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Abstract

A characterization of the total variation TV (u, Q) of the Jacobian determinant det Du is
obtained for some classes of functions u : Q= R* - R? outside the traditional regularity space
W12(Q;R?). In particular, explicit formulas are deduced for functions that are locally
Lipschitz continuous away from a given one point singularity xoe Q, ie., ue W'#
(Q;RY) n W (Q\{x0}; R?) for some p> 1.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Well-established theories in the calculus of variations and in partial differential
equations have been challenged in recent years by new phenomena in solid physics
and in materials sciences which demand innovative approaches and new ideas. In
this paper, we address the study of the Jacobian determinant det Du of fields
u: Q—R" outside the traditional regularity space W'”(Q;R"), where QcR" is an
open, bounded set. The analysis will be mostly centered on the plane, i.e., n =2,
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where more general results may be obtained and the arguments of the proofs
are geometrically more intuitive. A forthcoming paper [14] will address the
n-dimensional setting.

The role of the distributional determinant in the study of harmonic mappings with
singularities was first identified by Brezis et al. in a seminal paper (see [7]) that paved
the way for a wealth of developments in the subject, with relevance in many areas of
applications such as the study of liquid crystals and Ginzburg—Landau type theories.
In [7,8], the authors bridge the notion of topological degree to the appearance of
Dirac measures as singular parts of the underlying generalized, measure-valued
determinant.

To fix the notations, we consider a map u : Q = R> > R?, defined in an open set Q of
R>. If ue W'2(Q; R?), since |det Du(x)|<1/2|Du(x)|?, then the Jacobian determinant
det Du is a function of class L'(Q). When u¢ W'?(Q; R?), it may still be possible to
consider the distributional Jacobian determinant

0 ou? 0 ou?
DetDy = —|( ' — ) — /(' =). 1
et Du (9x1 <u 8)(?2) 8)62 <u 8x1) ( )

An equivalent definition may be obtained by interchanging the roles of u' and u?
with signs reversed accordingly. The definition of the distributional Jacobian
determinant Det Du is based on integration by parts of the formal expression in (1),
after multiplication by a test function. To render definition (1) mathematically
precise it is necessary to make some assumptions on u. We may take u' to be
bounded and the gradient Du to be of class L', i.e., ue L (Q;R*)n Wh(Q; R?).
Another possibility is to require that ue W'?(Q; R?) for some p>%. In fact, in this
case by the Sobolev Imbedding Theorem we have ue L*(Q; Rz) and the products in
(1) are well defined in L'. In this paper, we assume that ue L (Q; R*) n W'?(Q; R?)
for some p>1, and we focus in particular on those maps u which are locally
Lipschitz-continuous away from a given point xo€Q (and thus the Jacobian
determinant det Du may only be singular at xy). These maps were treated also in the
book by Bethuel et al. (see [5]) where a detailed study of one-point singularities
(vortices) of stationary solutions for complex-valued Ginzburg—Landau equations
may be found. Here, again, the notion of topological degree comes into play. Along
the same lines, we refer also to the study of density results of smooth functions in
H'(B(0,1); S?), where B(0, 1) R*. Bethuel [4] showed that this density result holds
for ue H'(B(0,1); S?) if det Du = 0.

Since the fundamental work of Morrey [24], who treated weak continuity
properties of Det Du in (1) (see also [26]), Det Du has played a pivotal role in the
calculus of variations (see, also [3,25]). In recent years, several attempts have been
made to establish relations between Det Du and the total variation of the Jacobian
determinant det Du(x). One possible definition for the latter is based on the
following limit formula: given weL” (Q;R*)nW'?(Q;R?) for some p>1, the

loc
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total variation TV (u, Q) of the Jacobian determinant is defined by

TV(u,Q):inf{lgminf/ |det Duy,(x)| dx:
—+ 00 Q

up—u weakly in W'"(Q;R?), u,e W"(Q; Rz)}. (2)

Note that, a priori, definition (2) may depend on p and, more precisely, we should
use the notation TV,(u,Q) instead of TV(u, Q). However, the representation
formulas for TV (u, Q) given in this paper turn out to be independent of p, and,
surprisingly, it can be shown that weak convergence in W'”(Q;R?) may be
equivalently replaced by strong convergence in W'”(Q;R*) for certain classes of
functions u. This approach has been considered by Marcellini [23], Giaquinta et al.
[18,19], Fonseca and Marcellini [16], Bouchitté et al. [6], among others. In particular,
Marecellini [23] and Fonseca and Marcellini [16] noticed that the total variation of the
Jacobian determinant may have a nonzero singular part, while Bouchitté et al. [6]
proved that this singular part is a measure. Giaquinta et al. [18,19] found that the
lower limit in (2) can be different from the total variation of the measure Det Du.

It has been first noted by Maly [21] and by Giaquinta et al. [18] (see also [20]) that,
for some maps ue L* (Q;R?) n W'?(Q;R?) with pe(1,2), it may happen that the
distribution Det Du is identically equal to zero while the total variation of the
Jacobian determinant is different from zero. Also, when Det Du is a measure, it turns
out that, in general, TV (u, Q) is not the total variation of the measure Det Du. Some
examples illustrating this phenomenon may found in Section 3.

