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On the Hopf Lemma

YanYan Li and Louis Nirenberg

Dedicated to Vladimir Mazya on his 70th birthday

Abstract. The Hopf Lemma for second order elliptic operators is proved to

hold in domains with C1,α, and even less regular, boundaries. It need not
hold for C1 boundaries. Corresponding results are proved for second order
parabolic operators.

.

1.

The Hopf Lemma, a purely local result, is a basic tool in the study of second
order elliptic operators in R

n, of the form

(1.1) L := aij(x)
∂2

∂xi∂xj

+ bi(x)
∂

∂xi

+ c(x) =: M + c.

It says essentially that if u is a positive function in a domain G, which vanishes at
a boundary point P , and satisfies

(1.2) Lu ≤ 0,

then the interior normal derivative of u at P is positive. A standard, precise form
of the lemma, which applies also to degenerate elliptic operators is stated below in
Proposition 1.

Up to now, one required that the boundary ∂G be of class C2 near P . In this
paper we relax that condition considerably. As stated in Corollary 1 in section 3,
it suffices that the boundary be in C1,α for some 0 < α < 1. In fact a much weaker
condition suffices — almost that the boundary is in C1. But in section 2 we give
examples, Example 1 and 2, of C1 boundaries where the Hopf Lemma does not
hold. It is, of course, well known that it must not hold in Lipschitz domains. For
example, in the plane, near the origin, in x, y > 0, the harmonic function

u = xy
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is positive, vanishes at the origin, and grows quadratically as we go on the line
y = x > 0.

Here is a standard form of the Hopf Lemma.
Concerning L, we always assume aijξiξj ≥ 0 for ξ ∈ R

n (degenerate elliptic),
all coefficients are bounded, in absolute value by C, and, near P , we assume, if ν
is the interior unit normal to ∂G at P , that

(1.3) aijνiνj ≥ c0, a positive constant.

Proposition 1. Assume that u > 0 near P in G is of class C2 there, contin-
uous in G ∪ {P}, and vanishes at P , and that it satisfies (1.2) in G. If ∂G is of
class C2 then, if ν is the interior unit normal to ∂G at P ,

(1.4) lim inf
t→0

u(P + tν)

t
> 0.

A few words about the well known proof: It is clear that if the Hopf Lemma
holds at P in G then it holds at P on any domain D, containing G, having P also
on the boundary.

The method of proof is to consider a slightly smaller domain Ω lying in G, with
P on its boundary. In Ω, near P ,

(1.5) u > 0 except at P.

Now one constructs a comparison function h in Ω satisfying, near P ,

(1.6) h(P ) = 0, h ≤ 0 on ∂Ω,

(1.7) Lh ≥ 0 in Ω,

and

(1.8) lim inf
t→0+

h(P + tν)

t
> 0.

Having such a function h, by (1.5), it is clear that for some 0 < R small, and 0 < ǫ
small,

w := u − ǫh ≥ 0 on ∂{Ω ∩ B(P, R)}.
Here B(P, R) is the ball about P of radius R.

In Ω ∩ B(P, R), we have

Lw ≤ 0.

We may apply the maximum principle and conclude that

w ≥ 0 in Ω ∩ B(P, R).

Recall that, because R is small, the maximum principle holds in Ω ∩ B(P, R).
Since L is not assumed to be uniformly elliptic, we include the proof of that.

Consider the positive function in Ω ∩ B(P, R),

m := eαR − eαν·(x−P ), α > 0.

We have

Mm = (−α2aijνiνj − αbiνi)e
αν·(x−P ).

Because of (1.3) we may fix α large so that

Mm ≤ −α2c0

2
eαν·(x−P ) and

α2c0

2
> 5|c|.



ON THE HOPF LEMMA 3

Then

e−αν·(x−P )Lm ≤ −α2c0

2
+ 2|c||eα(R−ν·(x−P )) − 1|.

Finally, choosing R small we find that

Lm < 0 in Ω ∩ B(P, R).

But then the function z = w/m satisfies

aijzij + b′izi +
Lm

m
z < 0.

Since Lm ≤ 0, z cannot have a negative minimum in Ω ∩ B(P, R). So z ≥ 0, and
hence

w ≥ 0 in Ω ∩ B(P, R).

