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Abstract. We characterize the sphere in R", n > 2 as the unigue member in the class of
surfaces of convex bodies with the property that, in the absence of exterior fields, electric
charges distribute homogeneously (i.e., with constant density) on the surface,

1991 Mathematics Subject Classification: 31B] 5, 35J25; 52A20.

1 Introduction and main result

Consider a bounded body Q = R” {n > 2), whose surface 2 consists of metal. We
put a charge distribution p : 6Q — [0, 20} with total charge ;0 # do onto the surface.
| The electric field of this charge distribution is described by the single-layer potential

' 1 J L)
(?1 - 2)(:),, a0 |X — Q'”‘_Z
S(p)(X) =

da{Q) n=3,

%] reosx - 0ldsg) w2

A,

where do is the (n - 1)-dimensional Hausdorff-measure in R” and w, is the surface-
area of the unit sphere in R”. With ¥ we denote the exterior unit normal on aQ,
with + the exterior and with — the interior side of 3Q2. If Q2 1s a Lipschitz-domain and
pelr{0Q), 1 < p < oo, then the potential energy is expressed as follows

1 P X)p(Q)
(n = 2}, Lg Lg p}?@@d"(*’) do(@)  nz3

E(p) =

%;:_Lﬂ Jw.@ P(X)p(Q)log|X - Q| do(X) da(Q) n=2.

For n >3 we can use almost everywhere on the boundary the jump condition
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(88/8N)Y" — (38/8N)" = —p, cf. Verchota [16], to write the energy as E£(p) =<
o IVS(0)]2 dx.

In the absence of any exterior field the charges distribute on 902 according to a
minimal-¢nergy law

min E{p) subject to J pde=C=const., p>0.
0

The minimizer p* is called the equilibrium distribution,

In a more general framework, where pdo is replaced by a probability measure du
on 022, the existence and uniqueness of such minimizing measures du* was shown by
J. Wermer [17].

In the framework of charge distributions peLP(oQ}, 1< p < w, on Lipschitz
domains one can follow the arguments in Wermer [17], Sections 6-10, to show that
the existence of a minimizer is equivalent to finding a distribution p* such that
S(p*) = const. on 392 Physically this means, that the equilibrium is characterized by
the fact that there is no potential difference between any two points on 4Q, or, in
other words, any potential difference is leveled out by an electric current. Hence, the
equilibrium distribution can be found by solving the eigenvalue problem

(1 ApT+ip* =0 onaQ,

where (#p)(X) = p.v‘ikg%ﬂp(g) da(Q). This is true, because following
[16] the jump-condition (08S(p}/oN): =¥ p T 1p on 882 shows that (1) is equivalent
10 (6S(p*)/ON)™ =0 0n 002, i.e., S(p*) = const. in 0.

If 2 is a ball, then it is casy to determine the equilibrium distribution as the
constant distribution.! The following conjecture has been formulated by P. Gruber
{Univ. Wien): The equilibrium distribution is constant on the boundary of a domain if
and only if the domain is a ball

Our main result is the following

Theorem 1. For n = 2 the conjecture is true if §2 is in the class of bounded Lipschitz
domains. For n = 3 the conjecture is true if Q2 is in the class of bounded convex domains,

The result is also known to be true in the class of C%*_domains, as proved by Reichel
(12], [13]. Previous results of Martensen (6] covered the class of piecewise smooth
domains in R?, and the tools developed by Philippin [9] and Payne, Philippin [8]
covered the case of star-shaped C%*-domains in R” for # > 3. Payne and Philippin
utilize the isoperimetric inequality, a PohoZaev-identity and maximum principles.

' If p* is an equilibrium distribution, then for any rotation matrix RTR = Id the distribution
p*(Rx) is also an equilibrium distribution; and hence they are equal.
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For the proof of our result we combine their method with convex analysis and a
careful potential theoretic analysis of S{p*).

We point out, that for n > 3 the conjecture is now true for the union of the
classes of C**_-domains and convex domains, but remains open for bigger classes of
domains.

Finally we note, that Henrot et al. (3] have obtained an electrostatic characteriza-
tion of a ring-shaped conductor, where the inner surface is a sphere and charges dis-
tribute uniformly on the convex outer surface,

The paper is structured as follows: In Section 2 we prove an integral identity for the
equilibrium potential. This already provides the proof of Theorem I in dimension
# = 2. In Section 3 we introduce a function @ as a combination of S(p*) and VS(p*)
which satisfies a maximum principle. Ultimately we reduce the proof that £ is a ball
to showing that @ is constant. This requires a better understanding of the derivatives
of S(p*}. In Section 4 we establish that 3¢ is C! (here we use heavily the convexity of
£2) and that S(p*) extends as a C!-function onto 0€2. In Section 5 we investigate the
second-order derivatives of S(p*). This knowledge of the first and second order
behavior of S{p*) near 92 enables us to complete the proof of Theorem 1 in Sec-
tion 6. In the Appendix we give the proofs of some technical lemmas: estimates for
the singular kernels of layer-potentials and an extension of a formula of Minkowski,

2 The Pohozaev-Rellich identity

From now on we assume that p” = 1 is the equilibrium distribution for the domain
£2, which is supposed to satisfy the hypotheses of Theorem | Then, the single-layer
potential S{1) satisfies the following overdetermined boundary-value problem

