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AN INVERSE SPECTRAL THEOREM AND
ITS RELATION TO THE POMPEIU PROBLEM

By
CARLOS ALBERTO BERENSTEIN'

1. The study of the relations between the eigenvalues of the Laplace operator
and the geometry of the domain is a very old one and it remains an arca of
extremely active research. Beyond the beauty of many of the results obtained, a
sustaining force has been its wide number of applications (see for instance [13, 23]).
The problem we will consider here, though it has originated in harmonic analysis, is
related to questions as diverse as nuclear reactors’ construction and tomography.

The question is very simple. Let D be a simply-connected bounded region in the
euclidean plane, with sufficiently smooth boundary aD. Assume that some of the
eigenfunctions for the Neumann problem are also constant along ¢D. What can we
say about D? We can prove in some cases that D is a disk (Propositions 1 and 2).
There is a similar result for the Dirichlet problem (Proposition 3).

Part of the results presented here were the subject of lectures given at the
Universidade Federal de Pernambuco [2]; further progress on this problem has
been encouraged by discussions with several colleagues, L. Nirenberg, M. Schiffer,
S. Wolpert and P. Yang foremost, to whom I express my appreciation.

2. The problem proposed above is both an eigenvalue problem and an over-
determined problem. Let us begin by recalling some similar problems. We will
assume throughout that D is a bounded simply-connected open plane domain and
D is of class C*** for some £ >0, though some of the statements below hold
under more general conditions, both with respect to the number of dimensions as
well as the smoothness and connectedness conditions.

In a situation arising from fluid dynamics, Serrin [16] and Weinberger [20]
considered the equation

(1 Au=—-1 inD,
together with the boundary conditions

' Partially supported by NSF grant MCS 78-00811.
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“ — constant on 3D (n = exterior normal to 3D).

@  wu=0 o

They showed that if there is a solution 4 € C*(D) to this problem, then D is a disk
of radius R and

(3} u=

where r denotes the distance from the center of D. The proof in [20] is elementary,
based on the simple nature of the unique solution (3) to the problem (1)+2).
Regretfully, it doesn’t extend to our problem below.

We denote by 0< A, << A= A; = - - the eigenvalues of the Dirichlet problem:

4 Au+iu=0 in D, u#0 in D, and

(5) u=0 onéD

It is an open question from [14] what happens when an eigenfunction for the
Dirichlet problem satisfies (2). The only case known to date was that of A = A,
Then it is well known that « > 0 [6] and heace, e.g. from theorem 2 [16], it follows
again that D is a disk and u is a radial function. We consider this question in
Proposition 3.

The problem we want to consider here first, is the existence of o # 0 and u#0
such that

(6) Au+tau =0 in D, grad u =0 on oD.

The standard argument shows that & > 0, as it should be since u is an eigenfunction
of the Neumann problem which is constant on the boundary, i.e.

au

(7 u = ¢ = constant, - 0 on aD.

In this form, our problem bears a resemblance to the above problem (4)-(2} and
also to (1)~(2) since the function v = u/ac — 1/o satisfies

(8) Av+av=-1 inD, and

9) v=0, 3—:=0 on 3aD.
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There are several ways of showing that v is well-defined, i.e. ¢# 0; once this is done
v# 0 is immediate since u cannot be constant by {6). One way of showing that ¢ # 0
is by using the fundamental solution G of AG + aG = § and Green's identities,
another is via the curious identity

(10) j u’dxdy = 2c*A, A = area of D,

fnl

which shows that maybe one should use the classical isoperimetric inequality [11] to
study (6).