Finally, since u ≥ ǫh, (1.4) follows from (1.8).
Thus the proof of the Hopf Lemma hinges on constructing a function h satis-

fying (1.6)-(1.8).

Remark 1. It is clear from the proof that the conclusion of the Hopf Lemma
also holds if ν is any unit vector at P pointing inside the domain and not tangent
to the boundary. This will be true for all the results of the paper, but we will just
take ν =unit inner normal.

In section 4 we treat parabolic operators: we wish to call attention to Theorem
4.

2.

From now, for convenience we let P be the origin, ν = (0, · · · , 0, 1) and write
the coordinates as (x, y), x = (x1, · · · , xn−1), y ∈ R, and assume that G contains a
domain Ω of the form

(2.1) Ω = {(x, y) | y > f(|x|)}, f(0) = 0.

We begin with a result yielding a Hopf Lemma for L = ∆. For such L the conditions
on f are very clean.

Theorem 1. Assume that

(2.2) f ∈ C1[0, 1] ∩ C2(0, 1),

(2.3)

∫ 1

0

f(s)

s2
ds < ∞,

(2.4) f(0) = f ′(0) = 0, f ′(r) ≥ 0 for 0 < r < 1,

(2.5) f ′′(r) +
n − 1

r
f ′(r) is nonincreasing.

Then, for L = ∆, if u > 0 in Ω near the origin, u ∈ C2(Ω), and u is continuous in
Ω ∪ (0, 0), vanishes at (0, 0) and satisfies

∆u ≤ 0 in Ω.

Then (1.4) holds:

(2.6) lim inf
y→0+

u(0, y)

y
> 0.
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A consequence is, taking f(r) = r1+α, that

Corollary 1. The Hopf Lemma holds in domains with C1,α boundary, 0 <
α < 1.

Proof of Theorem 1. It is easy to see that there exists some small positive constant
ǫ such that either f > 0 in (0, ǫ) or f ≡ 0 in (0, ǫ). Without loss of generality, we
assume that f > 0 in (0, 1). The conditions on f also hold for af , a > 1, so then in

{(x, y) | y > af(|x|)}, y small

u > 0 in the closure except at (0, 0). We will consider that domain and we simply
rewrite af as f . So in our new Ω, u > 0 on Ω near the origin, except at the origin.

We now construct a comparison function h satisfying (1.6)-(1.8). Namely, with

r =
√
|x|2 + y2,

h = y + g(y) − 2f(r)

with g defined by, using (2.3),

(2.7) g = 2f(y) + 2(n − 1)y

∫ y

0

f(s)

s2
ds.

By (2.2) and (2.4), g ∈ C1[0, 1) ∩ C2(0, 1). We have

(2.8) g′′(y) = 2

(
f ′′(y) + (n − 1)

f ′(y)

y

)
.

Hence, by (2.5),

(2.9)
1

2
∆h =

(
f ′′(y) + (n − 1)

f ′(y)

y

)
−

(
f ′′(r) + (n − 1)

f ′(r)

r

)
≥ 0,

thus (1.7) holds.
Since g(0) = g′(0) = 0 and f ′ ≥ 0, it follows from the fact that y = f(|x|) on

∂Ω, that (1.6) holds:

h ≤ 0 on ∂Ω.

Finally we have hy(0, 0) = 1, so (1.8) holds. h satisfies the conditions (1.6)-
(1.8).

�

Before treating the general operator L we first describe a class of C1 function

f such that for ∆, the Hopf Lemma does not hold in Ω̃, at the origin. Here

Ω̃ = {(x, y) | y > f(|x|)}. (2.1)′

Theorem 2. Assume that f satisfies conditions (2.2) and (2.4). Instead of
(2.3) assume

(2.10)

∫ 1

0

f(s)

s2
ds = ∞.

Assume in addition, for some positive constant C, that

(2.11)
f

r
≤ Cf ′ in (0, 1)

and

(2.12) f ′′ +
n − 3

2

r
f ′ ≥ 0 in (0, 1).
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Then the Hopf Lemma does not hold for ∆ in Ω̃, at the origin.

Observe first that the domain Ω̃ = {y > f(|x|)} lies in the domain Ω = {y >
1
2f(r)}, hence, near the origin,

f(|x|) >
1

2
f

(√
|x|2 + f(|x|)2

)
=

1

2
f(r), if y = f(|x|).