(2) 4u = 0 on R"\/Q2,

(3) u = const. = ¢ on 682 (and hence in ),

(4) (g%) = -1, (%) =0 ae ondQ,

where, for p e 8 with the normal N (p), we denote by (Eg‘g,j (P)).;; the exterior/
interior normal component of the gradient of §(1) at p, ie., (ij}\,ﬂ (p))eﬁ =
lim,_,,Vu(x) - N(p) and x varies in a nontangential exterior/interior cone at ». Like-
wise, for a direction T orthogonal to N ) (%‘.@ (P))e); 1s an exterior/interior tangential

component of the gradient. In general, ¢f. Verchota [16]), we have

() () (5) (3 0 ssnce
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By vol 2, [3Q2| we denote for n > 3 the volume and the surface area of Q and for
n = 2 the area and the perimeter of £2. The asymptotic behavior of S{1) at oo is given
by

—30 -2 X

n=2: S()(X)~ %logr, vS(H{X) = %—' el
1 -1l X

n>3: S(I)X) = (TI-T)‘E?r_—z VS((X) =~ —L)—Ir—ns

where “ " means that the (componentwise) quotient tends to 1 as r = | X | — 0.

The following Pohozaev-Rellich identity for harmonic functions 4 can be verified
by straight-forward differentiation (cf. Rellich [14], Pohozaev [10], and also Pucci,
Serrin [11])

H—

2 2
== W

2
(5)  div (X'Eé'l— —(X- Vh)l?k) =

For a smooth domain Q' > £ we will use this identity for A = §(1) and integrate it
in the domain Bg(0)\Q’ and let R tend to oc. We employ the divergence theorem and
get from (5)

2
[y o [P sims] s
p Jesao) 2

&

-2
_n J VS(1)[? dx
2 Jpgone

n_z(‘[S(l)VS(l)‘(—N)dn-k J S(I)F’S(l)'ia‘a).
2 A EBgi0) R

Using the asymptotics at oo we find that the boundary term coming from o8R0}
vanishes in the limit for » > 3, but gives a contribution for 7 = 2:

. [ Vs o
n=2: Jﬂ.g’ XT“(X-VS(I))‘?S(I) -Ndo— o =0,
B 2
nz3: J J Xw—(x-vsu))vsu)} -Ndo
2—n 85(1)
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Choosing an approximating sequence of domains Q/\ 2 like in Verchota [16]
Theorem 1.12, and using {4}, we find for almost every PedQ that [x;SL _
(X; - ¥S(1))PS(1)] - Ni(X;) tends to L P- N(P) in the nontangential exterior limit
Xj — Pas j — oo. Taking the limit j — o0 we get:

1

22

6  n=2: vol()-2_,
4x

2S(1)
aN

7 23 avol(@)=(2- n)j SMEY g = (n—2)je0),
02

where ¢ is the constant value of $(1) on éQ. In case n = 2 the proof of Theorem 1 is
finished, because (6) is the equality case of the isoperimetric inequality, and hence
must be a disk. In case » > 3, further work is needed.

3 An isoperimetric relation

From now on we assume # > 3. Payne and Philippin’s approach [8], [9] was based on
the fact that the following combination of S(1) and VS(1) satisfies a maximum
principle:

H(X) = [VS()(X)|*S(1)(x)C-2H-2) v o R\Q.

In [8], they proved that there exists a continuous vector-field # on R"\(22 v E) such
that

42 +b. VO >0 in R\(G U E),

where E = {X e R"\Q|S(1)(X) = 0 or VS(1)(X) = 0}. Since S(1) is positive, the

set E consists only of critical points of S( 1). The function @ is not an arbitrary

combination of S{1) and VS(1). The exponent (2 —2n)/(n — 2) is chosen such that if

£2 is a ball, then @ = const. because S(1)(X) = const. | X)*™". Qur ultimate goal is to

prove @ = const. and then to deduce (in a yet non-trivial step) that £2 has to be a ball.
Using the asymptotics of S(1), we first calculate the value of & at 20!

(20-2)/{n-2) { Wy 2n-2)
D(X)— (n-2) (fa-Qi) as | X| — .

In the next section, we shall prove that @ extends continuously onto ¢ and that

D = c272/0-2) where ¢ is the constant value of S(1) on Q. If we assume this
result, then we find by the Pohozaev-Rellich identity (7) that

— 9\ (=2 (n=2) |5Q| (Zn=2)/(n~2)
oo (5 )

vol 2
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Recalling the isoperimetric inequality [6Q2|"/1""1) 5 V=1 L 2, we find that
b > D, where equality holds if and only if @ is a ball, Therefore, the proof of
Theorem 1 is reduced to showing that ¢ = const.

Using the maximum principle, we find that ¢ attains its maximum over RM™Q
either on 802, at oc or on E. Clearly, @ cannot attain its maximum on £, since this
would imply @ = 0. Moreover we have Just seen that @|,, > &, and therefore

max $ = @|

R\Q o

If we assume for contradiction that @ # const., then the Hopf boundary-lemma

applies to P e 622 since the convex domain £ satisfies an exterior ball condition, and
states

) limint 2P+ VP ~ B(P)
t—0+ {

<0 forall Ped.

This will lead to a contradiction in Section 6.

