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Abstract Existence of minimizers for a volume constrained energy

E(u) :=

∫
Ω

W (∇u) dx

where LN ({u = zi}) = αi, i = 1, . . . , P, is proved for the case in which zi are extremal points of a compact,

convex set in Rd and under suitable assumptions on a class of quasiconvex energy densities W . Optimality

properties are studied in the scalar-valued problem where d = 1, P = 2, W (ξ) = |ξ|2, and the Γ-limit as the

sum of the measures of the 2 phases tends to LN (Ω) is identified. Minimizers are fully characterized when

N = 1, and candidates for solutions are studied for the circle and the square in the plane.
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1 Introduction

In recent years there has been a remarkable development of techniques in applied analysis motivated
in part by questions arising in the study of materials. Some of the underlying mathematical problems
lie at the boundary of classical analytical methods, requiring new ideas. In this paper we treat a
seemingly simple constrained variational problem which falls outside the usual techniques of the
Calculus of Variations for proving existence of minimizers.

In 1992 Morton Gurtin, motivated by a problem related to the interface between immiscible fluids
[10], suggested that we study existence of minimizers and possible optimal designs for the energy

I(u) :=
∫

Ω

|∇u|2 dx

where Ω ⊂ RN is an open, bounded, connected Lipschitz domain, and u : Ω→ R is subjected to the
volume constraints

LN ({u = 0}) = α and LN ({u = 1}) = β. (1.1)

Here LN denotes the N -dimensional Lebesgue measure in RN and α, β > 0 satisfy α+ β < LN (Ω).
Previous works by Alt and Caffarelli [3] and Aguilera, Alt and Caffarelli [2] address a similar

problem in which only one volume constraint is present and for which Dirichlet boundary conditions
are imposed on u. They obtain the existence of minimizers for I and regularity properties for solu-
tions and for their free boundaries. In our context, and in the presence of two or more constraints,
a priori continuity of minimizers would imply separability of the phases {u = 0} and {u = 1}, thus
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enabling us to use their arguments to obtain additional regularity for both u and the free boundaries.
Unfortunately, we were unable to establish continuity, and this seriously limited the choice of vari-
ations and required the introduction of analytical methods specific to the multi-phase framework.
However, since this work has been completed Tilli, (see [17]) established locally Lipschitz continuity
of minimizers of I.

In this paper we obtain the existence of minimizers for I subjected to (1.1). More generally, in
Theorem 2.3 we prove existence for solutions of

min
{∫

Ω

W (∇u) dx : u ∈W 1,p(Ω;Rd), LN ({u = zi}) = αi, i = 1, . . . , P
}
,

where {z1, . . . , zP } are extremal points of a compact, convex set K ⊂ Rd, with P ≥ 1, αi > 0 and∑
i αi < LN (Ω), provided W : Rd×N → [0,+∞) is a C1 quasiconvex function with p-growth, p > 1,

satisfying the structure condition
d∑

i,j=1

N∑
k=1

∂W

∂ξik
(ξ)ξjkνiνj > 0 whenever ξT ν 6= 0, ξ ∈ Rd×N , ν ∈ Sd−1, (1.2)

where Sd−1 is the unit sphere in Rd. A characterization of (1.2) in terms of the behavior of W along
rank-one lines can be found in Remark 2.4(ii). Certain isotropic energy densities, such as functions
of the type W (ξ) = g(|ξ|, |adj ξ|, |det ξ|), verify (1.2) (see Proposition 2.5).

In Section 4, using optimality properties of minimizers obtained in Section 3 for W (ξ) := |ξ|2,
we characterize the asymptotic behavior of minimizers of I subjected to (1.1) as α → LN (Ω) − γ
and β → γ, with γ ∈ (0,LN (Ω)). Precisely, we show that the limiting configurations satisfy the
constrained least-area problem

pγ := min
{
PΩ(E) : E ⊂ Ω, LN (E) = γ

}
,

where PΩ(E) denotes the perimeter of E in Ω. Similar results have been obtained for phase-
transitions problems in which the formation of phases is driven by a double-well potential (see
[13], [5], [8]); here the creation of interfaces is due to the volume constraints.

In Section 5 we characterize fully the solutions of (M) when W (ξ) = |ξ|2, Ω is an interval and
d > 1 (see Subsection 5.1). Explicit solutions are unknown when Ω ⊂ RN and N > 1. We study the
cases in which Ω is a circle or a square on the plane. If Ω is a circle, then, in Subsection 5.2, we
determine the minimum energy among radial configurations, and we construct a family of competing
configurations uab with energy strictly lower than that for radial functions if α+ β << 1. However,
uab are not solutions, as they violate some of the optimality conditions obtained in Section 3. We
remark that due to Theorem 4.1, if α + β → L2(Ω) then radial configurations will still not be
minimizers for (M). Finally, in Subsection 5.3 we address briefly the case Ω = (0, 1)2; we show that,
although the piecewise affine configurations of the form

u(x) =


0 if x1 ≤ α,

1
1−α−βx1 − α

1−α−β if α < x1 < 1− β,
1 if x1 ≥ 1− β

satisfy the optimality conditions, they are not minimizers for (M) if α+β << 1, and, once again by
virtue of Theorem 4.1, they will not have least energy when α + β approaches the measure of the
unit square.

2 Existence

We first fix notation. LN denotes the N -dimensional Lebesgue measure in RN ; HN−1 is the (N−1)-
dimensional Hausdorff measure; M is the space of Lebesgue measurable functions u : Ω → R

d; χA
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is the characteristic function of a set A; Rd×N is the vector space of d × N matrices ξ (d rows, N
columns) with components ξij , 1 ≤ i ≤ d, 1 ≤ j ≤ N ; Ω is an open, bounded, connected Lipschitz
domain; Ckc (Ω) is the space of k-differentiable functions with compact support in Ω, k ∈ N∪{+∞}.

Proposition 2.1. For any sequence (uh) ⊂ M converging a.e. to u ∈ M and for any closed set
C ⊂ Rd we have

LN ({x ∈ Ω : u(x) ∈ C}) ≥ lim sup
n→+∞

LN ({x ∈ Ω : un(x) ∈ C}).

Proof. Since A := R
d \ C is open,

χA(u) ≤ lim inf
n→+∞

χA(un) a.e. in Ω.

By Fatou’s Lemma,

LN ({x ∈ Ω : u(x) ∈ A}) =
∫

Ω

χA(u) dx ≤
∫

Ω

lim inf
n→+∞

χA(un) dx

≤ lim inf
n→+∞

∫
Ω

χA(un) dx = lim inf
n→+∞

LN ({x ∈ Ω : un(x) ∈ A}),

and the proof follows upon passing to the complementary sets.

