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OF FOURIER INTEGRALS AND APPLICATIONS
TO THE POMPEIU PROBLEM

By
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1. Introduction

In 1929 D. Pompeiu [P1] posed the following problem: For which bounded sets
D in R? is it true that knowing that for a given f € C(R?)

(1.1) flx)de=0  for every rigid motion o of R?,

s (D)

implies f= 07

This fascinating question, known as the Pompeiu problem, has challenged the
efforts of many mathematicians since its original enunciation. A bounded set
D ¢ R? for which it is true that if (1.1) holds, then f = 0, is said to have the
Pompeiu property. We emphasize that there is to the present date no explicit char-
acterization, possibly geometric, of those sets in R? which have the Pompeiu
property. There has been in the last fifteen years a burst of interest in the above
problem. The work of several people has progressively unraveled connections with
problems in harmonic analysis, complex function theory, symmetry in partial dif-
ferential equations, not to mention relevant applications such as computerized to-
mography. In order to provide the reader with some historical background, and
better motivate our work, further in this section we outline the development of
the subject and mention the existing results.

Although motivated by applications to the Pompeiu problem, in this paper we
are primarily concerned with studying the asymptotic behavior along certain al-
gebraic varieties of C? of a class of Fourier integrals with a complex phase. To
be more specific, we need to introduce some notation. For a > 0 we let M,
denote the algebraic variety in C?

(1.2) M,=[t= L) eC|it + i =al.

Let V be an analytic surface in C2. If @ C C is a simply-connected open set and
x,:Q—C, i = 1,2, are two analytic functions, we suppose that V' is parametrized
by x = (x;,x): @~ C? e,

(1.3) V={x(2) = (n (). 022N |z € Q).
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2 N. GARQFAL(D AND F. SEGALA

If T is a closed simple C* curve on V, and o > 0 1s fixed, we are interested in the
asymptotic behavior when { — oo along M, of the integral

(1.4) kY =J‘e"'<"““(dx| + fdx:),
r

where ¢ , ) denotes the usual inner product in R?. For the imerpretation of
(1.4), see (2.11} in Section 2. Our motivation to study integrals such as that in {1.4)
stems from Brown, Schreiber and Taylor’s Theorem 1.2 quoted below. We also
acknowledge the strong influence of a lecture on inverse problems delivered by
Carlos Berenstein at the University of Bologna and of his paper [B], which we
discuss below. We stress that there are so far no general results on the asymptotic
behavior of Fourier integrals with a complex phase whose imaginary part is al-
lowed unrestricted sign. Qur approach is based on Riemann’s method of the
steepest descent; see [Ri], and also [O1], [BY H]. For a class of curves T satisfy-
ing certain geometric assumptions we obtain an asymptotic expansion of [{{) in
(1.4) which is completely characterized in terms of the geometry of Vin (1.3) and
does not depend on the particular parametrization x = (x;,x,;) of V. For the pre-
cise statement one should see Theorem 2.1 below. As a conscquence, we deduce
the Pompeiu property for the class of those domains in R? whose boundary is
the R2-section of an analytic surface ¥ in C? satisfying the geometric conditions
of Theorem 2.1. We now give an outline of the existing literature on the Pom-
peiu problem. This will allow a better understanding of our results, whose dis-
cussion we resume at the end of this section, where we also formulate a conjecture
and indicate some open problems. The rest of the paper is organized as follows.
Section 2 is devoted to the study of the asymptotic behavior of 7({) in (1.4). The-
orem 2.1 is the main result. In Section 3 we use Theorem 2.1 to characterize a class
of subsets of R2 which have the Pompeiu property. The paper ends with some il-
lustrative examples.

In [P1] Pompeiu showed that if D is any square in R2, then (1.1), along with
the assumption that f— 0 at oo, implies that f=0. In {Ch] Christov removed that
restriction, thus proving that every square in R? has the Pompeiu property. In
[P2] it was asserted, and even incorrectly proved, that every disk in R? has the
Pompeiu property. Fifteen years later Chakalov [C] showed this assertion ta be
false. In fact, if x = (x,,x;) € R? let us set f(x) = sin{ax,), with a € R to be
suitably chosen, and

Br=|xe Rz‘ |x| = N Rj.

Then if X, = (£.70) € R? is fixed, and 7, denotcs the translation in R? defined
by x — 7,,,(X) = Xy + X, an ¢asy computation yields

(1.5)
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T2
(1.5) f sin{ax,) dx = 4R*sin{ak,) f cos? ucos{aR sinu) du
T.\-,.EBR} ]

= % sin(afo)J, (aR),

where J, is the Bessel function of the first kind and order one. In the last equal-
ity in (1.5) we have used formula (10) on p. 401 in [GR]. It is then enough to
choose @ € R such that @R is a zero of J; to conclude from (1.5) that for any
Xo € R? the integral of sin(ax,) on 7,,(Bg) is zero. Since Bg is rotation invariant
this is enough to prove that By does not have the Pompeiu property. One might
have surmised that what makes the things go wrong for the disk is precisely the
fact that this set is not affected by rotations.

The Pompeiu problem is closely related to another problem in complex func-
tion theory which generalizes the content of the classical theorem of Morera. A
collection {T'} of closed rectifiable curves in C is said to have the Morera prop-
erty if for each f € C(C) the condition

flz)dz=20 for every rigid motion o of R* and every I' € {T'}
aiT)
implies that f is entire. 1t was first realized by Zalcman [Z] in 1972 that if D
has the Pompeiu property and a0 is rectifiable, then 4. has the Morera prop-
erty. The converse of this is also true; see [BST]. Zalcman was also the first one
to use the Fourier transform and a deep result of L. Schwartz, se¢ ¢.g., [E], to
prove the following sophisticated two-circle theorem (cf. [Z).

Theorem 1.1. Let f € L\(C) and assume that there exist two distinct
positive real numbers ry, ry such that for a.e. 7€ C

f(w)dwzoi reirl!rzls
Cpt2d
where C,(2) = [w& C: |w —z| =r}. If r\/ry is not a quotient of zeros of the
Bessel function J,, then f coincides a.e. with an entire function.

Using ideas closely related to those presented in [Z], in 1973 Brown, Schreiber
and Taylor [BST] proved the following

Theorem 1.2. A bounded set D C R? has the Pompeiu property iff the
complexified Fourier transform of the characteristic function of D does not vanish
identically on M, for any o + 0, where M, is defined by (1.2).

