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Abstract. A Dirichlet problem for orthogonal Hessians in two dimen-
sions is explicitly solved, by characterizing all piecewise C2 functions
u : Ω ⊂ R2 → R with orthogonal Hessian in terms of a property named
“second order angle condition” as in (1.1).

1. Introduction

We consider a piecewise C2 function u defined on an open set Ω ⊂ R2,
with almost everywhere orthogonal Hessian matrix D2u. We denote by Σu

the singular set where the Hessian is discontinuous. It turns out that Σu is
a union of segments and at every vertex of Σu meet exactly four consecutive
angles α+, α−, β+, β− with

α+ + β+ = π and α− = β− =
π

2
. (1.1)

We call this condition the “second order angle condition.”
This unexpected property allows us to characterize all piecewise C2 func-

tions u : Ω ⊂ R2 → R with orthogonal Hessian. It also allows us to exhibit
solutions to some second-order Dirichlet problems related to differential sys-
tems (see (3.1)). These and some further properties are discussed below (cf.
Theorems 1 and 4).

We would also like to contrast the second order angle condition (1.1)
with the “angle condition” considered in a previous paper [3]. This last
property states that if w : Ω ⊂ R2 → R2 is any piecewise C1 vector field
with orthogonal gradient Dw, then at any vertex of the singular set Σw it
meets exactly 2m consecutive angles α1, · · · , α2m with the property that

α1 + α3 + · · ·+ α2m−1 = α2 + α4 + · · ·+ α2m = π.
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The angle property was first discovered in the framework of origami, the
ancient Japanese art of folding papers, by Kawasaki (see [5]).

2. Necessary and sufficient conditions for second derivatives

Let Ω be an open subset of R2. We say that a function u : Ω ⊂ R2 → R
is piecewise C2 in Ω (and we write u ∈ C2

piec (Ω)) if u ∈W 2,∞(Ω) and there
exists a locally finite partition of Ω into open sets Ωk with piecewise C1

boundary and a set of measure zero; i.e.,

Ωh ∩ Ωk = ∅, for every h 6= k,

meas
(

Ω−
⋃
k

Ωk

)
= 0,

such that u is C2(Ωk) for every k.
Notation Let u ∈ C2

piec (Ω) with almost everywhere orthogonal Hessian.
The regular set is the set where the Hessian is continuous and we denote by
Ω+ (respectively Ω−) the open subset of the regular set where detD2u = 1
(respectively detD2u = −1). The singular set, denoted Σ, is the complement
of the regular set, so that Ω = Ω+ ∪ Ω− ∪ Σ.

In the theorem below, we say that C is a convex polygon (respectively a
rectangle) with respect to Ω, if there exists a polygon (respectively a rectan-
gle) K ⊂ R2 so that C = K ∩ Ω.

Theorem 1 (Necessary condition). Let Ω ⊂ R2 be open and convex and let
u ∈ C2

piec (Ω) with almost everywhere orthogonal Hessian. Then the Hessian
D2u is constant on every connected component of Ω+ and Ω−. Moreover,
the following properties hold:

(i) the connected components of Ω+ are convex polygons with respect to Ω
and their closures meet in at most one common vertex which belongs to Σ;
the connected components of Ω− are rectangles with respect to Ω and their
closures meet in at most one common vertex which belongs to Σ;

(ii) at every interior vertex exactly two components of Ω+ and two of Ω−

meet in an alternated way with angles α+, α−, β+, β− with

α+ + β+ = π and α− = β− = π
2 .

Proof. Step 1. We first prove that the Hessian D2u is constant on every
connected component of Ω+ and Ω−. This can be deduced from the classical
Liouville theorem, but, for the sake of completeness, we give here a proof
that uses the more restrictive structure of Hessians.
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1) We start with a component of Ω+. First note that a symmetric orthog-
onal matrix with positive determinant can be only of the form

±I = ±
(

1 0
0 1

)
.

Therefore,

D2u =
(
uxx uxy
uxy uyy

)
is such that uxy = 0 and uxx = uyy = ±1 and thus D2u is indeed constant
on every connected component of Ω+.

2) We now discuss the case of a component of Ω−. Note that since detD2u
= −1 and D2u is orthogonal, we have, for some function θ = θ (x, y) ,

D2u =
(
uxx uxy
uxy uyy

)
=
(

cos θ sin θ
sin θ − cos θ

)
.