In this paper, we give an explicit characterization of the total variation TV (u, Q) of the
Jacobian determinant for maps u as described above (see Theorem 1). We relate the total
variation of the Jacobian determinant |Det Du|(Q) to TV (u, Q), and, in turn, TV (u, Q)
is expressed in terms of the topological degree (see Remark 3). In particular, denoting by
B the unit ball of R? and by S' := 9B its boundary, we prove that, if v: S' > S' is a
map of class C' onto S', locally invertible with local inverse of class C' at any point of

S' and ifu: B;\{0} — S! is defined by u(x) = v(ﬁ), then the total variation TV (u, B))

may be expressed in terms of the fopological degree of the maps v and @, where
0: By — By is any Lipschitz-continuous extension of v to the unit ball B;. Precisely,

TV (u, B)) = wy|deg v| = w;|deg d]. (3)
Note that formula (3) does not hold, in general, if the map v: S' — R? takes values on a
set v(S!) not diffeomorphic to S' (see Theorem 12 and the examples of Section 3).
2. Maps with values in a curve diffeomorphic to S’

In the sequel Q is an open, bounded subset of R?, we denote by v: [0,27] - I' < R
a Lipschitz-continuous map with values on a curve I', with v(0) = v(2n), and with
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components v(9) = (v'(3),v*(9)). We assume that I may be parametrized as
I'={&+r(9)(cos 3,sin ) : 3e[0, 2]}, (4)

where r(9) is a periodic piecewise C!-function such that r(0) = r(2x), and #(3) >ro
for every 3€[0,2n] and for some ro>0. Condition (4) reduces to saying that I is the
boundary of a domain

D = {¢+o(cos Y,sinY):9€]0,2n], 0<o<r(9)}, (5)
starshaped with respect to a point ¢ in the interior of D. We have the following result.

Theorem 1. Let u be a function of class W'?(Q;R*)n VVILCL (Q\{0}; R?) for some

pe(1,2). Let v:[0,2n] - T, v(3) = (v'(9),v*(9)), 3€(0,2n], be a Lipschitz-continuous
map, with v(0) = v(2n) and I as in (4), and such that

cl)lil’(l) ||M(Q, ) - U(')HL% ((0,2m);R?) — 0. (6)

If the tangential derivative D u of u satisfies the bound

1 1 0 2n
sup —— | [Deuf’ dx = sup —— [ 7 dr/ |ug (r, 3" dY < My (7)
0 0

0>0 @ B, 0>0 @

for some positive constant My, then the total variation of u is given by

TV(u, Q) = /|detDu( )|dx+1‘ (1(9)2(9) — 29N dY]. (8

In order to illustrate a class of functions squarely fitting into the hypotheses
of Theorem 1, consider the particular case in which the map u =u(g,9) does
not depend on g, that is « = u(9). Then, as a function of 9, u = u(9):[0,271] > R>
is a Lipschitz-continuous map and u(0) = u(2n). Considered as a function of
two variables, ie., u:Q = By —>R? constant with respect to ge(0,1], it turns
out that ueL”(Q;R>) A W'P(Q;RY) AW (@\{0};R?) for every pe[l,2), but
u¢ WH2(Q; R?) unless u(9) is constant. From the previous result, with u = v, we
immediately obtain the following consequence.

Corollary 2. Let I' be as in (4), and let u=v:[0,2n) > T be a Lipschitz-continuous

map such that v(0) = v(2n). Then det Du(x) = 0 for almost every xeR? and the total
variation of the Jacobian determinant is given by

TV(u,Q) {v( )03(8) — v*(8)vy(9)} 49|, ©)
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Remark 3. (i) We observe that formula (9) has a relevant geometrical meaning. In
fact, the right-hand side is equal to 7 times the “winding number” of the curve
v=(v',1?), ie., n|degvl.

(i1) A careful scrutiny of the proof of Theorem 1 yields easily that an analog result
stiff holds if we assume that u is in W'?(Q;R?) for some pe(1,2) and is locally
Lipschitz outside a finite number of points a;€eQ, i=1,...,N, provided that
u satisfies in a neighborhood of each a; both assumptions (7) and (6) for suitable
functions v;. In this case, the total variation of the Jacobian of u is given by (see [15])

N
TV(u,Q) = / |det Du(x)| dx + Z n|deg vy].
e i=1

For possible extensions of this formula to more general spaces we refer to [9,10].

(iii) A suitable adaptation of the proof enables us to replace the assumption
ue Wh* (@\{0};R?) by the weaker condition ue W,\2(@\{0}; R?). On the other
hand, the requirement that p > 1 is essential since our proof of the lower estimate for
TV(u, Q) does not work in the case p = 1.

