Arch. Rational Mech. Anal. 137 (1997) 381-394. © Springer-Verlag 1997

Radial Symmetry for Elliptic Boundary-Value Problems on Exterior Domains

WOLFGANG REICHEL

Dedicated to Wolfgang Walter on the occasion of his 70th birthday

Communicated by J. SERRIN

Abstract

By the Alexandroff-Serrin method [2, 14] of moving hyperplanes we obtain radial symmetry for the domain and the solutions of $\Delta u + f(u, |\nabla u|) = 0$ on an exterior domain $\Omega = \mathbb{R}^n \setminus \overline{\Omega}_1$, subject to the overdetermined boundary conditions $\partial u/\partial v = \text{const.}$, u = const. > 0 on $\partial \Omega_1$, $u, |\nabla u| \to 0$ at ∞ and $0 \leq u < u|_{\partial \Omega_1}$ in Ω . In particular, the following conjecture from potential theory due to P. GRUBER (cf. [11, 8]) is proved: Let $\Omega_1 \subset \mathbb{R}^2$ or $\Omega_1 \subset \mathbb{R}^3$ be a bounded smooth domain with a constant source distribution on $\partial \Omega_1$ and let Ψ be the induced single-layer potential. If Ψ is constant in $\overline{\Omega}_1$, then Ω_1 is a ball.

1. Introduction and main results

In a seminal paper [14], SERRIN proved that the following overdetermined boundary-value problem determines the geometry of the underlying set, i.e., if Ω is a bounded C^2 domain and $u \in C^2(\overline{\Omega})$ is a solution of

$$\Delta u + f(u, |\nabla u|) = 0 \text{ in } \overline{\Omega}, \quad u > 0 \text{ in } \Omega,$$
$$u = 0, \ \frac{\partial u}{\partial v} = \text{const.} \le 0 \text{ on } \partial\Omega,$$

where f is in C^1 , then u is radially symmetric and Ω is a ball.

In a recent work [12], I considered a corresponding problem for domains with one cavity: Let Ω_0 , Ω_1 be bounded C^2 domains and let $\Omega = \Omega_0 \setminus \overline{\Omega}_1$ be connected. Then for the boundary-value problem (with $f \in C^1$)

$$\Delta u + f(u, |\nabla u|) = 0 \text{ in } \overline{\Omega}, \quad 0 < u < a \text{ in } \Omega,$$

$$u = 0 \text{ on } \partial \Omega_0, \quad u = a \text{ on } \partial \Omega_1,$$

$$\frac{\partial u}{\partial v} = \text{const.} = c_i \text{ on } \partial \Omega_i \ (i = 0, 1)$$

it is proved that Ω is an annulus and every solution u is radially symmetric and decreasing in r.

In this paper, we address a corresponding problem on an exterior domain: Let Ω_1 be a bounded domain with a C^2 boundary. If $\Omega = \mathbb{R}^n \setminus \overline{\Omega}_1$ is connected, then we call it an exterior domain and study solutions $u \in C^2(\overline{\Omega})$ of the problem

(1)
$$\Delta u + f(u, |\nabla u|) = 0 \text{ in } \overline{\Omega}, \quad 0 \leq u < a \text{ in } \Omega,$$

(2)
$$u = a, \frac{\partial u}{\partial y} = \text{const.} \leq 0 \text{ on } \partial \Omega_1,$$

(3)
$$u, \nabla u = 0 \text{ at } \infty,$$

where *v* is the exterior normal with respect to Ω_1 .

In the following considerations monotonicity is understood in the weak sense, e.g., a function h is increasing if $s \leq t$ implies $h(s) \leq h(t)$. For the nonlinearity f we consider the hypotheses:

(H₁) $f(p,q) = f_1(p,q) + f_2(p)$ where f_1 is Lipschitz continuous in p and q, and f_2 is increasing in p. Furthermore, f is decreasing in p for small positive values of p,q.

(H₂) f(p,q) is Lipschitz continuous in p and q, and is decreasing in p.

Note that (H₂) is the special case $f_2 \equiv 0$ of (H₁).

Theorem 1. Let u be a solution of (1)–(3) and let f satisfy (H₁). Then Ω_1 is a ball, and u is radially symmetric and decreasing in r.

Remark. If f is independent of $|\nabla u|$, then the condition $\nabla u = 0$ at ∞ is not needed. Also, the proof simplifies considerably when (H₂) holds.

Corollary 1. Under the hypotheses of Theorem 1 together with $f(a,0) \leq 0$, condition (1) can be relaxed to $0 \leq u \leq a$ in Ω .

In [13] I treated the quasilinear analogue of (1)–(3), which includes Monge-Ampère operators, the capillary surface operator and degenerate quasilinear operators like the p-Laplacian.

As an application of Theorem 1 we consider the following problem from potential theory: Let $\Omega_1 \subset \mathbb{R}^n (n \ge 2)$ be a bounded $C^{2,\alpha}$ domain. On $\partial \Omega_1$ we consider a constant source distribution A > 0, which induces a single-layer potential

$$\Psi(x) = A \int_{\partial \Omega_1} \gamma(|x-y|) \, d\sigma_y,$$

where $\gamma(r) = -(1/2\pi) \log r$ for n = 2 and $\gamma(r) = r^{2-n}/(n-2)\omega_n$ for $n \ge 3$, where ω_n is the surface area of the *n*-dimensional unit sphere. Now suppose

that Ψ is constant in $\overline{\Omega}_1$. For n = 2 it is well known (see MARTENSEN [11]) that Ω_1 must be a disk. To my knowledge, the corresponding conjecture for $n \ge 3$ (attributed to P. GRUBER by MARTENSEN [11] and HEIL & MARTINI [8, p. 353]) has not yet been solved.

Theorem 2. The only bounded $C^{2,\alpha}$ domain Ω_1 in $\mathbb{R}^n (n \ge 3)$ that admits a nontrivial single-layer potential which is constant in $\overline{\Omega}_1$ and is induced by a constant source distribution on $\partial \Omega_1$ is a ball.