4 Continuity of the gradient of the single-layer

The purpose of this section is to show that the function @ extends continuously onto

882. This is equivalent to showing that VS(1) extends continuously from R™\& to 40,
We shall achieve this in three steps:

4.1 Boundedness of VS(1),
4.2 C'-regularity of 502,
4.3 Continuity of VS(1}.

The regularity gain in the second step is deeply connected with the assumption of
convexity of 2.

4.1 Boundedness of VS(1)

A very important role in our estimates js played by the singutar integral kernels
Ky tk) = [l ~ 3+ (0(x) — () + 5572

defined for x, ye R", e R and k e N. Here ¢ plays the role of a Lipschitz func-

tion, whose graph locally describes Q2. The proof of the following two lemmas is
carried out in the Appendix.

Lemma 2, Let p: R"™' = R be o Lipschitz function with ?(0) = 0. For a, > 0 we
consider the integrais

=N

O™

—
wm,



Q. Mendez, W. Reichel

"Upvol 2, we find that
I. Therefore, the proof of

its maximum over R™\Q
naximum on E, since this
> @|,, and therefore

e Hopf boundary-lemma
iterior ball condition, and

xtends continuously onto
uously from IR"\Q to ¢Q2.

1 with the assumption of

ular integral kernels

role of a Lipschitz func-
following two lemmas is

p(0} = 0. For «,f = 0 we

Electrostatic characterization of spheres 229
I_(X) = Jl <1 It[ajx - ylﬁ(K(xe ¥, Isk) - K(I, ¥, _'t;k))dy!
M=

L(x) = J 171 = PR, v, 1. 0) + K(x, v~ k) dy.

[¥=1
Then we have the following bounds for t — O (uniformly for x € R™' )
@ -1 = [IPolloo O™+ *1y i wy g < k12,
() -0l = ol 0™ loglel)  if n+f=k+2,

(© I-(x)| = ivel,, O ntf>k42
(d) L (x)] = Offy|+Atnk1y fr+f<k+l,
(&) 7:(x)] = O(l1]"log|1) Frn+f=k+l,
() 1 (x)] = O(l¢]) Fatf>k+l,

(8) If p(s) = O(s|*) for s — O then {a)~(c} hold for I_(0} with § replaced by 8 + | and
\Voll.. replaced by a constan:.

Lemma 3. [fo:R"' S Risa Lipschitz function with o(s) = %.S‘THS + 0([.?]2}f0r 5 —
0 then

@ 1= Sner A" + )+ 077722 (1302 4 T hy 4 92002 g
= 0(1)3
B) = fiy oy U™ + (0 () + )22 _ 2 4 21T gy = o),
©) L= [l 0037 + (0(3) + 03722 gy = o0,
where o(1) — 0 for t — 0,
From now on, one always has to keep in mind that S(1) = const. in £2, which means
that all derivatives of S(1} vanish inside . However, we state the following propo-
sittons and lemmas in this section and in Section 5 for situations, where S(1} may

be non-trivial inside € (in fact, the results can even be generalized to continuous
densities).

Proposition 4. IfVS(1) e L7(Q) then VS(1) € L™ (R"\D).
The proof of this theorem is an immediate consequence of

Lemma 5. Let Q be a bounded Lipschitz domain, P € Q2 and assume that for a fixed
ball B(P) of radius r around P we have

4= sup |VS(1)(X)| < .
XeBPInG




230 O. Mendez, W. Reichel

Then, there exists a positive constant C depending only on A, Q, P and r such that-

(9) sup  PS(1)(X) < C.
X e B{P) (R4}

For the proof we need the notion of “local boundary reflection” across 3¢,

Definition 6. Let P € 20 and B(P) be a ball of radius r > ¢ centered at P such that
after a transtation and rotation of coordinates,

620 B(P) = {(x,¢(x)) | x € U(0))},
and
QnB(P) = {{x,¢(x) + 1) | x € U(0),1 > 0),

where ¢ R"! - R is a Lipschitz function with p(0) =0, and U{0) c R™! is a
neighborhood of 0. For any point X € B(P)n (R¥\Q) with local coordinates
(x,¢(x) — 1), let X be the point whose local coordinates are (x,0(x) + ). Wecall X
the Jocal boundary reflection of X across Q.

Remark. The “local boundary reflection” depends on the choice of the local repre-
sentation ¢ of a boundary portion of 30, In the case that ¢ is a C'-function with
2(0) =0, Vp(0) = 0 we call the local coordinate-system a tangential coordinate-
system. For C!-domains, such tangential coordinate-systems always exist.

Proof of Lemmua 5. We use the notation of Definition 6. The proof of the lemma will
follow once we establish the inequality

(10) sup  VS(1)(X) - VS((X)| < C
YeBiPir{R"\2)

for a constant C > 0 that depends on 4, Q2 and B(P) only. Consider an open cover of
062 of which B(P) is a member and let (x:); be a finite partition of unity subordinated
to that cover. It is easy to see that (10) will follow if we can bound the expression

IIRE o o vl

/
from above by a constant depending only on 4, Q and B(P). After expressing this
integral in local coordinates, it is clear that the quantity to be controlled is

J ( Xy o) =e) )  (x=yp(x)=e(y)—0) )
[y[=

=112+ (0(x) — 0 y) +1)2) 72 [~ y1* +(p(x) - g( )~ 1))

1+ Vel dy

e e e e
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This integral can be estimated by a constant C(g) times
J |X"}"J |K(x: »ny ”) _K(x! Y5 n)|+er(x, ¥ n) +K(I, ¥ =5 FI)| dya
=1
which is bounded by Lemma 2(a) and (d). O

42 C '-regularity of 42

In this section we show that the convexity of 2 and the boundedness of the gradient

of §(1) result in a regularity gain.

