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UNIVALENT FUNCTIONS AND THE POMPEIU PROBLEM 

NICOLA GAROFALO AND FAUSTO SEGALA 

ABSTRACT.In this paper we prove a result on the Pompeiu problem. If the 
Schwarz function of the boundary of a simply-connected domain R c IR2 
extends meromorphically into a certain portion E of R with a pole at some 
point zo E E ,then R has the Pompeiu property unless is a Mobius trans- 
formation, in which case R is a disk. 

In 1929 the Rumanian mathematician D. Pompeiu formulated the following 
problem: "To characterize those bounded domains Q c It2 for which f = 0 is 
the only continuous function such that 

I,,, f d x  = 0 ,  

for every rigid motion o of IR2 ". 
One says that Q has the Pompeiu property if f = 0 is the only continuous 

function for which (1.1) holds. For a historical introduction to the problem 
we refer the reader to [GSl]. In that paper we conjectured that (modulo sets 
of measure zero) the disk is the only simply-connected domain that does not 
have the Pompeiu property. Chakalov [C] was the first one to realize that the 
disk fails to have the Pompeiu property. In fact, if one considers the function 
f(xl ,x2)= sin(axl),then one has 

2nr
f (x)d x  = --- sin(axo,1 )  Jl(ar),a 

where xo = (xo,1 ,XO,2)  is fixed, B,(xo) = {XIIx - xol < r) , and J1 is the 
Bessel function of order one. It is therefore enough to choose a > 0 ,  such that 
J l (ar)= 0 ,  for (1.1) to hold. 

This paper contains some progress toward the above conjecture. Let Q c It2 
be a bounded simply-connected domain whose boundary an is a piecewise 
C1 Jordan curve. By the Riemann mapping theorem there exists a univalent 
function h: D -, Q ,  where D = {z E Cllzl < 1 ) .  Moreover, h can be 
extended in a one-to-one fashion to a continuous map of onto a. In order 
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to state the main result in this paper we need to introduce some definitions. We 
consider the Schwarz function of a R  given by 

A priori, (01 is well defined on a R  . Given a straight line L c C ,and a point 
zo q! L ,  we denote by A(L; zo) the open half-plane lying on one side of L 
and containing zo . We also let 

The main result in this paper is given by the following 

Theorem 1. Suppose that there exist zo E R and a straight line L c C such 
that: 

(i) (01 can be extended to a holomorphic function in E(L;  zo)\{zo) having a 
pole in zo ; 

(ii) (01 is not a Mobius transformation. 

Then, R has the Pompeiu property. 


Figure 1 below illustrates the situation. 
We now state two remarkable consequences of Theorem 1. 

Corollary 2. Suppose that h is univalent in D and meromorphic in C, with at 
least one pole in C\D . ZfJ moreover, h is not a Mobius transformation, then 
R = h(D) has the Pompeiu property. 

If we specialize Theorem 1 to the class of convex domains we obtain the 
following partial solution of the Pompeiu problem. 

Corollary 3. Suppose that R = h(D) be a convex set. Assume that h has a pole 
on the boundary of the circle of convergence relative to its Taylor expansion at 
z = 0. If h is not a Mobius transformation, then R has the Pompeiu property. 

Remark. Corollary 2 contains the result in our paper [GS2] (see also [GS3]) 
concerned with the case 

N 
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Furthermore, it contains a result in a recent paper by Ebenfelt [El. The latter 
has proved that if h is a univalent function in D such that h(z) = p$, with 
p and q polynomials, then R = h(D) has the Pompeiu property, unless h is 
a Mobius transformation. 

Our strategy to prove Theorem 1 is to study, by Riemann's method of the 
steepest descent, the asymptotic behavior of the (complexified) Fourier trans- 
form of the characteristic function of R , i n ,  along the algebraic variety of C2,  
M, = {Ct +C; = a )  , a > 0 .  This is due to an important characterization of the 
Pompeiu property established in 1973 by Brown, Schreiber, and Taylor [BST], 
see Theorem A in the next section. We mention that Berenstein [B] was the 
first one to use asymptotic expansions of inin connection with the Pompeiu 
problem. 

We begin this section by recalling the above-mentioned characterization of 
the Pompeiu property due to Brown, Schreiber, and Taylor [BST]. 

Theorem A. A bounded domain R c It2 has the Pompeiu property if and only 
ifthere exists no a E C\{O) such that the complexijied Fourier transform of the 
characteristic function of R ,i n ,  vanishes identically on 

Ma = {(Cl, C2) E C21Ct+ c; = a ) .  

It was observed by Berenstein [B] that, when R is simply connected, a E 
C\{O) in the statement of Theorem A can be replaced by a > 0 .  Furthermore, 
when d R  is a rectifiable Jordan curve, then the divergence theorem allows to 
replace inwith ian. = , (2) E C2Note that for C ((1 

where we have let (C, x )  = clxl + (2x2 . Changing C in -ic in (2.1) we are 
thus led to study the following oscillatory integral 

for C E M-, ,with a > 0 .  We write in the form 

C = r(cos 8 ,  sin 8) + it(- sin 8 ,  cos 8) .  