Proof of (10). The main component of the proof is a formula of Rellich [15)
stating that if v is an eigenfunction for (4)(5) and A its corresponding eigenvalue,

(11) A f videdy = J' (% )zr cos (m, r)ds,

D a0

where r is the distance to any fixed point in D, r stands for the corresponding radius
vector, (n, r} is the angle between r and the normal n, and 3D is positively oriented.
In our case we note that if u is the solution to (6), then both u, and u, are
eigenfunctions for the Dirichlet preblem (4)—(5) also with eigenvalue o and we can
apply to them (11). It is clear we will need to compute the values of the second
derivatives of u at the boundary points of D, which we do presently. Let us
parametrize 4D by arc length and, as usual, denote x = dx/ds, etc. The functions
u,, 4, satisfy

w(x(s), y(s) =0,  u(x(s),y(s))=0,
and by differentiation,

{u,,i +u,y =0,
Uy X + uy,y = 0.

It follows that
u“{x‘2+ 3;'2)"' Xy (e + 12y, ) =0

or, using {(6}(7) and X*+y’=1,

i, = acXy on 4D.

Similarly,
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Similarly,
Uy = —ac¥’, W, = —aci’  on dD.

Hence,

M oy

an M) T Uk acy and n acx.
By Rellich's formula (11) we get
(12) aJ' (ui+ uj)dxdy = a’c’ J‘ (£3+ y¥rcos(m r)ds = 2Aa’c’.

D ary

On the other hand, by Green's formula, the left hand side of (12) can be computed

as

af wi+ u§=aj ug—:ds—aj uAu=azj u’,
Frl o)

&#D D

which completes the proof of (10).
Out of the equivalence of (6) and (8)—(9) one obtains the following lemma.

Lemma 1. Let D be a simply -connected open bounded plane domain with C**
boundary (0 < &) for which there is an eigenvalue a for the problem (6), then the

boundary D is real analytic.

Proof. From [1,6] we conclude that the solution u to (6) is of class Cc*(D).
Hence the corresponding solution v to (8)-(9} is also of class C*(D), and theorem 1’
from {9] applies, which concludes the proof that 3D is a real analytic Jordan curve.

0

Let us discuss briefly the case where D is a disk of radius R and center at the
origin of coordinates. We can apply Holmgren’s uniqueness theorem to the
problem (6)~(7) and conclude that the solution 4 must be a radial function. Let us
write & = u(r) and u’= du/dr, then (6) becomes

(13) u”+%u'+au=0, 0<r=R, and w(R)=0,

where u is a smooth function up to * = 0. From here it follows that
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u(r) = const, J{(Var),

where J, denotes the Bessel function of order n [6]. The boundary condition
becomes

(14) Ji{VaR)= - J,(VaR)=0.

We see that there are in fact infinitely many eigenvalues for the problem (6), each of
them simple and given by

a. = BiUR?, n=12---

where (0 < g, < 8, < - is the sequence of positive zeros of the function J,. This
explicit formula allows us to compare the smallest &, , = 83/R?, with the lowest
eigenvalue for the Dirichlet problem, A, = yi/R?, v, = smallest positive zero of J.
The intertwining of the zeros of J; and J, shows that A, < e,. This holds for any
domain D), since as we have seen in the proof of (10}, both u. and u, are linearly
independent eigenfunctions for the Dirichlet problem with eigenvalue o, hence in
general a; 2 A; [6]. In the case of a disk it is easy to see that actually @, = A.. The
converse is also true.

Proposition 1. Let D be a domain for which (6) has a non-trivial solution. If
a = A, = second eigenvalue for the Dirichlet problem in D, then D is a disk of radius
R = BV e, B, = smallest positive zero of the Bessel function J,.

Proof. Itisan immediate consequence of the isoperimetric inequality of Payne
and Weinberger [12]. They proved that if A, is the smallest eigenvalue of the
clamped plate problem

AAw)+AAw =0 in D,
(15)

=T]

W

520 on 3D

W =

then A, 2 A, and, furthermore, equality is attained only for D a disk. In our case,
let « = A, and take w = u —¢; we see that w satisfies (15) with A = a, hence
AlZa = A, O

To end this section, let us remark that ring domains always have solutions to (6).
On the other hand, using elliptical coordinates one can see that a true ellipse cannot
have any eigenvalues for (6), but we shall see this more easily in §3, where we
indicate the problem in harmonic analysis from which (6) arose. Furthermore, any
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attempt to show that a domain D for which there exist eigenvalues for the problem
(6) must be a disk should be of a global nature. In fact, 3D must be real analytic by
Lemma 1 and hence the Cauchy-Kowalewski theorem [6] guarantees the existence
of a solution u# near aD to the problem (6), for arbitrary a.

