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Abstract

By the Alexandroff-Serrin method [2, 14] of moving hyperplanes we obtain
radial symmetry for the domain and the solutions of Au + f(u,|Vu|) = 0 on
an exterior domain Q = R"\ Q;, subject to the overdetermined boundary
conditions Ju/0v = const., u =const. >0 on 99, u,|Vu| — 0 at co and
0 < u <ulyg in Q. In particular, the following conjecture from potential
theory due to P. GRUBER (cf. [11, 8]) is proved: Let Q; ¢ R or Q; € R* be a
bounded smooth domain with a constant source distribution on 9Q; and let ¥
be the induced single-layer potential. If ¥ is constant in Q;, then Q; is a ball.

1. Introduction and main results

In a seminal paper [14], SERRIN proved that the following overdetermined
boundary-value problem determines the geometry of the underlying set, i.e.,
if Q is a bounded C? domain and u € C?(Q) is a solution of

Au+ f(u,|Vu|) =0in Q, u>0in Q,
u=20, %:const. < 0 on 0Q,
v

where f is in C', then u is radially symmetric and Q is a ball.

In a recent work [12], I considered a corresponding problem for domains
with one cavity: Let Qy, Q; be bounded C?> domains and let Q = Q; \ Q; be
connected. Then for the boundary-value problem (with f € C')

Au+ f(u,|Vu) =0in Q, 0<u<ainQ,
u=0o0n9Q), u=aondQ,



382 W. REICHEL

% =const. = ¢; on 9; (i=10,1)
it is proved that Q is an annulus and every solution u is radially symmetric
and decreasing in r.

In this paper, we address a corresponding problem on an exterior domain:
Let Q; be a bounded domain with a C?> boundary. If Q = R"\ Q, is con-
nected, then we call it an exterior domain and study solutions u € C*(Q) of
the problem

(1) Au+f(u,|Vu) =0in Q, 0=<u<ainQ,
(2) u=a, % = const. = 0 on 0Q,

(3) u, Vu =0 at oo,

where v is the exterior normal with respect to Q.

In the following considerations monotonicity is understood in the weak
sense, e.g., a function A is increasing if s < ¢ implies A(s) < h(¢). For the
nonlinearity f we consider the hypotheses:

H)) f(p,q) = fi(p,q) + f2(p) where f; is Lipschitz continuous in p and ¢,
and f, is increasing in p. Furthermore, f is decreasing in p for small
positive values of p, g.

(H») f(p,q) is Lipschitz continuous in p and ¢, and is decreasing in p.

Note that (H) is the special case f> = 0 of (Hy).

Theorem 1. Let u be a solution of (1)—(3) and let f satisfy (Hy). Then Q, is a
ball, and u is radially symmetric and decreasing in r.

Remark. If f is independent of |Vu|, then the condition Vu = 0 at oo is not
needed. Also, the proof simplifies considerably when (H,) holds.

Corollary 1. Under the hypotheses of Theorem 1 together with f(a,0) <0,
condition (1) can be relaxed to 0 £ u < a in Q.

In [13] T treated the quasilinear analogue of (1)—(3), which includes
Monge-Ampére operators, the capillary surface operator and degenerate
quasilinear operators like the p-Laplacian.

As an application of Theorem 1 we consider the following problem from
potential theory: Let Q; C R"(n = 2) be a bounded C>* domain. On 9Q; we
consider a constant source distribution 4 > 0, which induces a single-layer
potential

W(x) = 4 / Wl — y) do,

0Q

where 7(r) = —(1/2n)logr for n =2 and y(r) = r*"/(n — 2)w, for n =3,
where w, is the surface area of the n-dimensional unit sphere. Now suppose
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that W is constant in Q;. For n = 2 it is well known (see MARTENSEN [11]) that
Q; must be a disk. To my knowledge, the corresponding conjecture for n = 3
(attributed to P. GRUBER by MARTENSEN [11] and HEiL & MARTINT [8, p.
353]) has not yet been solved.

Theorem 2. The only bounded C** domain Q, in R"(n = 3) that admits a non-
trivial single-layer potential which is constant in Q) and is induced by a constant
source distribution on 0Q is a ball.