Note that since any Lp(Ω)-converging sequence has subsequences which converge almost every-
where, the upper semicontinuity property asserted in Proposition 2.1 is still valid with respect to
Lp(Ω)-convergence.

Consider a finite collection of points {z1, . . . , zP } in Rd, with P ≥ 1. In this section we obtain
the existence of solutions for the minimization problem

(M) min
{∫

Ω

W (∇u) dx : u ∈W 1,p(Ω;Rd), LN ({u = zi}) = αi, i = 1, . . . , P
}

where p > 1, αi > 0 and
∑
i αi < LN (Ω), under certain technical assumptions on W .

We first find conditions ensuring that the relaxed problem

(M)∗ min
{∫

Ω

W (∇u) dx : u ∈W 1,p(Ω;Rd), LN ({u = zi}) ≥ αi, i = 1, . . . , P
}

has a solution.

Proposition 2.2. Assume that W : Rd×N → [0,∞) is a quasiconvex function satisfying

c|ξ|p ≤W (ξ) ≤ C(|ξ|p + 1) ∀ξ ∈ Rd×N (2.1)

for some constants c, C > 0 and some p ∈ (1,+∞). Then problem (M)∗ has at least one solution.

Proof. It is easy to check that the class of competing functions in (M)∗ is not empty. Let (uh)
be a minimizing sequence for the problem and denote by ūh the average of uh on Ω. By Poincaré’s
inequality and Rellich’s Theorem, we may assume, without loss of generality, that vh := uh − ūh
converges in Lp(Ω) to some function v. Since

LN ({uh = P1})ūh =
∫
{uh=P1}

ūh dx =
∫
{uh=P1}

(P1 − vh) dx,

(ūh) is bounded; hence, extracting a subsequence, if necessary, the functions (uh) converge in Lp(Ω)
to some function u ∈ W 1,p(Ω;Rd). By Proposition 2.1, the function u satisfies the constraints of
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(M)∗, and because of the growth condition (2.1), we may use the lower semicontinuity theorem of
Acerbi and Fusco (see [1]) to verify that∫

Ω

W (∇u) dx ≤ lim inf
h→∞

∫
Ω

W (∇uh) dx.

Thus u is a solution of (M)∗.

Note that the previous argument remains valid when the upper bound on W in (2.1) is replaced
by the weaker assumption that u 7→

∫
Ω
W (∇u) is lower semicontinuous in the weak topology of

W 1,p(Ω;Rd).
Next we find conditions on W which ensure that any solution of (M)∗ actually solves (M).

Theorem 2.3. Let u be a solution of (M)∗ and assume that

(i) W is differentiable and satisfies

d∑
i=1

N∑
k=1

∣∣∣∣ ∂W∂ξik
∣∣∣∣ ≤ C(1 + |ξ|p−1) (2.2)

for some C > 0 and all ξ ∈ Rd×N , and

d∑
i,j=1

N∑
k=1

∂W

∂ξik
(ξ)ξjkνiνj > 0 whenever ξT ν 6= 0, ξ ∈ Rd×N , ν ∈ Sd−1. (2.3)

(ii) z1, . . . , zP are extremal points of a compact convex set K.

Then u is a solution of (M).

Proof. We must prove that

LN ({u = zi}) = γi, for all i = 1, . . . , P.

Suppose that LN ({u = z1}) > α1. Let r > 0 be such that LN ({u = z1}) − r > α1, and consider a
smooth cut-off function ϕ ∈ C∞c (RN ; [0, 1]) such that LN (suppϕ) < r. Without loss of generality,
we may assume that the extremal point z1 is the origin, and let ν ∈ Sd−1 be such that K \ z1 ⊂
{y ∈ Rd : y · ν > 0}. Let 0 < δ < min{zi · ν : i = 2, . . . , P}, and define f : R→ [0,+∞) as

f(t) :=

 −t+ δ if t ≤ δ

0 otherwise.

Set w := u · ν, and consider the perturbations uε := u+ εϕf(w)ν. If i = 2, . . . , P, and if u(x) = zi,
then w(x) > δ and f(w(x)) = 0, so that uε(x) = u(x). Therefore

{uε = zi} ⊃ {u = zi}.

On the other hand,

LN ({uε = z1}) ≥ LN ({u = z1})− LN (suppϕ) > LN ({u = z1})− r > α1,

and we conclude that uε is admissible for (M)∗. Thus, taking into account the growth assumption
(2.2) and by virtue of Lebesgue’s Dominated Convergence Theorem, we can differentiate under the
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integral to find

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

W (∇u+ ε∇ [ϕf(w)ν] |) dx

=
d∑
i=1

N∑
k=1

∫
Ω

∂W

∂ξik
(∇u)

 ∂ϕ
∂xk

f(w)νi + ϕf ′(w)νi
d∑
j=1

νj
∂uj

∂xk

 dx. (2.4)

Using a partition of unity, any smooth function with compact support may be written as a finite
sum of cut-off functions ϕ, each of small support; we therefore take ϕ = 1 in Ω, and (2.4) reduces to∫

{w∈(0,δ)}

d∑
i,j=1

N∑
k=1

∂W

∂ξik
(∇u)

∂uj

∂xk
νiνj dx = 0.

By (2.3) we deduce that∇w = ∇uT ν = 0 a.e. on {0 < w < δ}, hence the function max{0,min{w, δ}}
is constant in Ω. On the other hand, LN ({w = 0}) ≥ LN ({u = z1}) > 0 and LN ({w > δ}) ≥
LN ({u = z2}) > 0. We have reached a contradiction; therefore LN ({u = z1}) = α1.

Remark 2.4. (i) Any differentiable quasiconvex function satisfying the growth condition (2.1) also
satisfies (2.2) (see [12]).
(ii) In the scalar-valued case where (d = 1) quasiconvexity reduces to convexity, and (2.3) may be
rewritten as

N∑
i=1

∂W

∂ξi
(ξ)ξi > 0 for all ξ ∈ RN \ {0}.

Since W is convex, this is equivalent to saying that W has a strict minimum at the origin. More
generally, if W : Rd×N → R is a C1 rank-one convex function, then (2.3) holds if and only if

t 7→W (A+ tν ⊗ µ) has a strict minimum at t = 0 (2.5)

whenever µ ∈ R\{0}, A ∈ Rd×N , ν ∈ SN−1 and AT ν = 0. Note that in Proposition 2.2,W is assumed
to be quasiconvex, and, consequently, it is rank-one convex. In order to prove the equivalence between
(2.3) and (2.5), assume first that µ ∈ R \ {0}, A ∈ Rd×N , ν ∈ SN−1, AT ν = 0, and set

ψ(t) := W (A+ tν ⊗ µ).