3. While (6} can be directly linked to problems in plasma.physics [19} and
nuclear reactors [10], it can also be related to tomography [17, 18]. In fact, suppose
we had an “X-ray machine” that computes the total density of a tissue above and
below a certain plane domain D as is usually done, that is by assigning a plus sign to
those portions above it and a minus to those below, We would be free to move this
machine around, and the question arises as to whether we can reconstruct the
“true’’ picture of the tissue; in particular, is it possible that two different tissues
produce the same set of X-rays? The surprising answer is that in some sense if D is
a disk this could happen. The problem we are looking at in this construction is the
following: let f be a C~ function (continuous or just locally integrable would do as
well), could it be that

(16) f f(x, y)dxdy =0, for all possible rigid motions ¢,

a(D)

and nevertheless f# 0? For the purpose of the construction of this machine we
could just assume that I is a bounded measurable subset of the plane with positive
measure. If we impose on f the restriction that it has compact support (e.g. the
density of tissue in the brain) then it is easy to conclude from (16) that f =0. The
difficulty that arises is that in the *‘real world” we cannot distinguish between a
function of compact support and one that remains “very small” in an annulus of
“sufficiently large” outer radius. (We call them functions of almost compact
support.) Hence, the apparently unrealistic consideration of functions of arbitrary
support seems justified. The exisience of non-trivial solution to (16) is usually
known as the failure of the Pomnpeiu property for D [3, 22], and as it is shown in [3]
it is equivalent to the existence of a common zero to all the functions Yeo), where
Xa stands for the Fourier transform of the characteristic function of the set A. The
commeon value of y.o{0) is the measure of D, hence if there is a common zero
{ € C?, it must be different from zero. Using well-known properties of the Fourier
transform, it can be seen that this means that ¥p vanishes identically on some
“icircle” C., o >0,

(17) Cﬂ={{=(§1,§z)EC2: {f*‘fi:a}-

Since a# 0, the polynomial {i+ {;— « is irreducible and hence the function
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T({)= Xo (O + {1 a)

is entire; furthermore, by the Ehrenpreis—Malgrange lemma (8], it follows that T is
the Fourier transform of a distribution of compact support . Therefore

1+ 8- a) ()= %o({)

or, equivalently,

(18) Ay +ag = — xp,

where this equation is understood in the sense of distributions. Suppose now that
the boundary 8D of D is a C*-Jordan curve, then ¥ being of compact support and
real analytic outside D, by (18), vanishes identically outside D. Furthermore ¢ and
dyfén are continuous across 3D, hence v = q'le provides a solution to the
problem (8)-(9). This shows that for such domains the failure of the Pompeiu
property is equivalent to our original problem (6), and (18) is a version of (6) that is
meaningful even when dD is not sufficiently regular. The spectral synthesis
theorem [3] shows that functions f of almost compact suppert satisfying (16) can
only occur if we have infinitely many eigenvalues « for (18).

Let us point out that a function f satisfying (16) can be easily found using (17). It
is enough to take f(x,y)=exp(—i{{ix + {,y)), with { € C,, or just the real or
imaginary part of that exponential. If D is an ellipse,

2 2
D ={(x,y)ER2: %+Yb—2< 1}
then

_2mabli(Va*{i+ b))
Va{i+be;

Xo(2)

and hence, yr» cannot vanish identically on a circle C, unless V' a?¢2+ b%}2 remains
real valued there (since all the zeros of J, are real). This can only happen if a = b,
which shows clearly that the Pompeiu property does not fail for a true ellipse, and it
also shows again the role of the zeros of J, for the case of adisk (a =bh=R). A
similar computation shows that the Pompein property does not fail for convex sets
with corners, i.e. a boundary point with two distinct lines of support, see [3]. Using
Holmgren’s uniqueness theorem one can also show that 4D cannot contain line
segments, even when 3D is not smooth [7, 21].
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4. We have secen that the failure of the Pompeiu property is equivalent to the
existence of a single eigenvalue for (6); on the other hand, the disk has infinitely
many eigenvaiues for that overdetermined boundary valee problem. In this section
we will show that the converse is also true.