Proof. Let 4 be the constant source distribution and W be the induced po-
tential. Then ¥ € C>*(Q,); see GILBARG & TRUDINGER [7, Theorem 6.14].
Clearly AY = 0in R" \ Q;, ¥ = const. on 9Q and 0¥ /dv, = 0 on 9Q;, since
W is constant in Q;. By the jump condition for the normal derivative we find
0¥ /0v_ = —A = const.+£0 on 9Q,. Since Q; is bounded, we also find that
¥ — 0 at co. To show that Q = R"\ Q; is connected suppose the contrary,
i.e., Q] has a bounded component Z. Since ¥ is harmonic in Z and constant
on 0Z, we deduce that ¥ = const. in Z, contradicting the Neumann condi-
tions on 0Z. Hence Q = R" \ Q; is connected. To apply Theorem 1 it remains
to show 0 =W < ¥|yq, in Q. Since y(r) >0 in R"\ {0} for n = 3, we find
¥ > 0 by definition. Suppose ¥ attains larger values in Q than ‘¥, . Then ¥
must reach its maximum in Q since ¥ = 0 at co. By the strong maximum
principle and the connectedness of Q, we find ¥ = const., which is a con-
tradiction.

Remark 1. We discuss the case n = 2 after the proof of Theorem 1, in order
to see which adjustments are needed to replace u — 0 at oo by an appropriate
condition which includes logarithmic potentials.

Remark 2. A similar uniqueness theorem for volume potentials (constant on
0Q; and induced by a constant density) was given by FRAENKEL as an ap-
plication of results in [3] and [4].

2. The proof of Theorem 1

We use the following notation: x = (xy,...,x,) = (x;,x") denotes a point
in R" with x' = (xa,...,x,) € R""!; |x| is the Euclidean norm of x; and B,(x) is
the open ball with radius r centered at x. For partial derivatives we use
Oy u = O = u and for derivatives in direction 5 € R"\ {0} we use
Ou/0On = O,u. Sometimes it is convenient to write f = f(p, q1, ..., q,) instead
of f(p,q), where ¢ = |(q1,-..,q,)|- With respect to Lipschitz continuity both
notations are consistent, i.e., f(p,qi1,...,q,) is Lipschitz continuous with
respect to g1, ..., q, if and only if f(p, q) is Lipschitz continuous with respect
to ¢. Finally, for a real-valued function ¢ on a subset of R" we use
¢ (x) = min{c(x),0} for the negative part of c.
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We start with a brief outline of the proof: We show symmetry of Q and u
in the x|-direction for any solution u of (1)—(3). Once this is done, we see that
for any rotation M, the function u(Mx) is also a solution of (1)—(3) on MTQ,
i.e., MTQ is symmetric in the x;-direction. The radial symmetry of Q and u
follows. The x;-symmetry will be proved by the method of reflection in
hyperplanes, which was introduced by ALEXANDROFF [2] and later reintro-
duced and refined by SERRIN [14] in order to apply to partial differential
equations on bounded domains, and which was finally used to great effect by
Gipas, N1 & NIRENBERG [5]. For elliptic equations on R”, L1[9] and L1 & N1
[10] simplified the proofs and extended the original results of Gipas, N1 &
NIRENBERG [6]. We use these simplifications together with a variant of
SERRIN’s method, which makes the method suitable for our exterior domain
problem. Let us define

T, ={x| x; = i}, the hyperplane,
H; = {x| x; > 1}, the right-hand half-space,
¥t = (22 —x1,x), the reflection of x at T,

21 (4) ={x € Q| x; > 2}, the inner right-hand cap,

I'(4) = {x € 0Qi| x; > A}, the inner right-hand boundary,
m; = sup{x;| x € Q;}, the x;—extent of Q,

(1) =H;\ ﬁi“, the reduced half-space.

For the geometry of inner right-hand caps, it is well known (see AMICK &
FRAENKEL [3, Lemma A.1]) that for values of 1 a little less than m,, the
reflection of X () lies in Qy, and the positive x;-direction points out of X; (1)
at every point of I'j(4). Also it is well known that this remains true for
decreasing values of 1 until Z; (/1))' becomes internally tangent to 9Q,, or the
normal on I'; (1) becomes perpendicular to the x;-direction (see Figure 2). We
denote this critical value of A by m. The admissible range for 1 is then (m, c0).

