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Abstract

By the Alexandro�-Serrin method [2, 14] of moving hyperplanes we obtain
radial symmetry for the domain and the solutions of Du� f �u; jruj� � 0 on
an exterior domain X � Rn n X1, subject to the overdetermined boundary
conditions @u=@m � const., u � const. > 0 on @X1, u; jruj ! 0 at 1 and
02 u < uj@X1

in X. In particular, the following conjecture from potential
theory due to P. GRUBERRUBER (cf. [11, 8]) is proved: Let X1 � R2 or X1 � R3 be a
bounded smooth domain with a constant source distribution on @X1 and letW
be the induced single-layer potential. If W is constant in X1, then X1 is a ball.

1. Introduction and main results

In a seminal paper [14], SERRINERRIN proved that the following overdetermined
boundary-value problem determines the geometry of the underlying set, i.e.,
if X is a bounded C2 domain and u 2 C2�X� is a solution of

Du� f �u; jruj� � 0 in X; u > 0 in X;

u � 0;
@u
@m
� const.2 0 on @X;

where f is in C1, then u is radially symmetric and X is a ball.
In a recent work [12], I considered a corresponding problem for domains

with one cavity: Let X0, X1 be bounded C2 domains and let X � X0 n X1 be
connected. Then for the boundary-value problem (with f 2 C1)

Du� f �u; jruj� � 0 in X; 0 < u < a in X;

u � 0 on @X0; u � a on @X1;
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@u
@m
� const. � ci on @Xi �i � 0; 1�

it is proved that X is an annulus and every solution u is radially symmetric
and decreasing in r.

In this paper, we address a corresponding problem on an exterior domain:
Let X1 be a bounded domain with a C2 boundary. If X � Rn n X1 is con-
nected, then we call it an exterior domain and study solutions u 2 C2�X� of
the problem

Du� f �u; jruj� � 0 in X; 02 u < a in X;�1�
u � a;

@u
@m
� const.2 0 on @X1;�2�

u;ru � 0 at 1;�3�
where m is the exterior normal with respect to X1.

In the following considerations monotonicity is understood in the weak
sense, e.g., a function h is increasing if s 2 t implies h�s�2 h�t�. For the
nonlinearity f we consider the hypotheses:

(H1) f �p; q� � f1�p; q� � f2�p� where f1 is Lipschitz continuous in p and q,
and f2 is increasing in p. Furthermore, f is decreasing in p for small
positive values of p; q.

(H2) f �p; q� is Lipschitz continuous in p and q, and is decreasing in p.

Note that (H2) is the special case f2 � 0 of (H1).

Theorem 1. Let u be a solution of (1)±(3) and let f satisfy (H1). Then X1 is a
ball, and u is radially symmetric and decreasing in r.

Remark. If f is independent of jruj, then the condition ru � 0 at 1 is not
needed. Also, the proof simpli®es considerably when (H2) holds.

Corollary 1. Under the hypotheses of Theorem 1 together with f �a; 0�2 0,
condition (1) can be relaxed to 02 u 2 a in X.

In [13] I treated the quasilinear analogue of (1)±(3), which includes
Monge-AmpeÁ re operators, the capillary surface operator and degenerate
quasilinear operators like the p-Laplacian.

As an application of Theorem 1 we consider the following problem from
potential theory: Let X1 � Rn�n 3 2� be a bounded C2;a domain. On @X1 we
consider a constant source distribution A > 0, which induces a single-layer
potential

W�x� � A
Z
@X1

c�jxÿ yj� dry ;

where c�r� � ÿ�1=2p� log r for n � 2 and c�r� � r2ÿn=�nÿ 2�xn for n 3 3,
where xn is the surface area of the n-dimensional unit sphere. Now suppose
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that W is constant in X1. For n � 2 it is well known (see MARTENSENARTENSEN [11]) that
X1 must be a disk. To my knowledge, the corresponding conjecture for n 3 3
(attributed to P. GRUBERRUBER by MARTENSENARTENSEN [11] and HEILEIL & MARTINIARTINI [8, p.
353]) has not yet been solved.