If D is also simply-connected, onc¢ can replace “for any o # 07 with “for any
a > 07 (see Berenstein [B]).
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If x5 is the characteristic function of D, the Fourter transform of xp is
(1.6) Xpl(x) = f e B gt
D

The complexified Fourier transform is obtained from (1.6) by analytic continu-
ation. We remark that it is an entire function on C? of exponential type; see
e.g., [E]. To prove Theorem 1.2, Brown, Schreiber and Taylor showed that ev-
ery rotation and translation invariant closed subspace of C*(R?*) is generated by
the pelynomial-exponential functions it contains. The latter result was proved in
{BST] with the aid of the above-mentioned theorem of Schwartz.

Chakalov’s example above now becomes apparent in the light of Theorem 1.2.
If Bg is as in (1.5), a computation yields {¢f. also [Z, (10) on p. 242])

P 2
.7 Son(tiiy =2eR PRV T E) e
T+ 0

From (1.7} it is obvious that if we choose a > 0 such that Rva is a zero of J;,
then x5, = 0 on M,, and therefore B, does not have the Pompeiu property. On
the other hand, any elliptical region

(1.8) E,= [(X“xz) € R?

2
L+ ‘;22<1] a,b >0,

has the Pompeiu property. This was shown in [BST] as a consequence of Theorem
1.2 and of the formula

(I’2—Z ng—z)

Na? P+ b

(}-9) XAE‘,b(g-h £-2) = Zﬂ'ab H fl’ {2 e C!

from which it is clear that for no « > 0 can ¥, = 0 on M,,. Using Theorem 1.2
- Brown, Schreiber and Taylor also proved that every polygon in R?, and, more
generally, every convex set with at least one true corner have the Pompeiu prop-
erty. However, the case of domains with smooth boundaries was left open.

Inspired by the results in [BST], in 1976 Williams [Wi 1] discovered a remark-
able connection between the Pompeiu problem and a symmetry problem in pde
known as Schiffer’s conjecture (cf. [Y, Problem 80, p. 688]):

Let D C R be a connected, bounded open set with C* boundary. Does the ex-
istence of a non-trivial solution of the overdetermined boundary value problem

Au = —Au inD, A>0,

(1.10) au

— =0, Ulap = CONSE.,
dv
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It was shown in [Wi 1] that a non-trivial solution to (1.10) exists iff D fails to
have the Pompeiu property. We remark that if there exists a non-irivial solution
to (1.10), then the L? average of # on D cannot be arbitrary. This can be readily
seen by using the following identity due to Rellich [R],

(1.11) f |Vu|2(x,v)da—_~(n—2)f|Vu|2dx+2f (x,Vu)a—Edo
D D ap dv

— Zf (x,VudAu dx,
jal

valid for any bounded domain D C R" with C? boundary and any u € cAD).
If in (1.10) we let ¢ = ulao. observing that

{x,vydo=n|D|,
aD

for a non-trivial solution « to (1.10), we obtain from {1.11), after an integration
by parts in the last integral,

0={n—2)f |Vu|2dx+)\f (x,v)uzda—n;\f utdx
D ap D
(1.12)
= na*\|D| - 2)\f u* dx.
0

In the last equality in (1.12) we have used the fact that if # solves (1.10) we have

f |Vu|2dx=)\f u?dx.
n i)
(1.12) yields

it is immediate to verify that u solves (1.10) iff v solves

Av=-=-iv—1 in D,
(1.13) v

ap =0, Vagp =1

an
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{1.13) bears a resemblance to the symmetry problem considered by Serrin in [S];
see also [W] and the recent paper [GL], although the boundary conditions there
are different, Serrin’s result being concerned with positive solutions. We mention
that Aviles {A] has recently obtained various partial results concerning (1. 10). In
particular, in the two-dimensional case he has proved that if there exists a non-
trivial solution to (1.10) and if A < »,, where v is the seventh Neumann eigenvalue
of the Laplacian in D, then D is a disk. If we let D = Bg = fxeR"||x| < R},
then (1.10} becomes

vy + =L w ) £ au( =0 in (0,R],

(1.14) r
(R =u(0)=0 u(R}=a

(1.14) admits the general solution
(115) u?\(r) = Cr_("_z}/z‘!(rr—ZZ):’Z(\5\’)s

where C is a constant, and J,_z is the Bessel function of the first kind and or-
der (n — 2)/2. Using the identity

d
p (z7"J.(2)] = —27°J,41(2)

(see, e.g., [L, (5.35) on p. 103)), we obtain from (1.15}
(1.16) w (R) = —~CVAR=""2724 ,(VAR).

From (1.16) it is clear that in order to have u,(R) = 0 it is enough to choose
A > 0 such that ¥AR is a zero of J, . It follows that if D = By there are infi-
nitely many #,’s and infinitely many u,’s, w; = i, that solve (1.10).

In 1980 Berenstein [B] proved a two-dimensional converse to this result.

Theorem 1.3. Let D C R? be a simply-connected, bounded, open set with
C? boundary. If there exist infinitely many solutions to (1.10), then D is a disk.

Although Theorem 1.3 is not directly linked to the Pompeiu problem, the
method of proof is quite ingenious. Berenstein’s approach is based on the use of
asymptotic expansions of the complexified Fourier transform of the character-
istic function xp of D and ultimately relies on Theorem 1.2 above. In order to
be more specific, we need to introduce some notation. For « > 0 let M, be as in
(1.2). We observe that the points of M., can be represented as follows:

(1.17) F=rf+ i, r>0 T[(€R,
where
(1.18) £ = (cosb,sind), 7 = (—sinf,cos6), 0=8=<2m.
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(1.19)
then
(1.20)
From (1.2

(1.21)

The asymy
sutnption
complex p
general th
(1.10}, the
feUo A
perlinear §

{1.22)

By means
the type {c

where o (s
aD, and {
phase {(£,.
interior o
follows:

(1.23)

If (b) ok
method,

(1.24)

(See [B] fi
under the
of I come
as follow:




tin in [S];
ions there
e mention
{1.10). In
st5 & non-
eigenvalue

|x| < R},

nd and or-

1 to choose
re are infi-

, result.

pen set with
D is a disk.

roblem, the
n the use of
¢ character-
In order to
M, be as in
WS

ASYMPTOTIC EXPANSIONS 7

If we set

(1.19) H =rcosd — itsin g, G =rsind + ifcos @,
then

(1.20) {=1(t.h)eM, iffel+i=r’—t'=a.