Indeed, since f ′ ≥ 0, the right hand side is

≤ 1

2
f(|x| + f(|x|)) =: J.

Now

J =
1

2
(f(|x|) + f ′(ξ)f(|x|))

for some ξ in |x| < ξ < |x| + f(|x|). Since f ′(s) → 0 as s → 0, it follows that

J ≤ f(|x|).
We will show that the Hopf Lemma does not hold for ∆ at the origin in {y > 1

2f(r)}.
For convenience we replace f by 2f , and work in the domain

Ω = {(x, y) | y > f(r)}.
Proof. Let g be the function

(2.13) g = exp

(
−β

∫ 1

r

f(s)

s2
ds

)
, β > 0.

Because of (2.10), g(0) = 0. Consider

u = (y − f(r))g(r).

Clearly u > 0 in Ω and u = 0 on ∂Ω. The constant β will be chosen so that

∆u ≤ 0 in Ω.

Then, since uy(0, 0) = 0, the Hopf Lemma does not hold at the origin.
We now compute. First

∆ (yg(r)) = y∆g + 2g′
y

r
= y

(
g′′ +

n + 1

r
g′

)
(2.14)

= yg

(
β2f2

r4
+

βf ′

r2
− 2βf

r3
+

n + 1

r

βf

r2

)

= yg

(
β2f2

r4
+

(n − 1)βf

r3
+

βf ′

r2

)
(2.15)

> 0.(2.16)

On the other hand,

∆(fg) = g(f ′′ +
n − 1

r
f ′) + 2f ′g′ + f(g′′ +

n − 1

r
g′).

By (2.14), ∆u ≤ 0 is thus equivalent to:

(y − f)(g′′ +
n + 1

r
g′) ≤ g(f ′′ +

n − 1

r
f ′) + 2f ′g′ − 2fg′

r
.

In view of (2.16) it suffices to show that

r(g′′ +
n + 1

r
g′) ≤ g(f ′′ +

n − 1

r
f ′) + 2f ′g′ − 2fg′

r
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and, because of (2.12) and (2.15), this will follow, provided

(2.17)
(β2 + 2β)f2

r3
+

(n − 1)βf

r2
+

βf ′

r
≤ 1

2r
f ′ +

2βff ′

r2
.

Using (2.11) we see that for β small, the LHS of (2.17) is

≤ 3C2β

r
(f ′)2 + (C(n − 1)β + β)

f ′

r
≤ (C(n − 1) + 2)β

f ′

r
,

since f ′ is small for r small.
But the RHS of (2.17) is ≥ 1

2r
f ′. Hence for β small we see that (2.17) holds.

Indeed

∆ ((y − f(r))g(r)) ≤ − g

4r
f ′.

An example of an f satisfying the conditions of Theorem 2 is

Example 1. f =
r

log 1
r

.

Another, which is rather sharp in view of Example 3 below is the following: Set

E0 = log
1

r
,

and define recursively Ek by

Ek = log Ek−1.

Set

Gk = E0 · · ·Ek.

Note that

(2.18) E′

k+1 = − 1

rGk

.

Example 2. For every positive integer k, the function

(2.19) fk =
r

Gk(r)

satisfies the conditions of Theorem 2. Hence for this fk, the Hopf Lemma does not
hold.

On the other hand we have

Example 3. For every positive integer k, and a > 0, the function

(2.20) fk =
r

Gk(r)Ek(r)a

satisfies the conditions of Theorem 1. Thus the Hopf Lemma holds in {y > fk(|x|)}.
This is stronger than Corollary 1.

The reader may easily check Examples 2 and 3.



ON THE HOPF LEMMA 7

3.

We now take up the general operator L and prove that the Hopf Lemma holds
at the origin, for L in the domain

(3.1) Ω = {(x, y) | y > f(|x|)},
assuming some mild conditions on f in addition to those in Theorem 1.

Theorem 3. Assume that L satisfies the conditions described earlier, in par-
ticular that (1.3) holds, i.e.

(3.2) ann ≥ c0 > 0.

About f we assume (2.2)-(2.5) and, in addition, for some positive constants C1 and
c2,

(3.3) f(r) = ◦(f ′(r)) as r → 0,

(3.4)
f ′(r)

r
≤ C1

(
f ′′(r) +

n − 1

r
f ′(r)

)
in (0, 1)

(3.5)

∫ r

0

f(s)

s2
ds = ◦(f ′(r)

r
) as r → 0 and

f ′(r)

r
≥ c2 > 0.

