when M is parallel to �H can be easily handled using
Skorohod's lemma, so we focus on the case when M intersects �H. By
performing rotation and translation, if necessary, we may suppose that H

is the upper half-plane and M passes through the origin. We will write x=
(rx, %x) and y=(r y, % y ) in the polar coordinates. The points x and y are
at the same distance from the origin so rx=r y. Suppose without loss of
generality that %x<% y. We first generate a 2-dimensional Bessel process Rt

starting from rx. Then we generate two coupled one-dimensional processes
on the ``half-circle'' as follows. Let 3� x

t be a 1-dimensional Brownian motion
starting from %x. Let 3� y

t =&3� x
t +%x+% y. Let 3x

t be the reflected Brownian
motion on [0, ?], constructed from 3� x

t by the means of the Skorohod lemma,
using ``local time'' push on both sides of the interval [0, ?]. The analogous
reflected process obtained from 3� y

t =3� y
t . Let {3 be the smallest t with

3x
t =3� y

t . Then we let 3 y
t =3� y

t for t�{3 and 3 y
t =3x

t for t>{3. We define
a ``clock'' by _(t)=� t

0 R&2
s ds. Then Xt=(Rt , 3x

_(t)) and Yt=(Rt , 3 y
_(t)) are

reflected Brownian motions in H with the normal vector of reflection.
Moreover, Xt and Yt behave like free Brownian motions coupled by the
mirror coupling as long as they are both strictly inside H. The processes
will stay together after the first time they meet. This property is crucial in
this section but was hardly relevant for the synchronous coupling. For
definiteness, we let Mt be the horizontal line passing through Xt if Xt=Yt .

The most important property of the above coupling is that the two
processes Xt and Yt remain at the same distance from a fixed point (the
origin). We will describe how this property manifests itself in more general
settings. First of all, suppose that H is again an arbitrary half-plane, and
x and y belong to H. Let M be the line of symmetry for x and y. Then our
construction generates a pair of reflecting Brownian motions starting from
x and y such that the distance from Xt to M & �H is the same as for Yt ,
for every t. Let Mt be the line of symmetry for Xt and Yt . Note that Mt

may move, but only in a continuous way, while the point Mt & �H will
never move. We will call Mt the mirror and the point H=Mt & �H will be
called the hinge. The absolute value of the angle between the mirror and
the normal vector to �H at H can only decrease.

The mirror coupling of reflected Brownian motions in a convex poly-
gonal domain D can be described as follows. Suppose that Xt and Yt start
from x and y inside the domain D. As soon as one of the particles hits a
side I of �D, the processes will evolve according to the coupling described
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in the previous paragraph. To be more precise, let K be the straight line
containing I. Since the process which hits I does not ``feel'' the shape of D
except for the direction of I, it follows that the two processes will remain
at the same distance from the hinge Ht=Mt & K. The mirror Mt can move
but the hinge Ht will remain constant as long as I remains the side of �D
where the reflection takes place. The hinge Ht will jump when the reflection
location moves from I to another side of �D. Since D is convex, Ht will be
always on �D or outside D.

We will say that Xt is active if it is currently reflecting from a side of �D
and similarly for Yt . U 1

t and U 2
t be the intersection points of the mirror Mt

with �D. Let �Da be the ``active'' part of �D, i.e., this connected component
of �D"[U 1

t , U 2
t ] which contains the active particle. We note that the active

part �Da can only increase with time as a subset of the boundary. However,
the active part will switch from one side of Mt to the other from time to
time. It will later turn out that this is a convenient way to describe all
possible movements of the mirror Mt .