Proof. Let *A* be the constant source distribution and Ψ be the induced potential. Then $\Psi \in C^{2,\alpha}(\overline{\Omega}_1)$; see GILBARG & TRUDINGER [7, Theorem 6.14]. Clearly $\Delta \Psi = 0$ in $\mathbb{R}^n \setminus \Omega_1$, $\Psi = \text{const.}$ on $\partial \Omega_1$ and $\partial \Psi / \partial v_+ = 0$ on $\partial \Omega_1$, since Ψ is constant in $\overline{\Omega}_1$. By the jump condition for the normal derivative we find $\partial \Psi / \partial v_- = -A = \text{const.} \neq 0$ on $\partial \Omega_1$. Since Ω_1 is bounded, we also find that $\Psi \to 0$ at ∞ . To show that $\Omega = \mathbb{R}^n \setminus \overline{\Omega}_1$ is connected suppose the contrary, i.e., $\overline{\Omega}_1^c$ has a bounded component *Z*. Since Ψ is harmonic in *Z* and constant on ∂Z , we deduce that $\Psi \equiv \text{const.}$ in *Z*, contradicting the Neumann conditions on ∂Z . Hence $\Omega = \mathbb{R}^n \setminus \overline{\Omega}_1$ is connected. To apply Theorem 1 it remains to show $0 \leq \Psi < \Psi|_{\partial \Omega_1}$ in Ω . Since $\gamma(r) > 0$ in $\mathbb{R}^n \setminus \{0\}$ for $n \geq 3$, we find $\Psi > 0$ by definition. Suppose Ψ attains larger values in Ω than $\Psi|_{\partial \Omega_1}$. Then Ψ must reach its maximum in Ω since $\Psi = 0$ at ∞ . By the strong maximum principle and the connectedness of Ω , we find $\Psi \equiv \text{const.}$, which is a contradiction.

Remark 1. We discuss the case n = 2 after the proof of Theorem 1, in order to see which adjustments are needed to replace $u \rightarrow 0$ at ∞ by an appropriate condition which includes logarithmic potentials.

Remark 2. A similar uniqueness theorem for volume potentials (constant on $\partial \Omega_1$ and induced by a constant density) was given by FRAENKEL as an application of results in [3] and [4].

2. The proof of Theorem 1

We use the following notation: $x = (x_1, ..., x_n) = (x_1, x')$ denotes a point in \mathbb{R}^n with $x' = (x_2, ..., x_n) \in \mathbb{R}^{n-1}$; |x| is the Euclidean norm of x; and $B_r(x)$ is the open ball with radius r centered at x. For partial derivatives we use $\partial_{x_k} u = \partial_k u = u_k$ and for derivatives in direction $\eta \in \mathbb{R}^n \setminus \{0\}$ we use $\partial u/\partial \eta = \partial_\eta u$. Sometimes it is convenient to write $f = f(p, q_1, ..., q_n)$ instead of f(p,q), where $q = |(q_1, ..., q_n)|$. With respect to Lipschitz continuity both notations are consistent, i.e., $f(p,q_1, ..., q_n)$ is Lipschitz continuous with respect to $q_1, ..., q_n$ if and only if f(p,q) is Lipschitz continuous with respect to q. Finally, for a real-valued function c on a subset of \mathbb{R}^n we use $c^-(x) = \min\{c(x), 0\}$ for the negative part of c. We start with a brief outline of the proof: We show symmetry of Ω and uin the x_1 -direction for any solution u of (1)–(3). Once this is done, we see that for any rotation M, the function u(Mx) is also a solution of (1)–(3) on $M^{\top}\Omega$, i.e., $M^{\top}\Omega$ is symmetric in the x_1 -direction. The radial symmetry of Ω and ufollows. The x_1 -symmetry will be proved by the method of reflection in hyperplanes, which was introduced by ALEXANDROFF [2] and later reintroduced and refined by SERRIN [14] in order to apply to partial differential equations on bounded domains, and which was finally used to great effect by GIDAS, NI & NIRENBERG [5]. For elliptic equations on \mathbb{R}^n , LI [9] and LI & NI [10] simplified the proofs and extended the original results of GIDAS, NI & NIRENBERG [6]. We use these simplifications together with a variant of SERRIN's method, which makes the method suitable for our exterior domain problem. Let us define

$T_{\lambda} = \{ x x_1 = \lambda \},$	the hyperplane,
$H_{\lambda} = \{ x x_1 > \lambda \},$	the right-hand half-space,
$x^{\lambda} = (2\lambda - x_1, x'),$	the reflection of x at T_{λ} ,
$\Sigma_1(\lambda) = \{ x \in \Omega_1 x_1 > \lambda \},$	the inner right-hand cap,
$\Gamma_1(\lambda) = \{ x \in \partial \Omega_1 x_1 > \lambda \},\$	the inner right-hand boundary,
$m_1=\sup\{x_1\mid x\in\Omega_1\},$	the x_1 -extent of Ω_1 ,
$\Sigma(\lambda) = H_\lambda \setminus \overline{\Omega}_1^\lambda,$	the reduced half-space.

For the geometry of inner right-hand caps, it is well known (see AMICK & FRAENKEL [3, Lemma A.1]) that for values of λ a little less than m_1 , the reflection of $\Sigma_1(\lambda)$ lies in Ω_1 , and the positive x_1 -direction points out of $\Sigma_1(\lambda)$ at every point of $\Gamma_1(\lambda)$. Also it is well known that this remains true for decreasing values of λ until $\Sigma_1(\lambda)^{\lambda}$ becomes internally tangent to $\partial\Omega_1$, or the normal on $\Gamma_1(\lambda)$ becomes perpendicular to the x_1 -direction (see Figure 2). We denote this critical value of λ by m. The admissible range for λ is then (m, ∞) .



Figure 1. Illustration of the reduced half-space.

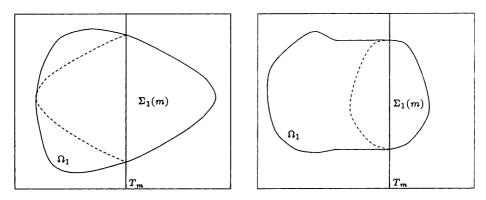


Figure 2. The critical positions of T_m .