Since ψ is convex and C1, ψ has a strict minimum at the origin if and only if signψ′(t) = sign t for
t 6= 0. As

d∑
j=1

(A+ tν ⊗ µ)jkνj = tµk, (2.6)

we have, for t 6= 0,

ψ′(t) =
N∑
k=1

d∑
i=1

∂W

∂ξik
(A+ tν ⊗ µ)νiµk

=
1
t

N∑
k=1

d∑
i,j=1

∂W

∂ξik
(A+ tν ⊗ µ)(A+ tν ⊗ µ)jkνiνj . (2.7)

It follows from (2.6) that
(A+ tν ⊗ µ)T ν = tµ 6= 0
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which, together with (2.3) and (2.7), yields

signψ′(t) = sign t.

Conversely, if for some ξ ∈ Rd×N , ν ∈ Sd−1 such that ξT ν 6= 0, (2.3) were violated, then setting

ψ(t) := W (A+ tν ⊗ ξT ν), A := ξ − ν ⊗ ξT ν,

then AT ν = 0,

ψ′(1) =
d∑

i,j=1

N∑
k=1

∂W

∂ξik
(ξ)ξjkνiνj ≤ 0,

which contradictis (2.5).
(iii) Note that the function W (ξ) = |ξ|2, corresponding to the Dirichlet integral, satisfies the hy-
potheses of Theorem 2.3. In this case a simple truncation argument proves that any solution u of
(M) satisfies

min{z1, z2} ≤ u ≤ max{z1, z2}.

More generally, in the isotropic (scalar or vectorial) case where W (ξ) = Φ(|ξ|), the assumption (2.3)
reduces to Φ′(t) > 0 for t > 0, and it can be shown that any solution u of (M)∗ takes its values in the
closed convex hull K of {z1, . . . , zP }. This follows by comparing u with Π(u), where Π : Rd → R

d

is the orthogonal projection onto a half-space containing all points zi. Precisely, set

γ := inf
{∫

Ω

Φ(|∇u|) dx : u ∈W 1,p(Ω;K), LN ({u = zi}) ≥ αi, i = 1, . . . , P
}
.

We claim that if an admissible u for (M)∗ takes values outside K then we may modify u and decrease
its energy. In fact, if LN ({x ∈ Ω : u(x) /∈ K}) > 0, then there exists a hyperplane H with normal
ν ∈ Sd−1 such that K is contained in one of the half-spaces determined by H, and the other half-
space contains a subset E of the range of u with LN (u−1(E)) > 0. Without loss of generality, we
may assume that

H := {y ∈ Rd : y · ν = 0}, K ⊂ {y ∈ Rd : y · ν ≤ 0},

and that there exists δ > 0 such that

LN ({x ∈ Ω : u(x) · ν > δ}) > 0.

Let {η1, . . . , ηd−1, ν} be an orthonormal basis of Rd, and define

Π(u)(x) :=
d−1∑
i=1

(u(x) · ηi) ηi + f(x) ν,

where

f(x) :=

 u(x) · ν if u(x) · ν ≤ 0

0 otherwise.

If u(x) ∈ K then Π(u)(x) = u(x), so Π(u) remains admissible. Also |∇Π(u)(x)| ≤ |∇u(x)| for a.e.
x ∈ Ω, and

|∇Π(u)(x)| < |∇u(x)| on a set of positive measure. (2.8)

In fact, if |∇Π(u)(x)| = |∇u(x)| a.e. in Ω, then ∇u · ν = 0 a.e. on {u · ν > 0}, and the Sobolev
function v := max{(u · ν), 0} would be constant, in contrast to the conditions

LN ({v = 0}) ≥ LN ({u = z1}) ≥ α1 > 0, LN ({v ≥ δ}) > 0.
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Since Φ is strictly increasing, by (2.8) we have∫
Ω

Φ(|∇Π(u)(x)|) dx <
∫

Ω

Φ(|∇u(x)|) dx.

As K is the intersection of a countable family of half-spaces, an iteration of this argument proves
that for any u admissible for (M)∗ there is a function ū still admissible for (M)∗, with values in K
and with smaller energy. Thus every solution of (M)∗ takes its values on K.
(iv) We do not know whether solutions of (M)∗ are solutions of (M) when the points zi are not
extremal, even if d = 1, W (ξ) = |ξ|2, and there are three or more phases. However, in this particular
case it can shown that any continuous solution of (M)∗ is actually a solution of (M). Indeed, if
for instance LN ({u = z1}) > α1, then we can make local additive variations to show that each
component of u is harmonic in the open set{

x ∈ Ω : u(x) ∈ Rd \ {z2, z3, . . . , zP }
}
.

This contradicts the fact that LN ({u = z1}) > 0.

Next we exhibit a class of isotropic energy densities W which satisfy (2.3). We recall that W is
isotropic if it can be written as

W (ξ) = ϕ(λ1(ξ), . . . , λN (ξ))

for some function ϕ of the the list of principal stretches (λ1(ξ), . . . , λN (ξ)), where 0 ≤ λ1(ξ) ≤
λ2(ξ) ≤ . . . ≤ λN (ξ), and {λ2

i (ξ) : i = 1, . . . , N} are the eigenvalues of ξT ξ.

Proposition 2.5. Let W : RN×N → R be given by

W (ξ) = ϕ(λ1(ξ), . . . , λN (ξ)), ξ ∈ RN×N ,

where ϕ : RN → R is a symmetric C1 function such that for every i = 1, . . . , N

∂ϕ

∂λi
(λ) > 0 whenever λi > 0 and λj ≥ 0 for all j = 1, . . . , N, j 6= i.

Then W satisfies (2.3).

Proof. Consider first a matrix ξ ∈ RN×N such that

ξT ξ ei = λ2
i (ξ) ei, i = 1, . . . , N, 0 < λ1(ξ) < . . . < λN (ξ),

and {e1, . . . , eN} is an orthonormal basis of RN . Fix B ∈ RN×N . If t is small enough, then

0 < λ1(ξ + tB) < . . . < λN (ξ + tB),

λi(ξ + tB)→ λi(ξ) as t→ 0,

and

(ξ + tB)T (ξ + tB) ei(t) = λ2
i (ξ + tB) ei(t), (2.9)

where ei(t) → ei as t → 0, and |ei(t)| = 1. Differentiating (2.9) with respect to t, taking the inner
product of the resulting equation with ei(t), and using the fact that ei(t) · ddtei(t) = 0, we find that,
at t = 0

Bei · ξei = λi(ξ)
d

dt
λi(ξ + tB).
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For the case in which B := ν ⊗ ξT ν, since Bei · ξei = (ξT ν · ei)2, we conclude that

d

dt
λi(ξ + tB) =

1
λi(ξ)

(ξT ν · ei)2. (2.10)

We are now in a position to prove (2.3). Let ξ ∈ RN×N , ν ∈ SN−1, be such that ξT ν 6= 0. Writing

ξT ξei = λ2
i (ξ)ei

for a suitable orthonormal basis of RN , {e1, . . . , eN}, then there is j ∈ {1, . . . , N} such that ξT ν ·ej 6=
0, and so λj > 0. Construct a sequence of matrices ξn such that ξn → ξ as n→ +∞,

(ξn)T ξnei = λ2
i (ξ

n)ei, 0 < λ1(ξn) < . . . < λN (ξn).