Theorem 4.1. Suppose that D is a convex planar polygonal domain
which is symmetric with respect to the horizontal axis. Let zL and zR be the
intersection points of �D with the horizontal axis. Assume that for every
r>0, the intersection of the circle �B(zL , r) with D is either empty or it is
a connected arc, and the same holds for �B(zR , r). Let 1 be any vertical line
and let A be the half-plane to the right of 1. Consider the solution u(t, x) to
the heat equation with Neumann boundary conditions in D and with the
initial condition u(0, x)=1A(x) for x # D. Suppose that x0 # D lies above the
horizontal axis. Then for every t, the line containing {xu(t, x0) and passing
through x0 passes above or through each of the points zL and zR . An
analogous statement holds for points on the other side of the horizontal axis,
by symmetry. The horizontal component of {xu(t, x0) points to the right, for
every x0 # D and t.

Note that every ellipse D can be oriented in such a way that it satisfies
the condition that for every r>0, the intersection of the circle �B(zL , r)
with D is either empty or it is a connected arc, and the same holds for
�B(zR , r).

Proof. Consider any straight line M which intersects the upper part of
�D at a point U1 and the lower part of �D at U2. Take any points x, y # D
which are symmetric with respect to M and let Xt and Yt be reflected
Brownian motions in D, starting from x and y, respectively, and related by
the mirror coupling. Recall that the mirror for Xt and Yt is denoted Mt .
As long as Mt intersects both the upper and the lower parts of �D, we will
denote the intersection points U 1

t and U 2
t . This is true for t=0, by assump-

tion, and we intend to prove that this will remain true for all t, a.s.
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FIG. 4.1. The dotted line is the mirror image, with respect to Mv , of the non-active side
of the boundary just before time v.

The points U 1
t and U 2

t move in a continuous fashion because Mt does.
Recall that the active part �Da of the boundary can only increase. This
means that both U 1

t and U 2
t move towards zL or both points move towards

zR . Both points can reach either one of these points at the same time only
if Xt and Yt hit one of these points. This event has probability zero by the
results of Varadhan and Williams [19]. Suppose that U 1

t reaches zL at time
v, before U 2

t does. Then Mv forms a negative angle with the horizontal axis.
Since the points U 1

t and U 2
t must have been moving towards zL just before

the time v, it follows that the active side �Da of the boundary was above
and to the right of Mt . Figure 4.1 illustrates the fact that the mirror image
of the non-active side of the boundary with respect to Mv lies strictly inside
D��this is due to the assumption that for every r>0, the intersection of the
circle �B(zL , r) with D is either empty or it is a connected arc, and the
same holds for �B(zR , r). We obtain a contradiction as both processes Xt

and Yt must always stay within the set D� and they are always mirror
images of each other with respect to Mt (or Xt=Yt).

The same argument shows that none of the points U 1
t or U 2

t can hit zL

or zR before the coupling time for Xt and Yt . This implies that the mirror
Mt cannot attain the horizontal direction before the coupling time and so
we conclude that X 1

t &Y 1
t does not change the sign. This implies, in the

same way as in the proof of Theorem 3.1, that for every t, the function
u(t, x)=u(t, (x1, x2)) is increasing in x1 on every straight line M1 which is
perpendicular to any line M which crosses the upper and lower parts of �D.
This easily implies the claim about the direction of the gradient {x u(t, x0).

K

Recall that we say that a function h(x1, x2) is antisymmetric with respect
to the horizontal axis if h(x1, x2)=&h(x1, &x2) for all (x1, x2).

Theorem 4.2. Suppose that D is a convex polygonal planar domain
satisfying the hypotheses of Theorem 4.1 and there is no eigenfunction .2(x)
corresponding to the second eigenvalue which is antisymmetric with respect to
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the horizontal axis. Then there exists an eigenfunction .2(x) corresponding
to the second eigenvalue such that for every y # D we have infx # �D .2(x)<
.2( y)<supx # �D .2(x).