Theorem 2. The only bounded C2;a domain X1 in Rn�n 3 3� that admits a non-
trivial single-layer potential which is constant in X1 and is induced by a constant
source distribution on @X1 is a ball.

Proof. Let A be the constant source distribution and W be the induced po-
tential. Then W 2 C2;a�X1�; see GILBARGILBARG & TRUDINGERRUDINGER [7, Theorem 6.14].
Clearly DW � 0 in Rn n X1, W � const. on @X1 and @W=@m� � 0 on @X1, since
W is constant in X1. By the jump condition for the normal derivative we ®nd
@W=@mÿ � ÿA � const.40 on @X1. Since X1 is bounded, we also ®nd that
W! 0 at 1. To show that X � Rn n X1 is connected suppose the contrary,
i.e., X

c
1 has a bounded component Z. Since W is harmonic in Z and constant

on @Z, we deduce that W � const. in Z, contradicting the Neumann condi-
tions on @Z. Hence X � Rn n X1 is connected. To apply Theorem 1 it remains
to show 02 W < Wj@X1

in X. Since c�r� > 0 in Rn n f0g for n 3 3, we ®nd
W > 0 by de®nition. Suppose W attains larger values in X than Wj@X1

. Then W
must reach its maximum in X since W � 0 at 1. By the strong maximum
principle and the connectedness of X, we ®nd W � const., which is a con-
tradiction.

Remark 1. We discuss the case n � 2 after the proof of Theorem 1, in order
to see which adjustments are needed to replace u! 0 at1 by an appropriate
condition which includes logarithmic potentials.

Remark 2. A similar uniqueness theorem for volume potentials (constant on
@X1 and induced by a constant density) was given by FRAENKELRAENKEL as an ap-
plication of results in [3] and [4].

2. The proof of Theorem 1

We use the following notation: x � �x1; . . . ; xn� � �x1; x0� denotes a point
in Rn with x0 � �x2; . . . ; xn� 2 Rnÿ1; jxj is the Euclidean norm of x; and Br�x� is
the open ball with radius r centered at x. For partial derivatives we use
@xk u � @ku � uk and for derivatives in direction g 2 Rn n f0g we use
@u=@g � @gu. Sometimes it is convenient to write f � f �p; q1; . . . ; qn� instead
of f �p; q�, where q � j�q1; . . . ; qn�j. With respect to Lipschitz continuity both
notations are consistent, i.e., f �p; q1; . . . ; qn� is Lipschitz continuous with
respect to q1; . . . ; qn if and only if f �p; q� is Lipschitz continuous with respect
to q. Finally, for a real-valued function c on a subset of Rn we use
cÿ�x� � minfc�x�; 0g for the negative part of c.
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We start with a brief outline of the proof: We show symmetry of X and u
in the x1-direction for any solution u of (1)±(3). Once this is done, we see that
for any rotation M , the function u�Mx� is also a solution of (1)±(3) on M>X,
i.e., M>X is symmetric in the x1-direction. The radial symmetry of X and u
follows. The x1-symmetry will be proved by the method of re¯ection in
hyperplanes, which was introduced by ALEXANDROFFLEXANDROFF [2] and later reintro-
duced and re®ned by SERRINERRIN [14] in order to apply to partial di�erential
equations on bounded domains, and which was ®nally used to great e�ect by
GIDASIDAS, NII & NIRENBERGIRENBERG [5]. For elliptic equations on Rn, LII [9] and LII & NII

[10] simpli®ed the proofs and extended the original results of GIDASIDAS, NII &
NIRENBERGIRENBERG [6]. We use these simpli®cations together with a variant of
SERRINERRIN's method, which makes the method suitable for our exterior domain
problem. Let us de®ne

Tk � fxj x1 � kg; the hyperplane;
Hk � fxj x1 > kg; the right-hand half-space;
xk � �2kÿ x1; x0�; the reflection of x at Tk;
R1�k� � fx 2 X1j x1 > kg; the inner right-hand cap;
C1�k� � fx 2 @X1j x1 > kg; the inner right-hand boundary;
m1 � supfx1j x 2 X1g; the x1ÿextent of X1;

R�k� � Hk n X
k
1; the reduced half-space.