Using (2.10), we conclude that

d∑
i,j=1

N∑
k=1

∂W

∂ξik
(ξ)ξjkνiνj = lim

n→∞

d∑
i,j=1

N∑
k=1

∂W

∂ξik
(ξn)ξnjkν

iνj

= lim
n→∞

d

dt

∣∣∣∣
t=0

W (ξn + tν ⊗ (ξn)T ν)

= lim
n→∞

N∑
i=1

∂ϕ

∂λi
(λ1(ξn), . . . , λN (ξn))

1
λi(ξn)

((ξn)T ν · ei)2

≥ lim sup
n→∞

∂ϕ

∂λj
(λ1(ξn), . . . , λN (ξn))

1
λj(ξn)

((ξn)T ν · ej)2

=
∂ϕ

∂λj
(λ1(ξ), . . . , λN (ξ))

1
λj

(ξT ν · ei)2 > 0.

A simple class of polyconvex functions satisfying the hypotheses of Proposition 2.5 is formed by
energy densities of the type

W (ξ) = g(|ξ|, |adj ξ|, |det ξ|),

where g(η, µ, λ) is a C1 convex function on [0,+∞)3 such that

∂g

∂µ
(η, µ, λ) ≥ 0,

∂g

∂λ
(η, µ, λ) ≥ 0, and

∂g

∂η
(η, µ, λ) > 0 for all (η, µ, λ) with η > 0.

Here det ξ denotes the determinant of the N ×N matrix ξ, and adj ξ is the adjugate of the matrix
ξ, i.e. the matrix of the minors of order N − 1 with the property

(adj ξ)T ξ = ξT adj ξ = det ξ I. (2.11)

Let
W (ξ) = ϕ(λ1(ξ), . . . , λN (ξ)),

where the λs again denote the principal streches,

ϕ(λ1, . . . , λN ) := g


√√√√ N∑

i=1

λ2
i ,

√√√√ N∑
i=1

λ2
1 . . . λ

2
i−1λ

2
i+1, . . . λ

2
N , λ1 . . . λN


with λ−1, λN+1 := 1.
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3 Optimality Properties of the Solutions

As was shown in the previous section (see Theorem 2.3, Remark 2.4), the problem

(M) min
{∫

Ω

|∇u|2 dx : u ∈W 1,1(Ω), LN ({u = 0}) = α, LN ({u = 1}) = β

}
admits solutions, and any solution belongs to u ∈ W 1,2(Ω; [0, 1]). We now we study optimality
properties of these solutions.

Theorem 3.1. Let u ∈W 1,2(Ω; [0, 1]) be a solution of (M). Then
(i) ∫

Ω

ϕf ′(u)|∇u|2 + f(u)∇ϕ · ∇u dx = 0

for all ϕ ∈ C1(Ω) and all f ∈W 1,∞(Ω) with f(0) = f(1) = 0;
(ii) ∫

Ω

|∇u|2 g(u) dx =
(∫

Ω

|∇u|2 dx
)(∫ 1

0

g(s) ds
)

for all g ∈ L∞(R);
(iii) ∆u is a signed Radon measure in Ω with support contained in {u = 0} ∪ {u = 1}, and

|∆u|(Ω) ≤ 2
∫

Ω

|∇u|2 dx.

Moreover,

〈∆u, φ〉 = lim
n→+∞

n

∫
{u<1/n}

φ |∇u|2 dx− n
∫
{u>1−1/n}

φ |∇u|2 dx

for every φ ∈ Cc(Ω);
(iv) if F ∈W 1,∞

0 (Ω;RN ) satisfies divF = 0 then

N∑
i,j=1

∫
Ω

∂Fi
∂xj

∂u

∂xi

∂u

∂xj
dx = 0. (3.1)

Proof. By Theorem 2.3 and Remark 2.4 (ii) we know that any solution u of (M) belongs to
W 1,2(Ω; [0, 1]). Taking ϕ and f under the assumptions of part (i), it is clear that

{u = 1} ⊂ {u+ εϕf(u) = 1} and {u = 0} ⊂ {u+ εϕf(u) = 0}.

Therefore u+ εϕf(u) is admissible for (M)∗, and in light of Remark 2.4 ii),

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|∇(u+ εϕf(u))|2 dx

= 2
∫

Ω

ϕf ′(u)|∇u|2 + f(u)∇ϕ · ∇u dx,

proving (i). Part (ii) follows immediately from (i), setting

ϕ ≡ 1, f(t) :=
∫ t

0

g(s) ds− t
∫ 1

0

g(s) ds.

To obtain (iii), consider the piecewise affine functions

fn(t) :=

 nt if 0 ≤ t ≤ 1
n

1 if 1
n ≤ t ≤ 1− 1

n
−nt+ n if 1− 1

n ≤ t ≤ 1.
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By (i), for all ϕ ∈ C1
c (Ω),

〈∆u, ϕ〉 = −
∫

Ω

∇u · ∇ϕdx = − lim
n→+∞

∫
Ω

∇u · ∇ϕfn(u) dx

= − lim
n→+∞

∫
Ω

|∇u|2ϕf ′n(u) dx = − lim
n→+∞

〈µn, ϕ〉,

where the finite Radon measures µn are defined as

µn := |∇u|2 f ′n(u)LNbΩ.

By (ii),

|µn|(Ω) =
∫

Ω

|∇u|2 |f ′n(u)| dx =
(∫

Ω

|∇u|2 dx
)(∫ 1

0

|f ′n(s)| ds
)
≤ 2

∫
Ω

|∇u|2 dx;

thus there is a Radon measure µ such that, up to a subsequence,

µn
∗
⇀ µ and |µ(Ω)| ≤ 2

∫
Ω

|∇u|2 dx.

We therefore conclude that

∆u = −µ = weak-* lim
n→+∞

−n|∇u|2LNb{u < 1/n}+ n|∇u|2LNb{u > 1− 1/n}.

Finally, let F be a Lipschitz mapping on Ω, with F = 0 on ∂Ω, and such that div F = 0. Consider
the flow 

dw

dt
(t, x) = F (w(t, x))

w(0, x) = x

(t, x) ∈ R× Ω.

It is well known that

det∇xw(t, x) = 1. (3.2)

Indeed, using (2.11) we have

N
d

dt
det∇xw(t, x) = adj∇xw(t, x) · d

dt
∇xw(t, x) = adj∇xw(t, x) · ∇x(F (w(t, x)))

= adj∇xw(t, x)∇xwT (t, x) · ∇F (w(t, x)) = det∇xw(t, x)I · ∇F (w(t, x))
= det∇xw(t, x) divF (w(t, x)) = 0.