Proof. Let zL and zR be intersection points of �D with the horizontal
axis. Take any eigenfunction .2*(x) corresponding to the second eigenvalue
and let .2(x1, x2)=.2*(x1, x2)+.2*(x1, &x2) for all (x1, x2) # D. Note that
.2(x) is an eigenfunction corresponding to the second eigenvalue. By assump-
tion, .2(x) is not identically equal to zero. By Courant's nodal domain
theorem [7, p. 19; 1, p. 112], .2(x) divides D into only 2 nodal domains.
This and the fact that .2(x) is symmetric with respect to the horizontal
axis imply that the nodal line must lie at a positive distance from the points
zL and zR . Hence, .2(x) does not vanish at either point and this is also
true for some neighborhoods of both points, by the continuity of .2(x). We
will suppose that .2(zR)>0; the proof is analogous when we have the
opposite inequality.

The rest of the proof is very similar to the proof of Thoerem 3.3.
Consider two distinct vertical lines 1 and 11 and the corresponding regions
A and A1 to the right of 1 and 11 . We assume the 1 and 11 are so close
to zR that .2(x)>0 for all x # (A _ A1) & D.

We set u0(x)=1A(x) and u1
0(x)=1A1

(x) for x # D. Let u(t, x) and u1(t, x)
be the solutions of the Neumann problem in D with initial conditions u0(x)
and u1

0(x), respectively. We have, by Proposition 2.1,

u(t, x)=:1+:2 .2(x) e&+2 t+:~ 2.2(x) e&+2t+RR(t, x),

where R(t, x) converges to 0 faster than e&+2 t as t � �. Here .~ 2(x) is an
eigenfunction corresponding to +2 which is orthogonal to .2(x). The
analogous formula for u1(t, x) is

u1(t, x)=;12+;2 .2(x) e&+2 t+;� 2.~ 2(x) e&+2 t+R1(t, x).

We have

;2&:2=|
A1 & D

.2(x) dx&|
A & D

.2(x) dx=|
(A1 "A) & D

.2(x) dx{0,

so at least one of the coefficients :2 or ;2 is non-zero. Let us assume that
;2{0, the other case being analogous. Then

u1(t, x)=;1+;� 2 .̂2(x) e&+2 t+R1(t, x), (4.1)

where .̂2(x) is a second eigenfunction and ;� 2{0.
Without loss of generality we assume that ;� 2>0. Theorem 4.1 implies

that u1(t, (x1, x2)) is an increasing function of x1, for every fixed t. For
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every x # D, let V(x) be the intersection of D with the ball B(zR , |x&zR | ).
Using the information about the direction of the gradient {xu(t, x)
provided by Theorem 4.1, it is elementary to see that u1(t, y)�u1(t, x), for
all x # D, y # V(x), and t>0. Since R1(t, x) converges to 0 faster than e&+2 t,
the last fact and (4.1) imply that .̂2( y)�.̂2(x) for y # V(x). Since the
maximum of .̂2(x) cannot be attained on a non-empty open subset of D
(recall the argument from the proof of Theorem 3.3), it can be attained
only at zR . The location of the minimum is zL , by the same argument. K

Theorem 4.3. Suppose that D is a convex polygonal planar domain
which is symetric with respect to the horizontal and vertical axes. Then there
exists an eigenfunction .2(x) corresponding to the second eigenvalue such
that for every y # D we have infx # �D .2(x)<.2( y)<supx # �D .2(x).

Proof. First we are going to show that there exists an eigenfunction
.2(x) which is antisymmetric with respect to one of the axes, i.e., we either
have .2(x1, x2)=&.2(x1, &x2) for all (x1, x2) # D or we have .2(x1, x2)
=&.2(&x1, x2) for all (x1, x2) # D. Take any eigenfunction .2*(x) corre-
sponding to the second eigenvalue. Let .~ 2(x1, x2)=.2*(x1, x2)+.2*(&x1, x2).
If .~ 2(x) is identically 0 then we can take .2(x)=.2*(x). Otherwise we let
.̂2(x1, 2)=.~ 2(1, 2)+.~ 2(x1, &x2).