The condition C E M-, becomes 

(2.3) t2 = a + r 2 .  
We have 

( c ,  X) = xl(rcos8 - it sine) +x2(rsin8+ it cos8) 

(2.4) = r ~ l e - ' ~  i(t - r)xl sin 8 + i(t -+ irx2e-je - r)x2cos 8 

= re-"(xl + ix2)- i(t - r)(xl sin 8 - x2 cos 8) .  

Since from our assumptions in the introduction d R  = h(dD) , where h is 
univalent in D = {w E CI lw 1 < 1) ,we have for s E [0, 2x1 
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Here, we have let 

(2.6) k ( w )= h (i). 
Analogously, we have 

Inserting (2.5), (2.7) in (2.4) we obtain 

(c, x) = re-ieh - i-(' - [ (h+ k )sin 0 + i (h- k )cos 81, 
2 

which, after some easy reductions, gives 

(2.8) ( C ,  x) = -f r e - i ~ h ( e i s ) - - r e i ~ k ( e i s )  . 
2 2 

Taking (2.8) into account, we see that (up to a factor of i )  the integral in (2.2) 
becomes 

t + r  -ie t - r  .
I ( r )= Janexp [ T e  w - -ele@(w)] d w

2 
(2.9) t + r  t - r  

= eie JBL exp [ T w  - -Y(w) I d w
2 

where Z = e-'*.R, Y ( w )  = eie@(eiew). At this point we choose 8 E [ O ,  2x1 
in such a waithat the straight line e- jeL,  where L is as in the statement of 
Theorem 1, becomes parallel to the imaginary axis. We let wo = e-"zo, M = 
e - l e ~ ,where 20 E R is as in the assumption of Theorem 1, see Figure 2. 

We now have from (2.9) 
(2.10) 

t + r
e- ie i ( r )= (1 +/ ) exp w - r Y ( ~ )1 d w  . 

a E ( M ;WO) a[E\E(M; wo)l t - r  

The aim of this section is to establish the asymptotic behavior as r -, oo 
of the integral in the right-hand side of (2.10). We begin by analyzing that 
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part of the integral on the set d(C\E(M; w o ) ) .  We let A = max lYl on 
d(C\E(M ; wo) ). Then 

t + r  t - r  
exp [T 

We now choose j3 > 0 such that on the set d(C\E(M; wo))  we have (see 
Figure 2) 

i R e w < W w o - j 3 .  
Noting that (2.3)gives 

as r -+ co, it follows that on the set d(C\E(M; wo) )  we have uniformly as 
r -+ 00 

t + r  t - r  t + r  t - r-iRew+-A< -(!Re wo - j3 )  + -A = r(!% wo - / ? ) ( I  + o(1)).
2 2 - 2  2 

From this we derive the estimate for r 3 CQ 


t - r 

e ~ p [ ~ w - ~ ( w ) ]dwl S C e x p  

We will now analyze the first integral in the right-hand side of (2.10). We 
have for 6 > 0 small by Cauchy's theorem 
(3.3) 

t + r  t - r  
exp [ T w  - 2 I-Y(w) dw 

' L ' q M ; w o )  

= exp t + r  Jr exp [ y ( w- W O )- -Y(w) I d w  
w-wO(=6 t - r2 

t + r  t + r  t - r  w - -Y(wo + w )I2 d w  . 

By the assumptions on Q> in Theorem 1, there exists m E N such that 

for Iwl 5 d , with a-, # 0 .  We now distinguish two cases. 
First case. m 2 2 . 
Using (2.3)we can write 

t - r  - a 


2 2 ( t + r ) '  


By (3.4), (3.5) we have on the circle { w  E 6eiTl- n < 7 5 n} 

t + r  t - r  

-, w - -i-Y(wo + w )  
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Then, (3.6) becomes as r - co 

t + r  t - r  	 [.i~ _aim e - i m ~-w - -Y(wo + w )  = 
2 2 + o ( l ) ]  

From the first equality in (3.1) we conclude that 

t + r  t - r  	 aa-me-imT 
(3.7) 	Tw - -y(wo + w )  = r(m-')I(m+')q ( r )  {e l f  - 4

2 

with q(r) + 1 as r + co, uniformly on the circle {w = SeiTl- a 5 7 5 a ) .  
Taking (3.7) into account, we obtain for (3.3) with some p(r)  + 1 as r - oo 
(3.8) 

t + r  t - r  
w - - Y ( w )  d w  = expir-2/(m+1)p(r) -

j S E ( M ; w o )  [T 2 I 	 wo) 