Proposition 2. Let D be a simply-connected bounded open subset of R* with
C*'* boundary (e > 0). Assume that the eigenvalue problem (6) has infinitely many
solutions a, then D is a disk.

Proof. The idea of the proof is very simple; one tries to show by asympiotic
methods that x5 can’t vanish on a circle (17) unless a piece of 4D is an arc of circle.
Since, by Lemma 1, 8D is real analytic, it follows that D is a disk. The difficulty is
that we will be dealing with the asymptotic behavior of a Fourier integral with a
complex phase function whose imaginary part changes sign and hence its behavior
cannot be obtained from previously known results {4].

Let x:p denote the distribution defined by

(19) (Xo0, Y1) = f Wx, y)(dx + idy), ¥ € CH(RY).
&b
An application of Green’s formula in the complex plane C (identified to R?) gives
W gy -4 | et
(20) JI 33 dxdy T Ydz, z=x+1iy,
o aDy
for arbitrary Cj functions . From the point of view of distributions, (20) means

o __1
(21) 3z Xp = % Xoon

with y,p defined by (19). Taking Fourier transforms of both sides of (21), we get

(22) (& + il)xp({) = Xo({),

hence o, vanishes identicaily on a circle C, if and oaly if x,p does.

Since 4D is a real analytic Jordan curve there are only finitely many points at
which the curvature & vanishes. Let § € R and £ = £(8) = (cos 8, sin ) be such that
the finitely many points p, € 8D, j = 1, - -, N where the normal to 3D is parallel to
¢ are such that the corresponding curvatures k; # 0. Only finitely many @ fail to
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have this property. We denote by m = df/d# = (—sin 8,cos 8), then the unit
tangent vector T; at those points satisfy T, = g, & = = 1. We denote by 7; the
vector T, identified to a complex number, i.e. T, = (a, b), 7, = a + ib. With 8 as
above we choose the origin of coordinates (and the prospective center for D) once
for all as follows. Choose £ as the narrowest strip of axis parallel to n which
contains D; the positive y-axis will be chosen in the direction of % dividing X into
two equal parts, 2* and 7, the right and left portions. Let p, be a point in
(3%)" M aD, hence T,= 7, and the exterior normal at p, coincides with & We
choose the ray through p, in the direction of ¢ as the positive x-axis. This
determines the origin of coordinates, which in principle might not be a point in D;
it also makes 8 =0.

Before proceeding, let us take a closer look at the circles C, where y,p vanishes
identically, If { € C,, we write { = ¢+ in, £, 1 €R’, then

G+i=lEl—Inl+2ign) =

hence, since a >0,

Eny=&mi+&En=0, and

[EF =&+ &i=atinl

Hence with £ = £(6)=(cos 8, sin@), n =n(#)=(—sin 6, cosf), we can write
fel, as

{23) £ =ré+itm, r>0, tER,
related by
(24) rP=a+ 0

Since we have infinitely many a, @ € {a.: kK € N} at our disposal we can choose
a, t,1 50 that

(25) [t|]—>e and  |t|flogr—0.

We are now ready to state and prove the main asymptotic formula we need. The
notation remains as above.

Lemma 2. Let Q) be an open arc of §' containing & = £(0) and such that for
£ €41 the corresponding points p, - - - p~ int D) have non-vanishing curvature. Let the
points { be chosen according to the conditions (23) through (25), then

-

. _ﬁ.