We will prove that .̂2(x) is identically equal to 0. Suppose that .̂2(x)
is not identically equal to 0. The function .̂2(x) is symmetric with respect
to both axes. Let D� be the part of D in the first quadrant. Since .̂2(x) must
take both positive and negative values and is symmetric with respect to
both axes, the nodal line must intersect the interior of D� . The nodal line
cannot form a closed loop inside D� , see, e.g., [1, p. 128]. (The fact that the
nodal line cannot form a closed loop follows easily from the fact that
*1>+2 [1, p. 155], where *1 is the first Dirichlet eigenvalue for D.) The
part of the nodal line inside D� cannot touch both axes because, by sym-
metry, we would have a closed loop formed by the nodal line inside D. If
the nodal line inside D� touches �D, then D must be divided into more than
2 nodal domains. This is ruled out by the Courant nodal domain theorem
quoted in the proof of Theorem 4.2. This completes the proof that .̂2(x) is
identically equal to 0 and so we can take .2(x)=.~ 2(x).

The nodal line for .2(x) must lie on one of the axes. Without loss of
generality, suppose that it lies on the vertical axis. Let H+ denote teh right
half plane. Then .2(x) is the first eigenfunction for the mixed Dirichlet�
Neumann problem in D$=D & H+, with the Dirichlet boundary conditions
on �1D$=�D & �H+ and the Neumann boundary conditions elesewhere on
the boundary. We will prove that .2(x) is monotone on all horizontal lines.

The probabilistic representation of the solutions u(t, x) to the mixed
Dirichlet�Neumann heat problem involves Brownian motion Xt reflected
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on �2D$=�D & H+ and killed on �1 D$. Let u0(x)=1 for all x # D$. If
u(0, x)=u0(x) for all x # D$ and X0=x then u(s, x) is equal to the prob-
ability that Xt is not killed on �1D$ before time s. Suppose that x=(x1, x2)
and y=( y1, y2) are any points in D$ with x2=y2, and x1<y1. In order to
prove monotonicity of .2(x) on horizontal lines it will suffice to construct
Brownian motions Xt and Yt , starting from x and y, and such that Xt

exists D$ through �1D$ no later than Yt does.
Our proof will use the mirror coupling except that if any of the processes

Xt or Yt hits �1 D$, it will be killed, and the other process, if it survives
beyond this point, will continuoe on its own. he other process may be
killed later.

Since the points x and y lie on a horizontal line, the initial direction of
the mirror M0 for X0 and Y0 is vertical. Let U 1

0 and U 2
0 be the upper and

lower points of intersection of M0 with �D$. Since Mt moves in a continuous
way, we can choose the labels U 1

t and U 2
t for the intersection points of Mt

with �D$ in such a way that U 1
t and U 2

t are continuous functions of t. In
this proof we change the conventions concerning the angles and we choose
the angle MMt between Mt and the horizontal axis so that t � MMt is a
continuous function. We set MM0=?�2.

Let zR be the intersection point of �2D$ and the horizontal axis. We will
argue that neither U 1

t nor U 2
t can ever touch zR and MMt always stays

in [0, ?]. Suppose that this is not always true and let v be the infimum of
t such that U 1

t =zR or U 2
t =zR or U 2

t =zR or MMt � [0, ?]. First we
consider the case when U 1

v=zR (the case U 2
v=zR is analogous). One can

prove that Mv cannot be horizontal in this case but we do not need to do
this��if Mv is horizontal and U 1

v=zR then Mv lies on the horizontal axis,
so, by symmetry, the line Mt will stop moving at time v and Xt and Yt will
hit �1D$ at the same time.

Next suppose that U1
v=zR and Mv is not horizontal, and so MMv # (0, ?�2).