For such λ the comparison function

$$w(x,\lambda) = v(x,\lambda) - u(x) = u(x^{\lambda}) - u(x)$$

is well defined on $\Sigma(\lambda)$. Notice that $\partial \Sigma(\lambda) \setminus T_{\lambda} \subset \partial \Omega_{1}^{\lambda}$ since the inner righthand cap $\Sigma_{1}(\lambda)$ reflects into Ω_{1} . On $\partial \Sigma(\lambda) \cap T_{\lambda}$ we have $w(x, \lambda) = 0$, and on $\partial \Sigma(\lambda) \cap \partial \Omega_{1}^{\lambda}$ we have $w(x, \lambda) = a - u(x) \ge 0$; i.e., $w \ge 0$ on $\partial \Sigma(\lambda)$ for all $\lambda \in (m, \infty)$. The idea of reduced half-spaces $\Sigma(\lambda)$ is also used in the form of reduced right-hand caps for bounded domains in ALESSANDRINI [1], WILLMS, GLADWELL & SIEGEL [15] and REICHEL [12].

We shall establish the following properties of $w(x, \lambda)$ for all $\lambda \in (m, \infty)$:

(i)
$$w(x,\lambda) > 0$$
 in $\Sigma(\lambda)$,

(ii)
$$\partial_1 w(x,\lambda) > 0$$
 on $\Omega \cap T_{\lambda}$.

Properties (i) and (ii) will be proved by an *initial step* for $\lambda \in (R, \infty)$ (*R* sufficiently large) and by a *continuation step* for all λ in a maximal interval (μ, ∞) with $\mu = m$. We then have $w(x, m) \ge 0$ in $\Sigma(m)$. From this we shall conclude that $w(x, m) \equiv 0$ on a component *Z* of $\Sigma(m)$, and finally we shall show that $\overline{Z \cup Z^m} = \overline{\Omega}$, which is the desired symmetry of Ω . In case of Hypothesis (H₂) the proof simplifies considerably. This will be discussed at the end of the proof.

The following boundary lemma will be proved in the Appendix.

Proposition 1. Let u be a solution of (1)–(3). For $z \in \partial \Omega_1$ let $\eta \in \mathbb{R}^n$ be a fixed unit vector with $v(z) \cdot \eta > 0$, where v(z) is the exterior normal to $\partial \Omega_1$ at z. Then there exists a radius $\rho = \rho(z)$ and a ball $B_\rho(z)$ such that $\partial_\eta u < 0$ in $B_\rho(z) \cap \Omega$.

Remark. We always assume that the ball $B_{\rho}(z)$ is so small that the vector η points out of Ω_1 at all points of $\partial \Omega_1 \cap B_{\rho}(z)$.

Proof of Theorem 1.

Step (I). First we show that if $w \equiv 0$ on a component Z of $\Sigma(\lambda)$ for some $\lambda \ge m$, then $\overline{Z \cup Z^{\lambda}} = \overline{\Omega}$, which is the desired symmetry of Ω . ∂Z decomposes

into two parts: the part on the hyperplane $\partial Z \cap T_{\lambda}$ and the remaining part $\partial Z \setminus T_{\lambda}$. From the assumption $w \equiv 0$ we find u = a on $\partial Z \setminus T_{\lambda}$, i.e., $\partial Z \setminus T_{\lambda}$ is a subset of $\partial \Omega_1$ by (1) and of $\partial \Omega_1^{\lambda}$ by definition. This is the intrinsic reason for the symmetry of Ω . The following topological argument shows that $Z \cup Z^{\lambda}$ can be extended across T_{λ} to an open subset of Ω . We define

$$X = Z \cup Z^{\lambda} \cup (\partial Z \cap \Omega) \cup (\partial Z^{\lambda} \cap \Omega)$$

and show that X is open. Once this is proved, we have

$$\partial X \subset \left(\partial Z \cup \partial Z^{\lambda}
ight) \setminus \left(\partial Z \cap \Omega
ight) \setminus \left(\partial Z^{\lambda} \cap \Omega
ight) \subset \partial \Omega,$$

which implies that $\Omega = X$ since X is also nonempty and Ω is connected. To show that X is open, observe first that $Z \cup Z^{\lambda} \subset \operatorname{int} X$.

(a) Take $x \in \partial Z \cap \Omega$. Since $\partial Z \setminus T_{\lambda} \subset \partial \Omega_1 = \partial \Omega$, we see that $x \in T_{\lambda} \cap \Omega$. Since Ω is open there is a ball $B_{\rho}(x) \subset \Omega$, and we can define

$$B_{>} = B_{\rho}(x) \cap \{x_{1} > \lambda\},$$

$$B_{<} = B_{\rho}(x) \cap \{x_{1} < \lambda\},$$

$$E = B_{\rho}(x) \cap \{x_{1} = \lambda\}.$$

Clearly $Z \cap B_> \neq \emptyset$. If also $Z^c \cap B_> \neq \emptyset$, then $\partial Z \cap B_> \neq \emptyset$, which is impossible since $\partial Z \cap B_> \subset (\partial \Omega \cup T_{\lambda}) \cap B_> = \emptyset$. Hence $B_> \subset Z$, $B_< \subset Z^{\lambda}$ and $E \subset \Omega \cap (\overline{Z} \cap T_{\lambda}) \subset \Omega \cap \partial Z$, which together imply that $B_{\rho}(x) \subset X$.

(b) Take $x \in \partial Z^{\lambda} \cap \Omega$. It follows from the definition of Z that $\partial Z \setminus T_{\lambda} \subset \partial \Omega_{1}^{\lambda}$ or equivalently $\partial Z^{\lambda} \setminus T_{\lambda} \subset \partial \Omega_{1} = \partial \Omega$. As before, this implies that $x \in T_{\lambda}$. Hence there is a sequence $\{x_{v}\}_{v=1}^{\infty} \subset Z^{\lambda} \cap \Omega$ with $x_{v} \to x$. Also $x_{v}^{\lambda} \in Z$ converge to $x = x^{\lambda}$, which shows that $x \in \overline{Z} \cap T_{\lambda} \cap \Omega \subset \partial Z \cap \Omega$. By (a) we find $x \in \text{int } X$.