From (1.20) we see that for « > 0 fixed

(1.21) r=|r[(l+0(—l-)), as |t]| — o

| £}?
The asymptotic analysis of the complexified Fourier transform x, under the as-
sumption (1.21) is very difficult. One has to deal with a Fourier integral with a
complex phase whose imaginary part oscillates; as mentioned above, there is no
general theory for such integrals. If there exist infinitely many eigenvalues of
(1.10}, then there exists a sequence {o;),en, With o 7~ +o0 as j +oo, such that
telUr, M, . Under this assumption Berenstein can allow r = r(t) to have a su-
perlinear growth in |f], as |t} — oo. Specifically,

(1.22) r=el'I®UD  with g([¢]) >+ o as [¢] - o=,

By means of a partition of unity he then writes x;p({) as a sum of integrals of
the type (cf. [B])

+u
I= f e—fr(&..r(s:‘}a. (.S', f'-'?) ds
where a (s, ty) = B(s)e“r*P 5= x(8) = (x,(§),x;(5)) is a parametrization of
3D, and 8 € C{(R) is such that either (a) there are no critical points of the
phase (£,x(s)) in supp 8 or (b) there is only one critical point of (£, x(s)) in the
interior of supp 8. (1.22) allows one to estimate f in the difficult case (a) as
follows:

(1.23) 1:0(%) asr— +oo.

+F

If (b) occurs, the asymptotic behavior of / can be determined by Laplace’s
method, which vields

(1.24) I~

as r— +oo,

<
=~ | =

(See [B] for precise asymptotics.) From (1.23), (1.24) Berenstein concludes that
under the assumption (1.22) the main contribution to the asymptotic expansion
of I comes from the critical points of the phase (£, x{s)}. The final statement is
as follows:
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Theorem 1.4 (see [B]). Let D C R? be a simply-connected bounded open
set with real analytic boundary. Assume that at those poinis x,,Xz, . . . ,x, € 8D
in which the normal to 3D is parallel to ¢ = (cos8,sin @), 0 € [0,27), the corre-
sponding curvatures of D, k,, ks, . . . k, are different from zero. If { € Clisas
in (1.17) with r, f satisfying (1.22), one has for r - + o

(1.25) Ran(§) = JZTW [Z [y | V20 000 4 oml’

=1

where o; = 7;exp{(( —iw/4) sign k;) and 7, is the (complex) unit vector tangent [0
8D in x;.

We mention that Berenstein’s Theorem 1.3 above has been recently extended
to any number of dimensions by Berenstein and Yang [BY 2]. There are also ver-
sions of Theorem 1.3 relative to the hyperbolic disc in dimension two [BY 1] and
to the hyperbolic ball in any number of dimensions [BY 2].

In this paper we take up Berenstein’s approach. The new fact here is that for
a class of domains D C R? we establish an asymptotic expansion of x,,({) when
t=rt+ithn €M, a >0, and r and ¢ are related by (1.21). We consider
bounded simply-connected domains D C R?, whose boundary 9D is real ana-
lytic. In our framework it is natural to study the asymptotic behavior of integrals
of the type (1.4), since, as mentioned above, we employ Riemann’s method of the
steepest descent. The latter requires a complexification of both phase and ampli-
tude in the integral whose asymptotic behavior is to be determined. This fact
makes it unsuitable to obtain an asymptotic expansion for 7({) in {1.4) in terms
of the geometry of T', where ' = D C R?. For instance, a known conjecture
claims that every bounded, convex region with real analytic boundary has the
Pompeiu property, unless it is a disk. To the best of our knowledge the only ex-
isting result in this direction is Brown and Kahane’s {BK], which states that if the
minimum diameter of the region is less than or equal to half of the maximum di-
ameter, then the conjecture is true. We should recall, however, that any ellipti-
cal region has the Pompeiu property. An important achievement would be the
determination of the asymptotic behavior of those integrals that arise as complex-
ified Fourier transforms of characteristic functions of convex sets with real ana-
lytic boundary. We point out that the requirement that the boundary be analytic
is not excessive since, as Williams proved in [Wi 2], if 4D is a priori known to
be Lipschitz, and if D fails to have the Pompeiu property, then 30 is real ana-
Iytic; see also [C].

Concerning our contribution we mention that we have the following

Conjecture. Every bounded, simply-connected region with real analytic
boundary, except the disk, has the Pompeiu property.
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The results in this paper seem to partially confirm this conjecture since the only
fact that is crucial to us is the analyticity of the boundary. Among the illustra-
tive examples we give at the end of Section 3 there are two nonconvex, bounded,
simply-connected domains having the Pompeiu property. The results of Sec-
tion 2 provide a tool to construct plenty of such examples. We emphasize, how-
ever, that in order to apply Theorem 2.1 we must know that the analytic extension
of the parametrization of the boundary of the domain, s~ (x, (8),x:(5)), 5 €
[0,27], has at least one critical point. Otherwise, we can say nothing concern-
ing the Pompeiu property. An example of this unsatisfactory aspect of our method
is provided by
(1.26) x(s5) = (x,(5),x2(8)) = (e cos(sin s}, € *sin(sin §)), s e [0,27],
which corresponds to

o(s) = x,(s) + ixa(s) = e*”.

The curve parametrized by (1.26) bounds a convex region in the plane. We are
not able to decide whether this region has the Pompeiu property or not.
A weaker conjecture than the one above stems from the following considera-

tions. Let E,, be as in (1.8). The boundary of £, can be parametrized by
{1.27) x(8) = (x,(8),x2(5)) = (@coss,bsins), s€ [0,27].

If we set @(s) = x,{8) + ix2(s), then (1.27) corresponds to

a+ b a—b . . .
(P(s) = 2 eJS + 2 e—l’j zp(eIT) + q(e—IS)’
where we have set
P(0)=a—;b0, q(cr}:a;ba, g€ R.

More generally, we can consider polynomials with real coefficients

(1'28) p(U) - Z ahch! Q(o) = Z bkgk’ m > 19
k=0 K=0

and form the complex-valued function

(1.29) o(s) =ple®*)+g(e™), s€[0,2rx].

The assumption 7 > 1 in (1.28) rules out the possibility that ¢ in (1.29) yields a
circle in C. We have some strong evidence that every region in C bounded by a
curve parameterized by (1.29), with p and g asin (1 .28), has the Pompeiu prop-
erty. We hope to come back to this in a futuse study.
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Finally, we would like to thank the referees, whose comments have improved
the presentation of the paper.