In this case, the argument is very similar to that in the proof of Theorem 4.1.
The main difference is that we do not assume any more that for every r>0,
the intersection of the circle �B(zL , r) with D is either empty or it is a
connected arc, and the same holds for �B(zR , r). However, we use the
assumption of D having two lines of symmetry as follows. Note that the
active part of the boundary must have been the part of �2 D$ above U 1

t , just
before time v, because U 1

t was pushed down to zR . The mirror image, with
respect to Mv , of the part of �2D$ below Mv lies strictly inside D$, or on
�1 D$, or outside D$. This contradicts the fact that Xt and Yt must always
stay inside the domain D$, and that the active side of the boundary just
before time v was above U 1

t .
Now suppose that MMv=0; as usual, the symmetric case MMv=?, is

left to the reader. We have already discussed the case when Mv lies on the
horizontal axis, so let us assume that it does not. Suppose U 1

v lies in the
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FIGURE 4.2

first quadrant. Then the mirror image, with respect to Mv , of the part of
D$ above Mv lies inside the part of D$ below Mv . We have two possibilities
for what may happen after time v. The first one is illustrated by Fig. 4.2.
The point zR may lie on a vertical segment of the boundary of D$. Then
both Xt and Yt may be reflecting at the same time from this line segment
for some time after v. In this case Mt will not be moving.

The only other possibility is that the upper side of the boundary of D$
will be active. If a part of the boundary of D$ is horizontal and one of the
processes is reflecting from this part, the mirror will move but it will not
change its direction. Otherwise, since D is symmetric with respect to the
vertical axis, the hinge for the mirror, if it exists must lie to the right of
Mv & �2D$ and so the mirror will be turning counterclockwise; i.e, the
angle MMt will move from 0 to inside the interval (0, ?�2).

It is routine to restart the argument at the next time when MMv=0 or
MMv=? and complete the proof of the claim that U 1

t and U 2
t never hit zR

and MMt always stays in [0, ?].
Since MMt # [0, ?] for all t, we have X 1

t �Y 1
t for all t, until one or both

the processes are killed. This proves Xt must hit �1D$ before or at the same
time when Yt hits �1D$. This in turn proves the monotonicity of u(t, x)
along horizontal lines within D$, for every fixed t.

Next we extend our argument to points x=(x1, x2) and y=( y1, y2) such
that the line of symmetry for these points crosses both the upper and the
lower sides of �D. The same reasoning as for x and y lying on a horizontal
line proves that if x1<y1 then the process starting from x will hit �1D$ no
later than the process starting from y. It follows that u(t, x)�u(t, y) for all t.
We recall from the proof of Theorem 4.1 that this implies that given any x0 # D
which lies above the horizontal axis and any t, the line containing {xu(t, x0)
and passing through x0 passes above or through each of the points zL and zR .
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Then we can argue as in the proof of Theorem 4.2 that if V(x) is the inter-
section of D with the ball B(zR , |x&zR | ) then u(t, x)�u(t, y), for all
y # V(x) and all t.

We have u(t, x)=:.2(x) e&+2 t+R(t, x), where :{0 and R(t, x) goes to
0 faster than e&+2t. Without loss of generality suppose that :>0. It follows
that .2(x)�.2( y) for y # V(x). This implies that .2(x) attains its maxi-
mum only at zR . For the same reason, the minimum is attained at zL . K

Recall that dD and wD denote the diameter of D and the length of the
projection of D on the vertical axis.

Corollary 4.1. Suppose that a convex polygonal domain D is symmetric
with respect to the horizontal axis S and the ratio dD �wD is greater than 1.54.
Let x and y be the intersection points of S with �D. Make at least one of the
following additional assumptions.

(A1) D has another line of symmetry S1 which is perpendicular to S;

(A2) For every r>0, the intersection of the circle �B(x, r) with D is
either empty or it is a connected arc, and the same holds for �B( y, r).

Then (HS1), the strongest version of ``hot spots'' conjecture, holds for D.