For the geometry of inner right-hand caps, it is well known (see AMICKMICK &
FRAENKELRAENKEL [3, Lemma A.1]) that for values of k a little less than m1, the
re¯ection of R1�k� lies in X1, and the positive x1-direction points out of R1�k�
at every point of C1�k�. Also it is well known that this remains true for
decreasing values of k until R1�k�k becomes internally tangent to @X1, or the
normal on C1�k� becomes perpendicular to the x1-direction (see Figure 2). We
denote this critical value of k by m. The admissible range for k is then �m;1�.

Figure 1. Illustration of the reduced half-space.
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For such k the comparison function

w�x; k� � v�x; k� ÿ u�x� � u xk
ÿ �ÿ u�x�

is well de®ned on R�k�. Notice that @R�k� n Tk � @Xk
1 since the inner right-

hand cap R1�k� re¯ects into X1. On @R�k� \ Tk we have w�x; k� � 0, and on
@R�k� \ @Xk

1 we have w�x; k� � aÿ u�x�3 0; i.e., w3 0 on @R�k� for all
k 2 �m;1�. The idea of reduced half-spaces R�k� is also used in the form of
reduced right-hand caps for bounded domains in ALESSANDRINILESSANDRINI [1], WILLMSILLMS,
GLADWELLLADWELL & SIEGELIEGEL [15] and REICHELEICHEL [12].

We shall establish the following properties of w�x; k� for all k 2 �m;1�:
(i) w�x; k� > 0 in R�k�;
(ii) @1w�x; k� > 0 on X \ Tk:

Properties (i) and (ii) will be proved by an initial step for k 2 �R;1� (R
su�ciently large) and by a continuation step for all k in a maximal interval
�l;1� with l � m. We then have w�x;m�3 0 in R�m�. From this we shall
conclude that w�x;m� � 0 on a component Z of R�m�, and ®nally we shall
show that Z [ Zm � X, which is the desired symmetry of X. In case of Hy-
pothesis (H2) the proof simpli®es considerably. This will be discussed at the
end of the proof.

The following boundary lemma will be proved in the Appendix.

Proposition 1. Let u be a solution of (1)±(3). For z 2 @X1 let g 2 Rn be a ®xed
unit vector with m�z� � g > 0, where m�z� is the exterior normal to @X1 at z. Then
there exists a radius q � q�z� and a ball Bq�z� such that @gu < 0 in Bq�z� \ X.

Remark. We always assume that the ball Bq�z� is so small that the vector g
points out of X1 at all points of @X1 \ Bq�z�.

Proof of Theorem 1.
Step (I). First we show that if w � 0 on a component Z of R�k� for some
k 3 m, then Z [ Zk � X, which is the desired symmetry of X. @Z decomposes

Figure 2. The critical positions of Tm.
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into two parts: the part on the hyperplane @Z \ Tk and the remaining part
@Z n Tk. From the assumption w � 0 we ®nd u � a on @Z n Tk, i.e., @Z n Tk is a
subset of @X1 by (1) and of @X

k
1 by de®nition. This is the intrinsic reason for

the symmetry of X. The following topological argument shows that Z [ Zk

can be extended across Tk to an open subset of X. We de®ne

X � Z [ Zk [ �@Z \ X� [ @Zk \ X
ÿ �

and show that X is open. Once this is proved, we have

@X � @Z [ @Zk
ÿ � n @Z \ X� � n @Zk \ X

ÿ � � @X;
which implies that X � X since X is also nonempty and X is connected. To
show that X is open, observe ®rst that Z [ Zk � intX .