(iv) It is also interesting to observe that, under the assumptions of Theorem 1, the
distributional determinant Det Du is a measure and that its total variation
|Det Du|(Q) coincides with TV (u, Q). This property is proved, in a more general
context, in the forthcoming paper [14]. However, the equality between the total
variation of Det Du and TV(u, Q) is due to the fact that here we are essentially
dealing with maps valued into S'. The examples given at the end of Section 3 show
that this equality may no longer be true otherwise, and in particular this equality
fails for maps valued on the “eight” curve.

The remainder of this section is devoted to the proof of Theorem 1 and
Corollary 2.
For every ¢ = (¢',8)eR?, £#0, we denote by Arg ¢ the unique angle in [—7, 1)
such that
g &

cosArgé == sinArgé=_.
14 <]

By B,, we denote the circle in R?> with center in 0 and radius r>0, B is the circle
of radius r =1, and 9By = S' is its boundary. If o, f€[0,27n], a<p, then S(a, p)
represents the polar sector

S(o, f) = {¢ = o(cos §,sin 9 eR?: o<1, 9¢a, f]}.

Let v:[0,27] —»R? be a Lipschitz-continuous closed curve, i.e., v(0) = v(2n). We
denote by vy = (v},v3) the gradient of v, which exists for almost every 9€ [0, 2n], and
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if v(3) #0 for every 3€10,27], then 4,(9) stands for

A,(9) = Argv(0) + /09 Ul(l)vé(l'i(;)r;(l)v}g(t) dt

There exists a simple relation between 4, and Arg v, which may be inferred from
the next lemma. Its simple proof is omitted.

Lemma 4. [fv:[0,2n] - R? is a Lipschitz-continuous curve such that v(9) #0 for every
3€(0,2x], then for every o, f€[0,2n] with a<p, there exists ke Z such that

Ay(B) — Ay(x) = Argo(p) — Argv(a) + 2km. (10)

Lemma 5. Let I be as in (4) and let v:[0,2n]| > T be a Lipschitz-continuous map. If
Arg(v(0) — &) = 0 then the curve v may be represented as

() = E+r(dy—(3))(cos Ay (3),sin Ap—¢(9)) (11)
for all 3€10,2x].
Proof. Since A4, :(0) = Arg(v(0) — &) =0, by Lemma 4 for every 9€]0,2x] there

exists keZ such that A, :(9) = Arg(v($) — &) + 2kn. Also, as v(}) el for all 9,
we have

r(Ap-¢(9)) = r(Arg(v(9) — €)) = [v(9) — ¢,
and we obtain
r(Av-e(9))(cos Ay_¢(9), sin Ap—¢(3))
— [0(9) — &l(cos Arg(v(9) — &), sin Arg(u(9) — &) = o(9) — &
This concludes the proof. [
The next lemma plays a central role in this section.

Lemma 6 (The “umbrella” lemma). Let I' be as in (4) and let v:[0,2n]>T be a
Lipschitz-continuous map. If o, f€[0,27n], a<p, are such that A,_¢(0) = A,_¢(p), then
for every £>0 there exists a Lipschitz-continuous map w: S(a, ) — R? satisfying the
boundary conditions

{wnmwm v9ex, B, (12)

w(e,a) = w(g,B) = &+ o(v(x) — &) Veel0,1],
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and such that

/ (et Dw(x)| dx<e. (13)
(2,8)

Proof. Without loss of generality we can assume that Arg(v(0) — &) = 0. Fix heN
and set

Wh( ‘9) — é + @r(qoh(m ‘9))(005 ¢11(Q7 ‘9)’ sin @h(Qv ‘9))’ (14)

where, for every ¢€[0, 1] and for every €[z, ],
Pn(0,9) = 0" Ao-e(9) + (1 — ¢") Au-c ().

Since ¢;,(1,%) = Ap—e(3), @,(0, ) = @,(0, ) = Ap—¢(2), by the representation for-
mula (11) of Lemma 5 we obtain the validity of the boundary conditions (12).

Now we evaluate the left-hand side in (13). We observe that, if u(x) =

(u' (0, 9),47(¢,9)), and using the notation ¢ = u, % = ul (i=1,2), we have

det Du(x) = - (15)

For the function w;, we obtain

/ |det Dwy(x)| dx =
S(e,f)

Now the Jacobian determinant of wy, is

do

9(wj, W)

9o
2 h h+1 2 1
3(9,9) =Qr ((p) r (q)h)Av—g“('g)

a9 ¢

and we conclude that

1 B
det D dx= [ o"'d / 2(p,) |4_.(9)| dY<——,
[, aeomelac= [Te e [ Ple) 1 @lav<

where we denote by ¢ a suitable constant. The conclusion follows by choosing e N
sufficiently large. O

The following elementary lemma is stated without proof.

Lemma 7. Let f:[a,b]— R be a continuous function, piecewise strictly monotone in
[a,b] (with a finite number of monotonicity intervals) and such that f(a) <f(b). Then
there exists a partition a=og<oy<---<ay =b of [a,b] such that, for every
i=1,2,...,N, either [ is strictly increasing in [o;_y, 0], or f(oi_1) = f (o).
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Lemma 8. Let v:[0,2n]—> I be a Lipschitz-continuous map, with I' as in (4). Let
o, fe[0,2n], a<f, be such that A,_¢(a) = Ap_c(p). If Ap—e(3) is piecewise strictly
monotone in o, f] (with a finite number of monotonicity intervals) then

B
{0 (9) — €)3(9) — (WP(9) — E)rh(9)} d9 = 0.