Figure 1. Illustration of the reduced half-space.
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Figure 2. The critical positions of 7,,.

For such / the comparison function
w(x, ) = v(x, 1) —u(x) = u(xi) — u(x)

is well defined on (/). Notice that Z(1) \ T; C dQ? since the inner right-
hand cap Z;(2) reflects into Q;. On 9Z(4) N T; we have w(x, ) =0, and on
OX(2) N9Q; we have w(x,A) =a —u(x) = 0; ie, w=0 on JX(2) for all
/. € (m,0). The idea of reduced half-spaces (/) is also used in the form of
reduced right-hand caps for bounded domains in ALESSANDRINTI [1], WILLMS,
GLADWELL & SIEGEL [15] and REICHEL [12].

We shall establish the following properties of w(x, 4) for all 1 € (m, c0):

(1) w(x,4)>0 in X(4),
(i) Jyw(x,A) >0 on QNT,.

Properties (i) and (ii) will be proved by an initial step for /. € (R,00) (R
sufficiently large) and by a continuation step for all A in a maximal interval
(u,00) with g =m. We then have w(x,m) = 0 in X(m). From this we shall
conclude that w(x,m) =0 on a component Z of X(m), and finally we shall
show that ZUZ" = Q, which is the desired symmetry of Q. In case of Hy-
pothesis (H;) the proof simplifies considerably. This will be discussed at the
end of the proof.

The following boundary lemma will be proved in the Appendix.

Proposition 1. Let u be a solution of (1)—~(3). For z € 0Qy let n € R" be a fixed
unit vector with v(z) - 5 > 0, where v(z) is the exterior normal to 0Q, at z. Then
there exists a radius p = p(z) and a ball B,(z) such that O,u < 0 in B,(z) N Q.

Remark. We always assume that the ball B,(z) is so small that the vector #
points out of Q; at all points of Q) N B,(z).

Proof of Theorem 1.
Step (I). First we show that if w =0 on a component Z of (1) for some

A = m, then Z U Z* = Q, which is the desired symmetry of Q. 9Z decomposes
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into two parts: the part on the hyperplane 0Z N 7T, and the remaining part
0Z \ T;. From the assumption w = 0we findu =aondZ \ Tj,i.e.,0Z\ T)isa
subset of 9Q; by (1) and of 8(2{“ by definition. This is the intrinsic reason for
the symmetry of Q. The following topological argument shows that Z U Z*
can be extended across 7, to an open subset of Q. We define

X=2zUuZ'u(0ZnQ)u (02" N Q)
and show that X is open. Once this is proved, we have
OX C (0zUaz*)\ (0znQ)\ (02" NQ) C 99,

which implies that Q = X since X is also nonempty and Q is connected. To
show that X is open, observe first that ZU Z* C int X.

(a) Take x € 9ZNQ. Since IZ\ T, C 0Q; = 0Q, we see that x € T, N Q.
Since Q is open there is a ball B,(x) C Q, and we can define

B. =B,(x) N{x1 > 1},

B. = B,(x) N{x; < A},

E=B,(x)N{x; = 4i}.
Clearly Z N B~ #0. If also Z¢ N B~ %), then 0Z N B = (), which is impossible
since 9ZNB. C (0QUT;)NB- =0. Hence B.CZ B.CZ' and
ECQN(ZNT;) C QNdZ, which together imply that B,(x) C X. ~
(b) Take x € 07* N Q. It follows from the definition of Z that 0Z \ 7, C o0Q7
or equivalently 0Z*\ T; C 9Q; = 0Q. As before, this implies that x € Tj.

Hence there is a sequence {x,}>°, C Z* N Q with x, — x. Also x* € Z converge
to x = x*, which shows thatx € ZN T, N Q C 9ZN Q. By (a) we find x € int X.

This proof goes back to lecture notes of L. E. FRAENKEL.
Finally note that it is impossible that w = 0 on Z for 1 € (m, c0), since Q
can only be symmetric to 7; for 1 = m.

