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NEW RESULTS ON THE POMPEIU PROBLEM 

NICOLA GAROFALO AND FAUSTO SEGALA 

ABSTRACT.Let p,(w) = c:=~ akwk , w E @. , N E M , be a polynomial 

with complex coefficients. In this paper we prove that if D c IK2 is a simply- 
connected bounded open set whose boundary is a closed, simple curve parame- 
trized by x ( s )  = x l ( s )+ ix2(s)= pN(eiS), s E [ - n ,  n], then D has the 
Pompeiu property unless N = 1 and p l ( w )  = a lw  + a2 in which case D 
is a disk. This result supports the conjecture that modulo sets of zero two- 
dimensional Lebesgue measure, the disk is the only simply-connected, bounded 
open set which fails to have the Pompeiu property. 

Formulated by the Roumanian mathematician D. Pompeiu [P 1, P2] in 1929, 
the Pompeiu problem consists in characterizing those bounded sets D c R2 for 
which f = 0 is the only continuous function on R2 such that 

f ( x )d x  = 0 ,  for every rigid motion a of R2. 
( I a 1 )  l(D) 

A set D c R2 for which f = 0 is the only function such that (1.1) holds 
is said to have the Pompeiu property. Although this was not realized by Pom- 
peiu himself, invariance with respect to rotations causes failure of the Pompeiu 
property. For instance, disks or annuli do not have the Pompeiu property (see 
[C]), whereas elliptical regions do (see [BST]). It is very tempting to conjecture 
that: Modulo sets of two-dimensional Lebesgue measure zero, the disk is the only 
bounded, simply connected open subset of R2 that does not have the Pompeiu 
property. 

In 1973 Brown, Schreiber, and Taylor [BST] proved that every polygonal 
region, or, more generally, every convex set with at least a true corner has the 
Pompeiu property. In 1976 Williams [Wl] proved a remarkable connection 
between the Pompeiu problem and a symmetry problem in partial differential 
equations, known as Schifer 's conjecture: 
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Let D c R2 be a bounded, connected open set with c2boundary. Does the 
existence of a nontrivial solution u of the overdetermined eigenvalue problem 

Au=-Au i n D ,  A > 0 ,  

ulaD= const., a u~ I a o='> 
imply that D is a ball? 

It was proved in [Wl]  that for a domain D c R2 failure of the Pompeiu 
property is equivalent to the existence of a nontrivial solution of (1.2). In 198 1 
Williams [W2] ,following the approach in [Ca], proved a free boundary result 
concerning (1.2). As a consequence of it in R2 one obtains 

Theorem A. Let D c R2 be a bounded, simply-connected open set whose bound- 
ary d D  is Lipschitz. If d D  is not real analytic, D has the Pompeiu property. 

The results in [BST] and [W2] leave open the case of domains with analytic 
boundaries. In 1982 Brown and Kahane [BK] proved the following 

Theorem B. Let D c R2 be a bounded, convex set with real analytic boundary. 
Let m ( D )  and M ( D )  respectively denote the minimum and maximum diameter 
of D .If 

m ( D )5 i M ( D ) ,  

then D has the Pompeiu property. 

In this paper we give a contribution to the above conjecture. We single out 
a class of domains in R2 that have the Pompeiu property. Our main result is 
the following 

Theorem. Let D c R2 be a bounded, simply-connected open set whose bound- 
ary d D is a closed, simple curve parametrized by x ( s )  = ( x ,  ( s )  , x 2 ( s ) ), s E 
[-n , n]. Suppose that there exists a polynomial with complex coeficients 

such that 

(1.3) x , ( s )+ i x2 ( s )= p(eis), s E [-n  , n].  

Then D has the Pompeiu property, unless p ( w )  = aw + b , for some a E 
C\{O), b E C .  

