On Complex-valued 2D Eikonals.
Part Four: Continuation Past a Caustic
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Abstract. Theories of monochromatic high-frequency electromagnetic
fields have been designed by Felsen, Kravtsov, Ludwig and others with
a view to portraying features that are ignored by geometrical optics.
These theories have recourse to eikonals that encode information on
both phase and amplitude — in other words, are complex-valued. The
following mathematical principle is ultimately behind the scenes: any
geometric optical eikonal, which conventional rays engender in some
light region, can be consistently continued in the shadow region beyond
the relevant caustic, provided an alternative eikonal, endowed with a
non-zero imaginary part, comes on stage.

In the present paper we explore such a principle in dimension 2.
We investigate a partial differential system that governs the real and
the imaginary parts of complex-valued two-dimensional eikonals, and
an initial value problem germane to it. In physical terms, the problem
in hand amounts to detecting waves that rise beside, but on the dark side
of, a given caustic. In mathematical terms, such a problem shows two
main peculiarities: on the one hand, degeneracy near the initial curve; on
the other hand, ill-posedness in the sense of Hadamard. We benefit from
using a number of technical devices: hodograph transforms, artificial
viscosity, and a suitable discretization. Approximate differentiation and
a parody of the quasi-reversibility method are also involved. We offer an
algorithm that restrains instability and produces effective approximate
solutions.
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1. Introduction

1.1. Geometrical optics fits well a variety of issues, but especially sur-
vives as an asymptotic theory of monochromatic high-frequency electro-
magnetic fields — [14], [56], [76], [80], [98], [99], [100], [105] and [106], [116],
[137], [145], [184] are selected apropos references. Generalizations have been
worked out by Felsen, Kravtsov, Ludwig and their followers — see e.g. [39]
and [40], [60], [71] and [72], [87], [112],[113], [114] and [115], [131], [135] and
[136], or consult [26], [37], [117]. One is enough for successfully modeling ba-
sic optical processes, such as the propagation of light and the development
of caustics. The others embrace geometrical optics and are additionally
apt to account for certain optical phenomena — for instance, the rise of
evanescent waves past a caustic — that are beyond the reach of geometrical
optics. A leitmotif of these is allowing a keynote parameter to adjust itself
to a standard equation, and simultaneously take complex values.
The partial differential equation

underlies the mentioned theories in case the spacial dimension is 2. Here
x and y denote rectangular coordinates in the Euclidean plane; n is a real-
valued, strictly positive function of x and y; w is allowed to take both
real and complex values. Function n represents the refractive index of an
appropriate (isotropic, non-conducting) two-dimensional medium — its re-
ciprocal stands for velocity of propagation. Function w is named eikonal
according to usage, and relates to the asymptotic behavior of an electro-
magnetic field as the wave number grows large — the real part of w accounts
for oscillations, the imaginary part of w accounts for damping. Throughout
the present paper we assume the refractive index is conveniently smooth,
and consider sufficiently smooth eikonals.
1.2. Geometrical optics deals exclusively with real-valued eikonals, by def-
inition. The partial differential system
ui—i—ug—v%—v;:nz(az,y) L
Ug Vg + UyVy = 0 (1.2)

governs complex-valued eikonals, i.e. those solutions to (1.1) that obey
u=Rew, v=Imuw.

Observe the architecture of (1.2): gradients are involved through their or-
thogonal invariants — lengths and inner product — only. Observe also the



On Complex-valued 2D Eikonals IV 3

following properties, which result from a standard test and easy algebraic
manipulations. First, system (1.2) is elliptic-parabolic or degenerate elliptic.
Second, a solution array [u v] to (1.2) is elliptic if and only if its latter entry
v is free from critical points.

The Bdacklund transformation, which relates v and v through

Vo= f [ (1) _01 } Vu,
nz (13)
— Va2 sgn f = sgn (uzvy — UyVy),

=1

and implies both
[Vu|l >n

: n?
div 1-— W Vu = 0, (14)

is another, decoupled form of (1.2).

System (1.2) discloses two scenarios — the former is tantamount to
conventional geometrical optics, the latter opens up new vistas. Either the
equations

and

ui—i—uz:nQ and v, =vy, =0
hold, or the inequalities
|[Vu| >n and |Vu| >0,

and the following equations prevail.

1 0 1 1 n2
_ B T 1.
Yu 7 [ 10 ] Vo, 72 + Vo (1.5)

. n?
le 1 —+ W V’U = 0, (16)

(IVu|* = n2u2)ugy + 2n2uzuyug, + (V| — n*u)uy, = n|Vul>(Vn, Vu),

' (17)
(IVo]* + 712?15)%;3; — 220,005y + (|Vo[* +1202)vy, + n|Vo|?(Vn, Vo) =0.
(1.8)

Equations (1.5) represent another Bécklund transformation, which in-
verts the previous one and imply (1.6). Quasi-linear partial differential
equations of the second order in non-divergence form appear in (1.7) and
(1.8). The former has a mized elliptic-hyperbolic character: a solution w is
elliptic or hyperbolic depending on whether the length of Vu exceeds, or
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is smaller than n. The latter is elliptic-parabolic or degenerate elliptic: a
solution v such that Vv is free from zeros is elliptic, degeneracy occurs at
the critical points of v.

Any sufficiently smooth solution to (1.4) satisfies (1.7). An elliptic
solution to (1.7) coincides with the former entry of an elliptic solution
o (1.2). A real-valued function u, smooth and without critical points, is a
hyperbolic solution to (1.7) if and only if two real-valued smooth, essentially
distinct eikonals ¢ and v exist such that w is the average of ¢ and ¥, i.e.

o3+ or =1 YL+l =n® @uthy — oyt #0,
and )
U= §(SO+¢)-

Any sufficiently smooth solution to (1.6) satisfies (1.8). Any elliptic
solution to (1.8) satisfies (1.6). However, a solution to (1.8) need not satisfy
(1.6): for instance, perfectly smooth solutions to (1.8) exist whose gradient
vanishes exclusively in a set of measure 0, and which make the left-hand
side of (1.6) a non-zero distribution.

A variational approach to equations (1.6) and (1.8) can be summarized
thus. Let J be endowed with an appropriate domain and obey

J(v) ://j <@> n? dxdy

for any v from that domain — here j is the arc length along a parabola,
videlicet

. p 1
(o) = 5V 1+ 2+ Sloglp+ V14 p?)

for any real p. The following properties hold. (i) J is convex, coercive and
sub-differentiable, but not Fréchet-differentiable. (ii) Any critical point of
J, i.e. any function v such that

0J(v) 30,
satisfies (1.6) in any open set O such that
O is essentially contained in {(x,y) € domain of v : Vu(z,y) # 0}.

Consequently, a critical point of J solves a free-boundary problem for equa-
tion (1.6) — the relevant free boundary is

(domain of v) N d{(z,y) € domain of v : Vu(z,y) # 0}
and plays the role of a caustic. (iii) Any function v such that

J(v) = minimum
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satisfies (1.8) in an appropriate viscosity sense. In other words, a minimizer
of J solves in a generalized sense a boundary value problem for equation
(1.8).

An early treatment of (1.2) traces back to [61]. Further apropos infor-
mation is offered in [138], [139], [140], and [141], where solutions in closed
form, qualitative features, exterior boundary value problems, related free
boundaries, variational and viscosity methods are discussed.

1.3. Geometrical optics ultimately amounts to manipulating: (i) the Rie-
mannian metric known as travel time, videlicet

n(x,y)v/ dr? + dy?;

(ii) appropriate one-parameter families of travel time geodesics — whose
members are nicknamed rays; (iii) the envelopes of rays — called caustics.

Geometric optical eikonals are entirely controlled by rays. They shine
in light regions (those spanned by relevant rays), burn out beside caustics
(where the ray system breaks down), and shut down in shadow regions (that
rays avoid). As a consequence, geometrical optics is unable to account for
any optical process that takes place beyond a caustic, on the dark side of it.
Essentials of two-dimensional geometrical optics (which are well-established
but instrumental here) are outlined in an appendix for reader’s convenience.

Complex-valued eikonals prove more flexible. The cited work of Felsen,
Kravtsov and Ludwig comprehends the following manifesto among other
things: complex-valued eikonals are apt to consistently continue geometric
optical cognates into shadow regions.

Such a continuation is the main theme of the present paper.