Therefore
det∇xw(t, x) = det∇xw(0, x) = 1.

The functions
uε(x) := u(wε(x)), where wε(x) := w(ε, x)

satisfy the volume constraints of (M) because, by (3.2),

LN ({uε = 0}) =
∫
{u=0}

det∇wε(x) dx = LN ({u = 0}),
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and, similarly, LN ({uε = 1}) = LN ({u = 1}). If u ∈ C2, then

d

dε

∣∣∣∣
ε=0

∫
Ω

|∇(u ◦ wε)|2 dx = 2
∫

Ω

N∑
i,j=1

∂2u

∂xi∂xj

dwεj
dε

∂u

∂xi
dx = 2

∫
Ω

N∑
i,j=1

Fj
∂2u

∂xi∂xj

∂u

∂xi
dx

= −2
∫

Ω

N∑
i,j=1

∂Fj
∂xi

∂u

∂xj

∂u

∂xi
dx.

By a simple approximation argument, this formula remains valid if u ∈ W 1,2(Ω;R) is a solution of
(M), and we conclude that

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|∇(u ◦ wε)|2 dx = −2
∫

Ω

∇F∇u · ∇u dx.

Remark 3.2. If u is locally a Lipschitz function in Ω, statement (ii) can be reformulated as∫
{u=t}

|∇u| dHN−1 =
∫

Ω

|∇u|2 dx

for L1-a.e. t ∈ (0, 1). To prove this assertion we will use the co-area formula (see [7], Chapter 3)∫
Ω

h(x)|∇v(x)| dx =
∫ +∞

−∞

(∫
{v=t}

h(x) dHN−1(x)
)
dt, (3.3)

which is valid for any Borel function h : Ω→ [0,+∞] and v ∈W 1,∞
loc (Ω;R). By part (i), with ϕ ≡ 1

and f ∈ C1
c (R), and setting h(x) := f ′(u(x))|∇u|, we obtain

0 =
∫

Ω

|∇u|2f ′(u) dx =
∫ 1

0

f ′(t)

(∫
{u=t}

|∇u| dHN−1

)
dt = 0.

This proves there is a constant C such that
∫
{u=t} |∇u| dH

N−1 = C for L1-a.e. t ∈ (0, 1). Using the

co-area formula once again, we conclude that C =
∫ 1

0
|∇u|2 dx. As mentioned in the introduction,

since the completion of this work, Tilli ([17]) has obtained the locally Lipschitz property of u.

In Proposition 3.4 we will need divergence-free fields with a given trace on a Lipschitz domain;
the next result ensures their existence.

Proposition 3.3. If θ ∈ L2(Ω) satisfies ∫
Ω

θ dx = 0,

then there exists f ∈W 1,2
0 (Ω;RN ) such that div f = θ.

Proof. We first recall a consequence of Tartar’s equivalence lemma ([16]), which, in turn, generalizes
a result of Peetre (see [15]): let E1 be a Banach space, and let E2, E3, be normed spaces. If A : E1 →
E2 is a linear bounded operator and B : E1 → E3 is a compact linear operator, then Range(A) is
closed provided

‖u‖E1 ≤ C [‖Au‖E2 + ‖Bu‖E3 ] (3.4)
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for some constant C > 0. We apply the equivalence lemma with E1 := L2(Ω), E2 := [H−1(Ω)]N ,
E3 := H−1(Ω), Au := ∇u, and Bu := u. With these choices, the estimate (3.4) reduces to

‖u‖L2 ≤ C [‖∇u‖H−1 + ‖u‖H−1 ]

and the latter inequality has been established by Nečas in [14].
Since Range(A) is closed, so is Range(AT ), where AT : [H1

0 (Ω)]N → L2(Ω) is the divergence
operator. Therefore{

θ ∈ L2(Ω) :
∫

Ω

θ dx = 0
}

= [Ker(A)]⊥ = Range(AT ) = Range(AT )

and Property 3.3 follows.

An immediate consequence of Proposition 3.3 is that if τ ∈ H1/2(∂Ω,RN ) satisfies∫
∂Ω

τ · nΩ dH
N−1 = 0,

where nΩ is the unit outer normal to ∂Ω, then the problem div g = 0 in Ω

g = τ on ∂Ω

admits a solution g ∈ W 1,2(Ω;RN ). Indeed, it suffices to apply Proposition 3.3 to the function
θ := −div h, where h ∈W 1,2(Ω;RN ) is such that h = τ on ∂Ω, to obtain a function f ∈W 1,2

0 (Ω;RN )
satisfying div f = θ; g := f + h then has the desired properties.

In the following proposition we use (3.1) to show that the normal derivative on the boundary of
the level sets {u = 0}, {u = 1} is locally constant. In fact, the normal derivative for minimizers is
globally constant ([17], and also see [2] for the case of one volume constraint).

Proposition 3.4. If u ∈ W 1,∞
loc (Ω) satisfies (3.1), if ∆u = 0 in {0 < u < 1}, and if the free

boundary S := {u = 0} ∪ {u = 1} is C1, then ∂u/∂n is locally constant on S.

Proof. Let g ∈ C∞c (Br), where Br is an open ball of radius r in Ω such that Br ∩ {u = 1} = ∅.
Suppose, in addition, that ∫

∂{u=0}
g · ν dHN−1 = 0,

where ν is the outer normal to {u > 0}. In view of Proposition 3.3 and the remark thereafter, we
consider the fields F+ and F− such that divF+ = 0 in B+

r := Br \ {u = 0}
F+ = g on S+ := ∂B+

r ∩ {u = 0}
F+ = 0 on ∂B+

r \ {u = 0}, divF− = 0 in B−r := Br ∩ (int{u = 0})
F− = g on ∂B−r ∩ {u = 0}
F− = 0 on ∂B−r \ {u = 0},

and define

F :=

 F+ in B+
r

F− in B−r
0 otherwise.
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A smoothing argument establishes (3.1) (even though, a priori, F is only in W 1,2
0 (Br,RN ) and not

necessarily Lipschitz), because |∇u| is bounded in Br by assumption. Hence, we have

0 =
N∑

i,j=1

∫
Br

∂Fi
∂xj

∂u

∂xi

∂u

∂xj
dx =

N∑
i,j=1

∫
B+
r

∂F+
i

∂xj

∂u

∂xi

∂u

∂xj
dx

=
N∑

i,j=1

∫
S+

giνj
∂u

∂xi

∂u

∂xj
dHN−1 −

∫
B+
r

F+
i

∂

∂xj

(
∂u

∂xi

∂u

∂xj

)
dx.