Proof. Without loss of generality we may assume that & = (0,0). Since 4,(9) is
piecewise strictly monotone in [¢, f] and A,(a) = A,(f), there exists a partition of the
interval [o, ], & = Yo<H <--- <9y = f, N=2, such that, for every i = 1,2, ..., N,
the real function 4,(9) is strictly increasing in [3;_;, 9;] and is strictly decreasing in
[%,9:41] (or vice versa).

The lemma can be proved via an induction argument based on the number N of
these maximal intervals of monotonicity. However, in order to simplify the proof, we
consider here only the case N = 2. Hence, there exists 3; € (a, ) such that 4,(9) is
strictly increasing in [x, 3] and is strictly decreasing in [91, ff], or conversely. To fix
the ideas, let us assume that A4,(9) is strictly increasing in [z, 9;]. For every
(0,9)€S(a, p) let us define (g, 3) = ov(3). If 4,(91) — 4,(o) <2m, then ¥ restricted
to the interior of S(x,%;) and S(91,5) is one-to-one. Moreover, the images
7(S(, 1)) and 5(S(%, B)) are equal, and by the area formula,

/ |det D(x)| dx = area(d(S(a, 31))) = area(d(S(91, p))) = / |det D(x)]| dx.
S(er,91) S(%1.8)
Since det D5>0 in S(«, 31) and det DF<0 in S(9, ff), we obtain

/ det Di(x) dx = area(d(S(«, 31))) = area(d(S(H, B)))
S(a,%)

= —/ det Dio(x) dx.
S(91.,8)

Using again (15), we have
det Di(g, 9) = 0! (9)03(9) — 2 (9)v}(9) = A,(9)[v(9)]*. (16)

Therefore, as claimed,

1 B
_ U(x)dx = 0 (9)12 — (90l
0= /S(a.ﬁ) det Di(x) d. /0 QdQ/a {v' (9)vy(F) (9)0}(9)} d9

1

B
=5 | (O)50) - 2o)rk(3) s

If 2kn<A,($)— Ap()<2n(k+1) for some k=1, then we denote by
Ye(x, 1), ¥€(91,p) the points such that 4,(9) = 4,(9") = 2kn. Again, using
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the area formula, we have

/ |det Do (x)| dx
S(O(.91)

:/ \detDﬁ(x)\dx+/ |det Do(x)| dx
S(,9) S(¥.91)

=k area D + area E,

where D is the domain in (5) enclosed by I' and E is the domain represented in polar
coordinates by

E :{Q(COS Av(g),sin AL‘(9>) . 96[3/,9]], 0<Q<V(lg)}

={0(cos 4,(9),sin 4,(3)) : $€[91,9"], 0<o<r(9)}.

Therefore, we also have

/ |det Di(x)| dx
S(81,8)

_ / (det Da(x)]| dx + / det Do(x)| dx
S(91,9") S(9".8)

=area £+ k area D.
Arguing as before we get the thesis (with N = 2)

B
% / (o' (9v}(9) — *(9)vy(9)} d9 = /S . det Da(x) dx

- / \det Di(x)| dx — / det Do(x)| dx = 0. 01
S(o,91)

S(91,B)

Lemma 9. Let v: [0,2n] > T be a Lipschitz-continuous map, with I' as in (4). Let
Ay_¢(9) be piecewise strictly monotone in [a,b] (with a finite number of monotonicity

intervals). For every >0, there exists a Lipschitz-continuous map w : By —R* such
that w(1,9) = v(9) for every 3€(0,2x], and

/ |det Dw(x)| dx<e —l—%‘ zn{yl(s)ué(x()) — 0% (9)vy(9)} d9Y|.
B 0
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Proof. If A4, :(0) = A,_¢(2n) then the result follows from Lemma 6. Otherwise,
without loss of generality we may assume that 4, _:(0) <A, :(2n). By Lemma 7, we
can consider a partition of [0,2n] by means of points 0 = oy <oy <--- <ay = 27n
such that, for every i =1,2, ..., N, either A4,_; is strictly increasing in [o;_1,a;], or
Aye(otio1) = Ap—e(o). Denote by I the set of indices

I={ie{1,2, ... ,N} : Ay s(0i_1) = Au_z(0)}-

Given &> 0, if iel then we denote by w; : S(o;_;, %;) » R? the Lipschitz-continuous
map provided by Lemma 6, satisfying the boundary conditions

wi(1,9) = v(3) Ve o1,
wi(, 1) = wi(e, %) = &+ o(v(oiy) — &) Veel0,1],

and the bound
/ |det Dw;(x)| dx<e. (17)
S(oti—1,0)

For every g0, 1] we define the Lipschitz-continuous map w : B; - R?,

(0.9) = E4+0(w(9) = &) V9e[w—y, o] if i1,
&)= wi(o, %) Ve, 04 if iel.