2. Heuristics

Let us pave the way by heuristically considering the case where refractive
index n is 1. A classical recipe informs how general geometric optical eikon-
als can be cooked up: start from a complete integral, derive a one-parameter
family of solutions, take the relevant envelope, and shake well. Let f be an
arbitrary, but sufficiently smooth, real function. The pair

w=umxcost+ysint+ f(t), 0= —xsint+ycost+ f'(t) (2.1)

causes w and ¢ to enjoy the following properties:

ow\?, (w)?_,
Ox oy)
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the pertinent eikonal equation governing w;
costﬁ —i—sint@ =0
Oz oy ’
a Burgers-type equation governing t;
Wty + wyty =0,
showing that the gradients of w and t are orthogonal;
Wy = cost, wy = sint,
a Backlund transformation further relating w and t. Both the rays of w and
the level lines of ¢ are the straight-lines where
—zsint +ycost+ f'(t) =0

and t equals a constant. Such straight-lines span the light region and enve-
lope the caustic. We have

— f’ = the support function of the caustic,
and
x = f"(t)cost + f'(t)sint, y= f"(t)sint — f'(t)cost, w= f(t)+ f"(t)

along the caustic. Therefore the second-order derivatives of w and the gra-
dient of ¢ simultaneously blow up there — in particular, the caustic of w is
also the shock-line of ¢.

We claim that both w and ¢ can be continued beyond the caustic, in a
subset of the shadow region, if complex values are allowed. Suppose f can be
continued by a holomorphic function of a complex variable. (Information
on analytic continuation is in the next section.) Let i = y/—1, the unit
imaginary number. Let u, v, A, u be real; put the equations

w=u+1tw, t=X\+iu,

and equations (2.1) together, but force (2.1) to produce real x and y. The
formulas

sin A , cos A ,
= I
. cosh Refi(t) + sinh p mf(t),
cos A , sin A ,
= — t I t 2.2
y COShH R‘ef ( ) + Slnhl,l, mf ( )7 ( )

u=Ref(t) + (x cos A + ysin \) cosh p,
v=1Imf(t) + (—xsin A + y cos \) sinh p,

ensue, then an inspection testifies that the claimed continuation ensues too.
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Incidentally, we have also shown that solutions to the non-viscous
Burgers equation can be continued past the shock-line by suitable complex-
valued solutions to the same equation.

Note the following. In case

ft)y=t

for every real or complex t, the caustic is the unit circle, the rays are half-
lines tangent to it, the shadow region is the unit disk. Formulas (2.1) and
(2.2) become transparent when recast as shown below. Let rectangular and
polar coordinates be related by

x=psing, y=—pcosp (0<p<oo,—7m < <m).

A geometrical optical eikonal happens to satisfy

w:cpj:{arctan\/p2—l—\/p2—1}

in the region where

1 <p<oo;

the same eikonal is ipso facto continued by

1 1
wzu—l—z‘v,uzw,vz:l:{log(——i— —2—1>— 1—p2}
p Vp

in the region where
0<pxl

— u is a helicoid, v is a pseudosphere.
A more exhaustive analysis is carried out in the next section.

3. Analytic continuation

3.1. Here we sketch a special method of continuing a two-dimensional geo-
metric optical eikonal past a caustic. Though rigorous, such a method is
slightly reminiscent of the so-called theory of complex rays — cf. [37] or
[115], for instance. It applies in the case where the refractive index equals
1, and can be used for simultaneously continuing solutions to non-viscous
Burgers equation beyond shock lines. Let us mention that complex-valued
solutions to viscous and non-viscous Burgers equation are dealt with in
[102], [174] and [101].
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3.2. The present method involves analytic continuation from the real-num-
ber axis into the complex plane — an ill-posed process in the sense of
Hadamard. Let h be a real or complex-valued function of a real variable,
or even a list of samples. An analytic continuation of h is a holomorphic
function of a complex variable, whose domain surrounds the real axis and
whose restriction to the real axis fits h well — in other words, a solution
H of the following initial value problem for Cauchy-Riemann equation
OH O0H
N =i5 H(-,0) ~ h.
If his an analytic function, and is not polluted by noise, an analytic
continuation H of h results from obvious formulas. For example,

P dzk k!
or
Hoy) = 5 [ expligle + )] () e

where hat denotes Fourier transformation.

If h collects gross data, an effective analytic continuation H of h can be
obtained by analytically continuing an appropriate, smoothed and denoised
version of h. Consider for instance the case where

—00 < a<b< oo,

N = an integer larger than 1,
a mesh size is given by
Azx=(b—a)/(N —1),
nodes are given by
zj=a+(j—1)Az (j=1,...,N);

and A stands for

a sequence of noisy samples.
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An ad hoc analytic continuation H solves the following least square
problem

N b+Ax/2 L
Ax Z[H(x 0) — hi]* + A dx | |H(z,y)|*dy = minimum
. 7 J 27, ’
i=1 a—Azx/2 -L

in a convenient class of holomorphic functions — e.g. the class of trigono-
metric polynomials of a suitable degree. Here

b+Azx/2 L
A
- H 2
| o [Py
a—Az/2 —L

plays the role of a penalty; A and L are regqulating parameters — X is related
to noise, L is related to a priori information.

An explicit expression of H can be derived via discrete Fourier trans-
forms. Suppose for simplicity that IV is odd, say

N=2n+1 (n=1,2,...);

let
T = N Az,

and let DFT be the discrete Fourier transform that obeys the equations

N
DFTy(h) = jzl h; exp <—2m’k:%> (k=—-n,...,n),

1 O ]
k=—n

N

= S IDFT)? = 3 P

k=—n j=1

— cf. [31], for instance. If

B _ sinh(47kL/T) B B
00_17 Ck_ 47T]€‘L/T ,C_k—Ck (k_17°°°7n)7
then
H(z,y) = > (1+ACy) ' DFT;(h) exp <2m‘kx J;”’) .

k=—n
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This is a T-periodic trigonometric polynomial of degree n that enjoys the

properties
N
> e0) -1 < (e ) }:VLP
b+Ax/2 L A
1
o [ @ [ ek < 3
a—Az/2 —L
and

N rT—xi+1
=" H(2;,0) Dy (27‘(#)
=1

— here Dy denotes the Dirichlet, or periodic sinc function obeying

sin(Nz/2)
Dy(z) = 222
N = N @)
if z/(27) is not an integer.
More information on analytic continuation can be found in [1], [4], [23],

(251, [35], [41)-[42], [50], [54]-[55], [69], [70], [74], [75], [81], [88], [124], [125],
[130], [126], [149]-[150], [152], [187], [192], [194], [211], [215], [221], [223],
[226].

3.3. Consider a plane curve C that either is inherently smooth or results
from a suitable smoothing process of raw data. Assume C is analytic and
its curvature vanishes nowhere. For simplicity, assume C' is the graph of
the equation

and f is convex.

Alternative parametric representations of C, which are instrumental
throughout, include

x=t, y=f(t), (3.2)
where parameter ¢ coincides with the abscissa; and
x=g(t), y=tg(t)—g(t), (33)

where parameter ¢ is the slope of the tangent straight-line. Here g denotes
the Legendre conjugate of f — recall from e.g. [190] that f and g are related

t=f'(x), v=g'@1), to=flx)+gt), 1= f(2)g")
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Curve C' changes into a caustic under the following modus operandi.
Let

v=alt), y=4) (3.4)
be any parametric representation of C, where v and 3 are analytic. Let v
and k stand for arc length and curvature, respectively — in other words,

(1) = / Va0 § B2 dr,

B B — B
@ @R

][] ] e

makes s and w curvilinear coordinates. As is easy to see, the level lines of
s are tangent straight-lines to C, the level lines of w are involutes of C' —
orthogonal to one another.

Equations (3.5) imply

The pair

y < f(2),
and
s(z,y) =t, w(z,y) =(t),
if x,y and t obey (3.4) — s and w live below C' and satisfy precise conditions
along C.
We compute

z,y) _ [ —f'(s) o'(s) ] [ K(s)[w —(s)] 0

Osw) ~ | ols) B 0 @@
to draw the following set:
a% as) + a% B(s) = 0, (3.6)
B
et e =0 (38)
Vi = (e + H | G . (39)
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Wea wa:y — 1 _wy _ 3 11
[wwy wy} y(s)—w[ Wz ][wyww]. (3.1
Equation (3.6) is a conservation law; it reads
0s 0s
il 20
Ox +s Ay ’

the standard Burgers equation, if (3.3) is in force. Equation (3.7) is the
equation of geometrical optics in hand. Equation (3.8) shows that the gra-
dients of s and w are orthogonal. Equation (3.9) shows that both C' and
the tangent straight-lines to C' are lines of steepest descent of w; it also
shows that the straight-lines in question are isoclines of w. Equation (3.9)
can be viewed as a Bdcklund transformation, which converts any solution
to (3.6) into a solution to (3.7). It reads

Vuw = [1+ f'(s)?]71/? [ f’ts> ] , s=¢ <ﬂ> ;

or simply

Vw:[l—i-sQ]*l/z [ i ], S:ﬂ,
depending on whether (3.2) or (3.3) is in effect. Equations (3.10) and (3.11)
show that both the gradient of s and the second-order derivatives of w blow
up near C.