(26)

where a; = 7).
subset of {}.
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(26) wo @)= (25)"

r

{310 exp(~ itpo 0+ 0]

where o; = 1, exp((— iw/4)sign k;). Furthermore, the 0(1) is uniform in any compact
subset of ().

Remark. This lemma holds when 3D is just of class C°.

Proof. It is necessary to go through the proof of (26) because, as we said
above,

(27) X (L) = J exp{— i({ix + L2y)) (dx + idy)

ab

is a Fourier integral with complex phase whose imaginary part changes sign. Hence
the classical theory of asymptotics [4] does not apply. It is precisely for this reason
that we cannot get by with the existence of a single eigenvalue «, since we can prove
(26) only for those { for which {25) holds. Let us denote by s, arc length in 6D. Then
we have to look at the critical points of the phase function {£, p(s)), p = (x,y) € D,
which occur precisely when

@8) LepH=itpsn=0.

That is, precisely at the points where the tangent line is perpendicular to ¢,
Pu pn By the choice of £, we can use a partition of unity and reduce the
computation of (27) to a finite number of integrals of the form

o

29) [ exp(=inte pismats myds

—em

where a(s, n}= B(s) exp{n, p(s)), B € C; and such that either

(i) there are no critical points in the support of 8, or

(ii) there is only one critical point and the support of 8 is contained in a small
neighborhood of that point.
Note that in the second case the critical point is non-degenerate, since

LXep(s)= k(s)

at those points where (28) holds.
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We assume for simplicity that £ = £(0) = (1,0) and = {0, 1). Let us examine first
those integrals for which (i) holds. In that case x'(s} # 0 in the support of 8 and we

can introduce a new variable u defined by u = x(s), hence (29) becomes an integral
of the form

{30) I = j e "y(u)exp (ny(u))du,
with v of compact support, integrating by parts once we obtain
1 —r K ¥
L= [ e+ ry ) w)exp (),

and the best possible estimate for this integral is the following. For some A >0

(31) HE C,U—”rme*"k

since ¢(u) could change sign. In fact,

max {y(u): uSsuppy} if 10,
(32) A=

~ min {(u): uEsuppryy if t<0.
Since (25) holds we have

Li=o(r %)

It is hard to see how to obtain (32) under different assumptions, since when there
are finitely many eigenvalues o one has [t|~r.

For integrals of the second kind, we can assume the critical point occurs at 5§ = 0,
and then we make the change of variables

u’ = sign (x"(0)) [x(s) - x(O)].

Hence we can get an integral of the form, 8 = —sign(x"(0)).

63 L= exp(= (6P OD) | e y(u)exp(ip (),

where ¥, ¢ a
For some ¢o
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where vy, ¢ are not the same functions as in (30) but y(u) still has compact support.
For some convenient @ > 0, this integral can be rewritten as

a L

y(0)e*® J' e™du + J e ud(u, t)du,

—a —

where ¢ is a function of compact support in w. The second integral can be
integrated by parts and contributes an error term of the form o(r™¥). The first

integral has the value
()" ol)
r r/
If we trace back all the changes of variables we find
2m'"” Siwa -1z ; 12
L={=") " [k} 1(0)exp(— (L, pON) +o(r?),

where k{0) stands for the curvature at the critical point s = 0, 7(0) = x'(0) + iy ‘(0),
(x'(0), y'(0)) = = 7. This concludes proof of the lemma, since the last assertion
follows from the method of proof. O

We will prove Proposition 2 first under the assumption that ID is a convex set
since the main ideas of the proof appear in this case. We have then N =2 in the
expansion (26) and the assumption that §,» =0 on U 7., C,, implies that for each
fixed £ €1,

(34) kitexp(—i{p, £ — kexp(— i{ps, ) =0(1)

since k; >0 and we have 7, = — 7, i.€. the unit tangent vectors point in opposite
directions at the two points where the normal direction coincide. For (34) to hold
we must have

(35) {pi, ) ={p2. M)

otherwise letting ¢ — = or { — — = we get that the absolute value of the left hand
side of (34) goes to . This relation must persist over the whole arc {} otherwise we
get a contradiction with (34). We need to explore further the consequences of (35),
but before doing so let us point out that we can aiso obtain