Note that

N∑
j=1

∂

∂xj

(
∂u

∂xi

∂u

∂xj

)
=

∂u

∂xi
∆u+

∂

∂xi

[
1
2
|∇u|2

]
=

∂

∂xi

[
1
2
|∇u|2

]
,

hence

0 =
N∑
i=1

∫
S+

gi
∂u

∂xi

∂u

∂n
dHN−1 −

∫
B+
r

F+
i

∂

∂xi

[
1
2
|∇u|2

]
dy

=
∫
S+

N∑
i=1

giνi

[∣∣∣∣∂u∂n
∣∣∣∣2 − 1

2
|∇u|2

]
dHN−1 =

1
2

∫
S+

g · ν
∣∣∣∣∂u∂n

∣∣∣∣2 dHN−1

by the identity ∂u/∂xi = νi∂u/∂n on the boundary. We have proved the implication∫
S+

g · ν dHN−1 = 0 =⇒
∫
S+

g · ν
∣∣∣∣∂u∂n

∣∣∣∣2 dHN−1 = 0 (3.5)

for g ∈ C∞c (Br,RN ), and this ensures there is a constant λ such that∫
S+

g · ν
∣∣∣∣∂u∂n

∣∣∣∣2 dHN−1 = λ

∫
S+

g · ν dHN−1 for all g ∈ C∞0 (Br,RN ).

Thus the normal derivative of u is locally constant on S+.

4 Asymptotic Behavior of the Solutions

In this section we investigate the asymptotic behavior of solutions uαβ of

(M)αβ min
{∫

Ω

|∇u|2 dx : u ∈W 1,2(Ω),LN ({u = 0}) = α, LN ({u = 1}) = β

}
as (α + β) ↗ LN (Ω). We denote by mαβ the Dirichlet integral of uαβ and, for any constant γ ∈
(0, |Ω|), we set

pγ := min
{
PΩ(E) : E ⊂ Ω, LN (E) = γ

}
, (4.1)

where PΩ(E) denotes, as usual, the perimeter of E in Ω. The main result of this section is the
following:

13



Theorem 4.1. For any γ ∈ (0,LN (Ω)),

lim
α→LN (Ω)−γ

β→γ
α+β<LN (Ω)

(
LN (Ω)− (α+ β)

)
mαβ = p2

γ . (4.2)

Moreover, any limit point in the L2(Ω) topology of uαβ is the characteristic function of a minimizing
set for (4.1).

Theorem 4.1 will be deduced from Theorem 4.2 below, recalling that Γ-convergence ensures
that minimizers of (M)αβ converge to minimizers for (4.1), and that minima for (M)αβ tend to the
minimum for the limiting problem, so that (4.2) holds.

Theorem 4.2. For any u ∈ L2(Ω) and α, β > 0 with α+ β < LN (Ω), we define

Fαβ(u) :=


∫

Ω

|∇u|2 if u ∈ H1(Ω),LN ({u ≤ 0}) ≥ α,LN ({u ≥ 1}) ≥ β

+∞ otherwise,

and

Gγ(u) :=

 [PΩ(E)]2 if u = χE and LN (E) = γ

+∞ otherwise.

Then

Γ
(
L2(Ω)

)
− lim

α→LN (Ω)−γ
β→γ

α+β<LN (Ω)

(
LN (Ω)− (α+ β)

)
Fαβ(u) = Gγ(u) for all u ∈ L2(Ω).

Proof. Without loss of generality, we can assume that LN (Ω) = 1. We fix sequences {αn} and
{βn}, converging to (1 − γ) and γ, respectively, and we denote by F+(u), F−(u), the upper and
lower Γ-limits:

F+(u) := inf
{un}

{
lim sup
n→+∞

(
1− (αn + βn)

)
Fαnβn(un) : un → u in L2(Ω)

}
and

F−(u) := inf
{un}

{
lim inf
n→+∞

(
1− (αn + βn)

)
Fαnβn(un) : un → u in L2(Ω)

}
.

We must prove that F− ≥ Gγ ≥ F+.
Step 1. We first establish the inequality F− ≥ Gγ by showin that

lim inf
n→+∞

(
1− (αn + βn)

)
Fαnβn(u) ≥ Gγ(u) (4.3)

for any sequence {un} converging to u in L2(Ω). It is not restrictive to assume that the lim inf in
(4.3) is a finite limit, and to assume, by a truncation argument, that 0 ≤ un ≤ 1.

We first prove that u = χE is a characteristic function and that LN (E) = γ. Indeed, by Propo-
sition 2.1 with C = {0} and C = {1}, we infer that

LN ({u = 0}) ≥ lim sup
n→+∞

LN ({un = 0}) = (1− γ), LN ({u = 1}) ≥ lim sup
n→+∞

LN ({un = 1}) = γ.

In particular, there exists a Borel set E ⊂ Ω such that u = χE . Since∫
Ω

un dx ≥ βn +
∫
Ln

un dx,
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with Ln = {0 < un < 1}, passing to the limit as n→ +∞ we obtain

LN (E) =
∫

Ω

u dx ≥ γ,

as claimed.
Denoting by

∫
Ω
|Du| the total variation of a L1

loc(Ω) function u (see for instance [9]), we notice
that ∫

Ω

|Dun| =
∫
Ln

|∇un| dx ≤
(
LN (Ln)

)1/2(∫
Ω

|∇un|2 dx
)1/2

≤
[(

1− (αn + βn)
) ∫

Ω

|∇un|2 dx
]1/2

.

Therefore, as PΩ(E) =
∫

Ω
|DχE | and u 7→

∫
Ω
|Du| is L1

loc(Ω) lower semicontinuous,

Gγ(u) = [PΩ(E)]2 =
(∫

Ω

|Du|
)2

≤ lim inf
n→+∞

(∫
Ω

|Dun|
)2

(4.4)

≤ lim inf
n→+∞

(
1− (αn + βn)

) ∫
Ω

|∇un|2 dx,

and this proves (4.3).
Step 2. Next we establish the inequality F+(u) ≤ Gγ(u). It is not restrictive to assume that

u = χE is a characteristic function, LN (E) = γ and PΩ(E) < +∞.
We first assume that E = D ∩ Ω for some bounded open set D with smooth boundary in RN ,

and we prove that

F+(u) ≤
[
HN−1(∂D ∩ Ω)

]2
. (4.5)

Let

d(x) :=

 dist(x, ∂D) if x /∈ D

−dist(x, ∂D) if x ∈ D

be the signed-distance function from D. Due to the smoothness of D, for σ > 0 sufficiently small we
have that {

x ∈ RN : d(x) = t
}

=
{

Φt(x) : x ∈ ∂D} (4.6)

for t ∈ (−σ, σ), where Φt(x) := x+ tν(x) and ν is the unit outer normal to D. For n large enough,

LN ({x ∈ Ω : |d(x)| < σ}) > 1− (αn + βn),

and hence we can find λn, µn ∈ (−σ, σ) such that λn < µn and

LN ({x ∈ Ω : d(x) ≤ λn}) = αn, LN ({x ∈ Ω : d(x) ≥ µn}) = βn.

