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VISCOSITY SOLUTIONS, ALMOST EVERYWHERE SOLUTIONS
AND EXPLICIT FORMULAS

BERNARD DACOROGNA AND PAOLO MARCELLINI

Abstract. Consider the differential inclusion Du ∈ E in Rn. We exhibit an
explicit solution that we call fundamental. It also turns out to be a viscosity
solution when properly defining this notion. Finally, we consider a Dirich-
let problem associated to the differential inclusion and we give an iterative
procedure for finding a solution.

1. Introduction

Existence of almost everywhere solutions of the first order Dirichlet problem
related to implicit differential equations of the type

(1)
{
F (Du (x)) = 0, a.e. x ∈ Ω,
u (x) = 0, x ∈ ∂Ω ,

has recently been extensively studied in the book [6] by the authors. Here F :
Rn → R is a continuous function and we look for a Lipschitz-continuous solution
u : Ω ⊂ Rn → R. A wide literature on this subject can be found in [6], not only
for scalar problems such as this one, but also for vector-valued solutions of first
order systems related to maps u : Ω ⊂ Rn → Rm and F : Rm×n → RN , for some
m,N ≥ 1.

Existence of viscosity solutions of the Dirichlet problem (1) is now well estab-
lished. It has been studied by many authors starting with Hopf, Lax, Kruzkov and
Crandall-Lions; see for example [1] or [6] for more historical comments. One of the
earliest and still one of the most complete monographs on the subject is [10] by
P.L. Lions. The research in this field remains very active; in particular H. Ischii
and P. Loreti [8], motivated by an optimization problem, recently gave an existence
result of viscosity solutions of the Dirichlet problem (1). See also [2] and [9].

In this paper we give some existence results, either in the case of almost every-
where solutions, or, when possible, of viscosity solutions. One of our aims is to
give some constructive explicit formulas (cf. Theorems 1 and 6). Moreover, if the
geometry of the set Ω and the assumptions on the function F make it possible,
following [3] we give (cf. Corollary 8) an explicit formula for a viscosity solution of
the Dirichlet problem (1), simply in terms of sup and inf. Otherwise, with general
F and Ω, we propose, in Section 4, an iteration scheme for characterizing a solution.
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In Section 2 we introduce the notion of viscosity solution of a differential inclu-
sion; namely: given a closed set E, we say that a function u is a viscosity solution
of the differential inclusion

(2) Du (x) ∈ E, x ∈ Ω,

if u is a viscosity solution of the equation

(3) F (Du (x)) = 0, x ∈ Ω,

where F (ξ) = dist {ξ, E}. We will prove in Theorem 6 that the function L : Rn →
R, defined by

L (x) = max {〈ξ, x〉 : ξ ∈ E} ,
is a viscosity solution of the differential inclusion (2), i.e. it is a fundamental solution
of the equation (3).

2. Fundamental solution and viscosity solutions

of differential inclusions

We start by recalling some classical definitions and notations in convex analysis.
We say that ξ ∈ Rn is an extreme point for a convex set K ⊂ Rn if the conditions{

ξ = tξ1 + (1− t) ξ2,
ξ1, ξ2 ∈ K, t ∈ (0, 1) ,

imply that ξ = ξ1 = ξ2.
If E is a set (not necessarily convex) of Rn, we denote by Eext the set of extreme

points of the convex hull of E denoted by coE (note that Eext ⊂ E).
We also recall that the domain of a convex function L : Rn → R∪{+∞} is

defined as
domL = {x ∈ Rn : L (x) < +∞} .

Theorem 1 below generalizes an analogous result obtained by Ischii and Loreti
(see the proof of Theorem 2.2 in [8]) in the case thatE is the level set of a continuous,
positively homogeneous function of degree one, equal to zero only at the origin of
Rn.

Theorem 1. Let E be a compact set of Rn. For every x ∈ Rn let

L (x) = max {〈ξ, x〉 : ξ ∈ E} .
Then

DL (x) ∈ E a.e. x ∈ Rn.

Remark 2. (i) It should be noted that in fact the theorem is more precise, namely

DL (x) ∈ Eext ⊂ E ∩ ∂ coE a.e. x ∈ Rn.
(ii) If E is any set, not necessarily closed or bounded, then the proof gives

(replacing max by sup) that

DL (x) ∈ E a.e. x ∈ domL.

(iii) In terms of convex analysis and anticipating on (4) we can say that L is the
support function of coE.