This proof goes back to lecture notes of L. E. FRAENKEL.

Finally note that it is impossible that $w \equiv 0$ on Z for $\lambda \in (m, \infty)$, since Ω can only be symmetric to T_{λ} for $\lambda = m$.

Step (II). Here we derive a differential equation for $w(x, \lambda)$. For $\lambda \in (m, \infty)$ the function $v(x, \lambda) = u(x^{\lambda})$ satisfies

$$\Delta v + f(v, |\nabla v|) = 0$$
 in $\Sigma(\lambda)$.

Hence we find that

(4)
$$\Delta w + f(v, |\nabla v|) - f(u, |\nabla u|) = 0;$$

if we define

$$c(x) = \frac{f(v, \nabla u) - f(u, \nabla u)}{v - u},$$

$$b_i(x) = \frac{f(v, u_1, \dots, u_{i-1}, v_i, \dots, v_n) - f(v, u_1, \dots, u_i, v_{i+1}, \dots, v_n)}{v_i - u_i},$$

where the quotients are zero if the denominators are zero, then (4) reads (5) $\Delta w + b_i \partial_i w + cw = 0 \text{ in } \Sigma(\lambda)$

with bounded functions b_i and a possibly unbounded function c. For later use, we introduce $\bar{w} = w/g$, where g is a C^2 function on $\Sigma(\lambda)$. After a little computation we obtain

(5')
$$\Delta \bar{w} + \left(b_i + 2\frac{\partial_i g}{g}\right)\partial_i \bar{w} + \left(c + \frac{b_i \partial_i g + \Delta g}{g}\right)\bar{w} = \Delta \bar{w} + \bar{b}_i \partial_i \bar{w} + \bar{c}\bar{w} = 0.$$

If K > 0 is an upper bound for the functions b_i , then for $\alpha > K$ a good candidate is $g(x) = g(x, \lambda) = \exp(-\lambda \alpha/2) - \exp(-\alpha x_1)$, which has the properties g > 0 and $b_i \partial_i g + \Delta g \leq \alpha (K - \alpha) \exp(-\alpha x_1) < 0$ in $\overline{\Sigma(\lambda)}$.

Step (III). We show that for the proof of (i) and (ii) it suffices to show that $w(x, \lambda) \ge 0$ in $\Sigma(\lambda)$ for all $\lambda \in (m, \infty)$. Suppose that $w(x, \lambda) \ge 0$ in $\Sigma(\lambda)$. By (H₁) we derive from (4) that

(6)
$$\Delta w + f_1(v, |\nabla v|) - f_1(u, |\nabla u|) \leq 0.$$

If we define c(x) and $b_i(x)$ as in (I), with f_1 instead of f, we find

(7)
$$\Delta w + b_i \partial_i w + c^- w \leq \Delta w + b_i \partial_i w + c w \leq 0$$

with bounded functions b_i , c, c^- . By the strong maximum principle applied to $w(x, \lambda) \ge 0$ on a component Z of $\Sigma(\lambda)$ we have either $w \equiv 0$ on Z or w > 0 in Z. In (I) we proved that $w \equiv 0$ in Z implies the x_1 -symmetry of Ω , which is impossible for $\lambda > m$. Hence, for all $\lambda \in (m, \infty)$, it is enough to prove the weak inequality $w(x, \lambda) \ge 0$ in $\Sigma(\lambda)$ since we can sharpen it to $w(x, \lambda) > 0$ in $\Sigma(\lambda)$ and $\partial_1 w(x, \lambda) > 0$ on $T_{\lambda} \cap \Omega$ by using (7) and the maximum principle. (Observe that for $\lambda > m$ the positive x_1 -direction is non-tangent and points inside $\Sigma(\lambda)$ at $T_{\lambda} \cap \partial \Sigma(\lambda)$; see Figure 1.)

It is important to notice that the same reasoning applies to $\overline{w}(x,\lambda) = w(x,\lambda)/g(x,\lambda)$ if $\overline{w} \ge 0$ (here g is chosen as in the remark following (5')). In fact, the differential inequality corresponding to (7) now reads

(7')
$$\Delta \bar{w} + \bar{b}_i \partial_i \bar{w} + \bar{c} \bar{w} \leq 0,$$

with bounded functions \bar{b}_i, \bar{c} . For $\lambda > m$ we can use (7') to sharpen $\bar{w} \ge 0$ to $\bar{w} > 0$ in $\Sigma(\lambda)$, since $\bar{w} \equiv 0$ on a component Z implies $w \equiv 0$ on Z, which is impossible by (I).

Initial Step (IV). By (III) we have to show the existence of a large *R* such that $w \ge 0$ in $\Sigma(\lambda)$ for $\lambda \in (R, \infty)$. Suppose for contradiction that there exist sequences $\lambda_k \to +\infty$ and $x^{(k)} \in \Sigma(\lambda_k)$ with $w(x^{(k)}, \lambda_k) < 0$. We take $g(x, \lambda_k)$ as in the remark following (5') and choose $x^{(k)} \in \Sigma(\lambda_k)$ such that $\overline{w}(x, \lambda_k) = w(x, \lambda_k)/g(x, \lambda_k)$ attains its negative minimum over $\Sigma(\lambda_k)$ in $x^{(k)}$ ($\overline{w} \to 0$ at $\infty, \overline{w} \ge 0$ on $\partial \Sigma(\lambda)$). The point $x^{(k)}$ does not lie on $\partial \Sigma(\lambda_k)$ since there $\overline{w} \ge 0$. Hence $\nabla_x \overline{w}(x^{(k)}, \lambda_k) = 0$ and $\Delta \overline{w}(x^{(k)}, \lambda_k) \ge 0$. Also $u(x^{(k)}) \to 0$, $\nabla u(x^{(k)}) \to 0$ since $x^{(k)} \to \infty$, and $u(x^{(k),\lambda_k}) \to 0$ since $0 \le u(x^{(k),\lambda_k}) < u(x^{(k)})$. It follows from (H₁) and the definition of c(x) in (II) that for k large, $c(x^{(k)}) \le 0$ and $\overline{c}(x^{(k)}) < 0$ by the choice of the function g. Hence we have

$$egin{aligned} \Deltaar wig(x^{(k)},\lambda_kig)+ar b_iig(x^{(k)}ig)\partial_iar wig(x^{(k)},\lambda_kig)+ar c(x_k)ar wig(x^{(k)},\lambda_kig)\ &=\Deltaar wig(x^{(k)},\lambda_kig)+ar c(x_k)ar wig(x^{(k)},\lambda_kig)>0, \end{aligned}$$

which contradicts the differential equation (5'). This finishes the initial step.