Then the Hopf Lemma holds for L in Ω at the origin.

Proof. As usual by restricting u to a slightly smaller domain, which we still call Ω,
{y > αf(|x|)} for 0 < α− 1 small we may suppose that near the origin, u > 0 in Ω
except at the origin where it is zero.

We have only to construct a comparison function h satisfying conditions (1.6)-
(1.8) in the new Ω, i.e.

(3.6) h(0, 0) = 0, h ≤ 0 on ∂Ω,

(3.7) Lh ≥ 0 in Ω,

(3.8) lim inf
y→0

h(0, y)

y
> 0.

We take

h = y + g(y) − 2f(r)

with, as usual, r =
√
|x|2 + y2 and g defined by

(3.9) g(y) = K

(
f(y) + (n − 1)y

∫ y

0

f(s)

s2
ds

)
.

K will be chosen large. For r small, h satisfies (3.6). We have

g′′(y) = K(f ′′(y) +
n − 1

y
f ′(y)),

and hence

L(y + g) ≥ Kann(f ′′ +
n − 1

y
f ′) − C(g′ + g) − 2C

≥ Kc0(f
′′ +

n − 1

y
f ′) − CK(f ′ +

f

y
+

∫ y

0

f(s)

s2
ds) − 2C.
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Hence, using (3.3)-(3.5) we find that for y small, K large,

(3.10) L(y + g) ≥ Kc0

2
(f ′′ +

n − 1

y
f ′) +

Kc0

4

f ′

y
− 2C ≥ Kc0

2
(f ′′ +

n − 1

y
f ′).

Next we compute Lf(r). Here α, β run from 1 to n (recall that y = xn).

∂αf = f ′
xα

r
, ∂αβf = f ′′

xαxβ

r2
+ f ′

δαβ

r
− f ′

xαxβ

r3
.

Hence

Lf = f ′′
aαβxαxβ

r2
+

f ′

r
(
∑

aαα − aαβxαxβ

r2
) + f ′bα

xα

r
+ cf

≤ C(f ′′ +
n − 1

r
f ′) + C

f ′

r
+ cf.

By (2.5), (3.3) and (3.4),

Lf ≤ C(f ′′(y) +
n − 1

y
f ′(y))

with some C > 0.
Combining the last inequality and (3.10) we see that for K large, and y small,

(3.7) holds:

(3.11) Lh ≥ Kc0

4

(
f ′′(y) +

n − 1

y
f ′(y)

)
≥ Kc0

4C1

f ′(y)

y
≥ 0,

by (3.4) and (3.5). In section 4, we will use (3.11).
Finally, (3.8) holds because

hy(0, 0) = 1.

�

Remark 2. The function fk given in (2.20) satisfies all the conditions of The-
orem 3, so does f = r1+α, with some α ∈ (0, 1).

4.

In this section we extend our results on the Hopf Lemma to parabolic operators
of the form

(4.1) ∂t − L = ∂t −
(

aαβ(x, t)
∂2

∂xα∂xβ

+ bα

∂

∂xα

+ c

)
.

We consider a domain G in (x, t) space, lying in {t < 0} and whose boundary
includes an open domain D on {t = 0}. We are interested in the Hopf Lemma at the
origin, which lies on ∂D. G\D =: P∂G, is called the parabolic boundary of G. For
convenience we suppose that (0, 1) is the inner normal to ∂D at (0, 0) and denote
xn by y. Sometimes we use (x, y, t) to denote a point, with x = (x1, · · · , xn−1).

We consider a positive function u in G ∪ D ∪ {(0, 0)},
(4.2) u ∈ C2(G) ∩ C0(G ∪ D ∪ {(0, 0)}),

(4.3) u(0, 0) = 0

and u satisfies

(4.4) (∂t − L)u ≥ 0 in G.
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The coefficients of the operator L are assumed to satisfy the same conditions
as those on L in section 3. In particular

ann ≥ c0 > 0

near the origin.
Concerning G we assume that the interior unit normal to P∂G is not (0, 0, 1).