Note that, in particular, w satisfies the boundary condition w(1,3) = v($).
Moreover, if 3€[o;_1, ;] for some i¢ I, then, in view of (16), we have

|det Dw(x)| = |det D[E + (v(8) — ]| = (v (9) = ENe3(9) — (*(9) — E)oy(8), (18)

where we have used the fact that 4, :(9) is strictly increasing for 3€[o;_y,o;]. By
(17) and (18) we obtain

/ \det Dw(x)| dx
/ |det Dyw;( )|dx+2/ |det Dw(x)| dx
iel Seti-1,04) i¢l S(eti-1,04)
g — (0*(9) — EHv!
<e#D+3 / Qd@/ {01 (9) = €)3(9) — (12(9) — )0h(9)} d9
ot D+ Y1 [0~ 0)30) — (R9) - Do)} s

By Lemma 8, for every ie we have

[ 010 - 930) - @) - @) ds =0
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hence,

/ (et Dw(x)| dx< ¢ N +% TN — YR — () — E)h(9)} a9
B 0

=¢-N +% ” (0" (9)3(9) — P (vy(9)rds. O
0

Next we consider maps u = u(g, 3) depending explicitly on ¢ as well. The following

result, valid for smooth maps, can also be ecasily obtained in the Lipschitz case by
means of an approximation argument.

Lemma 10. Let ue W' (By;R?). For every re(0, 1] we have
L[, ow? ) ou!
/Br det Du(x) dx = 3 /0 {u (r,9) 59 (r,9) —u(r, %) 59 (r, 9)} d3.  (19)

We start by focusing on maps u of class W'?(Q;R*)W)." (@\{0}; R?) for
some pe(1,2).

Lemma 11. Let u be a map satisfying the assumptions of Theorem 1. There exists a
sequence ¢;—0 such that

) n ou? ou'
lim | {ul(gi,f))m(g/,é}) —uz(gi,l‘))m(g,,é))}dlg

j_)+oc 2n 2 1
:/0 {01(9)2’; (9)—02(3)%(9)}d9.

Proof. First we use assumption (7), which implies that for every j>2 we have

1/j M
dg/ |D.ul’ dHlé/ |Doul” dxé,z—f).
1/(%) 9B, Il 7

J

From this inequality, we immediately get that there exist o; € (é, jl) such that

(o)~ / |D.ul’ dH' < ¢ M.

%

Since
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we deduce that {%(gj, )}jen is @ bounded sequence in L7(0,27). By assumption
(6), {u(g;,)};cn converges to v(-) in L*((0,2n); R %). Since {ag(w')}/eN remains
bounded in L7((0,27); R?), then it converges to 98 weakly in L”((0,2n); R?) as
j— + 0. We reach the conclusion

] 2n (9142 8”1
i [ {9 5 (00 - 00,9 G 09) | a9

J—o+oo

2n 2 1
:/0 {u'(s)%w)—&(s)f};(9)}d9. O

We are now ready to give the proof of Theorem 1. Actually, we shall prove a
stronger statement, i.e., not only that the representation formula (8) holds, but also
that TV(u, Q) = TV®(u, Q), where

TV (u, Q) :inf{hm inf / |det Duy(x)| dx :

h—+o0

uy —u strongly in W' (Q;R"), u,e W' (Q; [R”)} (20)

is the total variation of the Jacobian in the strong topology. We divide the proof into
four steps, and we will refer to the preliminary lemmas above and to Lemma 23 of
Section 4.

Proof of Theorem 1. Step 1 (lower bound). Let u be a function in
wWir(Q;R*) N WlLfC (2\{0};R?) for some pe(l,2). Observe that, by assumption
(6), there exists >0 such that B,cQ and ue L (B,;R?). Let 0;— 0 be the sequence
provided by Lemma 11 and let je N be sufficiently large so that B, < B,. For such

values of jeN, we use the estimate (54) of Lemma 23 to obtain

TV(u, Q)= / |det Du(x)| dx +
QB

/ det Dii(x) dx
B,

where @ : B, — R? is any Lipschitz-continuous map such that i(x) = u(x) on 0B,,.
By formula (19) of Lemma 10 (valid on each ball B, ), since 4 = u, 9i/09 = du/09
on dB, , we have

TV(u, Q) > / \det Du(x)| dx
Q\B,,

L[, ou? ) ou'
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Letting j» + oo, by Lemma 11 we obtain the lower bound

dv? dv!