If p ( z )  = aw +b , ( 1.3) represents a circle centered at b with radius la1 . To 
provide some motivation for our result we discuss an example. The conchoid 
of the circle is the curve whose equation in polar coordinates is given by 

When a = b the conchoid has a cusp at the origin of the type x ,  = - ~ x , l " ~ ,  
whereas for a < b the curve is real analytic. For 2a 5 b the conchoid bounds 
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a convex region D c R 2 .  It is an exercise to show that in this case if m ( D )  
and M ( D )  are as in Theorem B above, then 

Figure 1 represents the three possibilities for (1.4). 
Because of the above observations, the Pompeiu property for a domain D c 

R2 bounded by a conchoid of the circle, cannot be deduced from the existing 
results. Theorem A does not apply to the case a = b , while ( 1 . 5 )  prevents the 
use of Theorem B in the case 2a 5 b .  The intermediate case a < b < 2a 
remains uncovered as well. Using the formula coss = (eiS+ e- lS) /2  we can 
rewrite (1,4) as follows 

where p ( w )  = fw 2  + bw + 2 . From the theorem above we then conclude that 
every domain bounded by a conchoid has the Pompeiu property. The proof 
of the theorem relies on the following result of Brown, Schreiber, and Taylor 
[BST]. 

Theorem C. Let D c R2 be a bounded set. Then D has the Pompeiu property 
i f f o r  no a: E C\{O) does the complexijied Fourier transform of the characteristic 
function of D , 

vanish identically on a set 

(1.7) Ma = {i= (i,, i2)E c2i;+ I;  = a:). 

Since we are concerned with simply connected domains by virture of [Wl,  
Theorem 11 we can assume a: > 0 .  In $ 3  we obtain an asymptotic estimate 
of (1.6) when D is a domain as in the theorem, i E M a ,  and i -+ CC, see 
Theorem 3.1. In $4we deduce the Pompeiu property for D from this estimate 
and Theorem C. Our approach is based on Riemann's method of the steepest 
descent. We mention that the idea to attack the Pompeiu problem by using 
asymptotic expansions of 2, has been inspired to us by Berenstein's paper [B], 
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We would like to thank Giovanni Dore for so graciously helping us with the 
drawings at the Macintosh. 

2. PRELIMINARYREDUCTIONS 

The integral (1.6), is, in general, difficult to deal with directly. The purpose 
of this section is to bring it to a form which better lends itself to an application 
of the method of the steepest descent. Since the Pompeiu property is invariant 
under translations we can, without loss of generality, assume that the polynomial 
p(w) in the theorem is of the type 

for a certain 1 5 M < N ,  where ak E C ,  k = M ,  . . . , N ,  a, # 0 ,  a, # 0 .  
If X(S) = (x,(s),x2(s)) is as in the statement of the theorem, we obtain 

We wish to study the asymptotic behavior of (2.2) when ( = (1,, C2) + cc 

along the algebraic variety M-, in c2. Since we are interested in establishing 
the Pompeiu property for the domain D enclosed by (1.3), and the latter is 
invariant under dilation, translation, and rotation, we can, without loss of gen- 
erality, make the following assumption on the polynomial p in (2.1). a, can 
be chosen to be one. If we write a, = a, + ip, , we can choose p, = 0 and 
a, < 0 .  In fact, letting a, = pe i0 , if t,u E [O, 2n] is to be chosen, we have 

At this point we choose t,u = M(0 + n) / (N - M )  and perform the change of 
variable z = s + t,u . In conclusion, we can assume that p(eiS) takes the form 

(2.3) p(eiS)= e iMs + . . . + a,e iNs , with a, < 0. 