Continuation Step (V). By the initial step, the following quantity is well defined

$$\mu = \inf \{ \alpha > m : w(x, \lambda) \ge 0 \text{ in } \Sigma(\lambda) \forall \lambda \in (\alpha, \infty) \},\$$

and both (i) and (ii) hold for all $\lambda \in (\mu, \infty)$ by (7) and the maximum principle. We want to show that $\mu = m$, and therefore suppose for contradiction $\mu > m$. (Then the *x*₁-direction is non-tangent on $\partial \Sigma_1(\mu)$.) There exist sequences $\lambda_k \uparrow \mu$ and $x^{(k)} \in \Sigma(\lambda_k)$ such that $w(x^{(k)}, \lambda_k) < 0$. We suppose that these sequences are chosen such that $\bar{w}(x, \lambda_k)$ attains its negative minimum over $\Sigma(\lambda_k)$ in $x^{(k)}$. The point $x^{(k)}$ is not in $\partial \Sigma(\lambda_k)$ since on $\partial \Sigma(\lambda_k) \cap T_{\lambda_k}$ we have $\bar{w} = 0$, and on the remaining part $\partial \Sigma(\lambda_k) \setminus T_{\lambda_k} = \partial \Omega_1^{\lambda_k} \cap H_{\lambda_k}$ we find that $\bar{w}(x, \lambda_k) = (a - u(x))/g(x) > 0$. Hence $x^{(k)} \in \Sigma(\lambda_k)$, $\nabla_x \bar{w}(x^{(k)}, \lambda_k) = 0$ and $\Delta_x \bar{w}(x^{(k)}, \lambda_k)$ ≥ 0 . We claim that $x^{(k)}$ are bounded. Suppose not; then $u(x^{(k)}) \rightarrow 0$ and $v(x^{(k)}, \lambda_k) \to 0$ since $0 \leq u(x^{(k)}, \lambda_k) < u(x^{(k)})$. This implies that $c(x^{(k)}) \leq 0$ (see (II)) for k large enough, and by the same reasoning as in the initial step we get a contradiction to the differential equation (5'). Now, the boundedness of $x^{(k)}$ allows us to take a convergent subsequence $x^{(k)} \to \bar{x} \in \overline{\Sigma(\mu)}$. At \bar{x} we find that $\nabla_x \bar{w}(\bar{x},\mu) = 0, \ \bar{w}(\bar{x},\mu) \leq 0$ and also $\bar{w}(\bar{x},\mu) \geq 0$ by the definition of μ . Hence $\bar{w}(\bar{x},\mu) = 0$. By the maximum principle, its boundary version and (7'), \bar{x} has to be on the non-smooth part of $\partial \Sigma(\mu)$, i.e., $\bar{x} \in \partial \Omega \cap T_{\mu}$ where, because $\mu > m$, the positive x_1 -direction points out of Ω_1 . Let us denote the reflection of $x^{(k)}$ at T_{λ_k} by $y^{(k)}$; clearly $x^{(k)}, y^{(k)} \to \bar{x}$. By Proposition 1, there exists a ball $B_{\rho}(\bar{x})$ such that $\partial_1 u < 0$ in $\Omega \cap B_{\rho}(\bar{x})$. For k suitably large we have $x^{(k)}, y^{(k)} \in B_{\rho}(\bar{x})$ and

$$u(x^{(k)}) - u(y^{(k)}) = \int_{2\lambda_k - x_1^{(k)}}^{x_1^{(k)}} \partial_1 u(t, x^{(k)'}) dt < 0$$

in contradiction to $w(x^{(k)}, \lambda_k) < 0$. This shows that $\mu = m$ and finishes the continuation step.

So far we have the following conclusion: $w(x,m) \ge 0$ in $\Sigma(m)$ and, in particular, either w > 0 or $w \equiv 0$ for any component Z of $\Sigma(m)$. If $w \equiv 0$ on a component, then Ω is x_1 -symmetric. To finish the proof it remains to show that there is such a component, i.e., that there is one point x in $\Sigma(m)$ with w(x,m) = 0. In this final step the Neumann boundary condition comes into the play.

Step (VI). Suppose for contradiction that w > 0 in $\Sigma(m)$. Recall here that the critical position of T_m originates either from $\Sigma_1(m)^m$ becoming internally

tangent to $\partial \Omega_1$ or from the x_1 -direction becoming tangent to the right-hand boundary $\Gamma_1(m)$.

(a) Internal tangency: Let $q = p^m$ be a point where $\partial \Sigma_1(m)^m$ meets $\partial \Omega_1$, $p \in \partial \Sigma_1(m) \setminus T_m$. Clearly w(p,m) = 0 so that by the differential inequality (7) and by Hopf's lemma we find $\partial_{v(p)}w(p,m) \neq 0$. By the internal tangency we find $v(q) = v(p)^m$, where v(q) is the common normal to $\partial \Omega_1$ and $\partial \Sigma_1(m)^m$ at q, and it is easy to calculate that

$$\frac{\partial v}{\partial v(p)}(p,m) = \frac{\partial u}{\partial v(q)}(q) = \text{const.} = \frac{\partial u}{\partial v}\Big|_{\partial \Omega_1}$$

Hence $\partial_{v(p)} w(p,m) = 0$, in contradiction to our previous assertion.