We infer that s is governed by a Burgers-type equation, and develops
shocks along C. The following objects — w, C, the tangent straight-lines to
C, and the region below C — are a geometric optical eikonal, the relevant
caustic, the rays, and the light region, respectively.

We now claim: (i) s and w can be continuously extended into the region
where

y> f(o), (3.12)
the dark side of C, if suitable imaginary parts are provided; (ii) the relevant
extensions obey equations (3.6) to (3.11).

The points above C' are reached by no tangent straight-line to C, of
course. We insist in drawing tangent straight-lines from these points, but
allow complex slopes. In other words, we recast (3.5) this way

=0 (s)lx — als)| + o/ (s)ly — B(s)] = 0,
[w =~ (s)][a(s)? + B'(s)°]'/2 = &/ () [z — als)] + 5'(s)ly — B(s)],
and force such equations to hold in the situation where

Re(s) = A, Im(s)=p, Im(z)=Im(y)=0.
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The following formulas result:

I3 (a(s)8 ()= (5)B(s))]

7 N )

Ima’(s)5'(s)]

_ mFE)@(E)(s) = (s)als))
Im{5 (s)o’(s)] /

= At (3.13)

w=(s)- ! T —mB) |y Imals)

7(e) w@uwwv{<Gmw@a@ﬁ”(HMﬂ@w@J’

where «, 8 and -y stand for the analytic continuations of the original objects.

Formulas (3.13) answer the claim. Among other things, they give

[ﬂ :[O‘(A)}r dd() [a/m] 1w’ + B()) [_élm] #? + O,

NV A N 76 ey
A=~ loglul - Slog V@ + (T, B =15 (@P+ (0,

as p approaches zero, and

Oz, y) _ |a/(s)Im B(s) —ﬂ’(S)Ilané(S)|2|0/(8)3 "(s) —a"(s)B'(s)”

det = )
(A, 1) {Immﬁ’(s)}
consequently
y = 1@) = 5 (@) I a(r+ ip)]? + O(u)
and o(e.y)
x,y) / 11 7 /
det S = [ ()" () = " (DT () + O
as p approaches zero. Thus (3.13) imply (3.12), as well as
O(x, y)
det a0 1) #0

if p is different from, and sufficiently close to 0.
3.4. Here is an example. A catenary is the graph of either the equation

y = coshx (3.14)

or the equations

z=log(t+V1+t?), y=+v1+1¢ (3.15)
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where parameter ¢ coincides with both an arc length and the slope of the
tangent straight-line.
Consider solutions to the equations

du\', (BN L, o 0s
Ox oy) 7 Oz 883/_’

which obey the conditions

w(x>y> = s(:v,y) =1
as = and y obey (3.15). Function w and the catenary in question are an
etkonal and the relevant caustic, respectively; s obeys Burgers equation,
takes a constant value on each tangent straight-line to the catenary and
develops shocks along the catenary.
The light region is the set where

—oco <z <oo, y<coshuz;
the shadow region is the set above the catenary, where
—o0o <z <oo, coshz <uy.

The pair

sx—y:slog(s+\/1+s2)—\/1+s2,

v
W= ——n- |z +sy—log(s+ 1+82],
0 y — log( )
makes s and w implicit functions of z and y in the light region. Eikonal w
and its partner s can be continued in a subset of the shadow region via the

equations

x = A+ tanh A (ucot p — 1),

1
Yy = (sinh2)\ ',u —|—Msin,u—|—cosu> ,
cosh A sin p

s = sinh(\ + ip),

?

w = sinh A\ sinp + osh (sinp — p cos p)

— here A and p are parameters such that
—0 <A< o0, 0<pu<m/2

The foregoing equations imply that

y — coshz = (cosh \) p? [% + O(,uQ)] ,
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as p approaches 0. Furthermore,

O(z,y)  [u®+tanh? X (1 — pcot p)?](sinh? \ + cos? p)
det = . )
O(A, ) cosh A sin

ow 1 ow
— =————— — =tanh(A+1¢
Or  cosh(A+iu)’ Oy A+ in)
— in particular, a singularity occurs at the point whose coordinates are

x=0, y=m/2

Figures 1 and 2 show plots of the imaginary parts of w and s.

y-axis

x-axis

FiGure 1. Eikonal equation: the imaginary part of w be-
yond a caustic.

4. Main statements

The most exhaustive method of continuing a two-dimensional geometric
optical eikonal beyond a caustic consists perhaps in tackling a certain initial
value problem — singular and ill-posed — for system (1.2). Such a problem
is described in items (i) and (ii) below, and Figure 3.

(i) An initial curve IC is given.

The following alternative applies: either IC is specified ezactly — no
error infects the definition of IC; or else IC is a phantom — some coarse and
polluted sampling of IC is gotten. In the former case assume IC is smooth
enough. In the latter case recover IC, i.e. feed the available data into an
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yraxis x-axis

FIGURE 2. Burgers equation: the imaginary part of s be-
yond a shock-line.

w=Re w
w)z( +w§ =n2(x,y)
light © shadow
a w=u+iv, v>0;
@®
S u§+u§—v)2(—v§=n2(x,y),
u X A\ X + u y \" y =0.
(/q:J/
/\\, (sgn k)(unit normal)

X
J/)\\O /

FIGURE 3. A geometric optical eikonal and its continuation
past a caustic.



On Complex-valued 2D Eikonals IV 17

appropriate denoising process, and then elect the consequent output as an
operative substitute of IC. (Ad hoc tools can be found in Section 7.)

Represent IC (either the authentic one, or else its surrogate) by the
equations

v=alt), y=A), (4.1)
and adjust parameter ¢ so as

t = a travel time (4.2)

without any loss of generality.

Assume travel time is an extra metric in action and the relevant ge-
odesic curvature of 1C is free from zeroes. In other words, postulate that
(4.1) and either of the equations

x (velocity)? = Geodesic curvature,

k (velocity)? = Euclidean curvature — (unit normal, V log n(z, y))
(4.3)
result in
k vanishes nowhere. (4.4)

(ii) A pair [uv] is sought that obeys system (1.2) and fulfills the following
conditions. First,

u(z,y) =t, wv(z,y) =0, (4.5)
if x,y and t are subject to (4.1). Second, u and v are defined in the side of
IC that

(sgn k) X (unit normal to IC)

points to.

Arguments from the appendix allow us to comment as follows. IC and
the mentioned side of it can be viewed as a caustic and a shadow region,
respectively. Any geometric optical eikonal, which makes IC a caustic, lives
in the illuminated side of IC; the complex-valued eikonal, whose real part
is u and whose imaginary part is v, lives in the opposite, dark side of IC
instead. Both the former and the latter equal a travel time along IC. An
extension of the geometric optical eikonal in hand ensues. Such an extension
does obey the eikonal equation, lives in both the light region and a subset
of the shadow region, and takes complex values where shadow prevails. In
physical terms, problem (i) and (ii) accepts a caustic in input, then models
evanescent waves that rise in the dark side of it.

In the present paper we focus our attention on solutions [uv] to the
problem (i) and (ii) that meet the following extra requirements:
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(iii) they are elliptic;
(iv) their Jacobian determinant obeys

sgn (UgVy — UyVyz) = SN K.

Condition (iii) ensures that the latter entry v is not constant; as will emerge
from subsequent developments, initial conditions plus conditions (iii) and
(iv) ensure that the same entry is nonnegative.

The solutions to problem (i)—(iv) develop singularities near IC, as any
geometric optical eikonal does in the vicinity of the relevant caustic. We
will show in Section 6 that they obey the expansions
2v2
3

ulz,y) = s+ olr), vlw,y) = == [k(s)|"2r[7? + o(r®/?) (4.6)

as (z,y) belongs to the appropriate side of, and is close enough to IC. Here
r and s stand for the curvilinear coordinates described in the appendix —
informally, r is a signed distance from IC, s is a lifting of a travel time
inherent to IC. Note the physical meaning of (4.6): the damping effects,
which are encoded in the imaginary part of a complex-valued eikonal, are
tuned by the geodesic curvature of the relevant caustic.

Problem (i)—(iv) is recast in the next section into a more tractable
form.

5. Framework

5.1. A convenient coordinate system must be called for. We choose to recast
(1.2) by reversing the roles of dependent and independent variables — i.e.
we think of u and v as curvilinear coordinates, and think of z and y as
functions of u and v. In other words, we subject (1.2) to the change of
variables that is called hodograph transformation at times — see [64] and
[227], for instance.