Step (II). Here we derive a differential equation for w(x, ). For 4 € (m, 00)
the function v(x, 1) = u(x*) satisfies
Av+ f(v,|Vv]) =0 in Z(4).
Hence we find that
(4) Aw + f (v, |Vo]) = £ (u, [Vu]) = 0;

if we define

o) :f(v,Vu) —f(u,Vu),

v—u
bi(x) :f(v,uh...,ui,l,v,»,...,v,;)l:Z(v,ul,...,ui,v,-ﬂ,...,v,,)7
1 1

where the quotients are zero if the denominators are zero, then (4) reads
(5) Aw + b;0pw+ cw =0 in Z(4)
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with bounded functions b; and a possibly unbounded function ¢. For later
use, we introduce w = w/yg, where g is a C> function on X(1). After a little
computation we obtain

(5) Aw—+ (bi+2%>6iw+ <C+biaigg7+Ag>w:Aﬂ)+biaiw+Eﬂ):0.

If K >0 is an upper bound for the functions b;, then for o > K a good
candidate is g(x) = g(x,4) = exp (—4a/2) —exp (—ox;), which has the
properties g > 0 and b;0;,g + Ag < a(K — a)exp (—ax1) < 0 in X(4).

Step (III). We show that for the proof of (i) and (ii) it suffices to show that
w(x,2) 2 0 in Z(A) for all 2 € (m,00). Suppose that w(x, 1) = 0 in Z(1). By
(H;) we derive from (4) that

() Aw + fi(v, |Vo]) = fi(u, [Vul) < 0.
If we define ¢(x) and b;(x) as in (I), with f} instead of f, we find
(7) Aw + b;0iw +c w £ Aw + b;0iw +cw <0

with bounded functions b;, ¢, ¢~. By the strong maximum principle applied to
w(x, A) = 0 on a component Z of X(A) we have either w =0 on Z or w > 0 in
Z. In (I) we proved that w =0 in Z implies the x;-symmetry of Q, which is
impossible for 2 > m. Hence, for all 1 € (m,00), it is enough to prove the
weak inequality w(x, A) = 0 in X(/) since we can sharpen it to w(x, ) > 0 in
2(4) and Jjw(x, 1) > 0 on T, NQ by using (7) and the maximum principle.
(Observe that for A > m the positive x;-direction is non-tangent and points
inside X(2) at T; N 0Z(4); see Figure 1.)

It is important to notice that the same reasoning applies to
w(x, ) = w(x,1)/g(x,A) if w = 0 (here g is chosen as in the remark following
(5")). In fact, the differential inequality corresponding to (7) now reads

(7" Aw + b0y +¢ w £ 0,

with bounded functions b;,¢ . For 2 > m we can use (7’) to sharpen w = 0 to
w > 0 in X(1), since @ = 0 on a component Z implies w = 0 on Z, which is
impossible by (I).

Initial Step (IV). By (III) we have to show the existence of a large R such that
w2 0 in (1) for 1 € (R, 00). Suppose for contradiction that there exist se-
quences 4 — 400 and x¥) € () with w(x®, 7;) < 0. We take g(x, Z) as in
the remark following (5') and choose x*) € X(4;) such that w(x, k)
= w(x, 4t)/g(x, A) attains its negative minimum over X(%) in x%) (@ — 0 at
00, W = 0 on OX(1)). The point x¥) does not lie on 9L (/) since there @ = 0.
Hence V,w(x®), 4;) = 0 and Aw(x®), 2;) = 0. Also u(x®)) — 0, Vu(x®) — 0
since x*) — oo, and u(x®*) — 0 since 0 < u(x¥4) < u(x®). It follows
from (H;) and the definition of ¢(x) in (II) that for k large, ¢(x*)) <0 and
¢(x®) < 0 by the choice of the function g. Hence we have
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Aw(x(k), ik) +b; (x(k>)6,-ﬂ)(x<k), /Ik) + E(xk)ﬂ)(x(k), ik)
= Aﬂ)(x(k), M) + E(xk)@(x(k>, )vk) >0,

which contradicts the differential equation (5'). This finishes the initial step.