(b) There exists a point $p \in T_m \cap \partial \Omega_1$ with $v_1(p) = 0$: Observe that p is a rightangled corner of $\Sigma(m)$ so that a direct application of Hopf's lemma as in (a) is not at hand. Instead we show that w has a zero of second order at p, which contradicts the corner version of Hopf's lemma due to SERRIN [14] (see the Appendix). To calculate the derivatives of w we use a rectangular coordinate frame with origin at p, with the ξ_n -axis along the exterior normal v(p) to $\partial \Omega_1$ and the ξ_1 -axis collinear with the x_1 -axis. In this frame $\partial \Omega_1$ is locally expressed by

$$\xi_n = h(\xi_1, \ldots, \xi_{n-1}) = h(\xi'), \quad h \in C^2,$$

and the normal $v(\xi')$ at $(\xi', h(\xi'))$ is given by

$$v(\xi') = \frac{(-\nabla h(\xi'), 1)}{\left(|\nabla h(\xi')|^2 + 1\right)^{1/2}}$$

That the exterior normal at p coincides with the ξ_n -axis means that $\nabla h(0) = 0$. The point x = p corresponds to $\xi = 0$. Using the ξ -coordinates, we introduce new functions $\tilde{u}, \tilde{v}, \tilde{w}$ by

$$\widetilde{u}(\xi) = u(x), \ \widetilde{v}(\xi) = v(x,m) = u(x^m), \ \widetilde{w}(\xi) = w(x,m)$$

and find the relations

$$\tilde{v}(\xi) = \tilde{u}(-\xi_1, \xi_2, \dots, \xi_n),$$

$$\widetilde{w}(\xi) = \widetilde{u}(-\xi_1, \xi_2, \dots, \xi_n) - \widetilde{u}(\xi_1, \dots, \xi_n)$$

The Dirichlet and Neumann boundary conditions on $\partial\Omega_1$ now read

$$\tilde{u}(\xi) = \text{const.}, \ \frac{\partial \tilde{u}}{\partial v}(\xi) = \nabla_{\xi} \tilde{u}(\xi) \cdot v(\xi) = \text{const.},$$

and with the help of the parametrisation of $\partial \Omega_1$ we find

$$\tilde{u}(\xi', h(\xi')) = \text{const.}, -\sum_{l=1}^{n-1} \tilde{u}_l(\xi', h(\xi')) h_l(\xi') + \tilde{u}_n(\xi', h(\xi')) = \text{const.} \cdot (|\nabla h(\xi')|^2 + 1)^{1/2}.$$

Differentiation with respect to ξ_j for j = 1, ..., n - 1 gives (we use the summation convention for l = 1, ..., n - 1)

$$\tilde{u}_j + \tilde{u}_n h_j = 0,$$

1 1

$$-\tilde{u}_{lj}h_l - \tilde{u}_{ln}h_jh_l - \tilde{u}_lh_{lj} + \tilde{u}_{nj} + \tilde{u}_{nn}h_j = \text{const.} \cdot \frac{h_l n_{lj}}{\left(\left|\nabla h\right|^2 + 1\right)^{1/2}},$$

and evaluation at $\xi' = 0$ results in (recall that $\nabla h(0) = 0$)

(8)
$$\tilde{u}_i(0) = 0$$
 for $j = 1, \dots, n-1$,

(9)
$$\tilde{u}_{nj}(0) = 0$$
 for $j = 1, \dots, n-1$.

Let us now collect the results for the derivatives of \tilde{w} at $\xi = 0$. Notice that $\tilde{w}_{\alpha}, \tilde{w}_{\alpha\beta} = 0$ at $\xi = 0$ for $\alpha, \beta \in \{2, ..., n\}$, since at this point ξ and its reflected point coincide. For the same reason $\tilde{w}_{11}(0) = 0$. Furthermore, $\tilde{w}_1(0) = -2\tilde{u}_1(0) = 0$ by (8) and $\tilde{w}_{1n}(0) = -2\tilde{u}_{1n}(0) = 0$ by (9). To obtain the second-order zero of \tilde{w} at 0 we need to show that the remaining derivatives $\partial_{1\alpha}\tilde{w}(0)$ vanish for $\alpha = 2, ..., n - 1$. We do this by using the following Taylor expansion of \tilde{w} :

(10)

$$\widetilde{w}(\xi) = \widetilde{w}(0) + \sum_{j=1}^{n} \partial_{j} \widetilde{w}(0) \xi_{j} + \sum_{j,k=1}^{n} \partial_{jk} \widetilde{w}(0) \frac{\xi_{j} \xi_{k}}{2} + o\left(|\xi|^{2}\right)$$

$$= \sum_{\alpha=2}^{n-1} \partial_{1\alpha} \widetilde{w}(0) \xi_{1} \xi_{\alpha} + o\left(|\xi|^{2}\right).$$

Fix $\alpha \in \{2, ..., n-1\}$, define $\xi = \sigma(\rho, 0, ..., 0, \pm \rho, 0, ..., 0, 1)$ for $\sigma, \rho > 0$, where the plus sign is taken if $\partial_{1\alpha} \widetilde{w}(0) \leq 0$ and the minus sign if $\partial_{1\alpha} \widetilde{w}(0) > 0$. The point $\xi(\rho, \sigma)$ moves along a straight line through $\xi = 0$ (see Figure 3), which makes the angle

$$\cos\theta(\rho) = \frac{1}{\sqrt{2\rho^2 + 1}}$$

with v(p). Clearly $\theta(\rho) \to 0$ as $\rho \to 0$. Since $\Sigma(m)$ has a rectangular corner at x = p (that is, at $\xi = 0$) and since the ξ_1 -component of $\xi(\rho, \sigma)$ is positive, we

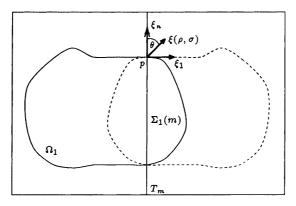


Figure 3. The ξ -coordinate system at p.

find that for ρ and σ small the point $\xi(\rho, \sigma)$ is in $\Sigma(\lambda)$. After this choice of ρ, σ it follows from (10) that

$$\widetilde{w}(\xi(\rho,\sigma))=-\sigma^2
ho^2|\widetilde{w}_{1lpha}(0)|+oig(\sigma^2ig)\quad ext{ for } \ \ \sigma o 0.$$

Since $\tilde{w} > 0$ in the vicinity of the boundary point $\xi = 0$, we see that this forces $\tilde{w}_{1\alpha} = 0$. Hence \tilde{w} and w have a second-order zero at p in contradiction to SERRIN'S corner lemma. This finishes the proof of Theorem 1.