Lemma 7. The domain Q of Theorem 1 is a C'-domain.

Proof. According to Leichtwei [4], a point P € 222 is called a singular point of order
se{1,2,... n}, if the intersection of all support hyperplanes through P is an {n—s)-
dimensional affine space. A singular point of order 1 is called a regular point. If
all boundary points of the convex set £ are regular, then a famous theorem of

Alexandroff (cf. LeichtweiB [4]) states that 2 is a ¢! -domain. Suppose for contra-

diction that 0 ¢ 3£ is a singular point of order 5 > 2. Let us take two different

(m — 1)-dimensional support hyperplanes H, H, at 0. Then B — Hi nH, is an
{n — 2)-dimensional space and we can write

H=B®h, H,=B®h

for some linearly independent unit vectors h1 by with by - by = cosy for some ye
(0, ). Moreover, we can assume that  is contained in the cone

€=Bd {A|h] + Arhz, Ay, 29 > 0}

and that there exists an exterior direction v toQatOwith—ve€andvl B In Eor =
R™\@, the exterior of €, we shall construct a harmonic function w > 0 with w = 0 on
d¢. To this end, we choose an Euclidean coordinate system &;,...,&, at 0 with
€ty - Cnp-direction in B and ¢,_, = h; and span {&,_;,&,} = span {#,/}. With
polar-coordinates (r,#) in the En—t1, En-plane the exterior cone is given as €, =

{té1,.. . &g, 0) $1r--n2€B r>0,0e(0,27 - 7)}. If we define the function

D(Cnoi,&p) = r¥sin(xf) forallr >0 and fe 0,27 — )

with g = 2;‘_? € (0,1), then wié&,..., &) = v(y_i,¢,) 18 the described function. If
bo € (0,27 —y) is the polar angle of v in the ¢,_, &,-plane, then

%%(é) = (& — Dr*! sin(afy) — —0 asr= i€l — 0.
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Next we choose a large ball Bz(0) such that S{1) < ¢/2 on dBg{0). Then we choose
4> 0 so small that AR* < ¢/2. This implies ¢ — Aw 2 ¢/2 > S(1) on éBr(0) N Fex.
Moreover ¢ — Aw = ¢ = S(1) on Bg{0) N 6%.,. By the maximum principlte we get
¢ — Aw = (1) in Br(0) N %,,, and moreover (¢ — Aw)(0) = ¢ = S{1)(0). But this con-
tradicts the fact that ﬁgvﬂl(o) = +20 and that ‘72{1,1] (0) is finite. Hence there is no
singular boundary point of order 5 > 2, the boundary of €2 is regular and Q2 e !,
O

4.3 Continuity of V.5(1)

Our next aim is to prove

Proposition 8. Let Q < R” be a bounded C'-domain. Assume that S (LX) is constant
in . Then, for every point P € 60,

(11 lim _VS(1)(X) = —N(P).
X—P X eR™2

This result is an immediate consequence of Lemma 9 and Lemma 10. It shows that
S(1) can be extended to 82 as a C'-function.

Lemma 9. Let 2 = R" be a bounded C'-domain and let T(P) be a tangent vector at
P e dQ. Then,

lim  (VS(I)}{X) - vS(1)}(X))- T(P) =0,
X—P . XeR"\Q

where X is the “local boundary reflection” of X with respect to a tungential coordinate
system.

Proof. Fix ¢ > 0. By the smoothness of 2, a neighborhood B(P) of P and a
local coordinate-system with origin at P can be chosen (in the same notation as in
Definition 6} in such a way that ¢(0) = Vp(0) =0, and that sup, . gy Vo (p)| < e.
It follows that in the new coordinate-system, the unit vectors (1,0,...,0%...,
(0,...,0,1,0) € R" are an orthonormal basis for the tangent space of Q2 at P. Hence
we may assume that 7(F) = (0,...,0,1,0,...,0) = ¢, for some & between 1 and
# — 1. For X and X as in Definition 6 we have

T(P) - (PS()(X) - VS(1)(X)

ol =

Y-
N B(P) " Lr(mnag) I(p) (IX - Q" - |jz _ QJn) da(Q).