Continuation Step (V). By the initial step, the following quantity is well
defined

pu=inf{o>m:wx, ) 20in Z(1) ¥V 1 € (o, 00)},

and both (i) and (ii) hold for all A € (g, 00) by (7) and the maximum principle.
We want to show that u = m, and therefore suppose for contradiction y > m.
(Then the x;-direction is non-tangent on 0X;(u).) There exist sequences xTu
and x® € 2(J) such that w(x®, ;) < 0. We suppose that these sequences
are chosen such that @(x, Z;) attains its negative minimum over X(/;) in x%).
The point x%) is not in 0X(A) since on 0Z(J) N T, we have w = 0, and on
the remaining part 9Z(%)\ T, = 0QF NH, we find that @(x, /)=
(a —u(x))/g(x) > 0. Hence x¥ € Z(4), Viw(x®, 2) =0 and Ayw(x®), )
> 0. We claim that x*) are bounded. Suppose not; then u(x(k)2 — 0 and
v(x®, 2¢) — 0 since 0 < u(x®*) < u(x*)). This implies that c¢(x¥)) < 0 (see
(IT)) for k large enough, and by the same reasoning as in the initial step we get
a contradiction to the differential equation (5'). Now, the boundedness of x(*)
allows us to take a convergent subsequence x*) — % € (u). At X we find that
V,yw(x, 1) =0, w(x, 1) < 0 and also @w(x, x) = 0 by the definition of x. Hence
w(x, u) = 0. By the maximum principle, its boundary version and (7'), x has
to be on the non-smooth part of 9X(u), i.e., ¥ € 0QN T, where, because
1 > m, the positive x;-direction points out of ;. Let us denote the reflection
of x%) at T, by y¥; clearly x¥), y¥) — x. By Proposition 1, there exists a ball
B,(x) such that Oju <0 in QNB,(X). For k suitably large we have
x®,y® € B,(x) and

(k)
1

u(x®) —u(y®) = / 81u(t,x<k)/)dt <0

2;~k 7xik)

X

in contradiction to w(x®), 4;) < 0. This shows that ¢ =m and finishes the
continuation step.

So far we have the following conclusion: w(x,m) = 0 in X(m) and, in
particular, either w > 0 or w = 0 for any component Z of X(m). If w =0 on a
component, then Q is x;-symmetric. To finish the proof it remains to show
that there is such a component, i.e., that there is one point x in X(m) with
w(x,m) = 0. In this final step the Neumann boundary condition comes into
the play.

Step (VI). Suppose for contradiction that w > 0 in X(m). Recall here that the
critical position of 7, originates either from X;(m)” becoming internally
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tangent to 0Q; or from the x;-direction becoming tangent to the right-hand
boundary I'y(m).

(a) Internal tangency: Let g = p™ be a point where 9%i(m)" meets 9Q,,
p € 0Z1(m) \ T,,. Clearly w(p,m) = 0 so that by the differential inequality (7)
and by Hopf’s lemma we find 9,(,)w(p, m) #0. By the internal tangency we
find v(q) = v(p)", where v(g) is the common normal to 9Q; and 9%, (m)" at q,
and it is easy to calculate that

v Ou

0
av—(p)(p’m) = av—(q)(q) = const. = —

Hence 0,(,yw(p,m) = 0, in contradiction to our previous assertion.

(b) There exists a point p € T,, N 0Q with v|(p) = 0: Observe that p is a right-
angled corner of X(m) so that a direct application of Hopf’s lemma as in (a) is
not at hand. Instead we show that w has a zero of second order at p, which
contradicts the corner version of Hopf’s lemma due to SERRIN [14] (see the
Appendix). To calculate the derivatives of w we use a rectangular coordinate
frame with origin at p, with the £,-axis along the exterior normal v(p) to 9Q,
and the &;-axis collinear with the xj-axis. In this frame 9Q; is locally ex-
pressed by

én:h(éla"'vénfl) :h(é,)a he Cza

and the normal v(&') at (&, h(&')) is given by

(_Vh(é/)7 1) ]
(vn@)?+1)"

That the exterior normal at p coincides with the ¢,-axis means that
Vh(0) = 0. The point x = p corresponds to ¢ = 0. Using the ¢-coordinates,
we introduce new functions i, o, w by