Before proceeding with the proof it might be interesting to rewrite the theorem
in terms of equations.
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Corollary 3. Let F : Rn → R be a continuous function such that

E = {ξ ∈ Rn : F (ξ) = 0}

is a bounded set. Let L (x) = max {〈ξ, x〉 : F (ξ) = 0}; then

F (DL (x)) = 0 a.e. x ∈ Rn.

Proof. The following representation formula for L holds (see Rockafellar [12], The-
orem 32.2):

(4) L (x) = max {〈ξ, x〉 : ξ ∈ coE} = max {〈ξ, x〉 : ξ ∈ E} , ∀x ∈ Rn.

In fact one has the more precise result (see Rockafellar [12], Corollary 32.3.2)

(5) L (x) = max {〈ξ, x〉 : ξ ∈ coE} = max {〈ξ, x〉 : ξ ∈ Eext} , ∀x ∈ Rn.

Let {ξh}h∈N be a (finite or) countable dense subset of Eext ⊂ E and, analogously
to (4), for every h ∈ N and for every x ∈ Rn let us define

Lh (x) = max {〈ξ1, x〉 , 〈ξ2, x〉 , . . . , 〈ξh, x〉} .

Clearly the gradient DLh exists almost everywhere in Rn and

(6) DLh (x) ∈ {ξ1, ξ2, . . . , ξh} ⊂ Eext, a.e. x ∈ Rn.

For every x ∈ Rn the sequence Lh (x) is increasing with respect to h ∈ N and we
have

L (x) = sup {Lh (x) : h ∈ N} = lim
h→+∞

Lh (x) .

For every h ∈ N the sequence Lh (x) is convex with respect to x ∈ Rn and

domLh = domL = Rn.

Thus we can apply Lemma 4 and we obtain that, at every point where Lh and L
are differentiable (i.e., almost everywhere in Rn),

DLh (x)→ DL (x) .

Therefore, by (6), we get the conclusion

DL (x) ∈ Eext ⊂ E, a.e. x ∈ Rn.

�

In the proof of Theorem 1 we used a result given in [11] (Lemma 5.9), that we
recall here in a form more appropriate to the applications given in this paper.

Lemma 4. Let {Lh}h∈N be a sequence of convex functions, defined on Rn with
values on R ∪ {+∞}, with pointwise limit L : Rn → R ∪ {+∞}. At every point
x ∈ int

[(⋂
h∈N domLh

)
∩ domL

]
, where Lh and L are differentiable, the gradient

DLh (x) converges in Rn to the gradient DL (x).

Proof. For every h ∈ N let domLh and domL be the domains of Lh and L. Then
each Lh is locally Lipschitz-continuous in int domLh and L is locally Lipschitz-
continuous in int domL. Therefore, for every h ∈ N, there exists a set Nh ⊂
domLh ⊂ Rn of zero measure such that Lh is differentiable at every point of
domLh\Nh. Analogously, there exists a set N ⊂ domL of zero measure such that
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L is differentiable at every point of domL\N . Then the set of points x ∈ Rn where
Lh and L are differentiable is (possibly empty and) given by(⋂

h∈N
(domLh\Nh)

)⋂
(domL\N)

and differs from the intersection of their domains
(⋂

h∈N domLh
)
∩ domL by (at

most) a set
(⋃

h∈NNh
)
∪N of zero measure. Let x ∈ int

[(⋂
h∈N domLh

)
∩ domL

]
be a point of Rn where Lh and L are differentiable. Let i ∈ {1, 2, . . . , n} and h ∈ N
be fixed. Then at x = (x1, . . . , xi, . . . , xn) the partial derivatives ∂Lh/∂xi and
∂L/∂xi are well defined. An elementary application of the convex inequality for
the function Lh gives the monotonicity of the difference quotient; precisely, if t > 0
is sufficiently small and if, as usual, we denote by x± tei the two points of Rn with
coordinates respectively (x1, . . . , xi−1, xi ± t, xi+1, . . . , xn), we have

Lh (x− tei)− Lh (x)
−t ≤ ∂Lh

∂xi
(x) ≤ Lh (x+ tei)− Lh (x)

t

and, in the limit as h→ +∞,

L (x− tei)− L (x)
−t ≤ lim inf

h→+∞

∂Lh
∂xi

(x) ≤ lim sup
h→+∞

∂Lh
∂xi

(x) ≤ L (x+ tei)− L (x)
t

.