(a) Take x 2 @Z \ X. Since @Z n Tk � @X1 � @X, we see that x 2 Tk \ X.
Since X is open there is a ball Bq�x� � X, and we can de®ne

B> � Bq�x� \ fx1 > kg;
B< � Bq�x� \ fx1 < kg;

E � Bq�x� \ fx1 � kg:
Clearly Z \ B>4;. If also Zc \ B>4;, then @Z \ B>4;, which is impossible
since @Z \ B> � �@X [ Tk� \ B> � ;. Hence B> � Z, B< � Zk and
E � X \ �Z \ Tk� � X \ @Z, which together imply that Bq�x� � X .
(b) Take x 2 @Zk \ X. It follows from the de®nition of Z that @Z n Tk � @Xk

1

or equivalently @Zk n Tk � @X1 � @X. As before, this implies that x 2 Tk.
Hence there is a sequence fxmg1m�1 � Zk \ X with xm ! x. Also xk

m 2 Z converge
to x � xk, which shows that x 2 Z \ Tk \ X � @Z \ X. By (a) we ®nd x 2 intX .

This proof goes back to lecture notes of L. E. FRAENKELRAENKEL..

Finally note that it is impossible that w � 0 on Z for k 2 �m;1�, since X
can only be symmetric to Tk for k � m.

Step (II). Here we derive a di�erential equation for w�x; k�. For k 2 �m;1�
the function v�x; k� � u�xk� satis®es

Dv� f �v; jrvj� � 0 in R�k�:
Hence we ®nd that

Dw� f �v; jrvj� ÿ f �u; jruj� � 0;�4�
if we de®ne

c�x� � f �v;ru� ÿ f �u;ru�
vÿ u

;

bi�x� � f �v; u1; . . . ; uiÿ1; vi; . . . ; vn� ÿ f �v; u1; . . . ; ui; vi�1; . . . ; vn�
vi ÿ ui

;

where the quotients are zero if the denominators are zero, then (4) reads

Dw� bi@iw� cw � 0 in R�k��5�
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with bounded functions bi and a possibly unbounded function c. For later
use, we introduce �w � w=g, where g is a C2 function on R�k�. After a little
computation we obtain

D �w� bi � 2
@ig
g

� �
@i �w� c� bi@ig� Dg

g

� �
�w � D �w� �bi@i �w� �c �w � 0:�50�

If K > 0 is an upper bound for the functions bi, then for a > K a good
candidate is g�x� � g�x; k� � exp �ÿka=2� ÿ exp �ÿax1�, which has the
properties g > 0 and bi@ig� Dg 2 a�K ÿ a� exp �ÿax1� < 0 in R�k�.

Step (III). We show that for the proof of (i) and (ii) it su�ces to show that
w�x; k�3 0 in R�k� for all k 2 �m;1�. Suppose that w�x; k�3 0 in R�k�. By
(H1) we derive from (4) that

Dw� f1�v; jrvj� ÿ f1�u; jruj�2 0:�6�
If we de®ne c�x� and bi�x� as in (I), with f1 instead of f , we ®nd

Dw� bi@iw� cÿw2 Dw� bi@iw� cw2 0�7�
with bounded functions bi, c, cÿ. By the strong maximum principle applied to
w�x; k�3 0 on a component Z of R�k� we have either w � 0 on Z or w > 0 in
Z. In (I) we proved that w � 0 in Z implies the x1-symmetry of X, which is
impossible for k > m. Hence, for all k 2 �m;1�, it is enough to prove the
weak inequality w�x; k�3 0 in R�k� since we can sharpen it to w�x; k� > 0 in
R�k� and @1w�x; k� > 0 on Tk \ X by using (7) and the maximum principle.
(Observe that for k > m the positive x1-direction is non-tangent and points
inside R�k� at Tk \ @R�k�; see Figure 1.)

It is important to notice that the same reasoning applies to
�w�x; k� � w�x; k�=g�x; k� if �w3 0 (here g is chosen as in the remark following
(50)). In fact, the di�erential inequality corresponding to (7) now reads

D �w� �bi@i �w� �c
ÿ

�w2 0;�70�
with bounded functions �bi; �c

ÿ
. For k > m we can use (70) to sharpen �w3 0 to

�w > 0 in R�k�, since �w � 0 on a component Z implies w � 0 on Z, which is
impossible by (I).