By construction, the functions

un(x) =
[min{d(x), µn} − λn]+

µn − λn
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satisfy the constraint LN ({un = 0}) = αn, LN ({un = 1}) = βn, and un → u in L2(Ω). Using the
identity |∇d| = 1 and the co-area formula (3.3) with h ≡ 1 we can estimate

(
1− (αn + βn)

) ∫
Ω

|∇un|2 dx =
(
1− (αn + βn)

) ∫
{x∈Ω :λn<d(x)<µn}

|∇un|2 dx

=
1− (αn + βn)

(µn − λn)2
LN ({x ∈ Ω : λn < d(x) < µn})

=
[
LN ({x ∈ Ω : λn < d(x) < µn})

µn − λn

]2

=
[

1
µn − λn

∫ µn

λn

HN−1({x ∈ Ω : d(x) = t}) dt
]2

.

Hence, to get (4.5) we need only to prove the inequality

lim sup
t→0

HN−1({x ∈ Ω : d(x) = t}) ≤ HN−1(∂D ∩ Ω). (4.7)

Indeed, let us fix an open set A ⊃ Ω. By (4.6), for |t| < min{σ,dist(Ω, ∂A)},

{x ∈ Ω : d(x) = t} ⊂ Φt(A ∩ ∂D);

hence

lim sup
t→0

HN−1({x ∈ Ω : d(x) = t}) ≤ lim sup
t→0

HN−1(Φt(A ∩ ∂D)) = HN−1(A ∩ ∂D),

and (4.7) follows by letting A ↓ Ω .
Finally, by Lemma 4.3 below we can find a sequence of bounded open sets Dn with smooth

boundary in RN such that un := χDn∩Ω converge to u = χE in L2(Ω), LN (Dn ∩ Ω) = γ, and

lim
n→+∞

Hn−1(∂Dn ∩ Ω) = PΩ(E).

Applying (4.4) to un and using the lower semicontinuity of u 7→ F+(u) (see [6]), we obtain

F+(u) ≤ lim inf
n→+∞

F+(un) ≤ lim inf
n→+∞

HN−1(∂Dn ∩ Ω) = PΩ(E).

Lemma 4.3. Let E ⊂ Ω be a set with finite perimeter such that 0 < LN (E) < LN (Ω). There
exists a sequence of bounded open sets Dn ⊂ RN with smooth boundary in RN such that LN (E) =
LN (Dn ∩ Ω), χDn converges to χE in L2(Ω), and

lim
n→+∞

HN−1(∂Dn ∩ Ω) = PΩ(E).

Proof. Let us first assume the existence of nonempty balls B, B′ such that B ⊂ E and B′ ⊂ Ω\E.
By a local reflection argument (see for instance [4]) we can extend E to a bounded set with finite
perimeter E′ in RN such that |DχE′ |(∂Ω) = 0. It is possible to find bounded open sets En with
smooth boundary that converge to E′ and are such that (see [9])

lim
n→+∞

PRN (En) = PRN (E′).
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By the lower semicontinuity of the perimeter function on open sets,

PΩ(E) = PΩ(E′) ≤ lim inf
n→+∞

PΩ(En) ≤ lim sup
n→+∞

HN−1(∂En ∩ Ω)

= lim sup
n→+∞

PRN (En)− PΩ(En)

≤ lim sup
n→+∞

PRN (En)− lim inf
n→+∞

P
RN\Ω(En)

≤ PRN (E′)− P
RN\Ω(E′) = PΩ(E′) = PΩ(E);

whence HN−1(∂En ∩ Ω) converges tp PΩ(E).
Since LN (En ∩ Ω) converges to LN (E), possibly adding to En small balls contained in B′ and

possibly removing from En small balls contained in B, we obtain sets Dn with the same properties
and with LN (Dn ∩ Ω) = γ.

To prove the general case, we notice that any set E ⊂ Ω with 0 < PΩ(E) < +∞ can be
approximated, in area and perimeter, by sets Eh such that LN (Eh) = LN (E) and such that both
Eh and Ω \Eh have nonempty interior: the approximation can, for instance, be achieved choosing a
point x ∈ Ω where the density of E is 1/2 and defining

Eh := E ∪B1/h(x) \Bρh(x) h ≥ 1,

with ρh =
(
LN (B1/h(x) \ E)/ωN

)1/N chosen to satisfy the volume constraint. Hence, since the
approximation property is true for Eh, a diagonal argument leads to the existence of Dn also in the
general case.

Proof of Theorem 4.1. Let {αn}, {βn} be sequences converging to (1−γ), γ, respectively, and let
un ∈W 1,2(Ω; [0, 1]) be the corresponding solutions to (M)αn,βn (see Remark 2.4(ii)) . By the general
properties of Γ-convergence (see [6]), we need only to know that the sequence {un} is relatively
compact in L2(Ω).

Let E ⊂ Ω be a set of finite perimeter with LN (E) = γ, and, in view of Theorem 4.2, let {vn}
be a sequence converging to χE in L2(Ω) and such that

lim
n→+∞

(
1− (αn + βn)

) ∫
Ω

|∇vn|2 dx = [PΩ(E)]2.

Since un are minimizing, we have

lim sup
n→+∞

(
1− (αn + βn)

) ∫
Ω

|∇un|2 dx ≤ [PΩ(E)]2,

and (4.4) yields

lim sup
n→+∞

∫
Ω

|∇un| dx ≤ PΩ(E) < +∞.

Since the embedding BV (Ω) ⊂ L1(Ω) is compact, and as the functions are equibounded, we conclude
that {un} is relatively compact in the L2(Ω) topology.
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5 Competing Configurations

5.1 One-dimensional solutions

In the scalar case, where Ω is an interval, d = 1 and {z1, z2} = {0, 1}, the solutions of (M) are easily
characterized. Assuming with no loss of generality that Ω = (0, 1), we claim that any minimizer u in
Ω is affine in {0 < u < 1}. In fact, denoting by {Ai}i∈I the connected components of {0 < u < 1},
we have ∫ 1

0

|u′|2 dx =
∑
i

∫
Ai

|u′|2 dx =
∑
i

1
L1(Ai)

.

The inequality between arithmetic mean and harmonic mean gives∫ 1

0

|u′|2 dx ≥ [card(I)]2∑
i L1(Ai)

=
[card(I)]2

1− α− β
.

This proves that card(I) = 1, i.e. {0 < u < 1} has only one connected component, and that the
least energy is 1/(1− α− β).