Since L is differentiable at x, as t → 0+ we obtain that ∂Lh/∂xi (x) converges
to ∂L/∂xi. The property being such that for every i ∈ {1, 2, . . . , n}, we have
the conclusion, i.e., that the gradient DLh (x) converges in Rn to the gradient
DL (x). �

Remark 5. With a slightly different proof, as in Lemma 5.9 in [11], we can give
a compactness result. Precisely, we can show that from every locally bounded se-
quence {Lh}h∈N of convex functions ({Lh}h∈N uniformly bounded in L∞loc (Ω) , with
Ω open set in Rn) it is possible to select a subsequence {Lhk}k∈N whose gradi-
ents {DLhk}k∈N converge almost everywhere in Ω, and at the same time {Lhk}k∈N
converges in the strong topology of W 1,q

loc (Ω), for every q ∈ [1,+∞).

With the help of the above construction we can give a definition of what we
mean by viscosity solutions of differential inclusions. Given a closed set E, we say
that a function u is a viscosity solution of the differential inclusion

Du (x) ∈ E, x ∈ Rn,

if u is a viscosity solution of the equation

F (Du (x)) = 0, x ∈ Rn,

where F (ξ) = dist {ξ, E}. We therefore have the following result.

Theorem 6. Let E be a compact set of Rn. For every x ∈ Rn let

L (x) = max {〈ξ, x〉 : ξ ∈ E} .

Then L is a viscosity solution of

DL (x) ∈ E, x ∈ Rn.
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Proof. The function L being convex we have that D+L (x) (the superdifferential of
L at x; see [1] and [6] for the precise definition of this set) is either empty or reduced
to {DL (x)}, i.e. x is a point of differentiability of L and we know by Theorem 1
that at such points DL (x) ∈ E. We therefore have that

F (p) = 0, ∀p ∈ D+L (x) ,

which means that L is a viscosity subsolution (see Proposition 4.7 of [6]) of F (Du) =
0.

Since F ≥ 0 we deduce trivially that

F (p) ≥ 0, ∀p ∈ D−L (x) ,

where D−L (x) is the subdifferential of L at x. This means that L is a viscosity
supersolution of F (Du) = 0.

Combining these two results we have indeed that L is a viscosity solution of
F (Du) = 0 and hence of Du ∈ E. �

3. Fundamental solution and the boundary condition

We now want to discuss a Dirichlet problem in a bounded domain. We first fix
the notations.

We let Ω ⊂ Rn be a bounded open convex set and denote by ν (y) the outward
unit normal at y ∈ ∂Ω (that exists at almost all points y ∈ ∂Ω, since Ω is convex).

We next let E ⊂ Rn be a compact set with 0 ∈ intcoE. We then associate
to coE its gauge ρ, which is a convex and positively homogeneous of degree one
function, such that

coE = {ξ ∈ Rn : ρ (ξ) ≤ 1} .
Recall also that

L (x) = max {〈ξ, x〉 : ξ ∈ E} .
We should immediately note that, with our hypotheses on E (and invoking (4)),
the function L is in fact the polar of ρ, denoted also sometimes by ρ0.

We finally consider the Dirichlet problem{
Du (x) ∈ E, a.e. x ∈ Ω,
u (x) = 0, x ∈ ∂Ω .

We could also consider the case of a more general boundary datum of class C1 but
the analysis can then be carried in a straightforward manner.

We have the following theorem that is inspired by Cardaliaguet-Dacorogna-
Gangbo-Georgy [3] (see also [6]).

Theorem 7. Let Ω, ν, E, ρ and L be as above and satisfy in addition

(7)
−ν (y)

ρ (−ν (y))
∈ E, a.e. y ∈ ∂Ω ;

then the function u : Rn → R, defined by

(8) u (x) = min {L (x− y) : y ∈ ∂Ω} ,
solves the Dirichlet problem

(9)
{
Du (x) ∈ E, a.e. x ∈ Ω,
u (x) = 0, x ∈ ∂Ω .

As before we rewrite this theorem in terms of functions.
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Corollary 8. Let F : Rn → R be continuous with F (ξ) → ∞ as |ξ| → ∞ and
F (0) < 0. Set

E = {ξ ∈ Rn : F (ξ) = 0} .
Let Ω, ν, ρ and L be as above. If

(10) F

(
−ν (y)

ρ (−ν (y))

)
= 0 a.e. y ∈ ∂Ω,

then

(11) u (x) = min {L (x− y) : y ∈ ∂Ω}
solves

(12)
{
F (Du (x)) = 0, a.e. x ∈ Ω,
u (x) = 0, x ∈ ∂Ω .