Initial Step (IV). By (III) we have to show the existence of a large R such that
w3 0 in R�k� for k 2 �R;1�. Suppose for contradiction that there exist se-
quences kk ! �1 and x�k� 2 R�kk� with w x�k�; kk

ÿ �
< 0. We take g�x; kk� as in

the remark following (50) and choose x�k� 2 R�kk� such that �w�x; kk�
� w�x; kk�=g�x; kk� attains its negative minimum over R�kk� in x�k� ( �w! 0 at
1, �w3 0 on @R�k�). The point x�k� does not lie on @R�kk� since there �w3 0.
Hencerx �w x�k�; kk

ÿ � � 0 and D �w x�k�; kk
ÿ �

3 0. Also u x�k�
ÿ �! 0,ru x�k�

ÿ �! 0
since x�k� ! 1, and u x�k�;kk

ÿ �! 0 since 02 u x�k�;kk
ÿ �

< u x�k�
ÿ �

. It follows
from (H1) and the de®nition of c�x� in (II) that for k large, c x�k�

ÿ �
2 0 and

�c x�k�
ÿ �

< 0 by the choice of the function g. Hence we have
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D �w
ÿ
x�k�; kk

�� �bi
ÿ
x�k�
�
@i �w
ÿ
x�k�; kk

�� �c�xk� �w
ÿ
x�k�; kk

�
� D �w

ÿ
x�k�; kk� � �c�xk� �w

ÿ
x�k�; kk

�
> 0;

which contradicts the di�erential equation (50). This ®nishes the initial step.

Continuation Step (V). By the initial step, the following quantity is well
de®ned

l � inf fa > m : w�x; k�3 0 in R�k� 8 k 2 �a;1�g;
and both (i) and (ii) hold for all k 2 �l;1� by (7) and the maximum principle.
We want to show that l � m, and therefore suppose for contradiction l > m.
(Then the x1-direction is non-tangent on @R1�l�.) There exist sequences kk"l
and x�k� 2 R�kk� such that w x�k�; kk

ÿ �
< 0. We suppose that these sequences

are chosen such that �w�x; kk� attains its negative minimum over R�kk� in x�k�.
The point x�k� is not in @R�kk� since on @R�kk� \ Tkk we have �w � 0, and on
the remaining part @R�kk� n Tkk � @Xkk

1 \ Hkk we ®nd that �w�x; kk� �
�aÿ u�x��=g�x� > 0. Hence x�k� 2 R�kk�, rx �w x�k�; kk

ÿ � � 0 and Dx �w x�k�; kk
ÿ �

3 0. We claim that x�k� are bounded. Suppose not; then u x�k�
ÿ �! 0 and

v x�k�; kk
ÿ �! 0 since 02 u�x�k�;kk � < u x�k�

ÿ �
. This implies that c x�k�

ÿ �
2 0 (see

(II)) for k large enough, and by the same reasoning as in the initial step we get
a contradiction to the di�erential equation (50). Now, the boundedness of x�k�

allows us to take a convergent subsequence x�k� ! �x 2 R�l�. At �x we ®nd that
rx �w��x; l� � 0, �w��x; l�2 0 and also �w��x; l�3 0 by the de®nition of l. Hence
�w��x; l� � 0. By the maximum principle, its boundary version and (70), �x has
to be on the non-smooth part of @R�l�, i.e., �x 2 @X \ Tl where, because
l > m, the positive x1-direction points out of X1. Let us denote the re¯ection
of x�k� at Tkk by y�k�; clearly x�k�; y�k� ! �x. By Proposition 1, there exists a ball
Bq��x� such that @1u < 0 in X \ Bq��x�. For k suitably large we have

x�k�; y�k� 2 Bq��x� and

u�x�k�� ÿ u�y�k�� �
Zx�k�1

2kkÿx�k�
1

@1u�t; x�k�0�dt < 0

in contradiction to w x�k�; kk
ÿ �

< 0. This shows that l � m and ®nishes the
continuation step.