Now we let ( = ((, , C2)E M-, , a > 0 ,  and we choose (, = r ,  (,= i t ,  with 
r > 0 ,  t < 0 .  The condition that ( E M-, is then 

This yields for r + +m 

Recalling (1.3), setting q(s) = p(e'S), s E [-n , n] ,we rewrite (2.2) as follows: 



277 NEW RESULTS ON THE POMPEIU PROBLEM 

At this point we shift the integration path in (2.5) to the line s + ie lnr  , s E 
[-n ,n],where 

We note that 
N 

(2.7) 	 q(r + ielnr)  = akeiks r - ~ k  

Moreover, letting ak = ak+ iPk , k = M , . . . , N , we have 

1 N 
a! iks -ek

x2(s+ ie In r) = - C (4+ pk)e r
2 1

k=M 

l N  iks ek+ 3 c(ak-7)e- r 
k=M 

Equations (2.4) and (2.8) yield 

N 

(2.9) i(t - r)x2(s+ ie ln r) = 
a! iks ek-1 + ~ ( r - " ~ + ~ )(pk-4)e- r 	 ) ,4 z 

k=M 

where we have denoted by O(r -(EM'1)) a function whose absolute value is 
bounded uniformly for r large and s E [-n , n]  by a constant depending only 
on the polynomial p in (2.1). Putting (2.7) and (2.9) together we obtain 
(2.10) 

rq(s + ielnr)  + i(t - r)x2(s+ ielnr)  

= r  EM+^ (e iMs 
--

a a N e - i ~ s  N 
iks -e(k-M- 1) 

4 C .ke 

A simple calculation now gives 

iks -e(k-M)(2.11) 	 q'(s + ielnr)  = ir-eM C
N 

kake r 
k=iM 

At this point we introduce some notation. For z E C we set 

(2.12) 	 y ( z ) = eiMz --QaNe-iNz
4 , 

N-M-I 
i(h+M+l)z 
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N-M 
i ( h + M ) z  - ~ h  

r : 

By Cauchy's theorem and the periodicity of the integrand in (2.5) we deduce 
from (2.10)-(2.14) 

Since as r -,+,x, exp[O(r- (&M+l)) ]  = , setting1 + ~ ( r - ( ~ ~ + ' ) )  

we finally obtain from (2.15) 

(2.17) f8 ,  ( i i )= i rPLM exp[r -&M+l 
(y ,(s)+ r - & y ( s; r ) ) ] k ( s; r )  ds. 

We remark that y ( s  ; r )  is a polynomial in r-E whose coefficients are trigono- 
metrical polynomials in s E [-n , n]. 

The work done in the previous section will enable us to carry through the 
asymptotic analysis of (2.2). The study of the Fourier integral (2.17) can be 
attacked by the method of the steepest descent. The phase in (2.17) is the sum 
of the function y to which we can apply the method, see Lemma 3.1 below, 
plus a perturbation that for r large moves the critical points of y, by little. 

Lemma 3.1. Let M ,  N be fixed as in (2.1) and let y, be defined by (2.12) 
(recall that a, < 0 ). Then, the point 

is a simple critical point of y, , i.e., y'(z,) .= 0 and y1'(z0) # 0 .  Moreover, there 
exist q E R and a C' path .I contained in the region 

with the exception of the pcint z = zo , which joins the point ( -n ,  q )  to the 
point (n , q) . 

Proof. It is immediate to check that for zo as in (3.1) we have y l ( z o )= 0 ,  

y,"(zo) # 0 ,  and that Re y(z,)  > 0 .  The easy, although tedious, details of 

the second part of the lemma are left to the reader. The latter can easily con- 

vince himself that, qualitatively, the region Re y ( ~ ) 
< Re y ( ~ , )looks like that 
earmarked by a+ in Figure 2. 
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We now let @(z)= p(z) - p(z,) and define 

(3.2) @(z; r) = p(z)  - p(z0)+ r- 'y(z;  r) 

= @(z)+ r- €y/(z; r).  

We observe that 

(3.3) @ ( z o ) = O ,  @l(z,)=O, @"(zo)#O. 