Furthermore if E ⊂ ∂ coE, then u is a viscosity solution.

Remark 9. (i) The first part of the corollary follows immediately from the theorem.
The fact that u is a viscosity solution (when E ⊂ ∂ coE) was established in [3].

(ii) Note that if, in addition, ∂ coE ⊂ E (which happens if, for instance, F is
convex or more generally if the set {ξ : F (ξ) ≤ 0} is convex), then (10) is always
satisfied. In fact, since ρ is positively homogeneous of degree one,

ρ

(
−ν (y)

ρ (−ν (y))

)
= 1 ⇒ −ν (y)

ρ (−ν (y))
∈ ∂ coE ⊂ E.

Moreover, if E = ∂ coE, u defined in (11) is the unique viscosity solution of (12).
(iii) According to Theorem 4.1 of Lions [10], the Dirichlet problem (12) always

has a viscosity solution. However the solution given by (11) is not necessarily a
viscosity solution; it is so when E ⊂ ∂ coE.

We can now proceed with the proof of the theorem.

Proof of Theorem 7. We recall the following two facts (the first one is just the Hopf-
Lax formula and the second one is Lemma 2.9 in [3] or Lemma 4.17 in [6]). We also
use the standard notation D+u (x), respectively D−u (x), for the superdifferential,
respectively the subdifferential, of u at x (see [6] for more details).

Fact 1: The function u is the viscosity solution of

(13)
{
ρ (Du (x)) = 1, x ∈ Ω ,
u (x) = 0, x ∈ ∂Ω .

Fact 2: Let y (x) ∈ ∂Ω be such that

u (x) = L (x− y (x)) .

Then, if p ∈ D−u (x) (i.e. D−u (x) is non empty), the outward unit normal ν (y (x))
is well defined and there exists λ (y (x)) > 0 such that

(14) p = −λ (y (x)) ν (y (x)) .

Since we are interested in almost everywhere solutions we need only to consider
points x ∈ Ω where D+u (x) = D−u (x) = {Du (x)}. Combining (13) and (14)
with p = Du (x) and the homogeneity of ρ, we get that λ (y) = 1/ρ (−ν (y)) and
hence

Du (x) =
−ν (y)

ρ (−ν (y))
.

The hypothesis (7) leads to the result Du ∈ E. �
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4. The iteration scheme

As above we let Ω ⊂ Rn be a nonempty bounded open set. We want to find, with
the help of the previous construction, a solution u ∈ W 1,∞

0 (Ω) of the differential
inclusion

Du (x) ∈ E, a.e. x ∈ Ω ,

where E ⊂ Rn is a compact set with 0 ∈ intcoE. We let ρ be the gauge associated
to coE.

We will find a sequence of disjoint convex open sets Ωi ⊂ Ω so that

meas

[
Ω \

∞⋃
i=1

Ωi

]
= 0

and the function u will be defined as

u (x) =

 inf {L (x− y) : y ∈ ∂Ωi} , x ∈ Ωi,

0, x ∈ Ω \
∞⋃
i=1

Ωi .

Observe that u is a viscosity solution of the Dirichlet problem Du ∈ E in Ωi, u = 0,
on ∂Ωi for every i (but not globally in Ω).

Any Vitali covering by level sets of the function L has all the above requirements.
However we will choose, among them, one with some maximality properties. In
particular we want that Ω1 = Ω if Ω is convex and −ν

ρ(−ν) ∈ E, a.e. on ∂Ω, where ν
is the outward unit normal to Ω (recall that this always happens if E = ∂ coE or
if Ω is the level set of the function L).

Before describing this construction we need to introduce some notations.

Notation 10. Let x0 ∈ Rn. We let Gx0 be the set of all gauges centered at x0. In
other words this is the set of all convex functions γ : Rn → R satisfying

γ (x0) = 0, γ (x) > 0, ∀x ∈ Rn \ {x0} ,
γ (t (x− x0) + x0) = tγ (x) , ∀x ∈ Rn, ∀t > 0.

Proposition 11. (i) If γ ∈ Gx0 is differentiable at x ∈ Rn (this happens at almost
all points), then it is differentiable at any xt ∈ Rn of the form xt = t (x− x0) +x0,
t > 0 and

Dγ (xt) = Dγ (x) .