2. Asymptotic expansions for a class of Fourier integrals with
a complex phase

In what follows @ denotes a simply-connected open set in C. Points in @ are de-
noted by z=u + iv. Welet @ = {(uy,v) ER}|z=u+iv €0 |, and assume that
8- [(u,O}}u = R]. Furthermore, we assume that if (u,v) € Q, then also (u +
27, v) € § or, what is the same, that z € & implies 2 + 27 € (1. We are given two ana-
lytic functions x;: @ — C, i = 1,2, such that

(2.1) x{z+27%) =x;(2), i=12, foranyzefl.
Then we consider the subset of C?
(2.2) V= {x(2) = (x(2), 22 |z €0}

Letting »; = Rex;, y; = Imx,, i = 1,2, we can identify V in a natural way with a
subset of R* by setting

(2.3) V=0 0), M0, 0), 51 (8, 0), 2 (0, 0| (1, 0) € @)
Henceforth, to abbreviate the notation we let
(2.4) AMu,v) = (N (o, 0), 01, 0)), (w4, 0} = (o0 (2, 0), p2 (1, 0)),

(u,v) e Q.
Using (2.4), and identifying (u,v) € @ with z = & + iv € Q, we simply denote by
(2.5) Fu,v) = X(2) = (M2), w(2)) = (N, 0), plu, V)

the vector (A (2),A2(2), 41 (2), g2 (2D = (Ay (1, 0) A0 (1, 0), 1 (14, 0), o (14, 0))
R*. Because of (2.1) we see that if for e € R we set

(2.6} Qe,2,=[zeﬂle£Rez<e+2:rr], ﬁe’2w=[{H,U)EQ.EEH<E+27YI,
then letting
2.7 Vo= {x(@)|z€ 02}, V= {(¥r,0) |, 0) € Q5. ),

we have in fact

If ¥is as in (2.5) we let X,,, X, respectively denote the vectors (N, /8u, dN;/du,
p, /B, Ou,/0u), (ON,/8v, dh,/0v, du,/dv, du,/dv). We observe that requiring
that X, X, be linearly independent is equivalent to

2.8 x'(z2) = (x((2),x2(z) # 0,

where x/ =
Cauchy-Rie

where we ha
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proved where x; = dx;/dz, i = 1,2. More precisely, it follows from (2.8) and the
‘ Cauchy-Riemann equations (see (2.25) below) that
I . . - .
” Xy " = || xb‘“ + 0? (X X = 0,
with
{ where we have denoted by | |, { Yge respectively the Euclidean length and the
g [ inner product in R*.
are de- '- Throughout this section we make the following
me that ! _
o (1 + ll (2.9) Assumption. For every ¢ € R the set V, is a two-dimensional man-
WO ana- [ ifold immersed in R* (cf., e.g., [Bo)). We remark that this is true if (2.8) holds.
| - ~ N
| We denote by L the collection of all closed, simple, C_1 curves I': [, b] = F,
: for which there exists a simple, C' curve :[a,b] - Q.2 = [(w,v) € ﬁ‘s <
i u£e+21r]5uch that ¥(4) — ¥(ag) = 2w and
L = - e
| [(s) = X(F(s) =X=%(s), sE€lab].
| - -
‘b j Via the identification of ¥, with V. the collection L identifies a corresponding
y with a : family of curves, E, on V,. Therefore, if I' € L there exists a simple, C! curve
y:[a,b] > Q, 2, = {2 €Q|e = Rez < e+ 2=}, such that v(b) — y(a) = 2« and for
[ which
% 2.10) L(s) = x(y{s) =x-v(s), s € [a,b].
, [ Throughout the forthcoming discussion we will tacitly assume that an ¢ € R has
[ been fixed so that V and V are given by (2.7).
The object of this section is to study the asymptotic behavior of integrals of the
eniote by type (1.4}
o = f e %D (dx, + idxy)
(u, )} in :
when { — o along a set M, in C* given by (1.2}, and T € L.
X ] If v is as in (2.10) the previous integral must be interpreted as follows:
= + 27,
2.11) fe"“-”(dx. +idx;) = f e~ (] (2) + ix3(2)) dz
T ¥
where x/ = dx,/dz, i = 1,2. We recall that ( , )in (2.11) denotes the inner prod-
uct defined by
(xnx:) (6,60 =00+ x50 for(x;,x;), ({1, &) € CA
A, /du, The Lh.s. of (2.11) is well-defined since if -, is another curve in £, ,, such that
equiring T' = x+ ¥,, then by Cauchy’s theorem and (2.1) we have

fe"'"‘”"‘"}{x{(z)+ix£(z)) dz:f eI (x](2) + ix3(2)) dz.
.

¥l




12 N. GAROFALO AND F. SEGALA

[f @ > 0 we use the representation (1.17)-(1.19) for points { € M.,,. If £, n are as
in (1.17) we denote by (£,—7) the vector in R* (cos#, sin 8, sing, —cost), 6 €
[0,27]. We note that if # = 0, then (£,—q) = (1,0,0,—1). Foragivenf € [0,2%]
and £, g as in (1.18) we define

(2.12) Y(z) = (x(2), & + i) = e (X, (2} + ix2(2)),
where we recall x(2) = (x;(2),x2(2). If for a > 0 we let
M_, = [t= (8 € CYet + i = —al,

then ¢ € M, iff if € M_,. We have found it convenient, for both notational and
computational reasons, to study the integral

fe“x-f'>(dxl +idx) = fe xERD (x] (2} + ix3(2)) dx
r ¥
when ¢ — o along M__, rather than the one in (2.11). This makes no difference
from the point of view of the applications.

The main resuit of this section is given by the following

Theorem 2.1. Ler V be as in (2.2), T be a closed, simple, C' curveon 'V,
with T € £. and let T be the closed, simple, C' curve on V corresponding 1o T'.
We assume that
(i) The set X of the points of V in which a tangent plane to V is normal to
(1,0,0,—1) (and therefore o {§,—) for any 6 € [0,2x]) is not emply.

(it)y T meets n points %y,...,%, of X, and for each of the hyperplanes in R
normal to (£,—n) and passing through %;, j=1,...,n, T lies all on the
side containing {£,—n).

(By “T' meets %, we mean that ¥ € T'(]a,b[).)

(iii) The Gauss curvature of Vats,... X, Iis negative.

We denote by x,, .. . , X, the points on V corresponding to X1, ... X%, Then we
have for t=ri +imeEM_ ., t>0and r— +oo

, ine® I .
(2.13) Le‘”-”(dxl +ida) =575 Z&e“"v”{aj + o{(1)},
=
with
(2.14) a; 0, i=1...,n

Remark 2.1. We mention explicitly that the points X; € vV ji=1,...,n,in
(i}, and therefore the points x; € V, j = 1,...,n, in (2.13), depend on the par-
ticular 6 € [0,2#] for which (£,—n) = {cos 0,sin 8,sin §,—cos 8) and such that (ii)
holds. In (2.13} o(1) denotes a function whose absolute value tends to zero umi-
formly for r — +oo.

Rema
ting £ — +
the asymy
ting ¢ - -
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Now v
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(2.20)
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Remark 2.2. We obtain (2.13) under the assumption that r — +oo by let-
ting # — +oo in (1.21). Following the proof of (2.13) below we can easily obtain
the asymptotic expansion of the Lh.s. of (2.13) for reM_,, and r - + o by let-
ting ¢ - —oo in (1.21). We must only replace (£,—n) with (£,7) in the assump-
tions (1) and (ii).