/ 2"{01(:> 5 )~ PO T )} a9

Step 2 (upper bound—first part). To assert the opposite inequality in (21), let us
first assume that u is radially symmetric, i.e., u = v = v(3) = u($), and that it satisfies
the assumptions of Lemma 9. By the conclusion of Lemma 9, given &¢>0 there exists
a Lipschitz-continuous map w : B; — R* such that w(1,3) = v(9) for every 90, 27]
and

TV(u,Q)}/ |detDu(x)|dx—|—%
Q

. Q1)

2n
/ |det Dw(x)| dx<e + %‘ {01 (9)v3(9) — v* (v (9)} d9|.
B 0

For every he N we set

(0.9) = w(oh,3) if 0<o<1/h,
eI o) if o= 1/h

Then {uy}; . converges to u in L7(2) and

/ |Duy(x) — Du(x)|” dx = / |hDw(oh, )P dx = h"~2 | Dw(x)|" dx,
Q By,

B

and so, since 1<p<2, {Duy},., converges to Du strongly in L7(B;; R**?) and,
finally,

/|detDuh(x)|dx:/ |h2detDw(Qh,9)|dx:/ |det Dw(x)| dx
Q By

B

<ée+ <

2n
S| e - e a)

0

Therefore, making use of definition (20) of the total variation of the Jacobian
TV*(u, Q) in the strong topology, we can conclude that

2n

{0 (9)63(9) — P (9)e}(9)} d9].

TV (1, Q) %

0

This inequality, together with the obvious inequality

TV(u, Q) <TV (1, Q), YueL™(Q;R")nW'7(Q;R"),
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and with Step 1, yields the conclusion

2n

TV, Q) = TV (1, Q) = =| [ {0'(9)63(9) — v2(9)v}(9)} d9 (22)

0

whenever u = v = v(3) = u(3) satisfies the assumptions of Lemma 9.

Step 3 (upper bound—second part). As in the previous Step 2, we still assume that
u=v=uv(3) =u($), but we no longer require that the conditions of Lemma 9 are
satisfied. Without loss of generality, we can assume that Arg(v(0) — &) = 0 and thus,
by Lemma 5, the map v(3) may be represented as

() =&+ r(Ay_¢(9))(cos Ay_¢(9),sin A,_¢(93)).

Construct a sequence {Ax(¥)}, . of piecewise affine functions, Lipschitz-continuous
with bounded Lipschitz constants, satisfying the conditions

Ar(0) =0 VkeN,

A, (3)#0 a.e. 3€[0,2xn], VkeN,
Ak_’Avfcf in Co([O,ZTE]),

A (9) > A,_.(9) ae. 9e(0,2n],

|47, (9)| < Lo ae. 9€[0,2n], VkeN,

and define
0e(9) = &+ r(Ar(3))(cos Ar(F),sin Ax(3)).
Then the map vy (9) satisfies all the assumptions of the previous Step 2 and
Uk — v in C°(]0,2x)),
{||de <Ly VkeN.

HLT 0,27)

We prove that {4}, converges to 4 for almost every 9€(0, 2], as k— + 0. To
this aim, let us recall that

0,0 2 [0,21] > I = {& 4 r(9)(cos 3,sin §) : $€]0,27]},

where () is a piecewise C'-function, i.e., there exist a finite number of points
0<ag<a; < - <ay<2m, such that r(9) is a function of class C'([g;_1,a;]) for every
j=1,2,...,N. Define

E ={9%€[0,2n]: 3/ =1,2,...,N: 4,_¢(3) = a;}.
Then

A4, (%) =0 and v'(8) =0, for ae. J€E, (23)
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and for almost every 3€10,2n] we have also

% = AL (9){r (Ak(8))(cos Ak (9), sin A,(9))

+ r(Ar($))(—sin Ax($),cos Ar(3))} (24)

As k— + 0, {r(4x(9))} pen converges to v’ (Ay—¢) for every ¢ E. Thus, by (24)
we have that {24}, converges to 4 for almost every §€(0,2n]\E. On the other
hand, by (23) for almost every € E, {A’ (9) }en converges to 4] (3) = 0 and, since
{r'(Ax(9)) }pen 18 umformly bounded, by (24) we can conclude that {d”},CeN
converges to 0 =4 for almost every 9eE, as k— + oo. Therefore, {vx(9)};cn
converges to v(9) in the strong topology of W'4(B;;R?) for every ¢=>1,as k— + o,
and, in turn, this implies that the map ux(g,3) = vx(#) (independent of g), which
belongs to W'?(By; R?) for every pe|l,2), converges to u(g, 9) = v(9), as k— + o,
in the strong topology of W!'”(By;R?) for every pe([l,2). From Step 2, and in
particular from (22), we deduce that

TV(u, Q) <TV(u, Q) < llicm inf TV®(uy, Q) = lim inf TV (ug, Q)
-+
| Ov? 2 auk
{ cag oy 90

dv 5 dv
J e oo

= 1 —
k—}r-il:loo 2
1

2

By (21) of Step 1 we finally obtain

TV(u,Q) =TV, Q) = 5 ‘
0

{v'v} — v*v}} dS’.

Step 4 (upper bound—third part). Here we study the general case where u = u(o, 9)
may depend explicitly on g as well.

Using the argument of Lemma 22, for every ueL®(Q;R?)n W'?(Q;R?)