In particular γ is differentiable at almost all points of {x ∈ Rn : γ (x) = 1}.
(ii) Let C ⊂ Rn be a nonempty bounded open convex set and x0 ∈ intC. The

gauge of C centered at x0 is defined as

γC,x0 (x) = inf
{
λ ≥ 0 : x0 +

x− x0

λ
∈ C

}
.

Then γC,x0 ∈ Gx0 and

C = {x ∈ Rn : γC,x0 (x) < 1} ,
∂C = {x ∈ Rn : γC,x0 (x) = 1} .

Remark 12. At almost every point x ∈ ∂C, γC,x0 is differentiable and DγC,x0 (x)
is then an outward normal to C.
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We will proceed inductively to define Ωi. We start by choosing a sequence of
points in Ω,

{
xN
}∞
N=1

, dense in Ω. We set Ω0 = ∅ and assume that Ωi has already

been defined. If Ω\
i⋃

k=0

Ωk = ∅, then the procedure is already over. We then define,

N = N (i+ 1),

N (i+ 1) = min

{
N : xN ∈ Ω \

i⋃
k=0

Ωk

}
and we label xi+1 = xN(i+1) (so that x1 = x1). We then choose ri+1 > 0 sufficiently
small so that {

x ∈ Rn : lri+1 (x) ≡ L (xi+1 − x)
ri+1

< 1
}
⊂ Ω \

i⋃
k=0

Ωk ,

where
L (x) = max {〈ξ, x〉 : ξ ∈ E} .

This is always possible since Ω \
i⋃

k=0

Ωk is an open set, xi+1 ∈ Ω \
i⋃

k=0

Ωk, L (0) = 0

and L is locally Lipschitz.
We next define

Γ

(
xi+1,Ω \

i⋃
k=0

Ωk

)

=


γ ∈ Gxi+1 : −Dγ(x)

ρ(−Dγ(x)) ∈ E, a.e. x ∈ Rn

{
x ∈ Rn : lri+1 (x) < 1

}
⊂ {x ∈ Rn : γ (x) < 1} ⊂ Ω \

i⋃
k=0

Ωk

 .

Note that lri+1 ∈ Γ
(
xi+1,Ω \

i⋃
k=0

Ωk

)
, since, by Theorem 1, DL ∈ E and ρ (DL) =

1. Observe also that if γ ∈ Γ
(
xi+1,Ω \

i⋃
k=0

Ωk

)
, then

(15) γ ≤ lri+1 .

We now claim that there exists γi+1 ∈ Γ
(
xi+1,Ω \

i⋃
k=0

Ωk

)
such that if

Ωi+1 = {x ∈ Rn : γi+1 (x) < 1} ,
then

meas (Ωi+1) = sup
γ∈Γ

(
xi+1,Ω\

i⋃
k=0

Ωk

) [meas {x ∈ Rn : γ (x) < 1}] .

Indeed let {γs} be a maximizing sequence. From (15), we deduce that up to a
subsequence, that we still label {γs}, the sequence converges to an element γi+1 ∈

Γ
(
xi+1,Ω \

i⋃
k=0

Ωk

)
. In fact all the conditions are easily checked. By Remark 5

we have
−Dγi+1 (x)

ρ (−Dγi+1 (x))
∈ E .
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Let us prove, for example, that γi+1 (x) 6= 0 if x 6= xi+1. Assume for the sake of
contradiction that there exists y 6= xi+1 with γi+1 (y) = 0. We would deduce that
γi+1 ≡ 0 on the half line xi+1 + t (y − xi+1), t ≥ 0, which contradicts, Ω being
bounded, the inclusion {x ∈ Rn : γi+1 (x) < 1} ⊂ Ω.

Since the measure is upper semicontinuous (in fact even continuous), cf. Propo-
sition 14, with respect to the type of convergence under consideration we have the
result.

Observe that, as wished, Ω1 = Ω if Ω is convex and −ν
ρ(−ν) ∈ E, a.e. on ∂Ω

(because choosing ω the gauge of Ω centered at x1, we would have ω ∈ Γ (x1,Ω)).
Since we have, with this procedure, exhausted all elements of the sequence

{
xN
}

,
we have indeed

meas

[
Ω \

∞⋃
i=1

Ωi

]
= 0.

Example 13. Consider the case Ω = (−1, 1)2 ⊂ R2, u = u (x1, x2) and
((

∂u
∂x1

)2

− 1
)2

+
((

∂u
∂x2

)2

− 1
)2

= 0 a.e. in Ω,

u = 0 on ∂Ω .