The parabolic Hopf Lemma is said to hold for ∂t − L in G at the origin provided
for every function u > 0 satisfying (4.2)-(4.4), one has

(4.5) lim inf
s→0+

u(sν)

s
> 0.

Here ν is the vector in D which is the inner normal to ∂D at the origin.

Remark 3. It will be clear from the proofs that (4.5) will then also hold for
some unit vectors ν = (ν1, · · · , νn+1) at (0, 0) which points into G∪D, and are not
tangent to P∂G at the origin, so νn+1 ≤ 0.

In case P∂G is C2, it is well known that the parabolic Hopf Lemma holds. See,
for example [6]. A. Friedman [2] first proved a weaker form: he assumed u > 0 in
a whole ball B in R

n+1 tangent to P∂G at the origin, and with B ∩ {t < 0} lying
in G. We study the case that P∂G is not C2.

We will assume that near (0, 0), ∂D is given by

{y > f(|x|)}, t = 0,

here x = (x1, · · · , xn−1). We also assume that for some positive constant b, the
domain

(4.6) Ω = {(y, t) | t < 0, y > f(|x|) − bt},
near the origin, lies in G, and ν points into Ω ∪ D and is not tangent to P∂Ω.

Here is an extension of Theorem 3.

Theorem 3′ Assume that f satisfies the conditions of Theorem 3, i.e. conditions
(2.2)-(2.5), and (3.3)-(3.5) hold. Then the parabolic Hopf Lemma holds for L in Ω
at the origin.

Proof. As before by replacing f(|x|) by αf(|x|), α − 1 > 0 small, and increasing b
slightly, we may suppose

(4.7) u > 0 on P∂Ω except u(0, 0) = 0.

As in the proof of Theorem 3 it suffice to construct a comparison function in
B(R) ∩Ω, B(R) is the ball centered at origin, of radius R, R small, which satisfies

(4.8) (∂t − L)h ≤ 0 in B(R) ∩ Ω,

(4.9) h(0, 0) = 0, h ≤ 0 on P∂Ω,

(4.10) ν · ∇h(0, 0) > 0,

for ν pointing inside Ω ∪ D at the origin.
Set

(4.11) B(R) ∩ Ω = U.

Once we have constructed our h we infer from (4.2) and (4.7) that for some ǫ > 0,

(4.12) w := u − ǫh ≥ 0 on P∂U.
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Then, since

(∂t − L)w ≥ 0,

it follows from the parabolic maximum principle that

(4.13) w ≥ 0 in U.

This is easily seen: Take λ > |c|, c is the coefficients of L of the zero-order term.
Then

0 ≤ e−λt(∂t − L)w ≥ (∂t − L + λ)e−λtw.

If e−λtw had a negative minimum in U , then at that point ∂t(e
−λtw) ≤ 0 and so

0 ≤ (∂t − L + λ)(e−λtw) ≤ (−c + λ)e−λtw < 0.

Impossible.
Thus (4.13) holds and hence

lim inf
s→0+

u(sν)

s
≥ ν · ∇h(0) > 0.

Since ν = (ν1, · · · , νn+1) points into Ω∪D and is not tangent to P∂Ω, we have

νn + bνn+1 > 0.

To construct h we just proceed as in section 3. Set, with r =
√
|x|2 + y2,

(4.14) h = y + g(y) − 2f(r) + (b + ǫ)t

with g as given in (3.9), and ǫ > 0 small to be chosen later.
In the proof of Theorem 3 we showed, see (3.5) and (3.11), for K large, that

L(y + g(y) − 2f(r)) ≥ Kc0

4C1

f ′(y)

y
≥ Kc0

4C1
c2.

Hence, for K large,

(∂t − L)h ≤ −Kc0

4C1
c2 + (b + ǫ) < 0.

(4.8) is verified.
On the parabolic boundary P∂Ω and near the boundary, y = f(|x|) − bt and

h = [1+◦(1)]y−2f(r)+(b+ǫ)t = [1+◦(1)]f(|x|)−2f(r)− [1+◦(1)]bt+(b+ǫ)t ≤ 0.

So (4.9) holds.
Finally, (4.10) holds, for νn + bνn+1 > 0, so

ν · ∇h(0, 0) = νn + (b + ǫ)νn+1 > 0,

if we take ǫ > 0 small (depending on ν).