Thus, ∆u = 0, which implies that u ∈ C∞ there. Therefore, θ ∈ C∞ and
we get from {

(cos θ)y = (sin θ)x
(sin θ)y = (− cos θ)x ,

that θx = θy = 0, as desired.
Step 2. On either side of a smooth part of the boundary of a connected

component D2u assumes the values A and B which differ by a rank one
matrix. More precisely, since A and B are constant, Du is affine on both
sides of the boundary and the boundary itself is locally a segment (with
normal ν). Thus, A and B differ by a rank one matrix and because of
symmetry

A−B = ± ν ⊗ ν. (2.1)
Thus, any connected component of Ω+ and Ω− is a polygon with respect to
Ω. The properties of these polygons are established in Step 4.

Step 3. Let us prove that two connected components of Ω− (and similarly
for Ω+) cannot touch along a segment. Let D2u = A,B on each side of the
discontinuity segment. We know that A and B are necessarily of the form

A =
(

cos a sin a
sin a − cos a

)
and B =

(
cos b sin b
sin b − cos b

)
.

Since Du should be continuous on the segment of discontinuity of the Hes-
sian, we must have (see (2.1))

0 = det (A−B) = − (cos a− cos b)2 − (sin a− sin b)2 ,

which is possible only if A = B.
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Figure 1. Second order angle condition

Step 4. We now prove (ii) of the theorem. Without loss of generality
(we refer to Figure 1), we can assume that the interior vertex is at (0, 0) ,
Du (0, 0) = (0, 0) , that a line of discontinuity of the Hessian is on the half
x−axis, namely L+

1 = {(x, 0) : x > 0} and that in the right upper half-plane
near (0, 0)

Du (x, y) =
(
x
y

)
.

By Step 3 and continuity of Du we should have below L+
1 that

Du (x, y) =
(
x
−y

)
.

Appealing once more to Step 3, we see that only two possibilities (since by
Step 1, D2u = ±I) can happen about the next half-line of discontinuity
(computed clockwise):

1) if D2u = I (see Figure 1, left), then the gradient on the other side of
the discontinuity has to be

Du (x, y) =
(
x
y

)
;
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thus, the half-line of discontinuity (where however Du must be continuous) is
where y = 0; i.e., L−1 = {(x, 0) : x < 0} and β− = π; hence, this implies that
(0, 0) is not a vertex, since in this case we would have α+ = π by symmetry;

2) if D2u = −I (see Figure 1, right), the gradient on the other side of the
discontinuity has to be

Du (x, y) =
(
−x
−y

)
.

In this case x = 0; i.e., the half-line of discontinuity is L−2 = {(0, y) : y < 0};
then β− = π/2. By symmetry we deduce that α− = π/2 and thus α+ +β+ =
π.

Since Ω is convex we conclude that the connected components of Ω− are
rectangles. Since the angles in the connected components of Ω+ are less than
π, these components are convex polygons. �

Remark 2. We can see that, up to a rotation, if the vertex is at (0, 0) ,
Du (0, 0) = (0, 0) , and the angle α+ is measured with origin in the half
x−axis L+

1 = {(x, 0) : x > 0}, then the gradient Du, with respect to the angle
θ in polar coordinates locally around the vertex has the analytic expression

Du =



(
x
y

)
if 0 ≤ θ ≤ α+(

x cos 2α+ + y sin 2α+

x sin 2α+ − y cos 2α+

)
if α+ ≤ θ ≤ α+ + π

2(
−x
−y

)
if α+ + π

2 ≤ θ ≤
3π
2(

x
−y

)
if 3π

2 ≤ θ ≤ 2π.

(2.2)

In the proof of the theorem below, we will use the following result.

Lemma 3. Let Ω be an open connected subset of R2. Let w : Ω ⊂ R2 → R2

be a piecewise vector field of class C1
piec

(
Ω; R2

)
with singular set Σ satisfying

(i) and (ii) of Theorem 1. If its gradient Dw is a symmetric orthogonal
matrix at one connected component of Ω \ Σ, then it is a symmetric matrix
almost everywhere in Ω.

Proof. The argument is similar to the one of Theorem 1 and we do not
enter into many details. Along a segment in Σ, the situation is even more
direct than at a vertex and we therefore only discuss this last case. Up to
a rotation and a translation, locally at any interior vertex of Σ we have the
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situation described in Remark 2, with the vector field w as in (2.2) and its
gradient Dw being the symmetric matrix

Dw =



I if 0 ≤ θ ≤ α+(
cos 2α+ sin 2α+

sin 2α+ − cos 2α+

)
if α+ ≤ θ ≤ α+ + π

2

−I if α+ + π
2 ≤ θ ≤

3π
2(

1 0
0 −1

)
if 3π

2 ≤ θ ≤ 2π

.