We now turn to the
Proof of Theorem 2.1. Let { € M_,. Using (1.17) and (2.11) we can re-
write the 1.h.s. of (2.13) as follows:

(2'15) fe—-(x.§>{dx1 + idxz) — f e—[r{x(z],£>+if<x£z},n>](xlf(z) + fXﬁ(Z)) dz,
r

T

where now (see (1.20))
(2.16) ri—t*=—a.

By means of a Taylor expansion we have

fe—Ir(x(:)i)ﬂ'r{xt:},nhl(xlf(z) + iX;f(Z)) dz
v

_ fe_r(_r(z)‘g-{f"})(x{(z) =+ szl(Z)) dz
¥

2.17 — it - r)fe—’“‘“'“"”(x(z),m(x{(z) + ix;(2)) dz
a2
_u 2’) f ¢ T (7), PY2XI(2) + ix3(2)) dz
(t -

+ i

3
6” fe"‘””-f?k(t,r,z)(x{(z} + ix;(2)) dz.
N

The remainder in the last integral in the r.h.s. of (2.17) is estimated as follows:

(2.18) |k(t,r,z)| = Cle "xtzhw |eCl=—rl on v,

where C > 0 is a constant depending only on ¥ and T'. Using (2.12) and (2.1) we
recognize that

.19 f gzl ivm (e (ZY + 3 (2)) dz = e""fe"‘“”yb’(z) dz = 0.
r

¥

Now we look at the critical points of the phase (x,£ + i) in the second and
third integral in the r.h.s. of (2.17). These are the points z € £, », at which

(2.20) (x'(z),E+ip) =0,




14 N. GAROFALO AND F. SEGALA

where x’(z) = (x/(2),x5(2)). We recall the notation (2.4). Letting dA/0u =
(BN, /8u, ON,/0u), Ou/3u = (Ou,/8u, du,/6u) and an analogous meaning for
aN/dv, du/0v, we see that (2.20} is equivalent to

(Gart) - (G
() + Gt

By the Cauchy-Riecmann equations we have

0,
(2.21)

0.

N _dp N

(2.22) du  Jv’ v du

Using (2.22) in (2.21) we conclude that at a point 2o € €, ,, (2.20) holds iff the
vector (£,—7) is normal to the surface Vin %(z,) (see (2.5)). Also, (2.13) implies
that the critical points of {x, £ + iy} do not depend on # in (1.18). In conclusion

(2.23) 2, € Q. ,, is a critical point of 7 {x(z},§ + i) iff the vector (1,0,0,—1)
is normal to the surface V in %(2,). Moreover, (1,0,0,—1) is normal fo
V in #(20) iff (£, —n) is, for every 8 € [0,27].

If z,, is a critical point for z — {x{(z), £ + in), we set

37N
b= <(6u2 {Zo)s {Zo)) (E’_”)>R4’
_ RPN *u
by =b, = <(m (Z0)s 7—— Judv {Zo)) (€|_H}>“4,

EDN
by = <( (z 0}! (Zo)) (E;“'ﬂ')) ,
Rd

where { , g« denotes the inner product in R*.
Since b, +bs; = 0, the Gauss curvature of V" at ¥{zy) is given by

a2 37N, 3
— (b + biy) = ‘(a 21 (Zo) — ﬁ ( 0)) +f(a 2. (zo) + “H (Zo))

Hence we can conclude that
(2.24) Gauss curvature at X(zo) = —|¢¥ " (20)]°

We remark that if z, is a simple critical point, then ¥{z,) is a saddle-point for
V. In virtue of {2.23) the assumption (i} in the statcment of Theorem 2.1 guaran-
tees that there exists at least one critical point z, € €., of {x, 8+ ig): If ¥ =
®(z,) € Vweset x, = x(z,) € V. Clearly, there may be other points z,,...,z, in

Qelg,. atw
X into %,

(2.25)
We go
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(2.26)
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Q, 5, at which (2.20) holds. Among them we single out those that are mapped by
FiNM0 F,. .., %, € V, with %, j = 1,...,n, being as in (ii). We then set

(2.25) My=x€eV, x(z)=x€V, Jj=lL...n

We go back to (2.17), which we now rewrite using (2.15), (2.12) and (2.19):

o

fe—u.n(dxl +idx) = —i(t— r)emf e Nx(2), M (2)dz
r
(2.26) - (—’;—” e*”’f e~V (x(z), N (2) dT
¥
—
+i (f f') ei&f e—r(,r(z).E)k([,r’z)lz,’(Z) dz.

6 ,

Now a problem arises due to the fact that the amplitudes in the integrals in the
r.h.s. of (2.26) vanish at the critical points of the phase . To overcome this dif-
ficulty we perform an integration by parts using (2.1). This yields

¥

(2.27) fé’ N (), () dT = ;1; fe" X (2) M) A2,

(2.28) fe"‘““<x(z),n>2yb’(z) dz = % fe"“"”(x(z),n)(x’(z),n) dz.

b Y

Substituting (2.27), (2.28) in (2.26) gives

f e~nD(dx, + idx;) = —ie® (_z_:_r) f e X (2),m dz
¥

r

— 2
(2.29) —e® (Lri f e~ x (), {x"(2),9) dz
N

Y
+ier.9'(f—6:’lfe—r(x(z)-f)k{r,r,z)\f/{(Z)dz
L

After these reductions we turn to the asymptotic analysis of the Lh.s. of (2.29)
as ¢ — o along M _,. We consider the POINES 2y, . . . 125 € Qe 2, 0 (2.25). We fix
our attention on z, and consider the region (recall (2.12))

Re ¢ (z) = Re[e (x (2} + (D)
(2.30) = Rele ?(x(2,) + 2 (2]
= Rey(z)).

We want to show that because of (i) and (ii) the trace of the curve v is entirely
contained in the region defined by (2.30). To this purpose we observe that if
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¥ =7 + iy, and we set ¥ = (yy,7v:), then recalling (2.4) a computation shows
that )

(2.31) Rey(y(s)) = Rey(z)), s€ lab],
iff for every s € [a,b]
(2.32) UMF () — Mz ), w(F(8) — (2N, (&, — g = 0.

But (2.32) is equivalent to requiring that T' = ¥+ % lies all on one side of the hyper-
plane in R* normal to (£,—n) and passing through £, = %(z,) —precisely, the
side that contains the vector (£,—). The assumption (ii) guarantees that this is
actually the case. Moreover, (i} implies that in fact

(2.33) Rey{z;) = Re¢(z)), i=2,...,n

Finally, the assumption that ¥ be C' prevents v leaving z, from the same sector
of the region Re ¢{(z} = Re (z,} from which it arrives to z,. In conclusion, v is
a C', simple curve in @, ,, = {z € Q‘e < Rez =< ¢ + 27} with v(d) — y(a) =2,
whose trace entirely lies in the region Re ¢ (z) > Re y(z,), with the exception of the
points z,,...,2, at which {2.33) holds.