The lemma will follow from the fact that the integrand in the first integral converges
uniformly to 0 as ¢ — 0 and that the second integral is less than ¢ if X is taken close

T
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enough to P. To see the latter, we bound the second integral as in the proof of
Lemma 5 by a constant that depends on the Lipschitz character of the domain times

(12) Jl = K G, 3, 5m) ~ K, 3, —6m)) .
y=

A straight-forward application of Lemma 2(a) shows that (12) is bounded in ¢ by a
multiple of ||V¢|l., <& This finishes the proof of the lemma. O

Lemma 10. Ler © < R” be a bounded C"-domain and let N(P)} be the exterior normal
at P e ds2. Then,

lim  (VS(1){(X) - VS(1)(X)) - N(P) = —1,
X—P. XeR"{)

where X is the “local boundary reflection” of X with respect to a tungential coordinate
System,

Remark. For C2-domains this lemma is a consequence of the classical jump-
conditions for single-layer potentials with continuous density. In the context of
C!-domains, the observation that the jump-conditions are still valid in a weaker
sense was previously made by Martensen [7] in dimension # = 3. He showed that
lime—o, (VS(1)(P + tN(P)) — VS(1)(P — iN(P})) - N(P) = —1. This is a special case
of Lemma 10, since P — tN(P) is the “local boundary reflection” of P 1 tN(P) with
respect to a tangential coordinate-system.

Proof. We consider the expression
(13)  VS()(X)-N(P) + 2(1)(X),

where

(149 2(1)x) = wlﬂjmﬁ’i,%(_%,@ do(0)

denotes the double layer potential with density 1 on 9£2. Pick a neighborhood B(P) of
£. We can write (13) for X e (R"\2) n B(P) and for X e @ defined as in the proof of
Lemma 5, and take the difference. This results in

A (X-0 X-9 B _
m”LQQX_Ql" |)E'—Q|")(N(P) N(Q))d (Q)

The lemma will follow if we can show that the previous expression tends to 0 as
X — P, X e R"\Q, since 2(1)}(X) = —1 and D(1)(X) = 0. On the set O\ B(P) the
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integrand converges uniformly to 0. Therefore it is again sufficient to consider

X-¢g X-Q B
(15) Lmn(u— T Q|,,) (N(P) - N(Q)) do(0).

Since the normal on 32 is a continuous function, and since the integral without
the N(P) — N(Q) contribution was already shown to be bounded in Lemma 5, we
can make (15) arbitrarily small by choosing the neighborhood B(P) sufficiently
small, O

5 The second derivatives of the single-layer

The resuits in this section concern the second derivatives of S{1)(X):

(16)

623(1)(X) ___]J 9y da( () +iJ‘ (@~ X){Q- X)j da(Q).
2

aXr'aI"}' - Wy Jon |X - an iy |X — Q|H+2
For P e 82 we also introduce the “second normal derivative”

a28(1)

3 &*S(1)
e O = N7 ( XX, (X))ﬁN(P)'

Both expressions are defined for all X € R"\@€2. Our goal in this section is to prove

Proposition 11. Let Q2 be a hounded, convex C'-domain in R”. Then for (surface
measure) almost every P € 80, there exists ¢ positive constant C(82, P} such that for
XT=P+IN(P)eR\Q X =P INP)eQand0 <1< to(P) we have

a28(1) (X - a5(1)

(17) 3X0X; aX,0X;

(X")’sc.

Moreover, for almost all P € 8Q the following holds

a8t (250 ey S0 )
AT avrpy X)) = (P,

where K(P) = O is the mean-curvature of 0Q at P.2

% For a convex domain £2, the differential geometric mean-curvature x exists almost every-
where and belongs to £1{8%2), ¢f, Appendix.
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Unlike in Section 4 we cannot formulate Proposition 11 in terms of X and its local
boundary reflection X'. Instead we have to restrict the appreach-direction of X to P
to normal directions only.

Before we start to prove Proposition 11, we need the following Lemma which
provides a suitable tangential coordinate-system for almost every point on o4,

Lemma 12. Let 2 be a bounded, convex C'-domain in R”. For almost every Pe 082
there exists a ball B(P) = R”, a neighborhood U{0) < R™ ! and a convex C Lefunction
¢ U(0) — [0, ) such that after a translation and rotation

092 B(P) = {(x,p(x)) | x € U(0}},
QAB(P) < {(x,0(x)+ 1) | x € U(0), > 0}.

Moreover, p(0) =0, Vg(0) =0 and ¢ is twice differentiable at 0 in the sense that
¢(x) = 3xTHx+ o(x*) as x — 0 for a symmetric, positive semi-definite matrix H =
H(P).

The existence of a tangential coordinate frame holds for any point of a C'-domain.
For almost every P e 0@, the second-order differentiability of ¢ at 0 follows from
Alexandroff’s Theorem, {1].

Proof of Proposition 11. Fix é > 0, and let B(P) be a ball of radius & around P. For
any P e dQ, the difference (17) is a sum of an integral on B(P) n 012 {first type)
and an integral on 6\ B{P) (second type). It is easy to see that the integrals of the
second type will be bounded in absolute value by a constant € which depends on the
Lipschitz character of £2 and P. It remains to analyze the integrals of the first type,
which we do by localizing. For almost every P ¢ 32, let B(P)and p be as in Lemma 12.
Note that in these local coordinates, |X* — Q" — (|32 + (p(y} + )})¥/? =
K(0, y, ¥t;k). Therefore the integrals of the first type in the left hand side of (17)
are of the form J; + J; with

-1
=g | KOy =t - K3, )L Po) Py
n ¥ =

and one of the following integrals:
fl<ij<n-1,

"
" ¥l=

Inthecase 1 <i<n—1, j=n, the integral is:
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S = _J y;((?(}’) + t)K(Os Yo —hin+ 2) - ((0(}’) - I}K(O, »ntn+ 2))
LE