Remarks on (*H2*). Under Hypothesis (H2) the coefficients b_i and c in (5) are bounded and c is non-positive. Since for all $\lambda \in (m, \infty)$, we know $w \ge 0$ on $\partial \Sigma(\lambda)$ and w = 0 at ∞ and since $w \equiv 0$ on a component of $\Sigma(\lambda)$ is ruled out by (I), we find that $w(x, \lambda) > 0$ in $\Sigma(\lambda)$ and $\partial_1 w(x, \lambda) > 0$ on $\Omega \cap T_{\lambda}$ by a direct application of the strong maximum principle and its boundary-point version. Hence (III), the Initial Step (IV) and the Continuation Step (V) are not needed in the case of (H2).

Proof of Corollary 1. Suppose that $f(a, 0) \leq 0$ and $0 \leq u(x) \leq a$. Then

(11)
$$0 \leq \Delta u + f(u, \nabla u) - f(a, 0)$$
$$\leq \Delta u + f_1(u, \nabla u) - f_1(a, 0) \text{ when } (H_1) \text{ holds}$$

and with the usual definitions of bounded functions

$$c(x) = \frac{f_1(u,0) - f_1(a,0)}{u-a},$$

$$b_i(x) = \frac{f_1(u,0,\ldots,0,u_i,\ldots,u_n) - f_1(u,0,\ldots,0,u_{i+1},\ldots,u_n)}{u_i}$$

we deduce from (11) the following linearized inequality with bounded coefficients $0 \le A(u-a) + b \partial_{1}(u-a) + c(u-a)$

(12)
$$0 \leq \Delta(u-a) + b_i \partial_i (u-a) + c(u-a)$$
$$\leq \Delta(u-a) + b_i \partial_i (u-a) + c^-(u-a)$$

By the strong maximum principle we get u < a in Ω , so that Theorem 1 applies.

3. The case n = 2

Here we prove the analogue of Theorem 2 in the case n = 2. Let A > 0 be the constant source density on the boundary of the domain Ω_1 . Then the potential is given by

$$\Psi(x) = -rac{A}{2\pi} \int\limits_{\partial\Omega_1} \log |x-y| \, d\sigma_y,$$

and we want to prove that if $\Psi = \text{const.}$ in $\overline{\Omega}_1$, then Ω_1 is a ball in \mathbb{R}^2 . As in the case $n \ge 3$ it is straightforward to show that Ψ is harmonic in $\mathbb{R}^2 \setminus \Omega_1$, Ψ

and $\partial \Psi / \partial v$ are constant on $\partial \Omega_1$ and that (by the strong maximum principle) $\Psi < \Psi|_{\partial \Omega_1}$. But of course $\Psi(x) \to -\infty$ as $|x| \to \infty$. Hence Theorem 1 is not applicable directly. As before, we are in the situation of Hypothesis (H₂) since Ψ is harmonic. A close investigation of the relevant proof Steps (I), (II), (VI) and the preceding remark reveals that the condition that u = 0 at ∞ was only needed to show that $w(x, \lambda) = 0$ at ∞ . Hence the proof of Theorem 1 would go through if we could establish that $w(x, \lambda) = 0$ at ∞ for our particular problem. Using the definition of Ψ , we have to investigate the behaviour of

$$\Psi(x^{\lambda}) - \Psi(x) = \text{const.} \int_{\partial \Omega_1} \log \frac{|x^{\lambda} - y|^2}{|x - y|^2} d\sigma_y \text{ for } x \to \infty.$$

For y in bounded domains we find that

$$\log \frac{|x^{\lambda} - y|^{2}}{|x - y|^{2}} = \log \left(1 + \frac{(2\lambda - x_{1} - y_{1})^{2} - (x_{1} - y_{1})^{2}}{|x - y|^{2}} \right)$$
$$= \log \left(1 + \frac{4\lambda^{2} + 4x_{1}y_{1} - 4\lambda x_{1} - 4\lambda y_{1}}{|x - y|^{2}} \right)$$
$$= O\left(\frac{1}{|x|}\right)$$

as $|x| \to \infty$, uniformly in y (since $\partial \Omega_1$ is bounded). So indeed $\Psi(x^{\lambda}) - \Psi(x) \to 0$ at ∞ , and we obtain Theorem 2 for n = 2 by the same method as before.

Appendix

Proof of Proposition 1. Clearly $\partial_{\eta} u(z) \leq 0$ since u < a by (1). If $\partial_{\eta} u(z) < 0$, the statement follows by continuity; so let us suppose that $\partial_{\eta} u(z) = 0$. (This implies that $\nabla u(z) = 0$, since η is non-tangent and $u = \text{const. on } \partial \Omega_1$.)

Case 1. $f(a, 0) \leq 0$. As in the proof of Corollary 1, we find that

$$0 \leq \Delta u + f(u, \nabla u) - f(a, 0),$$

which can be rewritten (by an appropriate choice of bounded functions b_i , c) as

$$0 \leq \Delta(u-a) + b_i \partial_i (u-a) + c(u-a)$$

$$\leq \Delta(u-a) + b_i \partial_i (u-a) + c^-(u-a).$$

Hopf's lemma at $z \in \partial \Omega_1$, where u(z) = a, yields $\partial_\eta u(z) < 0$ in contradiction to the assumption that $\partial_\eta u(z) = 0$. This shows that Case 1 cannot occur. Case 2. f(a, 0) > 0. We first calculate $\Delta u(z)$ by summing the second direc-

tional derivatives with respect to the *n* vectors $v(z), \xi_2, \ldots, \xi_n$, where ξ_2, \ldots, ξ_n are mutually orthogonal and tangent to $\partial \Omega_1$ at *z*. Since $u = \text{const. on } \partial \Omega_1$, we

find that $\Delta u(z) = \partial_v^2 u(z)$. Next we calculate $\partial_\eta^2 u(z)$. Using the summation convention for i, j = 2, ..., n, we have (with $\eta_i = \eta \cdot \xi_i$)

$$\begin{aligned} \partial_{\eta} &= (\eta \cdot \nu) \partial_{\nu} + \eta_i \partial_{\xi_i}, \\ \partial_{\eta}^2 &= (\eta \cdot \nu)^2 \partial_{\nu}^2 + 2\eta_i \partial_{\eta} \partial_{\xi_i} - \eta_i \eta_j \partial_{\xi_i} \partial_{\xi_j} \end{aligned}$$