Let [uv] be any smooth elliptic solution to (1.2), and observe the
following.
(i) The level lines of u and those of v are free from singular points, and
cross at a right angle. Moreover, the Jacobian determinant

UzVy — UyVy vanishes nowhere. (5.1)
Let

[uv] — [z(u,v)y(u,v)] be alocal inverse of [z y] — [u(x,y)v(z,y)],
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then observe the following equation

(uxvy - vax)(xuyv — TpYu) =1

and the propositions (ii)—(iv) below.
(ii) The following partial differential system holds:

1/E-1/G=1, F=0. (5.2)
Here
E =n®(x,y)(z; +y2), F=n(2,9)(@uty + yuyo), G=n’(z,y)(z7 +y;)
— in other words,
n2(z,y)((dz)? + (dy)?) = E(du)? + 2Fdudv + G(dv)?.

(iii) The following systems and equations hold:

0|z 0 11190 =
TR R
0| x 1[0 —-1] 9 |z
%[y]_f[l 0}@&]’ (54)
. Sgnf = sgn (xuyv - xvyu)a
Fo L), P oi-nepad ). O
(iv) The following equations hold:
1 —n%(z,y)zl 1 —n%(z,y)y2

1+ n2(z,y)z2’ 14 n?(z,y)y2’

0?2 [x :| +f4a—2 |: T ] :(1—f2> |:x1%_y5 —22$_u3ylz2t :| Vlog n(z,y)

2 |y ov? |y 2Ty Yy T — Yo
(5.7)
— in the event that n is identically 1, these equations read
1—a2\? 1—y2\?
Tyy + <ﬁ> Lyy = O, Yuu T <1 T zg) Yoo = 0. (58)

Proof of (i). System (1.2) tells us that
[Vu| >0,

and that the gradients of u and v are orthogonal. Ellipticity gives
V| > 0.
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The equation
(uzvy — uyve)? = |Vul*|Vo|? — (Vu, Vo)?
concludes the proof.

Proof of (ii). Since

d(u,v) " Ox,y) [1 0
Nz, y)  O(u,v) 0 1]
O(u,0)  [9(u,v) r Vul2  (Vu, Vo)
O(x,y) = |0(z,y) (Vu, Vo) |[Vo|?2 |7
oz, )" Oy [ antun wume t gub
8(u, U) a(uv U) B TuTy + Yulv .21?12) + yg ’
we have
o o (Vu, Vov)? o o {(Vu,Vov)?
2 +y2 Vel V|2 7 22 + 42 Vel |[Vul2 7

TuZy + Yulo = — (Vi VO (Zulo — ToYu)>

The conclusion ensues.

Proof of (iii) and (iv). The latter equation from (5.2) yields
Ty Yo = Yu t (—Ty),

hence the following systems result:

R P s b I

Yu -1 0 Yo ’ Yo f 1 0 Yu '
Factor f is easily identified. Both the above systems give

sgn f = sgn (xuyv — ToYu);
the former and system (5.2) imply

1
i +n?(z,y) (@) + y);

the latter and system (5.2) imply
f2=1—n’(@,y) (= + ).

Another arrangement reads

T I A P
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— two Béacklund transformations, inverse of one another. The former and
system (5.2) imply

f2 — 1 - n2(x7y)y’l2t
1+ n%(z,y)y2’

the latter and system (5.2) imply

2 _ 1- n2(x,y):v

P = Ty

SN N

The integrability conditions, which pertain to the Bécklund transfor-
mations in hand, read

0 N[ F 0] ww w]_,
ouov] | 0 flla w|
and result in equation (5.7) after algebraic manipulations.

Equations (5.5) and (5.6) are consistent with one another and with
the early equations (1.3) and (1.5), as Proposition (ii) and its proof show.
The proof is complete. O

5.2. In view of the discussion above, problem (i)—(iv) stated in Section 4
amounts to looking for solutions [z y] to the partial differential system

wlv]=7 10 9wl
o |y flL 0 Jouly]’ (5.9)
senf =sgnk, [2=1-n?(z,y)(ad + ),
that is defined either in the half-strip
a<u<b 0<v<oo
or in an appropriate bounded subset if it, and satisfies the initial conditions
z(u,0) = a(u), y(u,0)=pF(u) for a <u<b. (5.10)

In the remaining part of the paper we will concentrate on such a prob-
lem. A behavior of solutions [zy] to (5.9) and (5.10) as v is close to 0 is
fixed up in the next section. An algorithm for computing the same solutions
is offered in Section 4. Section 5 is devoted to an example.
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6. Behavior near the caustic

The state of affairs causes any solution of (5.9) and (5.10) to suffer from
singularities near the initial line — indeed,
23 (u, v) + v (u,v) — 00

as a < wu < b and v approaches 0. The proposition below offers more details
on the subject, as well as a proof of expansions (4.6).

Proposition 6.1. Let z and y obey system (5.9) and initial conditions (5.10).
Assume x(u,v) and y(u,v) depend smoothly upon u for every nonnegative,
sufficiently small v. Then the following asymptotic expansion holds:

e =150 | e | e e

asa<u<bandvis posztwe and approaches 0.

Proof. Equation (3.2), equations (5.9) and initial conditions (5.10) tell us
that
f(u,v) =0

as a < u < b and v is positive and approaches 0. Therefore,
/3 9 . 1/3
lim oy = i sen .0 {sgnfw,v) / 2 <u,v>} ,
by L’Hospital’s rule. Equations (5.9) give successively

2 (ry) = ﬂx;’) <v1ogn<x,y>, [ o D

flu,v Ty

8 2 2\ 2
%(xu + yu) = f(u, ’U) (xuyuu muuyu)a

and

0 .3 o 2 2\3/2, 2 LyuYuu — TuulYu
%f (u,v) = 3 (2, +y,)” "n"(z,y) (22 + y2)3/2

_ <vlogn(x,y),(xi + o) [ o D}

We infer "
0 3 | - e | o |

because of (4.3) and (4.4). The conclusmn follows. O
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7. Differentiating discrete and polluted data

7.1. The present section is devoted to an auxiliary technique, which is a
key to our main results.

Differentiating a real-valued function of one real variable is among the
most elementary processes of mathematical and numerical analysis, but is
also a significant prototype of those problems that are nowadays qualified
ill-posed in the sense of Hadamard. On the other hand, differentiations
with respect to those directions, which are tangent to the initial surface,
are the main source of the ill-posed character of initial value problems
for elliptic systems of partial differential equations. In the next section
we tune a numerical approach to one of such problems, where a suitable
approximation of tangential derivatives plays an important role.

Methods of approximating derivatives of smooth functions under non-
exact data have been widely experimented over the years. Here we take the
opportunity of sketching one more of such methods. We consider the case
where data consist of discrete and noisy samples, nodes are equally spaced,
and information is available on both the relevant noise and the underlying
smoothness. Our method is inspired by ideas that the theory of statistical
learning has recently revived — see e.g. [45], [65], [198]-[201], [217]-[220]
— and of course mimics several of its ascendants — see e.g. [2], [3], [7]-[8],
(9], [13], [19], [38], [44], [47], [48], [51], [52], [59], [73], [79], [97], [103], [110],
[111], [133], [134], [146], [155]-[156], [157], [158], [162], [180]-[181], [182],
[188], [193], [203], [204], [216], [225].

7.2. Items in input include:
(i) the end points of a bounded interval — a and b;

(ii) the number of both nodes and samples — an integer N, larger than 2;
(iii) equally spaced nodes from a to b — specifically,

b—a
= k—1 k=1,....N
TR =a+( )N—l ( ) N);
(iv) noisy samples — a sequence
g1,92,---,9N

of real numbers whatever.

Goals include recovering some noiseless function f and the derivative
1" of f based upon the following information only:
(v) fis smooth;
(vi) f(=zg) is close to g, for k =1,2,...,N.
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Our recipe segments into the following three steps. First, let A and p
be positive parameters, and solve the variational problem
N o
Z[u(xk) — g+ A / [,u7(u”")2 + ,u_lu2] dx = minimum, (7.1)
k=1 %
under the condition
u belongs to Sobolev space W*?(—o00, 00). (7.2)

Second, adjust A\ and p properly. Third, take u, v’ as approximations of f,
fh
Observe that

N
> lular) — gkl

k=1
the beginning of line (7.1), is a data-fidelity term;
o
/ [M7(u////)2 + H_1u2] dI,
— 0o
a squared and conveniently scaled norm of u in W#2(—o0, o), plays the role

of a penalty. Parameter A\ balances the data-fidelity term and the penalty
term; parameter p balances

/(u"”)zd:c and /u2d:v,

hence tunes a Rayleigh quotient of w.
It could be shown that the above recipe has the potential of recovering
not only f and f’ as requested here, but f” and f” as well. Involving
[e.e]
/ [MS(U”)Z + ,uflu2] dr
—0o0
instead, and letting W?22(—o0,00) be the space of competing functions,
would be enough for our present purposes; whereas involving
o
/ [n(W)? + p'?] dz

—00
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and Sobolev space W12(—oc, 00) would not. Powers different from squares
could be allowed, but would make the method impracticable.