So far we have the following conclusion: w�x;m�3 0 in R�m� and, in
particular, either w > 0 or w � 0 for any component Z of R�m�. If w � 0 on a
component, then X is x1-symmetric. To ®nish the proof it remains to show
that there is such a component, i.e., that there is one point x in R�m� with
w�x;m� � 0. In this ®nal step the Neumann boundary condition comes into
the play.

Step (VI). Suppose for contradiction that w > 0 in R�m�. Recall here that the
critical position of Tm originates either from R1�m�m becoming internally
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tangent to @X1 or from the x1-direction becoming tangent to the right-hand
boundary C1�m�.
(a) Internal tangency: Let q � pm be a point where @R1�m�m meets @X1,
p 2 @R1�m� n Tm. Clearly w�p;m� � 0 so that by the di�erential inequality (7)
and by Hopf's lemma we ®nd @m�p�w�p;m�40. By the internal tangency we
®nd m�q� � m�p�m, where m�q� is the common normal to @X1 and @R1�m�m at q,
and it is easy to calculate that

@v
@m�p� �p;m� �

@u
@m�q� �q� � const. � @u

@m

����
@X1

:

Hence @m�p�w�p;m� � 0, in contradiction to our previous assertion.

(b) There exists a point p 2 Tm \ @X1 with m1�p� � 0: Observe that p is a right-
angled corner of R�m� so that a direct application of Hopf's lemma as in (a) is
not at hand. Instead we show that w has a zero of second order at p, which
contradicts the corner version of Hopf's lemma due to SERRINERRIN [14] (see the
Appendix). To calculate the derivatives of w we use a rectangular coordinate
frame with origin at p, with the nn-axis along the exterior normal m�p� to @X1

and the n1-axis collinear with the x1-axis. In this frame @X1 is locally ex-
pressed by

nn � h�n1; . . . ; nnÿ1� � h�n0�; h 2 C2;

and the normal m�n0� at �n0; h�n0�� is given by

m�n0� � �ÿrh�n0�; 1�
jrh�n0�j2 � 1
� �1=2 :

That the exterior normal at p coincides with the nn-axis means that
rh�0� � 0. The point x � p corresponds to n � 0. Using the n-coordinates,
we introduce new functions ~u, ~v, ew by

~u�n� � u�x�; ~v�n� � v�x;m� � u�xm�; ew�n� � w�x;m�
and ®nd the relations

~v�n� � ~u�ÿn1; n2; . . . ; nn�;

ew�n� � ~u�ÿn1; n2; . . . ; nn� ÿ ~u�n1; . . . ; nn�:
The Dirichlet and Neumann boundary conditions on @X1 now read

~u�n� � const.;
@~u
@m
�n� � rn~u�n� � m�n� � const.;

and with the help of the parametrisation of @X1 we ®nd

~u�n0; h�n0�� � const.;

ÿ
Xnÿ1
l�1

~ul�n0; h�n0��hl�n0� � ~un�n0; h�n0�� � const. � �jrh�n0�j2 � 1�1=2:
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Di�erentiation with respect to nj for j � 1; . . . ; nÿ 1 gives (we use the sum-
mation convention for l � 1; . . . ; nÿ 1)

~uj � ~unhj � 0;

ÿ~uljhl ÿ ~ulnhjhl ÿ ~ulhlj � ~unj � ~unnhj � const. � hlhlj

�jrhj2 � 1�1=2
;

and evaluation at n0 � 0 results in (recall that rh�0� � 0)