�

Next we have the analogue of Theorem 2: The parabolic Hopf Lemma does not
hold. We only treat the heat operator (∂t − ∆).

As in Theorem 2, consider the domain

Ω = {(x, y, t) | t < 0, y > f(|x|) − bt}, b > 0.

Ω is contained in the domain

Ω̃ = {(x, y, t) | t < 0, y > f(|x|)}.
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If the Hopf Lemma does not hold for ∂t − ∆ in Ω̃ then it does not hold in Ω. We

will treat Ω̃.

Theorem 2′ Assume that f satisfies all the conditions of Theorem 2. Then the

parabolic Hopf Lemma does not hold for ∂t − ∆ in Ω̃ at the origin.

Proof. We simply take the function u as given in the proof of Theorem 2; it is
independent of t. There we showed that Lu ≤ 0, so (∂t −L)u ≥ 0. The same holds
for our L depending on t, since the dependence of the coefficients on t is irrelevant.
∇u(0, 0) = 0, the parabolic Hopf Lemma does not hold at (0, 0).

�

In Theorem 3′ we have treated domains given by (4.6), with b > 0. Suppose

we look at a larger domain Ω̃, given by (4.6), but with b < 0. Of course, under
the same conditions on f , the parabolic Hopf Lemma also holds at the origin, in

Ω̃, since Ω̃ contains Ω, where b > 0. But something more is true:

Here u is as in Theorem 3′.
Theorem 3′′ Consider Ω̃ given by (4.6) but with b < 0. Assume f satisfies all the
conditions of Theorem 3. Then we also have

(4.15) lim inf
t→0+

u(0, t)

(−t)
> 0.

Proof. We use the comparison function of (4.14)

h = y + g(y) − 2f(r) +
b

2
t,

but now b < 0. We have

(∂t − L)h =
b

2
− L(y + g(y) − 2f(r)) < 0

by (3.11).
On the parabolic boundary P∂Ω and near the origin, y = f(|x|) − bt,

h = [1 + ◦(1)]y − 2f(r) +
b

2
t = [1 + ◦(1)]f(|x|) − 2f(r) − [

b

2
+ ◦(1)]t ≤ 0.

We now argue as in the proof of Theorem 3′ and conclude that for some ǫ > 0,
in B(R) ∩ Ω,

u ≥ ǫh.

Since ht = b < 0, we find that (4.15) holds.

�

What happens if we permit the interior unit normal to P∂Ω at the origin to
be (0, · · · , 0,−1)?

Consider the following simple example. Suppose Ω is given by

(4.16) Ω = {(x, y, t) | t < 0, y − |x|2 +
√
−t > 0}

(so P∂Ω is analytic, namely, {−t = (y − |x|2)2)}.
If we follow the preceding argument, using

h = y − |x|2 +
√
−t,



12 YANYAN LI AND LOUIS NIRENBERG

we have

(∂t − ∆x)h = − 1√
−t

+ 2n < 0 for |t| small.

As a consequence we obtain

Theorem 4. If u is a C2 function near the origin in Ω given by (4.16), u is
continuous and positive in Ω ∪ D ∪ {(0, 0)} except that u(0, 0) = 0, and u satisfies

(∂t − ∆)u ≥ 0 in Ω.

Then

(4.17) lim inf
t→0+

u(0, t)√
−t

> 0.

From this we see that u can not be C1 at the origin. This is consistent with
known facts about loss of regularity when the exterior normal to P∂Ω is (0, · · · , 0, 1)
at some point. See Kohn and Nirenberg [4] and Dong [1]. The cases treated there
are just for one space variable. Our example is for higher dimension and seems to
exhibit a phenomena not previously observed. The loss of regularity is not due to
the value of u on the boundary, near t = 0, for there u could be ≡ 0, but with still
u > 0 in Ω.

Proof of Theorem 4. With h as above we find, as before, that

u ≥ ǫh

for some ǫ > 0. Consequently

u(0, t) ≥ ǫh(0, t) = ǫ
√
−t,

and (4.17) holds.

�

Remark 4. Extension of the Hopf Lemma in some forms have been made
in certain domains with corners; see Serrin [8], Gidas, Ni and Nirenberg [3] for
elliptic operators, and by Rubinstein, Sternberg and Keller [7] for parabolic ones in
one space dimension.
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