Proof. In the proof of Proposition 2.4(ii) it is shown that if there are
two independent eigenfunctions corresponding to +2 then a linear combina-
tion of them is antisymmetric. An assumption of Theorem 4.2 asserts that
there is no such eigenfunction. This, Theorem 4.3, and Proposition 2.4(ii)
imply the lemma. K

Theorems 4.1�4.3 and Corollary 4.1 hold for domains with smooth
boundaries. We stated them only for polygonal domains in order to avoid
the discussion of the mirror coupling to smooth domains. The generaliza-
tion of the mirror coupling to smooth domains is not too hard and does
not involve any fundamentally different ideas.

Example 4.1. One may ask whether the counterexample to ``Chavel's
conjecture'' about domain monotonicity for the Neumann heat kernel
given in Bass and Burdzy [2] can be adapted to give a counterexample to
the ``hot spots conjecture'' of Rauch. The question is rather vague but the
answer seems to be negative in view of the following example. We will only
sketch the argument and only for the three dimensional space.

Let D consist of two-cream cones,

D=[(x1, x2, x3) # R3 : (x2)2+(x3)2<a min[(x1+1)2, (&x1+1)2]],

where a # (0, �). Let D1=[(x1, x2, x3) # D : x1<0] and let .(x) be the
first eigenfunction for the mixed Neumann�Dirichlet problem in D1 with
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the Neumann boundary conditions on �1D1=�D1 & �D and the Dirichlet
conditions on �2D1=�D"�1D1 . We extend .(x) to the whole domain D so
that it is antisymmetric in x1 variable. Then .(x) is a Neumann eigenfunc-
tion in D but we expect it to correspond to +2 only for sufficiently small
a. We will argue that .(x) attains its maximum on the boundary of D.

Consider any points y=( y1, y2, y3) and z=(z1, z2, z3) in D1 with the
same distance \ from (&1, 0, 0). We will construct a Brownian motion Xt

in D1 with the normal reflection on �1 D1 and killed on �2 D1 . It will be
convenient to consider (&1, 0, 0) as the origin as we will use spherical
coordinates. First we generate the radial part of Xt , i.e., a 3-dimensional
Bessel process Rt starting from \. Then we generate the angle 3X

t between
Xt and the x1-axis. Finally, we generate the third component 7 X

t of the
spherical coordinates. We choose the starting points for these processes so
that Xt starts from z. We construct another process Yt in the same way,
starting from y, with the important provision that the radial part of Yt is
Rt , i.e., the same as for Xt . Moreover, we couple the processes 3X

t and 3Y
t

after the first time {3 when they meet, i.e., we have 3X
t =3Y

t for t�{3. We
conclude that 3X

t &3Y
t cannot change the sign. Hence, the process which

started closer to the x1-axis will hit �2D1 no later than the other one. Our
usual argument now shows that the function .(x) is a non-decreasing
function of the distance from the x1-axis on every fixed sphere centered
at (&1, 0, 0). We conclude that the maximum of .(x) must be attained
on �D.

Exercise 4.1. We end with an exercise for readers who stayed with us
until now and mastered the coupling arguments. Let 1 1

a be a curve defined
by parametric equations as [(x1(s), x2(s)), 0�s�2?], with

x1(s)=&1+\1+
a

2?
s+ s+2?

4?
cos s,

x2(s)=\1+
a

2?
s+ s+2?

4?
sin s.

Let 1a be the union of 1 1
a and the curve symmetric to 1 1

&a with respect to
the point (0, 0). The union of 10.05 and 1&0.05 forms the boundary of a
domain D depicted in Fig. 4.3. Suppose that the function u(0, x) (i.e., the
initial condition in (1.1)) is equal to 1 for all x=(x1, x2) # D with x1>&1�4,
x2>0, and also for all points with x1>1�4. The initial condition is zero
elsewhere in D. Prove that for every fixed t>0, the solution u(x, t) of (1, 1)
is monotone along every line 1a , for every a # (&0.05, 0.05). Hint: the
synchronous coupling does not work in this case but the mirror coupling
does.
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