That is, the gradient Dw, being a symmetric orthogonal matrix at one con-
nected component around the interior vertex (0, 0) ∈ Ω, either has positive
determinant (and in this case it is forced to be either equal to the identity
matrix I or to its opposite −I), or it has negative determinant (and in this

case it has the form
(

cos 2α+ sin 2α+

sin 2α+ − cos 2α+

)
for some α+. In any case, the

matrix Dw is symmetric around the vertex (0, 0). �

Theorem 4 (Sufficient condition). Let Ω ⊂ R2 be open and simply con-
nected. Let Ω = Ω+ ∪ Ω− ∪ Σ, where Ω+,Ω− are open and Σ is a locally
finite union of segments, satisfying (i) and (ii) of Theorem 1. Then there
exists u ∈ C2

piec (Ω) with almost everywhere orthogonal Hessian, whose sin-
gular set is Σ and detD2u = ±1 in Ω±. Moreover, u is uniquely determined
up to fixing the values u (x0) , Du (x0) and, for example, D2u (x0) = I at a
point x0 ∈ Ω+.

Proof. Step 1. We first use Theorem 4.9 in [3] and find that there exists a
vector field w : Ω ⊂ R2 → R2, w =

(
w1

w2

)
∈ C1

piec

(
Ω; R2

)
, whose singular set

is Σ = Σw where Dw is almost everywhere an orthogonal matrix. Moreover,
we can fix Dw to be the identity at one given point in Ω+.

Step 2. We apply Lemma 3 to the above w. We find that Dw is sym-
metric. We regularize w with the standard convolution wε = w ∗ ρε and
observe that Dwε is a symmetric matrix. Therefore, there exists uε so that
wε = Duε. Passing to the limit we find that uε → u uniformly for a cer-
tain u ∈ W 2,∞ and D2uε → D2u = Dw almost everywhere in Ω. Thus,
u ∈ C2

piec (Ω) and the result is obtained. �
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3. Solutions to Dirichlet problems

We consider the second-order Dirichlet problem for the unknown function
u : Ω ⊂ R2 → R, where Ω is a rectangle,{

D2u ∈ O(2) a.e. in Ω
Du = ϕ on ∂Ω ,

(3.1)

or the first-order Dirichlet problem for the unknown map w : Ω ⊂ R2 → R2,

w =
(
w1

w2

)
, {

Dw ∈ O(2) a.e. in Ω
w = ϕ on ∂Ω . (3.2)

For general considerations on second-order Dirichlet problems as in (3.1), we
refer to [2]. For explicit constructions of solutions to (3.2), we refer, among
others, to [1], [3] and [4].

It turns out, by the characterization results of the previous section, that
in fact the Dirichlet problem (3.2) contains, as a special case, some solutions
to the Dirichlet problem (3.1).

That is, for suitable ϕ, there exist solutions w to (3.2) which have the
gradient representation w = Du for a certain function u. In fact, we proved
in [3] that there exists a solution w to the Dirichlet problem (3.2) for linear
boundary data and, without loss of generality, when

ϕ (x, y) =
(
αx
βy

)
,

for α, β ∈ (−1, 1) (note that the compatibility constraint on α, β is neces-
sary). In this case we proved the existence of a map w : Ω ⊂ R2 → R2,
w ∈ C1

piec

(
Ω; R2

)
, whose singular set is the set Σ = Σw represented in Fig-

ure 2. We can easily see that the singular set satisfies the necessary and
sufficient conditions of Theorems 1 and 4; thus there exists u : Ω ⊂ R2 → R
such that w = Du. This function u solves the Dirichlet problem (3.1).

Our aim here is to show how to read the boundary value from the singular
set, namely how to relate the α, β ∈ (−1, 1) values with the singular set
Σ = Σw represented in Figure 2. The set Σ is contained in the rectangle Ω
of sizes a and b, where

b2

a2
=

1− α2

1− β2
.

For the sake of clarity we start to describe the construction when α = β.
In this case the rectangle is a square and the triangular set in Figure 3 is a
real triangle delimited by the diagonals of the square. In the general case,
the triangular set is a perturbation of the above one. More precisely, the
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We can easily see that the singular set satisfies the necessary and sufficient
conditions of Theorems 1 and 4; thus there exists u : Ω ⊂ R2 → R such that
w = Du. This function u solves the Dirichlet problem (4).