Moreover, from (2.24) and (iii) it follows that

(2.34) vz # 0, J=1...,n

We are now in a position to apply Riemann’s method of the steepest descent to
the first integrals in the r.h.s. of (2.29).
Then by [Ol, Theorem 7.3 on p., 127l we haveas { e M_,and r —» +

. s l - —r . 1
039 [emvimicn L S (yrofl))

(2.36) fe N x(2),m{x'(Z)ypy dz = i Ze"‘”"f"(bj + O( l))

N r

where the a,’s in (2.35) are given by

142
(2'37) aj = (%) <X’(Zj),7?>, j= ]" <o M
S
whereas
T 152 , .
2.38) b, = (W) K@@, J=1.

The branch of ¥*(z;)"/? must be suitably chosen.

We have used the symbol O(1/r) to denote functions whose absolute value is
bounded by C/r, uniformly for large », with a constant C > 0 which solely de-
pends on V¥ and I
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Before inserting (2.35), (2.36) in (2.29), we proceed to estimate the third inte-
gral in the r.h.s. of (2.29). By (2.18} we have

Ue""‘“"“k(f,r.zh!«’(z)dz

< CeC|r | f Ie —er{-,r(s}),E)e—ir(.r('y(x}),n)| ds
¥

(2.39)
= CeCIr—rIf |e--r¢f(~fcsn1 ds,
¥

where in the last equality we have used (2.12). By (2.31) we have for s € [a, b]

(2.40) ]e—r.;-w(snl = g TRe¥ ¥ o g~ FRevin,

By (2.39), (2.40) we can write

(2.41) f e "X OB L(t,1,2)Y (2) dz = q{L,r)
¥

where

(2.42) lg(t,r)| = Ce ~Re¥ (20 pCir=rl

We now insert (2.35), (2.36), (2.41) in (2.29). Using (2.33) we obtain

fe“"’f’(dx. + i dxy)
T

ie?(t—r) i 1
=z fe (ool

" — 2
+i(t—r) Ze—r'ﬁ(z_,-)(bj_*_ O(l)) + 3_61 r3,-2q(r,r)}
=1

r

= jglB-Reyizl (t=r} Ze—"’]“‘*“zﬂ{—aj+f(f—r)bj+O(%) +i(r—r)0(%)

372
r j=1

— Y22
+ (= q(r,r)e[irIrn\,’r(z_;}+rRe¢(21)I]_

(2.43) on

Letnow {=rE+imeEM_,. If we allow r — +oo by letting # - 400, then (2.16)
gives

o 1
r=r(l+—2—r;+0(;)) as r— +oo,

and therefore

o 1
{2.44) t—r:5(1+0(}—3)) as r — +oo, t>0.




18 N. GAROFALQ AND F. SEGALA

By (2.44) and (2.42) we obtain from (2.43)

fe SO (dxy + idxy) = —iel?rRevizn] (¢~ Ze""‘“"‘ ]{a + O( ! )]

r ¥

(2.45)

Next, we observe that (2.12), (1.17) and (2.44) yield

(2.46) e = MDY+ o(1), J=1,....,n,

uniformly as f € M_,, £ > 0, and r — +oe. Using (2.46) in (2.45), and (2.25), we
have

re’”(t —-ry &

(2.47) fe“-“”{dxl +ide)=— 2 e “Pla + o(l),
-

F=1
uniformly as { € M__, t > 0, and r — +oo, Inserting (2.44) in (2.47) we finally
obtain
H FII ]

f"““’(dx. +ide) = = Y e O a, + 0(1)]

¥ 2r* = '

as {=rE+ime M_,, t>0and r — +e. This completes the proof of (2.13).
Finally, we observe that (2.14} holds. In fact, since at z;, j = 1,...,n, (2.20})
holds, from the latter and (2.12) we have

(2.48) xi(z;) = —ix3(z),  J=1....0
(2.48) and (2.8) imply for every § € [0,27]
(2.49) (' (Z), > = xi(z)e” # 0.

(2.14) now follows form (2.49) and (2.37).

Remark 2.3. We observe the different decay at o in (2.13) and (1.25) of
Berenstein’s Theorem 1.4 in Section 1. We have a factor r "% whereas %, ({) in
(1.25) decays like » /2. This difference is due to the fact that Berenstein assumes
{1.22) whereas we only use (1.21).

Remark 2.4. [t is interesting to compare {2.13) with the formula that gives
Xake,, (§), where E,, is the elliptical region in (1.8). By Green’s theorem and (1.9)
we obtain

Rar, () = (O + i8)Xg,, (§)
(2.50) A(Va?it + p%(32)

= 21rab(§'1 =+ ffZ) x,"a_2§4|2 472?%

for { = (&
(1.), 9=
and & (2.5

2.51)

where { =
(see, e.g.,
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for { = ({1, &) € C%. Let us assume that a > & > 0. If we take {€ M, with £ =
{1.0), » = (0,1) in {1.18), then (1.19) gives {, =r, {z = iL. With this choice of {3
and §, (2.50) becomes, using (1.20),

— 2
@S S () = -t J,(r\/(QZ_bE}+ ﬂ)
rN(a® — b + ab’/r? r

where { = (r,it) € M. Let us now recall the asymptotic behavior at o of J,
(see, e.g., [L, 5.16.1 on p. 134]):

(2.52) Jy(x) ~Jgsin( - %) as x — 4o

Letting 7 — 4+ in (2.51), by (2.52) and (1.20) we obtain for an 4 # 0

Xo£,, ({) = % sin(m"af_2 i %) {A+o(1))

asfeM, t>0, andr— +oo,

Remark 2.5. With T as in the statement of Theorem 2.1 let T’y € & be a
closed, simple, €' curve on V homotopic to T'. Then if -y, is the curve inQ,,, =
[z e ﬂ‘e <Rez=e+ 27r] such that T', = x =4, by (2.11), Cauchy’s theorem and
the periodicity we have for { € M,

fe““"“(dxl + idx) = f e "N (dxy + i dxy).
T T
Remark 2.6. For w € [0,27] let
A= (C?S o —sinw)
sinw COSw
and consider the surface in C?
V. = [x.(2) = Ax(2) |z €0},

We claim that if there exists a curve I' which satisfies (ii) with respect to the di-
rection 8, then the curve A, satisfies (ii) with respect to the direction « + 8. In
fact, letting £, = (cos 8,sin ), g = (—sinf,cos#) we have

<xu.'(z)&€w+ﬂ + inw+8> = <x(Z}&EG + Inﬂ)

and the critical points of {x., (1,i)) arc the same as those of {x,(1,7)y. We con-
clude that (i) of Theorem 2.1 is invariant under rotations. The invariance under
translations is obvious.