{36) ky=k;
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from (34). In fact, we can assume {p1, n)>0 and let +— + =, hence
kitexp (— ir(p,, £)) — kFexp (— ir(p2 £)) = 0(1)

which yields (36) by comparison of the absolute values since ki, k» are independent
of t and r. We will show now that (35) implies that the radii of curvature R,, R
satisfy the relation

(37 R, + R;= C = constant

and, furthermore, D is strictly convex, i.e. O can be taken as the whole unit circle.
These two relations (36)~(37) show that D is a circle of radins C/2.

The condition (£, p'(s)) = 0 together with k(s) # 0 states precisely that the Gauss
map has a local inverse, s = s(8) (recall ¢ = (cos 8, sin @) and k(s)= df/ds).
Indicate by R(s)=1/k(s)=ds/d8 the radius of curvature at that point and
p(8)= R(s(8)). Then

68 Lw@.pcom=RE(E )~ 0.0=p@)k - pO.

The quantity {dp/ds,n)=¢ = +1 and remains constant in the branch of s = s(8)
we are looking at in (28). In the case D convex, that we are presently considering,
we have only two solutions which we can denote by s(8) and s(8 + 7) according to
whether the exterior normal coincides with £(8) or with — ¢ (8)= £(6 + 7). The
corresponding values of ¢ are +1 and — 1 respectively. In any case, i.e. even it D is
not convex, from (28) and (38) it follows :

(39 3%(11,.0)=egg-p<%.§>+(p,n)=6%+(p,n)-

Hence, (35) implies

{40) 5,%=52%

in general, and in the convex case

dp oy 92
prAC i A

which is precisely (37). Note that (37) shows that D is also strictly convex because at
the boundary points of (@ we should have either p(§)— +® or p(8 + m)—> + =,
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while the other remains non-negative, this clearly contradicts (37) since C < . This
concludes the proof of Proposition 2 when D is convex.

We now go back to the general case. We want to show first that a statement
analogous to (35) must hold. That is, if we group the points p; according to the value
{p» ), we must have at least two points in each group. The reason is the following,
since the function g, is identically zero on each C,, the same must be true for
dXso/dt, where the notation is still that of {23)-(24). By taking derivatives inside the
integral (27) which defines y.n, we see that we get the same integrand as before
except for the factor

~ip, 9+ (om) = - il )+ (.

Hence, the proof of Lemma 2 shows that the leading term in the asymptotic
expansion of dy.n/dt, when (23)-(25) holds, is given by

_21 Lk; [P, 7)oy exp (= i{p, 1)),

up to the irrelevant factor (27 /r ),

Let us denote by by, .-, b the different values of {p,n). Then, the standard
argument shows that by taking linear combinations of x,p and its derivatives with
respect to £, we can obtain the leading term

(41) (b= b))+ - - (b — biyexp(but) D, |k, [P o, exp(— ir(p, £)),

where the summation takes place over those indices j for which {(p, %)= b,, say
J € Ji. It is clear then that for (41) to be 0(1) when j — = along the allowed set of
values, one must have at least two distinct indices in J,.

Let p, denote the points in the portion of the curve 3D singled out by the inverse
of the Gauss map, which passes for & = 0, through the point in the positive x-axis of
largest abscissa. By our choice of coordinates 9 = 0 is a regular value of the Gauss
map and this choice is possible. By the above, there is at least one other branch, say
P2, of the inverse of the Gauss map such that {p;, n) = {(p,, 1) holds for an open set
of 8, hence by analyticity it holds throughout the interval of definition of these two
branches. Similarly, there is 2 8 >0 such that for 0 < 8 < & the index set J,
mentioned above (which was of course dependent on 8) remains unchanged. As we
have seen, the identity {p,, 7} = {p>, 7) implies (40) and hence

(42) £1P1(0) = Szpz(ﬂ) +C.
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From (38) we also obtain

£:100(0) — (P, £) = £2p2(8) — {p2, §),
and

P Ey=(pr. &) - C.