AWLEZ(@\{0}; R?) with p>1, it can be shown that admissible sequences for
TV (u,Q), defined in (20), may be required to assume prescribed boundary
values, precisely

TVs(u,Q):inf{liminf / |det Duy(x)| dx
Q

h—+ow

wy —u strongly in W' (Q:R?), u,eu+ W(}’w(Q; IR2)} (25)
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For every ¢>0 there exists a map wev + WO130 (By;R?) such that
/ |det Dw(x)| dx<e+ TV®(v, By). (26)
B

From the proof of Lemma 11, it follows that there exists a sequence {g,},cn
converging to zero, such that

2n
@W{/|aWﬂf:/ us(on 9)F dS<Mo, VheN.  (27)
0. 0

%

Introduce the sequence of functions

M;(Q/I(l_ah)’ 9) if OSQSQh(l - O-h)v
Mh(»Qa'g) = 17]1(@)0(9) + [1 - nh(Q)}u(Qh,-g) if Qh(l — O-h)<Q<Q]17

where o, == (g,)?~! and n, is a cut-off function, ie., n,(0) =1 if 0<e<g,(l —
an), ny(0) =0if 9,<o<1, n,(0) is linear in the interval [g,(1 — a;), 9,]. Notice that
up—u in L7 (By;R?), as h— + oo, and that the sequence of gradients (Dup),.
converges in I” to D,. Indeed
X
Dw|————
<Qh(l - ah))

p
/|Du;, — Dulf dx< cl/
o B

vgl? u NP

n cl/ |.9L dx—i—c]/ | S(Qhap ) dx

Bo,,\By,(1-a,) |x| By, \Bo,(1-p) |x‘

dx

op(1=0p)

"G (o) =()
g ulopi) —olig )| dx
QZOJZ By \Byy(1-a) 1 |X| |X|

+ 01/ | Du|” dx

2

2n

2— 2— D
< 00, "+ g, pO’h/ ug(op, NI d
0

2-p
2
Ol )~ oy + 1 [ DUl
h

+

2h
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27
and this quantity goes to zero since g, = (g,)?~!. Therefore, by (26) we get

TV (u, Q)< llmmf/ |det Duy,(x)| dx

h—+o0

|det Dw(x )|dx+11m1nf/ |det Duy,(x)| dx
B h= o Buy\Byy (1-0y)

+ / |det Du(x)|dx<e+ TV*(v, By)
Q

+liminf/
h—+o0

We evaluate the last integral in the right-hand side. For ¢, (1 — 0,) <9 <g,, we have

|det Duy,(x)| dx + / |det Du(x)| dx.  (28)
Q

By, \By,(1-0))

ule9)  Dulo)

a a9
det Duy =—| _, ¢
0| du(e.8)  duy(e.)
Do 99

ol (S oul (0,9
(@[ (9) — (0, 9)] Q) 252 4 [1 — ()] 22
2(

1
21 ()[0*(9) — u2(04 8)] male) 2+ [1 — ()] 2]

N

and thus, since |17, (¢)| <-%- for some constant ¢;, we have

10
[ 2n
/ det Dy dv< S do [ 1o(3) - uley. )
By, \By,(1-a;) Oh8h J g, (1-0p) 0
ov(H) ou(op, )
{ 29 ‘Jr o5 |J %

< o sup{|v(9) — u(g,, 3)| : 3€[0, 27}

[P pren g

09
By (27), there exists a new constant c¢3 such that

du(9)
a9

/ |det Dup| dx < c3 sup{|v($) — u(o,3)|: $€]0,2x]},
B

\
h \BQI,U*%)

and thus, by assumption (6) and by (28), letting ¢ —0 we obtain
TV(u, Q) <TV: (1, Q) < / \det Du dx + TV (v, By).
Q

This upper bound, together with the lower bound of Step 1, yields the
conclusion. [
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3. Maps with values on the “eight” curve

In this section we consider maps with values on the “eight” curve. The “eight” curve
in R? is the union y of the two circles y*, 7, of radius 1 with centers at (1,0) and at
(—1,0), respectively. Some explicit examples of such maps are given below. In the
next theorem we present two estimates yielding an upper bound and a lower bound.

Theorem 12 (The “eight” curve). Let y = y* Uy~ = R? be the union of the two circles
of radius 1 with centers at (1,0) and at (—1,0). Let v:[0,2n]—>y be a Lipschitz-
continuous curve such that v(0) = v(2n). Let (I;);.\y be a sequence of disjoint open
intervals (possibly empty) of [0, 2n] such that the image v(I;) is contained either in y*
or in y~, and v(9) = (0,0) when 3¢ ;. 1;. Then, if u(x) = v(x/|x[), the following
upper estimate holds

Vs <5 Y| O30 - PO a9

jeN

(29)

Moreover, denoting by I+ any previous interval I; such that v(I;)<y*, and by I,- any
previous interval I such that v(Iy) =y~, we have the following lower estimate

/{U —v’vy} dY| + /{v —v*vy} d9 } (30)
jeN keN

Remark 13. If the curve v : [0,2n] >y =y Uy~ admits only two intervals /;" and 15
such that v(I]")=y*,v(I; )=y, then the above estimates for TV(u, By) are in fact
equalities. The same happens if the intervals are three, say I}, I, and I3 . In fact, this
case can be reduced to the previous one by periodicity. If the intervals are four, say
I, I, I and I, then we may have a gap between the lower bound and the upper
bound stated in Theorem 12, unless the integral of v'v3 — v?v} has the same sign,
respectively, in /", I and in 15, I, . These considerations are exploited in the study
some of the examples below.