Making the substitution a = r-E (3.2) becomes 

(3.4) 6 ( z ;  a)  = @ ( z ) + a y ( z ;  a ) ,  


where we have set 6 ( z  ; a )  = @(z;a-'IE) , lp(z ; a)  = y ( z  ; a-'IE) . Using 

(3.3) we infer 

By (3.5) and Dini's complex implicit function theorem, we can then write 

(3.6) 6 ( z ; 0) = f (a)+ ( Z  ~ ( a ) )-
2 E ( z  ; a ) ,  

with f ( a ) ,  z ( a )  analytic functions of a in a neighborhood of a = 0 ,  z(0) = 
Z, ,and E ( z  ; 0) analytic function of (z  ; a)  in a neighborhood of (z, , 0) with 

We remark that f (0) = 6 ( z o;0) = 0 .  Next, we observe that, because of 
(3.4), for any compact set K c {zIRe p(z)  < Re p(zo)) there exists a 6 = 
6, > 0 such that K c {zl ~ e 6 ( z  ; a)  < ~ e 6 ( z ( a ); a ) )  for any 0 < a < 6 . 
Let y b e  the path whose existence is claimed in Lemma 3.1, and let p > 
0 be fixed sufficiently small. Then there exists 6 = 6(p) > 0 such that for 
a 5 6 , A\["/ {zllz - z(a)l < p)] is contained in a compact subset H of 
{zl Re p(z)  < Re p(zo)). By the previous remark, for a sufficiently small H is 

mailto:@"(zo)#O
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also contained in {zJ Re 6 ( z  ; a )  < ~ e & ( z ( a ); a ) ) .  Therefore, we can deform 
the path y into a new path yo such that for every sufficiently small a 

(3.8) "/ passes through z(a)  , 

(3.9) Y,\{z(.)} c {Re@(z; 0) < Re&(z(a); a ) ) ,  

(3.10) yo = yooutside {zl lz - z(a)l  < p } .  

See Figure 3. 
By Cauchy's theorem and (2.17) we obtain 

(3.11) ( i ) = ir
-EM 

e ~ p [ r - ' ~ + '~ ( z o ) ]  

where we have set (cf. (3.2)) 

II(r) = S exp[r-"+'@(z ; r)]k(z; r) d z .  
~,ntzllz-z(o)i>p} 

We first analyze II(r) . We note that by (3.10) 

II(r) = / exp[r-"+'@(z ; r)]k(z; r) dz .  
yntzl I Z - Z ( G ) I > P }  
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For a sufficiently small we have 

and the latter is a compact subset of {zl Re @(z)  < 0) , recall (3.3). Therefore, 
for a suitable z > 0 ,  Re@(z)  < -z on yn{zl lz - zol 2 f). It follows that for 
a sufficiently small 

(3.12) Re&(z;  a)  = Re@(z)  + a R e @ ( z ;  a)  

5 - z + o R e @ ( z ; o )  5 -212. 

Equation (3.12) allows to conclude that for a C = C(z) > 0 

We now examine I(r) . (3.6) plays a crucial role. By it, recalling that a = r-a , 
we can write for sufficiently small a 
(3.14) 


I ( O - " ~ )  = ; o)]k(z; a-'la) d z  
1 e ~ ~ [ a ~ - ' / ~ & ( z  

y,n{zi lz-z(a)l<p) 


exp[aM-'la(f ((a + (z  - ~ ( a ) ) ~ E ( z; a))]k(z;a-'la) d z  

= e ~ ~ [ a ~ - ' ~ ~ f ( a ) l  

S e ~ p [ a ~ - " ~ ( z- a) ]k(z ;a-'")z ( a ) 1 2 ~ ( z ;  d z  
y,ntz/ lz-z(a)l<p) 

If we set Y(z ;a)  = ( z  - Z ( O ) ) ~ E ( Z;a) , then by (3.9) we have 

(3.15) {zl ~e &(z ; a) > Re@(z(a); a ) )  

= { z l R e ~ ( z ;a)  > Re\k(z(a);a)  = 0). 