7.3. Effective formulas read as follows. Rudiments of the calculus of varia-
tions demonstrate that Problem (7.1) & (7.2) possesses a unique solution;
moreover that such a solution — named u throughout — obeys

7 dPu -1 Al
A0 G ) + Y lulo) — oo —m) =0 (73)
k=1

for —oco < x < o00. The following features are decisive: equation (7.3) is

affine;

8
7 % b
is a positive operator in L?(—o0, c0), whose inverse mollifies;
N
Z[U(xk) — gk 6(- — 1)
k=1

is a spike train or a shah-function. (Shah stands for a letter of Cyrillic
alphabet, III, which is suggestive of an assemblage of vertical needles.)
Condition (7.2) and equation (7.3) give

N
“Nte) = S lulan) - gl & (22 (7.4

k=1 H

for —oo < z < co. Equation (7.4) gives

u(zy) u(zy) g1
A : + A : =A|  |. (7.5)
u(zy) u(zN) gN

Here K denotes an appropriate reproducing kernel for the Sobolev space
W42(—00,00) — in other words a fundamental solution to d°/dx® 4+ 1. K
is the solution to

BK

that decays at infinity, is given by

T K (z) = / Cfsfcé) de (7.6)
0
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0.35

0.3

025

0.2

0.15

0.1

FIGURE 4. Plots of K, K’ and K".

for —oo < & < 00, is even and positive definite. Secondly,

K(0) K<x1—x2> K(:m—:mv)
[ 7
ro — I T2 — TN
— | K K0 K|{——
B R I
K (L — xl) K <L — x2> K(0)
L © H N
— a symmetric, positive definite Toeplitz matrix.
Let v = w/8. Manipulating formula (7.6) gives
1 1 22 1zt 1 2% 1|2
K(x) = - ~ SRR ol 8
(@) = SSnv ~ Scosv 2 | Scosv2d  Ssmp720 T 25040 T O@)

as x approaches zero — K behaves near zero like a spline of order seven.
Calculus of residues, or convenient formulas from [PBM, Section 2.5.10],
give

4K () = e 171997 cos(|z| sin v — v) 4 e 7115 sin(|2| cos v + v)
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as —o0o < z < 0o. Therefore,

d"K, . (—sgnz)"
dzx™ (z) = 4

+e 1715V gin (|| cos v + (n + 1)v — n7r/2)}

{e_mcosy cos(|z|sinv — (n + 1)v)

asx #0and n=1,2,3,.... Figure 4 shows plots of K, K', K".

1.2

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14 16 18 20

FI1GURE 5. Reciprocal condition estimator of A, plotted ver-
sus the ratio (b —a)/((N — 1)p).

Analysis shows the following. The spectrum of A lies in the open inter-
val |0, N/(8sinv)[. All eigenvalues of A are close to 1/(8sinwv), if
w(N —1)/(b — a) is small; otherwise, the largest eigenvalue of A is close to
N/(8sinv) and most remaining eigenvalues of A are close to 0. In partic-
ular, A is invertible anyway; A is either well-conditioned or ill-conditioned
depending on whether p(N — 1)/(b — a) is small or large. Figure 5 shows
plots of a reciprocal condition estimator of A versus (b —a)/((N — 1)u).

Equation (7.4) implies that u belongs to the linear span of

(52 (529

— translations and dilations of K. Such items own either a spike-shaped or
a well-rounded profile depending on whether p is small or large, inasmuch
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as
[ |(d/dz)ltem|? dx . [ |(d?/dz*)Item|* dz
= = - 2tany, — = - ttanw.

7 7

o o
[ |Ttem|? dz [ |Ttem|? dz
—00 —00
The same items are definitely linearly independent, although appropriate

formulas and analysis show that their Gram matrix is well-conditioned only
if w(N —1)/(b— a) is small enough.

Equation (7.5) determines u(z1),...,u(xy) in terms of data. Note that
they solve

N u(1)

Z[u(:ck.) - 914:]2 + Au(z1) -+ (o)) Al = minimum

k=1 U(CCN)

— a standard finite-dimensional least-square problem, where A and the
inverse of A imitate a regulating parameter a la Tikhonov and a penalty,
respectively.

Now we are in a position to draw conclusions. Let Id be the N x N
unit matriz, and

R=(\Id+ A)~!

— a resolvent. Let B the vector-valued function such that
_ p <x B xl) .
I
% <:c — xN>
L H J

for —oco < z < oo — an alternative basis in the linear span mentioned

above. Define C' and D by C = AR and
_ 0 K'(xl_“) K <w> _
1 p

To — X1 T2 — TN
I 7= I R ey
D=yp Iz 7 R.

i w I |

B(z)=R
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The following equations hold.

u(z) =[g1 -+ gn] B(z)
for —oo < & < o0,

u(z1) g1

. _cl| |
u(zN) gN
u'(z1) g1

. _pl|
u'(zN) gN

0.6

0.5

I
0.4

0.3

0.2

0.1

'0" T

0“
i w i
L "0,0‘ o’“o

X "5‘ 'o.l& 01’ ul
e:,o,;,,‘ .
o 0 0

. A

T o s.,. u’w il
g
. L

«?z

.

0%4"'
’

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
asset

0.8 0.9

FIGURE 6. The alternative basis B : plots of Bj(x),...

By (x) versus z.

29

As figures 6, 7 and 8 show, B and C' mimic a typical Green’s function

from two different perspectives, D mimics a derivative of a Green’s function.

Observe incidentally that

(e o]

/ [M7(B////)TB////+M—1BTB] dr = tr [A ()\Id—i-A)_Q],

—00

C=Id-—AAId+ A)~



30 R. Magnanini and G. Talenti

0.6
0.5
0.4
0.3
0.2

0.1

0.1
60

F1GURE 7. Matrix C playing the role of a regularizing filter.

FI1GURE 8. Matrix D, simulating differentiation.

and that B and C solve the variational problem
[ee]
A / (u"(B"TB" + = *BT B] de+tr [(CT —1d)(C —1d)] = minimum,

—00
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subject to the conditions

Bl(ﬂil) Bz(ﬂil) BN(ﬂfl)
B e W (—o0.00)¥, €= Bl(f@) 32(:$2) BN:($2>
Bi(zy) Ba(xn) ... Bny(zn)

7.4. Here we offer directions for adjusting A and p properly. Parameter A
— dimensionless — discriminates whether solution u to Problem (7.1) &
(7.2) either fits data well (but is simultaneously sensible of noise), or else is
little affected by noise (but departs somewhat from data). In loose terms,
the following statements hold. First, u virtually interpolates g1, ..., gn if A
is close to zero; however, u is liable to own an irreqular profile at the same
time. Second, u quenches smoothly if A grows larger and larger. Indeed,

/ [,LL7(BI”/)TB”” _|_M—1BT B] dr = tr Afl + O()\),
C=Id+0(\)
as A approaches zero;

VN

n n e
I Blz)/de"ll < A~ g 101

as —o<zr<ooandn=0,1,...,6.
Parameter p — making p/(b — a) dimensionless — determines how
much w is close to, or departs from a spike train. Indeed,
8si 6(x — 1)
sin v
B(z) = p———— : o
(z) Ml-i-/\sinl/ +0W)
0z —zN)
as —o0o < x < oo and p approaches zero;
. 1
B(z) = ——— o2
(z) N + 8Asinv O™

as —o0o0 < z < oo and p grows larger and larger.

In the case where suitable information is available a priori, a theorem
from Subsection 7 below suggests which values of A and p work properly.
Otherwise, parameter A may be determined based upon the discrepancy
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0.8

I o
S o

least value of Rayleigh quotient R.Q.

S.R.Q=
o
w

0.2

logarithm of rho

FIGURE 9. Plots of S.R.Q. versus logp. Here p = (b —
a)/(N = 1)p).

principle, the cross-validation, the L-curve criterion, or other customary
devices — see e.g. [86, Chapter 7| for details.