[£27%
A1+ [Ve(y)|* dy

n
=] N,y ~n+2) = KOy tim+ D1+ WP
nJ|y|<

+ C—}J YK, 3, —t;n +2) + K(0, p,;m+ 2}/ 1 + [Vo(y)|* dy.
i dy =1
Finally, when i = j = »;

Jm=iJ| | I((w(y) + 12K (0, y,~5m +2) = (p(») — 0°K(0, 3, 1,1+ 2))
=

Wy
1+ Pe(»)| dy

H
=—| (e +AKO,y, —60+2)=K(0,3, 6,4+ 201/ 1+|Vo( ) dy
Wa Sy <1

+wijr| 200K, 7, ~:2+2) +K(0, y, 1;n+2) L+ |Vo(y)|* dy.
nJdiy|=

By straight-forward application of Lemma 2(g) we find the boundedness of Iy (ij=

l...,n), J (i,j=1,...,n—1) and J,,. Also the first part for J,, is bounded by
Lemma 2(g), and hence we only need to bound

(19) J yA(K(0, y, —t;n+2) + K(0, y, 6,0 + 2))0/ 1 + [Vo(y)|* dy
[¥l=i

= O(|t|log [¢]} + J Yit(K(0,y, ~t;n+2) + K(0, p, 51+ 2)) dy,
[¥l=l

where we have used y/1+ |Vo(y)|* — 1 = O(y*) and Lemma 2(e). Applying
Lemma 3(a) we find that

1 1
20 - dv=0
(20) jmg””([|y|2+<¢(y)+z)2}‘"+”“ [|y|‘*+(%yHyT+r)21("”””) p=otl

for + — 0, and the same holds if ¢ is replaced by —1. Since the second integral in (20)
vanishes by the oddness of the integrand, we conclude that the remaining integrals in
{19) tend to zero for 1 — 0. This completes the bound (17).

with

|
‘
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) - K0, 5,0+ 2))

1+ Vp(y)* dy
+ 21+ Ve(y)* dy

-2y 1+ Pe(y) dy.

- 8)2K(0, y, t;n + 2))

A/ 1+ [Vo(y)* dy
1+2))y/ 1+ [Vo(y)| dy

2}y 1+ (Vo y)} dy.

oundedness of I (i,j =
for J;, is bounded by

Ve(y)|*dy
[(0,y,6n+2)) dy,

emma 2(e). Applying
dv=o(1)

H)z][nu);z)

second integral in (20)
> remaining integrals in
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For the proof of (18), we consider the expression

928(1) 82(1) 85(1) a1

e e X vy ) e )

where Z(1)(X) stands for the double layer potential with density 1 over €2, which is
explicitly given in (14). Since 2 is constant both in £ and R™\Q, the derivatives of @
vanish in (21). However, it will be useful for our estimates to have added “zero” in
(21). For the normal derivative of 2(1) we find the expression

29(1) ZLJ N(P)-N(Q)
NP T o) X0
__n_J N(Q) (X - QIN(P)- (X - O)
a2

o I Q|"+2 do.

Using for (surface measure) almost every P a coordinate system as described in

Lemma 12 with N(P) =(0,...,0,—1) and N(Q) = (Vg.~1)/+/1 + V|, we can
localize and express (21) as

iy ( —/ 1+ 17(y)? 1 )dy
=t

On st \ (W24 00) + 097 T (517 + (9} + 077

nJ (W) +0°1+70(3) ] +(0(1) + DT o(y)y+(~1)(p(») +1)) i
M=l

+ N
O (51 + (oly) + )32
— (same integrals with ¢ replaced by - 1).

With the help of the singular kernels we can write these integrals as

wlj (1 -1+ |V¢J(y)!2)(K(O, yo—tin) — K(0,y,t;n)) dy
mdiy <l
+wi" r | ((m + Vo(»))? - l)(w(y)2 +0) + }’Vw(y)qo(y))

<
(KO y,—tin+2) - K(0,y,6;n+ 2)) dy

+£_ﬂ I ( l+|‘u7(9()’)|2_l)Zga(y)r(K(O,y, —1:n+2)+K(0, y, f;n+2))dy

Jiyl=1

+— Ve(y)(K(0, p,—t;n 4 2) + K(0, y, ;0 + 2)) dy.
@n J|y<1




1
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Since 1 — /1 + ]V;;::(y)|2 = O(|y|2) we can apply Lemma 2 to identify the first three
integrals 10 be of order O(#} as t — 0. Therefore, the only term that remains to be
analyzed is

@) | Re)KO,y, e+ 2+ KO,y 60+ 2) by
y=l

|y

Since yVo(p) — yTHy = o(|y|*) for y — 0, (22) can be written by Lemma 3(c) as the
sum of a o(1)-term and the integral

) L[ G KO,y —an+2) KO, b0 2)
ndl =l

This integral can be transformed by a rotation of coordinates in such a way that
in the new coordinate-system the Hessian is diagonal, its diagonal entries being the

principal curvatures y,,...,7,_; of 82 at the point P. Therefore, it remains to
compute

—H—J ty!-yf(K(O, n=tn+2}+ K0,y 0+ 2)) dy,
D )y 1

where repeated indices are summed from i=1,....n— 1. By Lemma 3(b), this
equals

ZMJ 3
— IRy ——————5dy + O(4).
Ondiyst 7 {|p]? 4 2yl D2

Instead of integration over the ball |y| < 1 we can change to integrating over the
cube {—1,1] x -+ x [~1,1], so that it remains to compute