Since ¢ and n form an orthogonal basis, we get the identity
(43) pz=p— CE

This last identity can be restated in the following form: the analytic curve obtained
from 2D by drawing it “parallel” to 4D at a distance C along the inner normal,
coincides with 3D along an arc. Hence, it coincides with 3D throughout. (It is clear
from the choice of p, that C >0.)

Recall that from the definition of the quantities £,, e we have e, = l and &, = =1
according to whether the outer normal at the point p; coincides with £ or with — £.
We can show now that £, = — 1. In fact, if £2= 1, then p,— Cf also describes an arc
of 8D and hence the parallel to 3D at a distance 2C also coincides with D, but
since £2=1 we can go on and 8D would be unbounded.

Note that g;= ~1 leads to p,+ C (inner normal) = p,+ C£ = p, as expected.
Furthermore, the cardinal of the set J, is exactly two. If we had a third arc p,, it will
satisfy

P3=p1‘_C,§,

and we can assume 0 < C < C’. By the same reasoning as above, we would have
p2+ C't € 8D, but for # =0 we obtain the point

p:(0) +(C' = C)(0),

which lies further to the right than p,(0), which is a contradiction.
The reasoning that leads to (36) can now be applied and we obtain

[os] = pal.

Since p; >0, if we can show that p,>>0 we would obtain from (42) that the arc
described by p, is actually an arc of a circle of radius C/2 and we would have
finished the proof of the proposition. If p, < 0, then p, = — p,, and (42) becomes

M= —p,-s;+C=p,+C.
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Hence C = 0, which is impossible. O
In the same way can prove the following:

Proposition 3. Let D be a simply-connected plane domain with boundary 8D
of class C***. Assume there are infinitely many eigenfunctions for the Dirichlet
problem which have constant normal derivative along dD. Then D is a disk.

Proof. This time we have infinitely many A’s and corresponding eigenfunc-
tions such that

Av+Aav =0 in D,
dv
v =1, — = ¢ =constant on 3dD.
on

Since 3D is of class C***, we have that v € C*(D) and hence we can apply theorem
2 of [9] (with the function g{p) = |p " — ¢ in their statement), and conclude that D
is actually a real analytic Jordan curve. The other ingredient missing is the Fourier
transform, but applying Green’s third identity to the functions v and u(x,y)=
exp(— i({x + £2y)), we obtain

[ esp(-itm+amas =0 itg+s-a

ab

Now, the same proof of Proposition 2 applies, the only difference arises in the
expansion formula (26), where the numbers 7; will not appear. The reason for this
difference is that while in the previous proposition the eigenvalues a were related
to the zeros of the Bessel function J,, here they are related to J,. D

We remark that both propositions leave open the problem of what happens when
we have only one eigenvalue, except in the extreme cases already discussed a = A
or A = A,. With respect to the regularity of the boundary, it is clear that in
Proposition 1, 2 and 3 we only need to assume that aD is of class C' and the
eigenfunctions are of class C? up to the boundary, since those are the hypotheses in
[9])- The work of Cafarelli [5] shows that these conditions are automatically satisfied
in the situation of Propositions 1 and 2 when we only assume that 2 is a Lipschitz
curve; on the other hand this does not scem to be the case for Proposition 3.
Furthermore, the failure of the Pompeiu property is equivalent to the study of
probiem (6) when aD is at least a C*-curve, but not otherwise, hence it would be
interesting to study it when 8D is not regular. For instance, we would like to know
that if D has the Pompeiu property, then every other domain D' which is
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“sufficiently close” to D has the same property. Here, “sufficiently close” should be
defined in a way that allows the consideration of very irregular boundaries.

Finally, it is clear that the method developed here works also in R”, n 2 3, and
when the Laplace operator is replaced by the Laplace-Beltrami operator for
different metrics; we plan to discuss these questions in the future.
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