We close this section with two examples which shed some light on the assump-
tions of Theorem 2.1.
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Example 2.1. The Circle of C*, Let R > 0 and consider the set in C?
(2.53) V= [(Rcosz,Rsinz) |z € C}.
Following (2.3) we can identify V with the set in R*

V= [{Rcosucosh v, R sin & cosh v,— R sin u sinh v, R cos u sinh ¢) ‘ {(n,v) € RZ].
(2.54)

The condition that (£,—%) be normal to the tangent plane to ¥ at the point ¥ =
X{u, v) becomes in this case

(2.55) {Si“(u — #)(coshv — sinhv) =0,

cos(u — 0){coshv — sinhv) = 0,

From (2.55) we see that for no # € [0.2%] and no point ¥ € V is the tangent plane
to ¥V in # normal to (£, —n). We remark that the R2-section of V is the circle of
radius R in R?

Cr = [ (Rcosu, Rsinu,0,0)|u € R}
whose interior, the disk, does not have the Pempeiu property.

Example 2.2, The Ellipse of C*. Let @ > b > 0 and consider the set
m C?

(2.56) V= {(acosz,bsinz)|z € C},
which is identified with the set in R*

V= [ (acosucosh v, bsinucosh v, —asinwsinh v, bcos usinh o) ‘ (#,v) € R? ] .
(2.57)

Let us take for simplicity 8 = 0, so that (£,—) = (1,0,0,—1). The condition
that (£,—%) be normal to the tangent plane to ¥ at ¥ = #(u, v) becomes now

sinw(a@coshv — bsinhv) =0,
(2.58)

cosu{asinhv — bcoshv) =0.
Solving (2.58) we find the solutions

a+ b
a—

(2.59) (ue, ) = (k—.rr, In ) keZ.

Putting (2.59} into (2.57) we conclude that (modulo periodicity) there are two
points on V at which the tangent plane is normal to (1,0,0,—1) (and therefore to
any (£,—7%)). They are given by

(2.60)
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2 2
(2.60) (:—“—,o,o,xl—b—.).
var — b? Ja? — b?

3. Applications to the Pompeiu problem

In this section we apply Theorem 2.1 to characterize a large class of domains
in R? that have the Pompeiu property. Let D be a simply-connected, bounded
domain in R? with real analytic boundary. Suppose there exists an analytic man-
ifold in C?, V = ]x(z} = {x;(2), (2N ‘z (S Q] as in Section 2, and suppose that
the boundary of I, 8D, is realized as the Ri-section of V, i.e.,

@.) 3D = {x(2) |z € @ and Imx; (2) = Imx2(2) = 0},

For instance, if s —» (x;(s},X2(s)), s € [0,27] is a real analytic parametriza-
tion of 4D with x(0) = x;(27), i = 1,2, then by Cauchy’s theorem and the
periodicity there exist a simply-connected, open set {1 ¢ C as in the opening of
Section 2, and two analytic functions on { that coincide with x;, i = 1,2, on R,
If we continue to denote by x;, i = 1,2, those two functions and we form x =
(x,,%,) : @ — C, and V correspondingly, then (3.1) holds. Theorem 2.1 can then
be used to provide an affirmative answer to the Pompeiu problem for D provided
that 3D is homotopic to a closed curve T on ¥ (defined by (2.3)) satisfying the
geometric assumptions (i) and (i) of the theorem. In fact, if 2 is homotopic to
such a curve I, and T is the curve on ¥ corresponding to ', we have from Re-
mark 2.6 for f€ M_, and any o > 0

Son(~it) = f e~ D (dx, + dxy)
a0

(3.2)
= f e~ P (dx, + idx,).
T

Suppose that D fails to have the Pompeiu property. Then by Theorem 1.2 in Sec-
tion 1 there exists o > 0 such that £;0(8) = (5 + &) xp{$) =0 for every § €
M,,. Therefore, (3.2) and (2.13) in Theorem 2.] yield for { = rE+imeM._,

(3.3) _le‘“‘-f-”aj- =o(l),

g

uniformly as ¢ > 0 and 7 - +oo, provided that for the function ¢, defined from
x = (x;,%;) via (2.12), (2.15) hold. Let us denote by { , g+ the inner product in
R* in order to distinguish it from the inner product in R? in (3.3). In the nota-
tion of Section 2, and using (2.47), we can write forj = 1,...,n

(3.4 (X, &) = ir{R, (n, e + (X, (§,—Dws + O(1/1),
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where [O(1/r)| < C/r uniformly as r — +o0, with C >0 depending only on V and
aD. Since by (i) in Theorem 2.1 {(%;,(§,—yhgrs =0 forj=1,...,n, substituting
(3.4) in (3.3) we conclude

tu

(3.5) Y ae IRl 4+ 0(1)) = o(1)
i=1 '
uniformly as r— +oo.
We summarize the previous considerations in the following

Proposition 3.1. Let D C R? be a simply-connected, bounded set with
real analytic boundary 3D, and suppose that 3D lies on an analytic surface Vin
C2. If there exists a closed curve T' on V satisfying the assumptions of Theorem
2.1, then D has the Pompeiu property provided that as r —» +x

"
3 @ ekt Emt 2 Q.
i=

We conclude this section with some examples which illustrate the way Theorem
2.1 is applied.

Example 3.1. In Section | we mentioned that it was proved in [BST] that
gvery elliptical region £, (see (1.8)) has the Pompeiu property as a consequence
of (1.9) and Theorem 1.2. We give here a different proof of this fact that, instead
of using (1.9), is based on Theorem 2.1. The value of such a longer approach is
obviously demonstrative. Let ¢ > b > 0 and consider the ellipse 3£,, parame-
trized by s — (acoss,bsins), s € [0,27]. Let V be the “ellipse” in C? given by
(2.56) and let

(3.6) Y(z) = e?(acosz + ibsing);

see (2.12). The critical points of ¥ are given by

3.7) 2= kn+iln 222 kez
a—b

see (2.59). We emphasize that

3-8) ¥z = —¥(z) = (=DHle™"Va? — b7 # 0.

We let # = 0 in (3.6) and consider the region (see (2.30))
(3.9) Re ¢ (z) = Rey(z))

with z, given by (3.7). If z = u + iv we see that (3.9) is equivalent to

(3.10) [(a + B)e ™ + (a — b)e’|cosu = —2va® — b,

The set «
its comp

If we |
set I'(s)

we obtal

(3.11)

Since g,
M, and
Gl w
mark 2.
pend on
if we let
by the s

In thi
Rez=3
we now




y on Vand
ubstituting

ed set with
urface Vin
of Theorem

ay Theorem

1 [BST] that
CONSEqUENce
that, instead
approach is
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C? given by

tto
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The set of the couples (u, v) satisfying (3.10) is earmarked by a + sign in Fig. 1,
its complementary by a — sign.