”N{(é) = u(x)a (5) = U()C, m) = u(xm)’ ’J}(é) = w(x,m)

and find the relations

V(&) =

<

ﬁ(é) = ﬁ(_éhéh sy én)>
@(5) = ﬁ(_él,éb .- wén) - ﬁ(éla .- 'aén)'

The Dirichlet and Neumann boundary conditions on 9Q; now read

(&) = const., %(5) = V:u (&) - v(&) = const.,

and with the help of the parametrisation of 9Q; we find
a(&,h()) = const.,

n—1
= @ (& hE)h(E) + (& h(E)) = const. - ([VA(E)] + 1)/,
I=1
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Differentiation with respect to ¢; for j=1,...,n — 1 gives (we use the sum-
mation convention for / =1,...,n—1)
i+ iyh; =0,
hihy;
—uh; — u/,,h hy — why; + i, + u,,,,h const. 7j,
j j j (|Vh\2+ 1)1/2
and evaluation at ¢ = 0 results in (recall that VA(0) = 0)
(8) u;(0)=0 for j=1,...,n—1,
9) #,j(0)=0 for j=1,...,n—1.

Let us now collect the results for the derivatives of w at & = 0. Notice that
Wy, Wap = 0at &= 0fora, f € {2,...,n}, since at this point £ and its reflected
point coincide. For the same reason w;; (0) = 0. Furthermore, w;(0) = —2i,(0)
= 0 by (8) and w1,(0) = —21,(0) = 0 by (9). To obtain the second-order zero
of w at 0 we need to show that the remaining derivatives 9,w(0) vanish for

a=2.. — 1. We do this by using the following Taylor expansion of w:
g S
+28w )+ Zajkw Lho(|eP)
(10) - Zaww 618, +o(1¢P).
Fixae{2,...,n— 1}, define & = a(p,0,...,0, j:p 0,...,0,1) for a,p > 0,

where the plus sign is taken if 0;,w(0) < 0 and the minus sign if 9;,w(0) > 0.
The point &(p, 0) moves along a straight line through ¢ = 0 (see Figure 3),

which makes the angle
1

V2pr+1
with v(p). Clearly 6(p) — 0 as p — 0. Since X(m) has a rectangular corner at
x = p (that is, at ¢ = 0) and since the &;-component of &(p, o) is positive, we

cosf(p) =

Figure 3. The ¢-coordinate system at p.
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find that for p and ¢ small the point &(p, o) is in (4). After this choice of p, o
it follows from (10) that

w(&(p,a)) = —a”p*|w1,(0)| + 0(c®) for & — 0.

Since w > 0 in the vicinity of the boundary point £ = 0, we see that this forces
wy, = 0. Hence w and w have a second-order zero at p in contradiction to
SERRIN’s corner lemma. This finishes the proof of Theorem 1.

Remarks on (H2). Under Hypothesis (H2) the coefficients b; and ¢ in (5) are
bounded and ¢ is non-positive. Since for all 1 € (m, c0), we know w = 0 on
0% (2) and w = 0 at oo and since w = 0 on a component of X(41) is ruled out
by (I), we find that w(x, 1) > 01in £(1) and djw(x, 4) > 0 on QN T, by a direct
application of the strong maximum principle and its boundary-point version.
Hence (IIT), the Initial Step (IV) and the Continuation Step (V) are not
needed in the case of (H2).

Proof of Corollary 1. Suppose that f(a,0) <0 and 0 < u(x) < a. Then
0 =< Au+ f(u,Vu) — f(a,0)

(11) < Au+ fi(u, Vu) — fi(a,0) when (H;) holds,

and with the usual definitions of bounded functions

c(x) :fl(u70) _ﬁ(a70)7

u—a

b,’(x)

b

N, 0,00, ) — f1(,0,000, 0,00, 1)

Ui

we deduce from (11) the following linearized inequality with bounded coef-

ficients
0=<=A(u—a)+b0(u—a)+clu—a)

(12) < Awu—a)+b;0;(u—a)+c (u—a).

By the strong maximum principle we get u < a in Q, so that Theorem 1
applies.