~uj�0� � 0 for j � 1; . . . ; nÿ 1;�8�
~unj�0� � 0 for j � 1; . . . ; nÿ 1:�9�

Let us now collect the results for the derivatives of ew at n � 0. Notice thatewa; ewab � 0 at n � 0 for a; b 2 f2; . . . ; ng, since at this point n and its re¯ected
point coincide. For the same reason ew11�0� � 0. Furthermore, ew1�0� � ÿ2~u1�0�
� 0 by (8) and ew1n�0� � ÿ2~u1n�0� � 0 by (9). To obtain the second-order zero
of ew at 0 we need to show that the remaining derivatives @1aew�0� vanish for
a � 2; . . . ; nÿ 1. We do this by using the following Taylor expansion of ew:

ew�n� � ew�0� �Xn

j�1
@jew�0�nj �

Xn

j;k�1
@jkew�0� njnk

2
� o jnj2
� �

�
Xnÿ1
a�2

@1aew�0�n1na � o jnj2
� �

:�10�

Fix a 2 f2; . . . ; nÿ 1g, de®ne n � r�q; 0; . . . ; 0; �q
z}|{a

; 0; . . . ; 0; 1� for r; q > 0,
where the plus sign is taken if @1aew�0�2 0 and the minus sign if @1aew�0� > 0.
The point n�q; r� moves along a straight line through n � 0 (see Figure 3),
which makes the angle

cos h�q� � 1����������������
2q2 � 1

p
with m�p�. Clearly h�q� ! 0 as q! 0. Since R�m� has a rectangular corner at
x � p (that is, at n � 0) and since the n1-component of n�q; r� is positive, we

Figure 3. The n-coordinate system at p.
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®nd that for q and r small the point n�q; r� is in R�k�. After this choice of q, r
it follows from (10) thatew�n�q; r�� � ÿr2q2jew1a�0�j � o r2

ÿ �
for r! 0:

Since ew > 0 in the vicinity of the boundary point n � 0, we see that this forcesew1a � 0. Hence ew and w have a second-order zero at p in contradiction to
SERRINERRIN's corner lemma. This ®nishes the proof of Theorem 1.

Remarks on (H2 ). Under Hypothesis (H2) the coe�cients bi and c in (5) are
bounded and c is non-positive. Since for all k 2 �m;1�, we know w3 0 on
@R�k� and w � 0 at 1 and since w � 0 on a component of R�k� is ruled out
by (I), we ®nd that w�x; k� > 0 in R�k� and @1w�x; k� > 0 on X \ Tk by a direct
application of the strong maximum principle and its boundary-point version.
Hence (III), the Initial Step (IV) and the Continuation Step (V) are not
needed in the case of (H2).

Proof of Corollary 1. Suppose that f �a; 0�2 0 and 02 u�x�2 a. Then

02 Du� f �u;ru� ÿ f �a; 0�
2 Du� f1�u;ru� ÿ f1�a; 0� when �H1� holds;�11�

and with the usual de®nitions of bounded functions

c�x� � f1�u; 0� ÿ f1�a; 0�
uÿ a

;

bi�x� � f1�u; 0; . . . ; 0; ui; . . . ; un� ÿ f1�u; 0; . . . ; 0; ui�1; . . . ; un�
ui

;

we deduce from (11) the following linearized inequality with bounded coef-
®cients

02 D�uÿ a� � bi@i�uÿ a� � c�uÿ a�
2 D�uÿ a� � bi@i�uÿ a� � cÿ�uÿ a�:�12�

By the strong maximum principle we get u < a in X, so that Theorem 1
applies.

3. The case n$2

Here we prove the analogue of Theorem 2 in the case n � 2. Let A > 0 be
the constant source density on the boundary of the domain X1. Then the
potential is given by

W�x� � ÿ A
2p

Z
@X1

log jxÿ yj dry ;

and we want to prove that if W � const. in X1, then X1 is a ball in R2. As in
the case n 3 3 it is straightforward to show that W is harmonic in R2 n X1, W
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and @W=@m are constant on @X1 and that (by the strong maximum principle)
W < Wj@X1

. But of course W�x� ! ÿ1 as jxj ! 1. Hence Theorem 1 is not
applicable directly. As before, we are in the situation of Hypothesis (H2) since
W is harmonic. A close investigation of the relevant proof Steps (I), (II), (VI)
and the preceding remark reveals that the condition that u � 0 at1 was only
needed to show that w�x; k� � 0 at 1. Hence the proof of Theorem 1 would
go through if we could establish that w�x; k� � 0 at 1 for our particular
problem. Using the de®nition of W, we have to investigate the behaviour of

W xk
ÿ �ÿW�x� � const.