Since E(z, ;0) # 0 we may write 

(3.16) Y(z ; a)  = {(z - z(a))[A(z; a)+ iB(z ; a)])' 


provided that lz - zol and a are sufficiently small. We remark that our choice 

of the complex square root of a number w is fi= lw1'I2 e x p ( i y ) ,  0 < 

arg w < 271 . Moreover, we may assume without loss of generality that 

(3.17) B(z ; a)  # 0 in a neighborhood of (z, , 0). 

We write 	zo = xo+ iy, , z = x + iy and z (a )  = x (o )  + iy(o) 
Then (3.16) becomes 

where by abuse of notation we have denoted by A(x ,y ;a)  and B(x ,y ; a) 
respectively the functions A(x + iy ; a)  and B(x + iy ;a) . We define 
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We want to determine a one-parameter family of curves x Hy ( x ; a )  such that 

By Dini's theorem this is possible for x close to x, since by (3.17)we have 

for a small, and, moreover, we have F( ~ ( a )  0 . In conclusion, we,y ( a );a ) = 
have by (3.21 )  and (3.19) 

yly=y(x;aj-- - [ ( y ( x ;0 )- y ( o ) ) A ( x ,y ( x ; 0 ); 0 )  

(3.21) 	 + ( x- ;a ) ; dl2x ( a ) ) B ( x ,~ ( x  
def 
- - M ( x ;  

Now we want to show that 

(3.22) M ( x ; a ) = ( x- x ( a ) ) L ( x;a )  

with L ( x ;a ) # 0 in a neighborhood of (xo, 0 ). We observe that because of 
(3.201, 

M ( x ( o ); a ) = 0. 

Therefore, for 	x close to xo and o small we have 

d M
(3.23) M ( x ; a ) = - ( x ( a )  ; a ) ( x- x ( a ) )+ O ( ( x- x(a)12)

ax 
(3.21 )  yields 

Moreover, from (3.20) we obtain 

In (3.25) we have used (3.19). Inserting (3.25) into (3.24), using (3.16) and 
(3.17),we finally have for a small enough 

-
d M  

( x( a ); a ) = A ( x ( o ),~ ( 0 )  	 ; 012# O.; 0)' + B ( x ( a ) ,~ ( 0 )  

a x  B ( x ( o ), ~ ( 0 );0 )  

Plugging this information in (3.23) yields (3.22). We conclude that along the 
curve x H y ( x ;a ),and locally around the point ( x , ,0 ), we have Re Y > 0 ,  
except at the point x = x ( a )  where ReY = 0 .  Therefore, there exists a 6 > 0 
such that for a 5 6 , lz - z(a)l  5 6 and x # x ( a ), the curve x H y ( x ; a )  
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is contained in the region {zI Re Y(z  ; a )  > Re Y(z(a); a)  = 0) , see (3.15). 
Using this observation we can deform the path y, into a new path, j, , which 
coincides-with y, for Iz -z(o)l 2 26 , with y = y(. ; a )  for Iz -z(o)l 5 6 , and 
which for 6 5 lz - z(a)l 5 26 is a continuous path that joins the two branches 
without exiting the region (3.15) (see Figure 4). 

We now return to (3.14). We choose p = 26 in (3.14). Another application 
of Cauchy's theorem gives 

exp[aM-liE(z- ; a)]k(z; a-l i t )  d z  z ( ~ ) ) ~ E ( z  

= ~ ' ( a )+ I" ( a ) .  

There exists z = z(6) > 0 for which that part of 8, contained in the annulus 
{z16 5 I Z  - z(a)l 5 26) lies in the region {zl R e Y ( z ;  a)  > 0 ) .  Hence, as for 
(3.13) we can conclude that as a -. 0 

(3.27) I"(@ = O(ak)  for every k E N. 