At this point we observe that the integral on the right-hand side of (3.8) is 
of the type studied in the paper [GS2].By virtue of the work done in [GS2]we 
can conclude that the asymptotic behavior, as r -, oo , of the above-mentioned 
integral is as follows 

where, having let ~ ( r )= el7 - T e - i m '  for r E C , one has for r - oo 

Here, ro is a suitable simple critical point of the function y, . Inserting (3.9) 
in (3.8) and recalling (3 . l ) ,we obtain 

J t + r  t - r  
exp [ T w  - -Y(w) 1 d w  

(3.10) B E ( M ;wo) 	 2 
-	 1 ( r )exp[rwo + r(m-l)l(m+- ,-(m+3)/2(m+l)~ 	 ' ) B ( r ) ] ,  

where A l ( r )- i A o , as r + oo. 
Using (3.2), (3.10) in (2.10) we finally conclude for r - oo 

for some number C > 0 .  Observing now that 0 < 3< 1 , we infer that 
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as r + m . In conclusion, we obtain from (3.1 1 )  

where A2(r)-' iAo as r + m . 
To conclude the study of the asymptotic behavior of the integral e-'OI(r) in 

(2.10) we need to analyze the case in which Y has as simple pole in wo , i.e., 
the case in which m = 1 in (3.4). 

Second case. m = 1 . 
We consider again the integral on the circle { w  E 6ei71- a 5 7 5 a) in the 

right-hand side of (3.3). By the assumptions in Theorem 1 ,  the function Y is 
not a Mobius transformation. If w = ae i7 ,with la1 = 6 ,  then we have from 
(3.5) 

t + r  t - r  Q-w - -y(wO + w )  = -' 1( t + r ) w  - - ~ ( w ~ + w ) ]2 2 2 t + r  

for some q E N , with a, # 0 .  At this point we choose 

It follows from (3.13), (3.14) that for w = aei7 one has 

t + r  t - r  Qao 

-W2 - -Y(wo + w )  = -- + i m c o s r2 t+P

(3.15) 1+ 
( t  + r)q+l

e i q 7 + o (  
( t+ r)4+2

) ' 
for some C # 0 .  We conclude 
(3.161 

t + r  t - r  
u, - -Y(wo + w ) ]  d w

2 

We now recall the integral representation of the Bessel function J, (see [ L ] )  

Using this we can rewrite (3.16) as follows 

(3.17) 
t + r  t - r  

w - -Y(wo + w ) ]  d w
2 
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Since, from (3.I), t + r ( l  +o(1)) as r -+ oo ,and by a theorem of Siegel, J1 
and Jq have no common zeros (see [W, p. 4851). (3.17) implies 

t + r  t - rlW,&exp [Tw - -Y(wo + W )  dw
2 

(3.18) 
-

I 
- r [J~(@zT)+ % J ~ ( ~ ) ], 

where El(r)  + Eo # 0 as r + oo, and EZ# 0 .  From (2.10), (3.2) and (3.18) 
we finally obtain 

with E3(r) -.Eo as r + oo (of course, in this estimate we have used again 
(3.1)).

We are now ready to conclude the proof of Theorem 1. We recall that from 
the reductions in §2, the oscillatory integral jan( [ ) ,with [ moving out to 
infinity along a special path of M-, , was shown to equal e-lel(r) in (2.10) 
(up to a factor of i) . 

From (3.12), (3.19) we see that, under the assumptions in Theorem 1, the 
latter cannot vanish identically on M-, . From Theorem A we conclude that 
i2 has the Pompeiu property. 

4. PROOFSOF COROLLARIES2 AND 3 

The proof of Corollary 2 follows immediately from Theorem 1 by observing 
that if @ is a Mobius transformation, then so is h . Moreover, if h has at least 
one pole, then @ has at least one pole and at most one essential singularity 
(w = 0) .  

As for the proof of Corollary 3 we observe that if i2 = h(D) is convex, 
then by Study's theorem [S, Theorem 2.41 so is h(D,) for 0 < r 5 1 ,  where 
D, = {z E @II z I  5 r ) .  Set S = {x E @ I  lzl < R) with R > 1 ,  and denote 
S-I = { i l z  E S ) .  Assume that h is holomorphic in S with a pole zo on 8s. 
Then @ is holomorphic on h(S-I) and has a pole in h($) . Since h(S-l ) is 
convex we are in a position to apply Theorem 1, see Figure 3. 

We close this paper with an example of a one-parameter family of domains 
which fall within the scope of Theorem 1, but are not included in any previous 
result on the Pompeiu problem. 

2Example. Consider for 0 < A < 2 the map hA:D + @ given by hA(x)= ;;i;=~. 
In Figure 4, we represent SZA = hA(D) for some values of A .  There exists 
loE (0 ,  2) such that for 0 < A < lothe domain i 2 ~is convex. Furthermore, 
one verifies that for A E (0 ,  lo) 

1
min diam RA> -max diam i 2 ~

2 

so that the result in [BK] cannot be invoked. 
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