Parameter p is expediently identified by the following recipe. Let
2
N O
S (@) da

be a dimensionless Rayleigh quotient; define a relevant minimum by

S.R.Q.:min{R.Q. of v: 0 # veEspan 0fK<. —x1> ,...,K<. _$N>};
K I

R.Q. of v

then determine p so that
S.R.Q. = minimum. (7.8)

Equation (7.8) causes solution u of Problem (7.1) & (7.2) to retain its
most favorable Rayleigh quotient. Equation (7.8) can be approached via
equation (7.9) below and tools from linear algebra, although care must be
taken of the ill-condition of the involved matrices.
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G=up! xGrammatrixofK<'_ml>,...,K<

H =y~ ! x Gram matrix of K7 (_—xl> . KD ( _mN> :
w
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I

'—mN)
/_,L Y

7

let L denote the autocorrelation function of K, videlicet

[e.o]

~L(z) = / (1+ €8)2 cos(w¢) de

for —oo < 2 < 00. We have

G = P;(fl:ﬁk)} 7 f{::[—L“4)<
K Gk=1,...N

L) = L K@)~ T K'(2), 109()

for —oo < x < o0, and

)

0

7

Tj — xk)] .
b
H j.k=1,..,N

-

)

KO (z) + 2 KO ()

8

S.R.Q. = least eigenvalue of H with respect to G

— in other words,
S.R.Q. = least eigenvalue of G~V2H G—1/2,

Figure 9 shows plots of S.R.Q. versus (b—a)/((N —1)u). The following
table lists sample solutions to equation (7.8).

N

5)
10
20
30
40
50
60
70
80
100
120
140
150

minimum value

0.115320757000
0.042825969700
0.015529762000
0.008487160550
0.005502126710
0.003920874640
0.002967795760
0.002342495540
0.001906845850
0.001349762400
0.001016274330
0.000798662701
0.000716797334

(b—a)/((N = 1)p)

0.900127730000
0.578865888000
0.361101444000
0.271108504000
0.220171280000
0.187117585000
0.163520070000
0.145755736000
0.131825897000
0.111466361000
0.097183852500
0.086282601400
0.081805225800

1/ (b —a)
0.277738360532
0.191946206219
0.145752889726
0.127191726235
0.116459447577
0.109065982576
0.103651818045
0.099431789245
0.096022315313
0.090619358257
0.086468699567
0.083380015062
0.082041328416

33

(7.9)
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The formula

ﬁ ~ 0.0415 +0.5416 x N~1/2 —0.6426 x N ' +1.3706 x N3/ (7.10)

gives an effectual estimate of such solutions.

7.5. The following theorem holds.

Theorem 7.1. Suppose u solves problem (7.1) & (7.2); suppose f,e and E
obey

If(zp) —gr| <e (k=1,...,N),

pt / f(x)?dx + p / (" (2)]2dx < 2(b— a) 3E?;

let
§ = max {(1 —1/N)TRZ (N - 1)—2} .

A () gy
N \b—a E
18 bounded and bounded away from zero, then

E ' max{|f(z) —u(z)| : a <z < b} = O(8%/*),

If § approaches zero, and

E7Nb—a) max{|f'(z) —u/(x)| : a < x < b} = O(§/4).

Proof. Let
v=f—u. (7.11)
The Functional J, whose domain is W%?2(—o0, 00) and whose value at
any trial function ¢ obeys
N )
J(0) = (k) — grl* + A / (") + 7] da,
k=1

— 00

attains its minimum value at u. Consequently,
J(f) = J(u) + (a remainder),

N (e o]

remainder = Z[v(wk)]Q + A / (1" (") + p~?] da.
k=1

— 00
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Since
3
J(f) < Ne? 4 2) (#) E2,
—a
J(u) >0,
f [N7( ////) +H 1112] dx > 2” f " de

we infer

N o0 o2 " 3

Z[v(xk)]2+2)\ﬂ3 /(v//>2dx<E2 {N (E) + 2X (b—a) } (712)

k=1 _

Combining inequality (7.12) and Lemma 7.2 below results in
b

(b—a)™? /dex

a

<o ) {6 (%)}

inequality (7.12) also yields

(b—a)Bj(u")2dxgE2 {1+% <b“ )3 (%)2}

a

The last two inequalities and a hypothesis imply

b
L e? (Const.) E? §2, (7.13)
b
(b—a)3 [(v")?dx < (Const.) E2. (7.14)
The conclusions follow from (7.11), (7.13) and (7.14), by virtue of Lemma
7.3 below. 0
Lemma 7.2. Let —co <a <b< oo, and N =2,3,...; let
b—a
Az = zp=a+(k—1)Az (k=1,...,N).

N-—-1’
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F1cure 10. Original function (dotted), and samples pol-
luted by noise (circled).

The inequality

b 1/2 1/2

v2dx < (Az)~1/? NUCL‘ 2da " & 2 bv" 2da
/ < () {Zm }+(W) Je

o k=1

holds for every v from W22 (a,b).

Lemma 7.3. Suppose v is in W*2(a,b), and
b 1/2 b
(b—a)~1/2 /de:c — ol b—a) [ ")z = 1.

The following inequalities hold:
max v| < 214 373/8o[P* 4 O(|Jv])),
(b~ a) max [v/| < 24 3738||u[|'/* + O(|Jo])).

The proofs of Lemma 7.2 and 7.3 are beyond the scope of the present
paper, and are omitted.
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Ficure 11. Original and recovered functions.

-100
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F1cURE 12. Original and recovered derivatives.

7.6. Here is an example, demonstrating how the present method works. Let
a=0,b=1,
f(z) =exp [-72(z — 3)?)] [cos(25z) — 4 sin(25z)],
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N = 150,
gr = f(xr) £ (5% random noise) (k=1,...,N).
Let parameter A\ obey
A=10"9,
let parameter p be given by formula (7.10), and let u solve problem (7.1)

& (7.2). Figure 10 plots g1, 92, ..., gnN versus xi,xs,...,zy; figure 11 plots
f and u, and figure 12 plots f’ and /.

8. Discrete setting

8.1. Rendering problem (5.9) and (5.10) into an effective discrete form en-
tails coping with singularities of solutions, overflows, and ill-posedness in
the sense of Hadamard.

Singularities result from features of both the system and the initial
conditions in hand, as already remarked in Section 6. Overflows take place
whenever solutions stop to obey the constraint

n?(z,y)(zy, +yy) < 1.
Note that the system
Olx|_[0 1]0 =
owly| | -1 0]ouly

— Cauchy-Riemann, a possible linearized version of (5.9) — possesses ob-

vious solutions
x| _ cos(tu)
[y]‘ex‘“ ﬂ*“’)[sm@u)}

which are highly instable, i.e.

N 2 My 2
sup{[%(u,O)} + [@(U,O)] —oo < u < oo} —0

astTooand j=1,2,..., and
inf{:cQ(u,v)—i—yQ(u,v) 1 —00 <u <00} — 00

as t T oo and v is positive.

Ill-posedness is a typical drawback of initial value problems for par-
tial differential equations and systems of elliptic type. It was observed by
Hadamard [82]-[83], and deeply investigated by John [94]-[96], Lavrentiev
jr. [120]-[122], [127], Miller [147]-[148], Payne [163]-[166] and [171]-[172],
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Pucci [176]-[179], and Tikhonov [206]-[210]. Classical surveys on the sub-
ject have been authored by Lavrentiev jr., [123], [126], Payne [167], and
Tikhonov [211]. Related information is in [19]-[20], [22], [15], [92], [93],

[154], [159], [189] and [205]. A sample of more recent contributions includes
[5], [6], [12], [17], [21], [16], [18], [29], [24], [30], [32], [36], [33], [34], [43], [46],
[49], [62]-[63], [66]-[67], [84], [85], [89], [108], [109], [127], [132], [142]-[143],
[153], [160]-[161], [168]-[170], [173], [183], [185], [186], [191], [202], [212],
213], [222], [224].

One might attempt to contend with ill-posedness via theorems involv-
ing a priori bounds on solutions and similar devices. We opt not to touch
on this issue in the present paper, and focus our attention on constructive
aspects instead.

We rely upon: (i) asymptotic expansions, describing how relevant solu-
tions behave near the initial line (see Section 6); (ii) a technique of approz-
mate differentiation, especially designed for working in presence of errors
(see Section 7); (iii) an appropriate injection of artificial viscosity, which
softens a coefficient and protects against overflows; (iv) an imitation of the
quasi-reversibility method.

8.2. Besides data exposed to view, our method takes seven parameters in
input: L, M, N, A\, u, v, €. The first one stands for the expected span of the
solution domain. Parameters number two and three are large integers that
specify the number of samples in hand — e.g. M = N = 100. The remain-
ing four parameters set the tone of smoothing processes: A and p relate
to approximate differentiation; v stands for viscosity; £ relates to quasi-
reversibility. Of course, a priori information (such as the smoothness of
solutions, and the expected location of their singularities) are momentous
for guessing effectual values of these parameters.