2nt ! 1 y.y.z
lim—J dy J dyn_1 it
-0 @y, J_, a " (y2+"‘+y§—| +t2)(n+2},/2

After the change of variables s;t = y, the above limit becomes

n2” Jw ds J% ds 7t
el . . ‘
@y Jo 0 (4 + 82 + 1)t

Using properties of the /-function it is not hard to see that the above sum equals

g
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na 2 to identify the first three
only term that remains to be

n+2))dy.

written by Lemma 3(c) as the

 + 2)) dy.
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2)) dy,
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=

;)(f!+2}f2
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— N o 2
n2n oy, r' b J PR
T .
(=1} Jo 0 (1 + jz)2ylrr2/2
n2" |22 2n * "
=) | TP | o R
210, - "2
:ﬁu—"—]x(P)J sin” xdx=(n ~ L}x(P).
Wy 0
This concludes the proof of Proposition 11, O

6 End of the proof of Theorem 1

In Section 3 we came to the following conclusion: if @ = const. in R™\Q2 then 2 is a
ball. If we assume for contradiction that ¢ % const., then the Hopf boundary-lemma
implies that

{(P) = lim inf

t—0y

M<o for all P e 682,

where P, = P + tN(P). For simplicity we write S for the single-layer potential S{1},

DS for its Hessian-matrix and « for the exponent 2”‘_22". By the mean-value theorem

there exists 7 € {0, £) such that for sufficiently small ¢

0> i(P)/2 > V®(P,) N(P)
= {2VS(P) D S(PIN(P)S(P:) + a[VS(P,)VS(P,) - N(P)}S*'(P,).
Using Proposition 8 we find that the right-hand side equals
{=2(N(P) + o(1))D2S(PIN(P)(c + o(1)) + (1 + o(1))(~1 + (1))}
x (¢! 4+ o(1))

where o(1) — 0 as £ — 0. Using the boundedness of DS as formulated in Proposi-
tion 11 we get for sufficiently small ¢

S i(P)
—2;3N—2(P—}(P3)C-R£ FT(O

Since, for almost every Pedf2, we have by Proposition 11 that E,{;i%p—)(P,) —
{n — 1)k(P) for t — 0, the previous estimate implies

(24)  w(P}> (n—_lz)—-c for almost atl P € 52.
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Next we use the inequality
(25) J (X - N(X))x(X) do(X) < 00|
I

which is valid for general convex domains with 0 € Q as we prove in the Appendix (in
the case of a general C2-domain, equality holds in (25); in this case the relation is
known as one of Minkowski’s integral formulas). Combining (24} and (25} we get

nvol 2 .
EM_—_j)_C = j@Q(X . N)Kdﬁ' = |C‘.Qr

But from the PohoZaev-Rellich identity (7) in section 2 we already know that equality
has to hold in the previous relation. This implies that for almost every boundary

point x{X) = [(n — 2)¢|™" in contradiction to (24). Therefore the assumption ¢ %
const. cannot hold, and the proof of Theorem 1 is complete, O

Appendix

Proof of Lemma 2. We give the proof for positive 1 only. We set M = Vel ., and
split the domain D : |y < 1 into the subsets Dy:|x -yl <t/(2M) and Dy : |x - ¥
> t/{2M). In D; we have |g(x) — #(¥)|/t < 1/2 and hence we may estimate

]X(X, Y t; k) - K(X, ¥ _f:k)|

ok [(x =2 2+(w(x) - 0 1) 2]

_ ok [ (x_:_y) oy (@(x} ; () 1) 2J s

Je(x) — p(»)]
t

k+1 !

—kf2

< const.

where the constant only depends on ¢ and k. In Dy we find

fK(x’ Vs I,k) - K{‘x‘l Y —t;k)l
kj2

e ok o(x) ~ p(») + 1]
=k [H( [x — y] )J

D gl

. 28w 49
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- o(x) — g(y) — 1\?
b= {H( [x — yi )J

He(x) — e(y)]|
rx _ y|k+2 !
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-k/2

= const.

Similarly, for the sum of the singular kernels we obtain

const, ¢ * in Dy,

|K(x,p, k) + K(x, y, ~;k)} < ‘.
const. |x — yI™ in Ds.

Hence integration gives

|1-{x)| < const.{[Ve| (I P pP  dy [t o ypke dy)
D| ﬂz

= const.[|Ve||, (O(I’*‘B+"_k“') + r*+] Jl'rﬁ+""“3 dr)
i
and if p(s) = O(|s|*} then we get
|I-(0}| = const, (O(r“’g“_") + z““j]rﬁ”"f‘z dr).
7
Likewise

(i < °°“St-(J 2 Kix— g dy + [ r2x - y)P* dy)
b,

IH

1
= const. (0(:“+ﬂ+”‘k") + % [ppn-k=2 dr) :
i

This finishes the proof of the lemma. O

‘ Proof of Lemma 3. As in the previous lemma we carry out the proof for ¢t > 0, and we
split the domain of integration into D : |y < t/(2M) and D : |y| 2 t/(2M). We
i write I = [#y|4,J = [¢|y|*Band L = J t0(]y|*)C. To estimate 4 in D we use

oers [0 ] e )