This argument can be repeated in the vector-valued case with Ω = (0, 1) and d > 1. Recalling
that in this case we have existence for any finite set of constrained points K = {z1, . . . , zP } (not
necessarily extremal points of a convex set, see Remark 2.4(iv)), it can be shown that the problem
is equivalent to finding the shortest connection between these points. In fact, setting γ := 1−

∑
i αi,

we denote by path any finite sequence w := {w1, . . . , wr} such that

{w1, . . . , wr} = K,

and we claim that the infimum of (M) is given by

γ−1 inf


r−1∑
j=1

|wj+1 − wj | : w is a path


2

.

In fact, using the Lagrange multiplier rule, this infimum can be represented by

(P) inf


r−1∑
j=1

|wj+1 − wj |2

aj
: w is a path,

r∑
j=1

aj = γ

 .

If u ∈ H1(0, 1) is any admissible function for (M) and I is any connected component of Au := {u /∈
K}, then the condition u(∂I) ⊂ K implies that∫

I

|u′|2 dt ≥ [osc(u, I)]2

L1(I)
≥ δ2,

where δ > 0 is the least distance between two points in K. Hence, Au has only finitely many
connected components. It is now easy to establish a one to one correspondence, with equivalence
of the energies, between admissible functions u ∈ H1(0, 1) for (M) and admissible pairs (wi, ai) for
(P). In fact, given u ∈ H1(0, 1) admissible for (M), if I = (s, t) is a connected component of Au with
length aj , then we set

wj := lim
x↓s

u(x), wj+1 := lim
x↑t

u(x).

If u is a solution for (M) then ∫
I

|u′|2 dx =
|wj+1 − wj |2

aj
,
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and clearly (wj , aj) is admissible for (P). Conversely, any {(wj , aj)} admissible for (P) corresponds
to a function u admissible for (M), where u is piecewise affine, has slope |wj+1 −wj |/aj in intervals
with length aj , and whose level sets {u = zi} are formed by ni intervals (possibly reducing to a
single point) with total length αi, where

ni := card ({j : wj = zi}) .

5.2 The circle : radial and comparison configurations

Here we study candidates for solutions of the problem

(Mr) min
{∫

B

|∇u|2 dx : u ∈W 1,2
r (B), LN ({u = 0}) = α,LN ({u = 1}) = β

}
,

where B is the unit ball of R2 and W 1,2
r (B) denotes the space of radial functions in W 1,2(B).

Let u(x) := g(|x|) ∈W 1,2
r (B), where g is continuous in (0, 1]. We define

r̄ := sup {r ∈ (0, 1] : g(r) ∈ {0, 1}} .

If g(r̄) = 0 we can make a nonincreasing rearrangement of g that preserves the measure of level sets of
u (see for instance [11], Lemma 7.17) to obtain a new function ũ(x) = g̃(|x|) whose Dirichlet integral
does not exceed that of u, and which is still admissible for (M). If g(r̄) = 1 the same argument
can be applied to 1 − u. To determine the minimum energy we may therefore restrict ourselves to
nonincreasing or nondecreasing functions g.

A computation shows that g(r) = a + b ln r in {0 < g < 1} for suitable constants a, b. In
the nonincreasing case these constants can be computed using the volume constraints to find b =
1/ ln(r0/r1) and a = −b ln r1, where

r0 :=

√
β

π
, r1 :=

√
π − α
π

.

With these choices of a, b, the Dirichlet integral reduces to 4π/ ln((π − α)/β). Taking into account
also the nondecreasing case, we find that the minimal energy of (M) is

min

{
4π

ln π−α
β

,
4π

ln π−β
α

}
.

We claim that the solutions of (M) are generally not radial. Consider the family of functions

uab(z) := a+ b ln
∣∣∣∣z + 1
z − 1

∣∣∣∣2
in the complex variable z = x + iy, defined in the unit disk Ω = {|z| < 1}. These functions are
harmonic, and their level sets are circles orthogonal to ∂Ω, i.e., the solutions of the constrained least
area problem (4.1). This might suggest that the functions min{max{0, uab}, 1} are solutions of (M),
for suitable a, b depending on α, β, at least when α + β is close to π. However, this is not true
because the normal derivative is not constant on level sets thereby violating the necessary condition
for minimality stated in Proposition 3.4. This can be seen either by direct computation or by the
conformal change of variables w = log[(z + 1)/(z − 1)], mapping the circles on vertical segments
in the w plane and Ω onto a strip; in the new configuration the functions have constant normal
derivative, hence in the original configuration this property cannot be true.
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However, the functions uab can be used to show that for α, β << 1, the solutions of (M) are not
radial; in fact, using the equations ∆uab = 0, ∂uab/∂n = 0, it can be shown that∫

Ω

|∇uab|2 dz =
∫
{x=0}

∂uab
∂x

dH1 = 4b
∫ 1

−1

1
y2 + 1

dy = 2bπ.

Denoting by r0 and r1 the radii of the circles {uab = 0}, {uab = 1}, respectively, for α, β << 1,

1 ∼ a+ b ln
4
r2
1

, 0 ∼ a+ b ln
r2
0

4
, α ∼ πr2

0

2
, β ∼ πr2

1

2
,

and thus the least energy of (M) cannot exceed

2π
ln 4π2

αβ

.

For α = β, this quantity is asymptotically 4 times smaller than the least energy of radial solutions.

5.3 The square: piecewise affine and comparison configurations

Let Ω = (0, 1)2, d = 1, fix α, β ∈ (0, 1), with α + β < 1, and consider the piecewise linear function
u : (0, 1)2 → R

2 defined by

u(x) =


0 if x1 ≤ α,

1
1−α−βx1 − α

1−α−β if α < x1 < 1− β,
1 if x1 ≥ 1− β

We claim that, even though u satisfies the optimality conditions of Section 3, u will not solve (M)
when α+ β << 1, nor when α+ β is close to 1. Indeed,∫

Ω

|∇u|2 dx =
1

1− α− β
,

and if we consider a competing configuration v such that v = 0 on a right triangle with right angle
at (0, 0), v = 1 on a right triangle with right angle at the vertex (1, 1), and v is linear in the region
between these two triangles, then it can be shown that∫

Ω

|∇v|2 dx =
1− α− β

(
√

2−
√
α−
√
β)2

.

In particular, ∫
Ω

|∇v|2 dx <
∫

Ω

|∇u|2 dx

for α + β sufficiently small, for instance, if α + β < 3 − 2
√

2. Finally, considering the limiting
configuration, which is equal to one on a quarter of a circle centered at (0, 0) with radius r, and
it is constantly equal to zero elsewhere on the square, then r = 2

√
β/π, and the perimeter of the

interface is
√
πβ. By Theorem 4.1 we conclude that if

√
πβ < 1, then u cannot be a solution for (M).
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