Taking into account that $\partial_{\xi_i}\partial_{\xi_j}u(z) = 0$ since u = const. on $\partial\Omega_1$, and that $\partial_{\xi_i}\partial_\eta u(z) = 0$ since $\partial_\eta u$ has a local minimum on $\partial\Omega_1$ at z, we apply the operator ∂_η^2 to u at z and find

$$\partial_{\eta}^{2}u(z) = (\eta \cdot v(z))^{2} \partial_{\nu}^{2}u(z) = (\eta \cdot v(z))^{2} \Delta u(z)$$
$$= -(\eta \cdot v(z))^{2} f(a,0) < 0.$$

By continuity, $\partial_{\eta}^2 u < 0$ in $B_{\rho}(z) \cap \Omega$. Next we take a smaller ball $B_{\rho_1}(z)$ such that for every $y \in B_{\rho_1}(z) \cap \Omega$ the straight line $y - t\eta$ (t > 0) stays inside $B_{\rho}(z) \cap \Omega$ until it hits a point $y_0 \in B_{\rho}(z) \cap \partial \Omega_1$ (see Figure 4). Integrating $\partial_{\eta}^2 u(x) < 0$ along this straight line connecting y_0 to y, we get $\partial_{\eta} u(y) < \partial_{\eta} u(y_0) \leq 0$ for all $y \in B_{\rho_1}(z) \cap \Omega$. This is the assertion of Proposition 1.

Finally, for completeness, we state (see [14])

Serrin's Corner Lemma. Let D be a domain lying to the right of the hyperplane T_{λ} , and let $Q \in \partial D \cap T_{\lambda}$ be a point where ∂D intersects T_{λ} orthogonally. Suppose that $w \in C^2(\overline{D})$ satisfies

$$\Delta w + b_i \partial_i w + c^- w \leq 0 \quad in \quad D$$

 $(b_i, c^- bounded)$, while $w \ge 0$ in D and w(Q) = 0. Let $m \in \mathbb{R}^n$ be a direction which enters D at Q non-tangentially. Then either

$$\frac{\partial}{\partial m}w(Q) > 0 \quad or \quad \frac{\partial^2}{\partial m^2}w(Q) > 0$$

unless $w \equiv 0$.

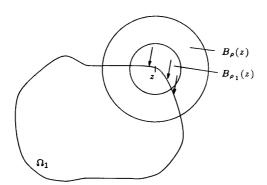


Figure 4. The choice of $B_{\rho_1}(z)$.

Acknowledgement. I thank JAMES SERRIN for many valuable comments and WOLF-GANG STAHL (Karlsruhe) for pointing out Gruber's potential-theoretic conjecture and for a number of interesting discussions.

References

- G. ALESSANDRINI, A symmetry theorem for condensers. Math. Meth. Appl. Sci. 15 (1992), 315–320.
- [2] A. D. ALEXANDROFF, A characteristic property of the spheres. Ann. Mat. Pura Appl. 58 (1962), 303–354.
- [3] C. J. AMICK & L. E. FRAENKEL, Uniqueness of Hill's spherical vortex. Arch. Rational Mech. Anal. 92 (1986), 91–119.
- [4] L. E. FRAENKEL, On steady vortex rings with swirl and a Sobolev inequality. In Progress in Partial Differential Equations: Calculus of variations, applications, Ed. C. BANDLE et al., Pitman Res. Notes 267 (1993), 13–26.
- [5] B. GIDAS, WEI-MING NI & L. NIRENBERG, Symmetry and related problems via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243.
- [6] B. GIDAS, WEI-MING NI & L. NIRENBERG, Symmetry of positive solutions of nonlinear elliptic equations in ℝⁿ. Math. Anal. Appl. Part A, Advances in Math. Suppl. Studies 7A (1981), 369–402.
- [7] D. GILBARG & N. S. TRUDINGER, *Elliptic Partial Differential Equations of Second Order*. 2nd Edition, Springer-Verlag, 1983.
- [8] E. HEIL & H. MARTINI, Special convex bodies. In Handbook of Convex Geometry, Ed. P. GRUBER & J. WILLS, Elsevier (1993), 347–385.
- [9] CONGMING LI, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Comm. Partial Differential Equations 16 (1991), 585–615.
- [10] YI LI &WEI-MING NI, Radial symmetry of positive solutions of non-linear elliptic equations in \mathbb{R}^n . Comm. Partial Differential Equations 18 (1993), 1043–1054.
- [11] E. MARTENSEN, Eine Integralgleichung für die log. Gleichgewichtsverteilung und die Krümmung der Randkurve eines ebenen Gebiets. Z. angew. Math. Mech. 72 (1992), 596–599.
- [12] W. REICHEL, Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains. In Progress in Partial Differential Equations: Elliptic and Parabolic Problems, Ed. C. BANDLE et al., Pitman Res. Notes 325 (1995), 164–182.
- [13] W. REICHEL, Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains. Z. Anal. Anwendungen 15 (1996), 619–635.
- [14] J. SERRIN, A symmetry theorem in potential theory. Arch. Rational Mech. Anal. 43 (1971), 304–318.
- [15] N. B. WILLMS, G. GLADWELL & D. SIEGEL, Symmetry theorems for some overdetermined boundary value problems on ring domains. Z. angew. Math. Phys. 45 (1994), 556–579.

Mathematisches Institut I Universität Karlsruhe 76128 Karlsruhe Germany

(Accepted January 29, 1996)