3. The case n=2

Here we prove the analogue of Theorem 2 in the case n = 2. Let 4 > 0 be
the constant source density on the boundary of the domain Q;. Then the
potential is given by

A
o) =5 [ loglr—lda,
0Q

and we want to prove that if ¥ = const. in Q;, then Q; is a ball in R”. As in
the case n = 3 it is straightforward to show that ¥ is harmonic in R? \Q, ¥
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and 0¥ /v are constant on 9Q; and that (by the strong maximum principle)
¥ < W[y, But of course W(x) — —oc as |x| — oo. Hence Theorem 1 is not
applicable directly. As before, we are in the situation of Hypothesis (H,) since
Y is harmonic. A close investigation of the relevant proof Steps (I), (II), (VI)
and the preceding remark reveals that the condition that u = 0 at co was only
needed to show that w(x, 1) = 0 at co. Hence the proof of Theorem 1 would
go through if we could establish that w(x,1) =0 at oo for our particular

problem. Using the definition of ¥, we have to investigate the behaviour of
) -y ’2
W (x*) — ¥(x) = const. / log 5
0 |
O

do, for x — oo.
=y

For y in bounded domains we find that

] 2
|x* = y| = 1og<1 n (22 —x1 = )" = (x; —y1)2>

log 3 3
x — e —

bg<l+wﬁ+4nﬂ—4mq—4@)

x =y
|
x|

as |x| — oo, uniformly in y (since 0Q; is bounded). So indeed ¥ (x*) — ¥(x)
— 0 at oo, and we obtain Theorem 2 for n = 2 by the same method as before.

Appendix

Proof of Proposition 1. Clearly 0,u(z) < 0 since u < a by (1). If d,u(z) <0,
the statement follows by continuity; so let us suppose that 9,u(z) = 0. (This
implies that Vu(z) = 0, since # is non-tangent and u = const. on 9Q;.)

Case 1. f(a,0) < 0. As in the proof of Corollary 1, we find that
0 = Au +f(u,Vu) _f(a70>7

which can be rewritten (by an appropriate choice of bounded functions b;, ¢)
as

0=Au—a)+b0i(u—a)+clu—a)
SAu—a)+b;0(u—a)+c (u—a).

Hopf’s lemma at z € 0Q;, where u(z) = a, yields 9,u(z) < 0 in contradiction
to the assumption that d,u(z) = 0. This shows that Case 1 cannot occur.

Case 2. f(a,0) > 0. We first calculate Au(z) by summing the second direc-
tional derivatives with respect to the n vectors v(z), &, ..., &,, where &, ..., &,
are mutually orthogonal and tangent to 0Q; at z. Since u = const. on 0Q;, we
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find that Au(z) = ju(z). Next we calculate dju(z). Using the summation
convention for i,j =2,...,n, we have (with n; =#n-¢&;)

Oy = (n-v)o, +n,0;,

0y = (n-v)*0F + 20,0,0¢, — 00,
Taking into account that 0 0;u(z) = 0 since u = const. on 9Q;, and that
0¢,0yu(z) = 0 since Jyu has a local minimum on 0Q; at z, we apply the op-
erator 97 to u at z and find

2 _ 2 _ 2
Gqu(z) = (n-v(z)) Oyu(z) = (n-v(z))"Au(z)
=—(1v())’f(a,0) <0.

By continuity, 8$u < 0in B,(z) N Q. Next we take a smaller ball B, (z) such
that for every y € B, (z) NQ the straight line y —ty (t > 0) stays inside
B,(z) NQ until it hits a point yy € B,(z) N 0Q (see Figure 4). Integrating
dju(x) <0 along this straight line connecting y to y, we get

Ogu(y) < Oyu(y) = 0 for all y € B, (z) N Q. This is the assertion of Proposi-
tion 1.

Finally, for completeness, we state (see [14])

Serrin’s Corner Lemma. Let D be a domain lying to the right of the hyperplane
T, and let Q € OD N T), be a point where OD intersects T, orthogonally. Suppose
that w € C*(D) satisfies
Aw+bow+c w=Z0 in D
(bi, ¢~ bounded), while w = 0 in D and w(Q) =0. Let m € R" be a direction
which enters D at Q non-tangentially. Then either
0 07
%w(Q) >0 or Ww(Q) >0

unless w = 0.

B,(2)
o

$

Figure 4. The choice of B, (z).
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