Z
@X1

log
xk ÿ y
�� ��2
jxÿ yj2 dry for x!1:

For y in bounded domains we ®nd that

log
xk ÿ y
�� ��2
jxÿ yj2 � log 1� �2kÿ x1 ÿ y1�2 ÿ �x1 ÿ y1�2

jxÿ yj2
 !

� log 1� 4k2 � 4x1y1 ÿ 4kx1 ÿ 4ky1
jxÿ yj2

 !

� O
1

jxj
� �

as jxj ! 1, uniformly in y (since @X1 is bounded). So indeed W xk
ÿ �ÿW�x�

! 0 at1, and we obtain Theorem 2 for n � 2 by the same method as before.

Appendix

Proof of Proposition 1. Clearly @gu�z�2 0 since u < a by (1). If @gu�z� < 0,
the statement follows by continuity; so let us suppose that @gu�z� � 0. (This
implies that ru�z� � 0, since g is non-tangent and u � const. on @X1.)

Case 1. f �a; 0�2 0. As in the proof of Corollary 1, we ®nd that

02 Du� f �u;ru� ÿ f �a; 0�;
which can be rewritten (by an appropriate choice of bounded functions bi, c)
as

02 D�uÿ a� � bi@i�uÿ a� � c�uÿ a�
2 D�uÿ a� � bi@i�uÿ a� � cÿ�uÿ a�:

Hopf's lemma at z 2 @X1, where u�z� � a, yields @gu�z� < 0 in contradiction
to the assumption that @gu�z� � 0. This shows that Case 1 cannot occur.
Case 2. f �a; 0� > 0. We ®rst calculate Du�z� by summing the second direc-
tional derivatives with respect to the n vectors m�z�; n2; . . . ; nn, where n2; . . . ; nn

are mutually orthogonal and tangent to @X1 at z. Since u � const. on @X1, we
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®nd that Du�z� � @2m u�z�. Next we calculate @2gu�z�. Using the summation
convention for i; j � 2; . . . ; n, we have (with gi � g � ni)

@g � �g � m�@m � gi@ni ;

@2g � �g � m�2@2m � 2gi@g@ni ÿ gigj@ni@nj :

Taking into account that @ni@nj u�z� � 0 since u � const. on @X1, and that
@ni@gu�z� � 0 since @gu has a local minimum on @X1 at z, we apply the op-
erator @2g to u at z and ®nd

@2gu�z� � �g � m�z��2@2m u�z� � �g � m�z��2Du�z�
� ÿ �g � m�z��2f �a; 0� < 0:

By continuity, @2gu < 0 in Bq�z� \ X. Next we take a smaller ball Bq1�z� such
that for every y 2 Bq1�z� \ X the straight line y ÿ tg �t > 0� stays inside
Bq�z� \ X until it hits a point y0 2 Bq�z� \ @X1 (see Figure 4). Integrating
@2gu�x� < 0 along this straight line connecting y0 to y, we get
@gu�y� < @gu�y0�2 0 for all y 2 Bq1�z� \ X. This is the assertion of Proposi-
tion 1.

Finally, for completeness, we state (see [14] )

Serrin's Corner Lemma. Let D be a domain lying to the right of the hyperplane
Tk, and let Q 2 @D \ Tk be a point where @D intersects Tk orthogonally. Suppose
that w 2 C2�D� satis®es

Dw� bi@iw� cÿw2 0 in D

(bi, cÿ bounded), while w3 0 in D and w�Q� � 0. Let m 2 Rn be a direction
which enters D at Q non-tangentially. Then either

@

@m
w�Q� > 0 or

@2

@m2
w�Q� > 0

unless w � 0.

Figure 4. The choice of Bq1�z�.
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