Fig. 1.

If we let v be the curve whose trace in {z € C|0 < Rez = 2x}isas in Fig. 1, and
set I'(s) = (acosy(s), bsin~y(s)), it is obvious that I' is homotopic to aE,,. Letting

a’ B ) "
—_——, — =
va? — b? va* — b?

we obtain from Theorem 2.1 for { = (nit) EM_,, t>0,and r » +oo

X = (acosz,, bsing } = (

Soe (—i0) f e~ (dx, + i dxs)

.
for

_2r5/2 e—(x.,t)(al + o(1))

(3.11) =

i {2 p2
= —5m e @+ o).

Since a, # 0 (see (2.14)), we infer from (3.11) that for no « > 0 can x;g,, = 0 on
M., and therefore E,, has the Pompeiu property. It is interesting to compare
(3.11) with the expansion obtained by (2.50) in Remark 2.4. As stressed in Re-
mark 2.1, the points x, € V corresponding to the critical points z; € 2, ». do de-
pend on the particular 8 € [0,2x] for which (ii) in Theorem 2.1 holds. In fact,
if we let § = w/2 in (3.6) and again consider the region (3.9), the latter is given
by the sectors earmarked by a + sign in Fig. 2.

In this case we take a curve y whose trace lies in the strip [z S C‘-—‘rr/?_ =
Rez = 3/21:] and passes through the two critical points 2o, z, defined by (3.7). If
we now set

. at . b2
Xy = (acos Zp, bsingg) = ( — ) eV,

R SO —
var - b? Nat - b
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| +

- A

"
+ +
- T
-A -2 X m_:
+ +
Fig. 2.

and x, € V is as above, then the curve T on V corresponding to vy in Fig. 2
passes through the two points X, ¥; on ¥V identified by (2.60). Again we can ap-
ply Theorem 2.1 and obtain an asymptotic expansion for Xag,, ({)- The latter is
different, however, from (3.11) because we now have two contributions e~ o0
and e *'¥?, We omit the details.

Example 3.2. Let D C R? be the domain whose boundary is parametrized
by the curve

s e+ ge ™, where N is natural and & € C\{0].

For suitable values of @ = {ale™, this curve is simple. Since the Pompeiu prop-
erty is invariant under rigid motion, the domain D has the Pompeiu property iff
the domain D’, whose boundary is parametrized by

§— e.-'\{;[ee's + |a|ei¢e—st] = gils+¥) 4 la|e—iN{S+¢'*w—’N—¢'/N—¢]’ l.b R,

has the Pompeiu property. By choosing ¢ in such a way that —¢/N — ¢/N —
¥ = 0, we can reduce to prove the Pompeiu property for D, with ¢ > 0. Finally,
take ¢ (2) = (e* + ae~M)e’™ and consider the simple critical point

i
N+1

1 =- log(Na)

for ¢. Obviously, the path

i

o d T N

log(Na)

is contained in the region Re ¢(z) = Re ¢/(z,) and, hence, D has the Pompeiu
property.

Exany
trized by

Teépresent

We let

and con
(3.12)

We con

of ¢, le

This is




y to y in Fig. 2
gain we can ap-
{). The latter is
ibutions e~ £?

- is parametrized

{0).

 Pompeiu prop-
peiu property iff
', YER,
—/N —¢/N -

h a > 0. Finally,
Yoint

has the Pompeiu
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Example 3.3. Let D C R? be the domain whose boundary d.D is parame-
trized by

cos2s

5 (l + ) (cos s,sin §), se [0.2x]

represented in Fig. 3.

Gy
),

Fig. 3.

We let

V= [((1 + cozzz)cosz, (1 + co;Zz)sinz) \zE C],

and consider the function

(3.12) ¥(z) = (l + %;J)e“z‘ﬂ’, é € [0,2x].
We consider the simple critical point
_ i ln(ﬁ - 2)
L= 3 3

of ¢, let § = 7 in (3.12), and look at the region
Re ¢ (2) = Rey(z)).

This is earmarked by a + sign in Fig. 4.

N

Fig. 4.
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Letting « be the curve whose trace is represented in Fig. 4, and I" the curve on
V defined by

IWs)z((l+—EE%}El)amy(n,(l+-Eg%ggﬂ)ﬂnyu)y

we obtain from Theorem 2.1

)EB‘D{'I{) f f.’_{x'“(dxl + fde)
T

(3.13) =2ﬁqy“dnm+ou»

fa 2T 1372y
:2r5/2 (ﬂl+o(l))er(\ 330 ¥ ,

uniformly for { = {(—-r, —it} € M__,, t > 0 and r — +o. From (3.13} we con-
clude that for no o > 0 can ¥%;p vanish identically on M,,, therefore IJ has the
Pompeiu property.

Example 3.4. Let D C R? be the domain whose boundary 4D, parame-
trized by

)
5~ (l - Sln4zs)(coss,sins), se [0,2x],

is represented in Fig. 5.

We let

) H 22
V= [((l - Sln4zz)cosz, (1 — sm4 Z)sinz)|zEC}

and consi
(3.14)
We let 8 =

sider the «
check tha

is earmar

We let -
curve on

Applying

(3.15)

with g, #
previous

[A} P.
1023-1036,
|B] C.
J. Analyse




'the curve on

(S)) 1

3.13) we con-
ore D has the

3D, parame-

e —_
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and consider the function

sin? 2z

(3.14) 92 = (1 L

)e“z“”, g€ (0,27,

We let # = = in (3.14) and look at the solutions of the equation ¢ (z) = (. We con-
sider the critical point z; = } In5. We have ¥/(z,) = —6/5%. Also, it is easy to
check that z, is a simple critical point. The region

Rey(z) = Rey(2y)

is carmarked by a + sign in Fig. 6, its complementary by a — sign.

Fig. 6.

We let + be the curve whose trace is represented in Fig. 6 and define a smooth
curve on V by

2 P2
I'(s) = ((1 - imciﬂ)cosy(s), (1 — S—m—‘;ﬂ)siny(s)).

Applying Theorem 2.1 we obtain

Xap{—i{) = f e M dx, + idxy)

(3.15) r
o
- D52

e (@, + o(1)),

with @, # 0, uniformly for { = (—n—-ityeM_,, t > 0 and r — +oo. As in the
previous examples, from (3.15) we conclude that D has the Pompeiu property.
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