We are left with estimating ~ ' ( a ). Recalling that ( ~ - z ( a ) ) ~ E ( z; a )  = Y(z  ; a )  , 
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and using (3.2I ) ,  (3.22), we have 

where for a 16 ,  a ( a ),P(a) are suitable numbers with 

At this point we perform the change of variable 

in the last integral in (3.28). Since by (3.22) L ( x  ;a )  # 0 in a neighborhood 
of (xo, 0 ) ,we can write 

with q ( u ; a)  # 0 in a neighborhood of ( 0 ,  0 )  . Using (3.29), (3.28) becomes 
+m 

(3.31) exp[-a M-1/e  2 a )  d u  + 0 ( a k )u ] ~ ( u ;  

for every k E N ,  where in virtue of (3.30) we have set 

R ( u ;  a )  = x ( u f k ( x ( o )+ u q ( u ;a )+ i y ( x ( a )+ u q ( u ;  a ) )  ; a - ' I & )  

In the definition of R ( u ; a ) ,  ~ ( u )is a cut-off function, x E C m ( R ), x = 1 
on a neighborhood of u = 0 .  We write 

with R a bounded function on R x [ O ,  61 . By performing the change of variable 
a("-'IE)12u = v in the integral in (3.31),we obtain 
(3.32) 

+m 
M-1/ t  2exp[-a u ]Q(u  ; a )d u  


= a 


+m 
+ a - ( M - l / ~ ) / 2  e ~ ~ [ - v ~ ~ ( a - ( " - ' I ~ ) ~ ~ v; a ) ]d v  
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(3.25) gives 

Recalling now (2.14), (2.16), we rewrite (3.33) as follows 

From (3.32) and (3.33) we then obtain 

Equations (3.6) and (3.16) imply 

Finally, recalling (2.6), from (3.11), (3.13), (3.26), (3.27), (3.34), and (3.35), 
we conclude with the following 

Theorem 3.1. Let D c R~ be a bounded, simply connected open set whose bound- 
N iks ary, d D , is parametrized by x ,  (s) + ix2(s)=p(s) = Ck=,ake , s E [ - R  , n] , 

with N , M E N ,  l < M < N ,  a k E C ,  k = M  , . . . , N ,  a,#O, a N # O .  

Then, if ( E c2,( = ( r ,  i t ) ,  r ,  t > 0 ,  t 
2 
- r 

2 
= a ,  a > 0 ,  we have the 

following asymptotic expansion 
(3.36) 

eiw 

iaD(ilaMIAw()-r 
-(N-M)/2(N+M) 

G(r) exp[r 
(N-M)I(N+M) 

= (v(zo)+ p(r))I, 
laMl 

where zo is as in (3.1) , o = M(arg a, + n) / (N -M )  - arg a, , 

Aw= ( cos o sin o 

q is defined by (2.12), and G and p are two functions such that 

In this section we prove the theorem. The hard work has already been done 
in proving Theorem 3.1. In fact, the proof of the theorem is, at this point, a 
straightforward consequence of the expansion (3.36) and of the quoted Theorem 
C of Brown, Schreiber, and Taylor. Let ( = (5, + 5,) E c'. Since by the 
divergence theorem 

iaD(()((1 + (2)2D(() 9= 
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it is clear from (3.36) that for no a > 0 can 2, vanish identically on a set 
M a ,  see (1.7). 

Remark. In the statements of the theorem and of Theorem 3.1 we have assumed 
that the degree N of the polynomial p is strictly larger than one. If M = N = 
1, then E = 2/(N +M) = 1 in (2.6), and (2.17) becomes 

where now 
is a -is

q(s)  = e - -e
4 

and k(s ; r) = eis(l + 0( rW2))  

Then (4.1) gives as r - +CC 

Now, a computation yields 

where J ,  is the Bessel function of the first kind and order one. We choose 
a: < 0 such that 6is a zero of J ,  . Then (4.2) yields no information. 
Rightly so, however, since we know that the circle does not have the Pompeiu 
property. 
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