Our aim here is to show how to read the boundary value from the singular
set, namely how to relate the α,β ∈ (−1, 1) values with the singular set Σ = Σw

represented in Figure 2. The set Σ is contained in the rectangle Ω of sizes a and
b, where

b2

a2
=

1− α2

1− β2
.

Figure 2: Singular set Σ

For the sake of clarity we start to describe the construction when α = β.
In this case the rectangle is a square and the triangular set in Figure 3 is a
real triangle delimited by the diagonals of the square. In the general case the
triangular set is a perturbation of the above one. More precisely the triangular
set is delimited by two polygonal paths joining the center with two consecutive
vertices of the rectangle, passing through vertices of Σ which are “close” to the
diagonals of Ω (as in Figure 3).
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Figure 2. Singular set Σ

triangular set is delimited by two polygonal paths joining the center with
two consecutive vertices of the rectangle, passing through vertices of Σ which
are “close” to the diagonals of Ω (as in Figure 3).

We consider a generic vertical segment, parallel to the y−axis, in the
triangular set. The segment intersects periodically the structure represented
in Figure 3, in particular the singular set Σ and the connected components
Ω− (respectively Ω+) of the regular set where the determinant of the matrix
Dw in (3.2), or the matrix D2u in (3.1), is equal to −1 (respectively equal
to +1). All the connected components of Ω− are rectangles (dark regions),
while the connected components of Ω+ are the other polygons (light regions),
as in Figures 2 and 3.

We further limit ourselves to the segments parallel to the y−axis which
meet orthogonally the boundary of the connected components of Ω+ and
Ω−, see Figure 3. According to Remark 2, the Jacobian Dw in (3.2), or the
Hessian D2u in (3.1), in Ω+ and Ω− respectively, is(

1 0
0 1

)
and

(
1 0
0 −1

)
.
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Figure 3: The triangular set

We consider a generic vertical segment, parallel to the y−axis, in the tri-
angular set. The segment intersects periodically the structure represented in
Figure 3, in particular the singular set Σ and the connected components Ω−
(respectively Ω+) of the regular set where the determinant of the matrix Dw
in (5), or the matrix D2u in (4), is equal to −1 (respectively equal to +1). All
the connected components of Ω− are rectangles (dark regions), while the con-
nected components of Ω+ are the other polygons (light regions), as in Figures
2 and 3.

We further limit ourselves to the segments parallel to the y−axis which
meet orthogonally the boundary of the connected components of Ω+ and Ω−,
see Figure 3. According to Remark 2, the Jacobian Dw in (5), or the Hessian
D2u in (4), in Ω+ and Ω− respectively is

(
1 0
0 1

)
and

(
1 0
0 −1

)
.

Then, under the notation w =
(w1

w2

)
, we have that ∂w2/∂y assumes the values

8

Figure 3. The triangular set

Then, under the notation w =
(
w1

w2

)
, we have that ∂w2/∂y assumes the values

+1 and −1 with proportions given by the vertical lengths of the connected
components of Ω+ and Ω−. These proportions, limited to a period, up to
a normalization, define the average of ∂w2/∂y, i.e., the slope of w2 at the
boundary parallel to the y−axis; therefore

β =
vertical length of Ω+ − vertical length of Ω−

vertical length of Ω+ + vertical length of Ω−
.

We proceed similarly for the x−axis and α and we get

α =
horizontal length of Ω+ − horizontal length of Ω−

horizontal length of Ω+ + horizontal length of Ω−
.

We should note that the above construction for the solution of the Dirich-
let problem is the same for the first and second order cases. This has been
made possible from the special choice of the singular set Σ.

In Figure 4, we propose two examples (one of them being as in Figure 2)
of singular sets which satisfy the second-order angle condition and therefore,
lead to solutions of the first as well as the second-order case.

In contrast, in Figure 5, we propose two singular sets that satisfy the angle
condition but not the second-order one. Therefore, they can be used to solve
the first-order system but not the second-order one.
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+1 and −1 with proportions given by the vertical lengths of the connected
components of Ω+ and Ω−. These proportions, limited to a period, up to a
normalization, define the average of ∂w2/∂y, i.e., the slope of w2 at the boundary
parallel to the y−axis; therefore

β =
vertical length of Ω+ − vertical length of Ω−

vertical length of Ω+ + vertical length of Ω−
.

We proceed similarly for the x−axis and α and we get

α =
horizontal length of Ω+ − horizontal length of Ω−

horizontal length of Ω+ + horizontal length of Ω−
.

Figure 4: Two examples of second order angle condition

Figure 5: Two examples of first order angle condition
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