Choosing the grid sequence
{
xN
}∞
N=1

in a suitable way, starting with x1 = (0, 0),
we find with our procedure

Ω1 =
{
x ∈ R2 : |x1|+ |x2| ≤ 1

}
and u (x1, x2) = 1− |x1| − |x2| in Ω1.

Similarly for Ωi. Our construction is compatible with the numerical computations
of [4].

We end up with an elementary convergence result that we used above.

Proposition 14. Let {γs}s∈N and γ∞ be measurable functions defined on a bounded
measurable set Ω ⊂ Rn. Let

Ωs = {x ∈ Ω : γs (x) ≤ 1} ,
Ω∞ = {x ∈ Ω : γ∞ (x) ≤ 1} .

If γs → γ∞ a.e. in Ω, then

meas (Ω∞) ≥ lim sup
s→∞

meas (Ωs) .

If, in addition, γs and γ∞ are gauges centered at x0 ∈ Ω and Ω is open, then

meas (Ω∞) = lim
s→∞

meas (Ωs) .

Remark 15. Note that if γs and γ∞ are merely convex, then continuity does not
hold, as the following example shows. Let Ω ⊂ Rn be a bounded open set containing
the unit ball B1. If

γs (x) =
{

1 if |x| ≤ 1,
1
s |x|+

s−1
s if |x| > 1 ,

then Ωs = B1 for every s ∈ N, while Ω∞ = Ω.

Proof. 1) Define

χs (x) =
{

0 if x ∈ Ωs,
1 if x /∈ Ωs



4652 BERNARD DACOROGNA AND PAOLO MARCELLINI

and similarly for χ∞. Note that because of the convergence of γs to γ∞, we have
that, at almost all points where χ∞ (x) = 1 (i.e. γ∞ (x) > 1) and for large enough
s, χs (x) = 1 and thus

lim
s→∞

χs (x) = χ∞ (x) , a.e. x /∈ Ω∞.

Moreover, trivially, lim infs→∞ χs (x) ≥ χ∞ (x) = 0, a.e. x ∈ Ω∞ and therefore

lim inf
s→∞

χs (x) ≥ χ∞ (x) , a.e. x ∈ Ω.

Therefore by Fatou’s lemma

lim inf
s→∞

[meas (Ω)−meas (Ωs)] = lim inf
s→∞

∫
Ω

χs (x) dx

≥
∫
Ω

χ∞ (x) dx = meas (Ω)−meas (Ω∞)

which gives the upper semicontinuity.
2) Let Bε = {x ∈ Rn : |x| ≤ ε} and for A ⊂ Rn define

A+Bε = {x ∈ Rn : x = y + z with y ∈ A and |z| ≤ ε} .
The Hausdorff distance between two sets is then defined as

d (A,B) = inf {ε ≥ 0 : A ⊂ B +Bε, B ⊂ A+Bε} .
Observe (see below) that since γs and γ∞ are gauges then

(16) d (Ωs,Ω∞)→ 0, as s→∞,
and therefore (see Theorem 6.2.17 in [13])

meas (Ω∞) = lim
s→∞

meas (Ωs) .

We now establish (16). We will prove that for every ε > 0 we can find s sufficiently
large so that

(17) Ω∞ ⊂ Ωs +Bε , Ωs ⊂ Ω∞ +Bε .

Assume without loss of generality that x0 = 0. Since Ω is bounded and γs are
gauges that converge almost everywhere to a gauge γ∞, the convergence is, in fact,
uniform. Furthermore there exist m,M > 0 so that

m |x| ≤ γs (x) , γ∞ (x) ≤M |x| , ∀x ∈ Ω ,

and, for s sufficiently large,

|γs (x) − γ∞ (x)| ≤ ε2, ∀x ∈ Ω .

Let x ∈ Ω∞, i.e. γ∞ (x) ≤ 1, and choose δ > 0 such that

ε2

1 + ε2
≤ δ ≤ mε

and observe that

γs ((1− δ)x) = (1− δ) γs (x) ≤ (1− δ)
(
γ∞ (x) + ε2

)
≤ (1− δ)

(
1 + ε2

)
≤ 1 ,

|δx| ≤ δ γ
∞ (x)
m

≤ δ

m
≤ ε .

Therefore x = (1− δ)x + δx ∈ Ωs + Bε which is the first inclusion in (17). The
second one being proved in a similar manner, we have the claim. �
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