8.3. The equations

ustep = (b —a)/(M — 1), vstep = L/(N — 1),
uj=a+ (j—Dustep (j=1,...,.M), vy=(k—1)vstep (k=1,...,N),

will be in force throughout this section. We choose a mesh to consist of the
points

(uj,vr) (J=1,...,M;k=1,...,N),

and store sample values at mesh points in the matrices

[z(4, k)]j=1,.. Mik=1,..N> [Y(F, K)]j=1,... Mk=1,.. N
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The columns of these matrices, i.e.

iU(', 1)) iU(', 2)> cee 7'%'('7 N)v y(? 1)) y(? 2)> s 7y('7 N)v
are recursively generated in the following way.
First step.

x(5,1) = aluj), y(4,1) =Bu;) (J=1,...,M),
according to initial conditions (5.10).
Second step.

o san(wy) —6'<uj>
.CI?(],Q) = x(]a 1) + 2‘/41 |1/3 \/a + ﬁ/ ) (3’02)2/3,
y(j.2) = y(i.1) + Smrlw) __ «a (“J) (302)%/3

20k ()3 /ol (ug)? + B (uy)?

(j=1,...,M), according to Proposition 6.1.

Further steps. For k = 3,..., N do actions (i)—(iii) below.

(i) Mimic tangent differentiation 0/0u. Avoid finite differences, use the
following formulas instead:

X=z(,k-1), Y=y, k-1),
A=DX, B=DY.
Here

A = a dimensionless positive parameter,

bL ~ 0.0415 + 0.5416 x M /2 —0.6426 x M~ + 1.3706 x M ~3/2,

according to Section 7;
v=m/8,
AK (u) = e 0¥ cog(|u| sin v — v) 4+ e 5 sin(|u| cos v + v),
and

4K'(u) = sgn (u) {—e*‘um’s” cos(|u| sinv — 2v)

+e ISV cos(Jul cos v + 2V)}

—1
Ad + [K (4)} .
M 2 ij=1,...M

for every u; moreover

o= (5]
H H ij=1,.

ooy
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(ii) Enter viscosity. Modify an uncomfortable coefficient as follows:

fG) = Pl,n(X(4),Y(G)VAG)? + B()?sgnrk(u;) (5=1,..., M),

and let
-1

f() 0 0
N 0 5
0 0 F(M)
o o 1"
v 0 f(2) O y
0 0 £(M)

Here
0 < v = artificial viscosity < /2,
and P is given by

1— p2 if 0<
P(v,p) = sinv

p+\/p*—cos?v

p < (1+sin?v)"1/2)
if p> (1+sin?y)~1/2

— observe that

0 < p— P(v,p) is strictly positive and continuously differentiable,

P(v, p) approaches ﬂ uniformly as 0 < p < 1 and v approaches 0.
(iii) Enter quasi-reversibility. Improve the conventional formulas

x(-, k) = X +ustepU, y(-, k) =Y +wvstepV,
as follows:
z( k) = (k) y(, k) = ¥(vk).

Here

¢ = a dimensionless positive parameter;

2 -5 4 -1 - 0
1 -2 1 0 - 0

R=(ustep)™ |~ oo e |
0 0 1 -2 1

0 -1 4 -5 2 |
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a caricature of a second-order derivative; ¢ is the vector-valued mapping
that obeys both the boundary conditions

o(vp—1) =X, ¢ (vk—1) =T,

and a caricature of the variational constraint
Vg
/ {(vstep)? [l (0)[2 + 3¢l Rp(v)[|2} dv = minimum,
V-1

namely

3¢ |Rp(u) |2 + (vstep)® / " (0)|Pdv = minimum;

Vg1
1) obeys
Y(og-1) =Y, ¢ (vp-1) =V,
v
3¢ RO ()P + (wsten)? [ 47(0)[Pdo = minimun,
Vg1
As is easy to see, the differential equations
¢"(w) =0 and "' (v) =0 if wvp_1 <v < v,
and the extra boundary conditions

" (k) = 0, ¢"" (i) = 3¢ (vstep) 2 (R R) p(vp),
W (ve) = 0, " (vi) = 3¢ (vstep) > (RT R) ¥(vp),

are in effect. The formulas
z(- k) = (Id +  vstep (RTR)) - (X +vstepU),
y(-, k) = (Id + Evstep (RTR)) ! (Y + vstep V)

result — in other words z(-,k) and y(-, k) are mollified versions of X +
vstepU and Y + vstep V, respectively.
Last step. End.
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8.4. As a matter of fact, the above process simulates the partial differential

system
sl l-7 10 sl ] el
8vy_f108uy§8u4y’
f =P (vinle,y)V/a% +3%) senr(u),

where the modified, and extra, terms protect against overflows and insta-
bility. The methods based on either artificial viscosity or quasi-reversibility
share basic features: they all suggest perturbing the underlying partial dif-
ferential equation or system in a way or another, in order to palliate obstruc-
tions. The quasi-reversibility method was introduced in [119], and improved
in [151], [77]; other references are [10], [11], [27]-[28], [53], [66], [78], [90],
[91], [104], [118], [167], [196]-[197], [214].

9. Example

For simplicity, suppose refractive index n is 1. Consider the curve — known
as Tschirnhausen’s cubic or trisectriz of Catalan [128], [195] — whose para-
metric equations read
1 t
r = 5(1 —3tY), y= 5(3 —1?), (t = parameter),
and imply

1
arc length = %(t2 +3), t=2sinh <§arcsinh(arc length)> .

A geometric optical eikonal w making Tschirnhausen’s cubic a caustic
is represented by the equations

1 2st t
$:—(1—3t2> 5 y:_(g_t2)+

s(1 —t2)
2 1+¢27 2

14127
t
w=s+ 5(3 +t%) (s,t = parameters)

in the light region. As arguments from Section 3 show, the same eikonal
can be continued in the shadow region via the equations

L 1-2(sP 4P + st 25T =3t 13 —2(s? — %) — (s + t2)?]
B 2(1 + 52 + t2) = 2(1 + 52 + t2) '
2(is + 1 1— (is +t)?
w=1is+t— (is +¢) (is +1) y (s,t = real parameters).

1+ (is+ 62" 1+ (is + 1)
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FI1GURE 14. Level lines where either u = constant or v = constant.

The method from Sections 4 to 8 goes in the following way.
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FIGURE 15. Plot of imaginary part v versus x and y.

(i) Consider the arc of the Tschirnhausen’s cubic where
—15<t <22,

for instance, and let
(Ozj,ﬂj) (] = ]_, N ,3].)
be a gross sampling of such an arc — in other words,

j—-1
ti=—-15+4+3.7—— =1,...,31
] + 30 (] 9 9 )7

1

aj = 5(1 - 3t?) + (5% random noise),
t.

B = 53(3 - t?) + (5% random noise).

(ii) Plug gross data into the denoising process described in Section 7, i.e.

A =0.005, p=0.1260,

31 ) 2 o
-1
o (L) —a] 2 [+ im0 = i,
7j=1 —00
31 1 2 °°
[5 (J 30 ) - 53} +A / " (8"")? + ! 6%] dt = minimum,
i=1

J —00
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and let the path that is represented by the equations
r=oat), y=p(t), 0<t<1,

surrogate the original Tschirnhausen’s cubic.
(ili) Adjust parametric equations as follows:

& @2+ 07772, 4(0) =0,

x=oa(t(uw), y=p0(tw)), 0<u< Length.
so as the working parameter become a travel time — a Runge-Kutta method

fits well here.
(iv) Select requisite parameters by

M =101, N =91, wstep=0.005, v=0.5, £=0.9;

and then set the algorithm from Section 8 to work.
Results are shown in Figures 13, 14 and 15, and comfortably agree
with those drawn from closed formulas.
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Appendix

Basic mathematical lineaments of two-dimensional geometrical optics are
outlined in the next paragraphs. Selected references on geometrical optics,
and on some of its generalizations and applications, are [14], [56], [80], [98],
[99], [100], [105]-[106], [107], [116], [137], [144], [145], [184].

A.1. Terminology

Let n be a refractive index — i.e. a tractable function of two real variables
x and y, which takes positive values only and is bounded away from zero
locally. Any real-valued, suitably smooth solution w to (1.1) is a geomet-
ric optical eikonal (GOE). The domain of w, plus parts of the relevant
boundary, is a light region; the complement of it is a shadow region. The
trajectories of Vw, namely the orbits of the dynamical system

dx dy

wa(z,y) wy(z,y) | O
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are called lines of steepest descent — irrespective of whether they are gen-
uine lines or not. A line of steepest descent is a ray if w is twice continuously
differentiable in some neighborhood of it; any line of steepest descent, which
is not a ray, is a caustic. (Rays are smooth curves, which have one degree of
freedom and travel all over areas without intersecting one another. Caus-
tics are exceptions in a sense: loosely speaking, they can be thought of as
envelopes of rays.) The Riemannian arc length, whose element takes the
form

n(z,y) \/dz? + dy?,

is known as travel time — travel time is an alias of the customary arc length
in the case where n = 1.