_ o1 + te(ly?)

tﬂ+4 !
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—{n+2}/2 | | 3 —(n+23/2
e

and for B we use

. sz ([(3) ()

_ oty + 100515

rﬂ+4

With the same method C can be estimated in Dy by 72 O(1). In Dy we estimate A4

by
-~ (n42}/2 —(n+2112
1 () +m\ 2] yTHy + 207"
A= n+2 l+ N - 1+ T
1] |5 2]y
_ol|y1*) + to{|y%)
I}’IH“
and B by

A= 1+ (Ifaﬂ'(y)ﬂl)2 _(Mﬁ_
. - |y|n+2 |y

_ oY) + 100
|y

27 ~{n+2)/2
t
|yl

Likewise, we obtain C = |y| ™" 20(1) in D,. Hence we find that the integrals are of
the following type (we distinguish between o(r) and o(r) by a suffix)

i nt2 n i n+2 H
= J 0,(-" )+ to,(r") dr+J 0, (r"*) + !0,-(?‘ ) dr,

tr pr+d r 4

[H i

Ppntd  Ln+2 l 2
J:O(I)U +—~—dr+jz+r—2dr),
!

0 f"+3 tﬂ+2.

L= jf orlr") dr + j}l fo,(r") dr.

0 gl prtl

If one takes into account that [} t%,(r®) dr = o,(+****1) if b= 0and a+ b+ 1 2 0,
that ['20,(1)dr = o,(1) and that {' £ 0,(1)dr = 0,(1) if & > 1 for 7 — 0, then we
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| 2 —{n+2},2
) +1}

X1). In D; we estimate A

~(n+2)72
yTHy + 2!) 7
2y

—(n+2)/2
/ )2 H+
Y|

1 that the integrals are of
a suffix)

(") dr

H

bz0anda+b+1=0,
h > 1 for ¢ — 0, then we
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find that
I=o0{l), J=04{t) and L=o,(1) fort— 0,
which was the claim of the corollary. J

An integral formula of Minkowski. If 2 is a bounded C2-domain, then
J (X - N(X))k(X) da(X) = |2€2].
aa

This integral formula of Minkowski can be found in LeichtweiB [5].

Here we state and prove generalizations of this formula for convex domains with
less smoothness. For convex sets (and more generally for sets of positive reach) the
notion of curvature measures was introduced by Federer [2]. His construction is
essentially the following, cf. Schneider {15]: Let K be compact convex subset of IR”,
For every x e R", let #(x) € K be the unique nearest point to x. Let # be a Borel
subset of R”. For ¢ > 0 the set

M(K,n) = {xeR": 0 < dist(x, K} < ¢, n(x) € }

is also a Borel set which is called the Jocal parallel subset of K with respect to # at
distance & A result of Steiner states, that the n-dimensional Lebesgue-measure
w(K,m) = |[M.(K,n)] is a polynomial in e and depends only on ¢,£2, ... .&". Hence we
may write

where the Borel-measures ¢o(K, -),...,c,1(K,-) are called curvature measures. They
are supported on K. Moreover, c,. (K, ) is the # — l1-dimensional Hausdorff-
measure on ¢K and ¢,_»(K,) is called the mean-curvature measure. For convex C2-
domains one has de,_2 = xdo, where ¢ is the » — 1-dimensional Hausdorff-measure
on ¢K, and « is the differential-geometric mean curvature. The curvature measures
have the property that ¢;(Kg, ) — ¢;(K, ) if K, and K are compact, convex sets such
that Hausdorff-distance p(Ky,K) — 0 as k& — oo; the Hausdorff-distance of two
compact sets C, D being defined as min{r > 0: C = D+ rB(0),D « C + rE (0)}
where B,(D) is the unit-ball. If @ is a bounded, open, convex domain then we write
¢;(R} for ¢,(Q),

Lemma, Let 2 be a bounded convex domain in R" which contains the origin. Then

j (X -Nyxdo < 0@, where x = “2=252) _ 120
a0 deo
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is the Radon-Nikodym derivative of the absolutely-continuous part of c,-2(82) with
respect to the n — 1 dimensional Hausdor{f-measure. Moreover, Jor almost all boundary

points X € 082 the value x(X) coincides with the differential-geometric mean-curvature
of 0Q at X If 3Q € C!, then

j (X - N)dewo(@) = |09,

Proof. Let £ be a sequence of smooth convex domain such that p(82,£2;) — 0 for
k — 20. Since ky do — kdo +dc’"8 as k — oo, we find that Ky — kK G-ae ask — w0,
If Ny is a continuous extension of Np (the normal field on 6£2;), then Ny — N o-a.c.
on 682. By the convexity of £; and the fact that 0 e £2; we have that (X - M)k, = 0.

Applying Fatou’s Lemma we get

J (X N)xdo < lim infj (X - Ny do = lim inf [6€2; | = |02].
a0 fo— 2 A, k— o

If ¢2eC" then N, —» N uniformly on #Q. Using again the weak convergence
ki da = dep 2{€2;) — ¢n_2(2) we find

|68 | = J(X N Yden_2(824) — J(X - N)de,_2(R2) ask — o,
which proves the result for convex C'-domains. O
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