A.2. GOEs and travel time

(i) The restriction of any GOE w to either an appertaining ray or caustic
automatically coincides with a properly rescaled travel time t.

(ii) Let nodal line be an alias of locus of zeros. The value of any GOE w
at any point (x,y) equals either the travel time between (x,y) and a nodal
line of w or the negative of such a travel time — provided (z,y) is not a
long way off.

Proof of (i). By definition, both rays and caustics of w obey

dx : we(z,y) = dy : wy(z,y);
the equation
t = a rescaled travel time
is an alias of
dt = tn(z,y)\/(dz)? + (dy)?.
Consequently,
(dw/dt)? = n2(z,y) (w2 + wz)

along any ray or caustic in question. Property (i) follows. O

Property (ii) is a consequence of (i) and Fermat’s principle below.
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A.3. Fermat’s principle

The travel time geodesics, i.e. those curves which render

/n(:c,y) Vdz? + dy?

either a minimum or stationary, are characterized by the following second-
order ordinary differential equation:

curvature = (unit normal, Vlog n(z,y))

— they have geodesic curvature 0, and are perfect straight lines in the case
where n = 1. The rays of any GOE are geodesics with respect to travel time.
The travel time geodesics that are trajectories of some proper vector field
— i.e. have one degree of freedom and are free from mutual intersections
— are the rays of some GOE.

The foregoing statements rest upon first principles of calculus of varia-
tions, differential geometry and ordinary differential equations. Recall that
the following formulas apply to any smooth parametric curve:

velocity = \/(dx/dt)2 + (dy/dt)2,

1 d
unit tangent = (velocity) 1% [ z } ,
. 0 -1 .
unit normal = 1 0 (unit tangent)

d
(velocity)_la(unit tangent) = (curvature) x (unit normal),

d
(velocity)_la(unit normal) = —(curvature) x (unit tangent),

o _3| dxjdt  dPxz/dt?

— 3 .

curvature = (velocity) dyjdt  d2yjdt |
z(t—h) yt—~h) 1

curvature = (velocity) 3h™3 x(t) y(t) 1 |+ O(Rr?),
z(t+h) ylt+h) 1
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a(t) y() 1
curvature = (velocity) 3h ™3 x(t+h) ylt+h) 1
x(t+2h) y(t+2h) 1

z(t+h) ylt+h) 1
—— | 2(t+2h) yt+2h) 1|3 +O(R?).
x(t+3h) y(t+3h) 1

Recall that the formula

curvature of the lines of steepest descent

= Jacobian determinant of |Vw|™! & w
applies whenever w is smooth and has no critical point. Recall also that

n(x,y) x (Geodesic curvature)

= Euclidean curvature — (unit normal, V log n(z,y))

if travel time is an alternative Riemannian metric in force.

A.4. Initial value problems and geometry of their solutions

The condition of taking given values along some given path is qualified
initial according to usage. Seeking a GOE, which obeys some initial con-
dition, is an initial value problem. Such a problem has either two different
solutions or no solution at all, depending on whether the eikonal equation
and the initial condition match or conflict. Generally speaking, a solution
w can be detected in the former case by successively detecting the objects
listed below, based upon the arguments provided.

e The values of Vw along the initial curve.

Since the eikonal equation specifies the length of Vw and the initial con-
dition identifies a tangential component of Vw, the normal component of
Vw along the initial curve comes out in two different modes.

e The rays of w.

An ODE reasoning demonstrates that the travel time geodesics, which live
near the initial curve and leave it with the same direction as Vw, are the
trajectories of a smooth vector field. By Fermat’s principle, these geodesics
are the requested rays indeed.

e The values of w itself on each ray.

Property (i) from Subsection 2 fits the situation well.
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A.5. Standard initial value problems

The present item concerns existence, regularity and the number of GOEs
that satisfy orthodox initial conditions.

Assume henceforth all ingredients are smooth and let IC stand for
initial curve in shorthand. Let

r=at), y=p0(t), a<t<bd (A.1)
be a parametric representation of IC such that
t = a travel time. (A.2)
Let the initial condition imply
w(z,y) = ~(t)

as z,y and t satisfy (A.1), and assume

dy
P (t)

<1 (A.3)

for a <t < b. Then exactly two GOEs satisfy the initial condition displayed.
Moreover, these eikonals are smooth in a full neighborhood of IC — the
relevant light regions surround it completely.

The case where refractive index n is constant involves explicit formu-
las, as well as gives evidence to interactions among the eikonal equation,
Burgers-type equations and Bdcklund transformations. Assume

n=1,
and let (A.1) to (A.3) be in force. Define ¢, v, w,p,q by
cosp=a/, sinp=/g
costp =7/, siny =+/1—(v)?
w = +1;

p=cosw, q=sinw.

Since the appurtenant Jacobian matrix equals

[-?2?2) zézi] [ shl#%S)-(U}-bw(S))duKS)/dS ? ]’

the pair
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makes s and w implicit functions of x and y in a neighborhood of IC. The
properties listed below ensue. Function s obeys the equations

—q(s) (z — a(s)) +p(s) (y — B(s)) =0,
s 0s
q(s) —

) o al) 5 =0

9s\?  [0s\? dw(s)]
<%) n (@) - [sinws) — (w (s 2]
(The first assures that the level lines of s are straight, the second is a PDE
of Burgers type.) Function w obeys the following eikonal equation:

ow\? n ow\ _1q
Oz oy )
Functions s and w are related by the equations

G — [p(S) ]
[ Waw  Way } _ dw(s) [ Wy } (52 8]

Way  Wyy ds

(The former is a Bdécklund transformation, which pairs solutions to the
Burgers and the eikonal equations mentioned above. It assures that Vs
and Vw are orthogonal, and the level lines of s are both lines of steepest
descent and isoclines of w.) The Euclidean metric obeys

dx? + dy* = |Vs|2ds* + dw?.
There holds
s(x,y) =t, w(x>y> :’Y(t)

as z,y and t satisfy (A.1). If w is free from critical points, the line where

MBIk

is a caustic. (Such a line is an envelope of the level lines of s. Function s
develops shocks along it, the restriction of w to it equals arc length, and
the second-order derivatives of w blow up there.)
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A.6. Borderline initial value problems and caustics

The present item is a recipe for producing caustics, which involves coupling
the eikonal equation with borderline initial conditions. In the case where
refractive index n is identically 1, any smooth convex curve can be viewed
as a caustic provided a GOE is detected, whose restriction to the curve in
hand equals a relevant arc length.

Let (A.1) specify IC and let (A.2) hold. Let the initial condition imply

w(z,y) =1
as z,y and t satisfy (A.1). Assume that the appropriate geodesic curvature
of IC is free from zeros — in other words, let (A.1) and the equation

# (velocity)? = Euclidean curvature — (unit normal, V log n(z, y))

result in
K vanishes nowhere.
Then exactly two GOEs satisfy the present initial condition. Both

these eikonals fail to exist on both sides of, and be smooth near IC. They
turn IC into a caustic, and make the side of it, which

(sgn k) x (unit normal)

points to, a shadow region. Either eikonal in hand obeys
2v/2 1
w(z,y)=s+ Tﬂr\%m(sﬂ% +0(r?), Aw(x,w:iﬁ\rr%ws»% +o()

at every point (z,y) that belongs to the light region and is close enough to
IC — in particular, the two-sheeted surface, made up of the two eikonals
in hand, exhibits an edge of regression above 1C.
Here r and s are the curvilinear coordinates that the pair
x o(s) ()2 / 2—1[_/(5)]
= +7r(a’(s)”+ F'(s 2
3= L5 e e
relates to rectilinear coordinates x and y. Coordinate r is a signed distance
from IC, coordinate s makes (a(s(x,y)),5(s(z,y))) the orthogonal projec-

tion of (z,y) on IC. The former is constant on the parallel lines to IC and
obeys the eikonal equation

ar\? L (or\'
Ox oy) 7
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the latter is constant on the normal straight-lines to IC and obeys the
following Burgers-type equation:
0s/0x  0s/0y
o'(s)  B'(s)

Both are subject to the Backlund transformation

-0

Vr = [o/(s)? + §(s)%] % [ —B'(s) }

o(s)

and exhibit singularities along the evolute of IC.
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