TV(u B1 {

Let us denote by y the image of the “eight” curve, i.e., the union of the two circles
y* and y~ of radius 1, with center at (1,0) and at (—1,0), respectively, Below we will
use some elementary representation formulas for y™ and y~. Precisely, for y™ we will
use the representation formulas

= {(&, &) eR G + & - 28 =0}, (31)

& =2cos> Argé,

T <
£ey\(0,0) { & =2cosArg -sin Argé. 2
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With the aim to prove Theorem 12, we start with some preliminary results
concerning a map w with values in the circle y*. We give a first lemma without proof.

Lemma 14. Let w: [0,27] >yt be a Lipschitz-continuous curve such that w(0) =
(2,0). The real function

0 if w($) =(0,0),
R(‘g) =4 W OO QW) . (33)

9 ‘w(s)‘z lf w(.f));é(0,0),

is bounded in [0,2n] by a constant depending only on the Lipschitz constant of w.
Moreover, setting

_ [P @wi(n) — w()wy(2)
A(9) = /0 ATE dt (34)

then for every o, f€(0,2n] such that w(a)#(0,0) and w(f)+#(0,0), there exists keZ
such that

Ay(f) — Ay (0) = Argw(f) — Argw(a) + k. (35)

The proof of this lemma is simple and is left to the reader. The next result is similar
to the umbrella Lemma 6, with the main difference that here the starting point of the
umbrella-stick is placed at a boundary point of the circle y*. The proof is similar to
the proof of Lemma 6, and therefore we do not give the details.

Lemma 15 (The “umbrella” lemma for the “eight” curve). Let w: [0,2n] >yt be
a Lipschitz-continuous curve. Assume that there exist a,pe[0,2n],0<f, such that
Ay(a) = Aw(B). Then for every &>0 there exists a Lipschitz-continuous map
W : S(a, B) — R? satisfying the boundary conditions

Ww(l,9) =w(®) Vela,p],
W(o, o) = ow(a) Veel0,1],
W(o, B) = ow(B) Veel0

and such that [g, o |det Di5(x)| dx <e.

Lemma 16. Let w: [0,2n] >yt be a Lipschitz-continuous map. If o, f€[0,2x], a<f,
are such that A,,(o) = A,,(p), and if the function A,,(93) is piecewise strictly monotone
in o, B] (with a finite number of monotonicity intervals), then

B
/y O (92 (9) — w2 (9)wh(9)} d9 = 0.
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Proof. This result can be proved following an argument just as that of
Lemma 8. [

Lemma 17. Let u: [0,2n] >y =yt Uy~ be a Lipschitz-continuous map. Assume that
there exist N disjoint open intervals I; < [0,2n] such that u(l;) is contained either in

y*oorin y~ for every j=1,2,...,N, and u(3) = (0,0) when 3¢ U]Ail I;. Assume, in
addition, that the function

9 u' (9)u5(8) — u? (8)uy(9) (36)
has piecewise constant sign in [0,2n]. Then, for every ¢>0, there exists a Lipschitz-

continuous map W : B; — R* satisfying the boundary condition w(1,9) = u(9) for every
3€(0,2xn], and such that

N
/|detDw ) dx<e+ Z

/[ (W (2(9) — 2Ok ®)} ds|.  (37)

Proof. Fix je{l,2,...,N} and assume that u(l;)cy*. We follow the method of
proof of Lemma 9, using Lemma 15 in place of Lemma 6, and Lemma 16 in
place of Lemma 8. Setting /; = (e, f;), we construct a Lipschitz-continuous

map W : S(ocj,ﬁj)—>R2

wi(1,8) = u(9) Ve[, Bl

and the estimate

vi(x)| dx & 1 (D2 (9) — 12(9) !
/S(%‘Jgj) |det Dw;(x)| d. <N+2/Ij{ (Huy () (Pug($)} dI|. (39)

A similar conclusion holds if, instead, we have u(f;) cy~. Then the result follows by
taking W : B; — R? defined by

W(g,9) =

{ Wwi(0,9) Ve (oy,p) =1, .

0,00 v9¢UY, I

Proof of Theorem 12. Step 1 (lower bound—first part). Let v : [0,2n] >y =yt Uy~
be a Lipschitz-continuous map. With u(x) = v(x/|x|) then ueL®(B;;R*)n
W (B R?) n W (B\{0}; R?) for every pe(1,2). By (48) (lower bound obtained

loc
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in Lemma 22 in the general n—dimensional case) we have

TV(u,B) > det Di(x) dx|,

B

where 7 : B »R? is any Lipschitz-continuous map which assumes the boundary
value # = u on 0By (e.g., i(x) = |x|v(x/|x|) = |x|u(x) for xe B;\{0} and #(0) = 0).
By formula (19) of Lemma 10 (valid on B, for every re (0, 1]), since & = u, 9i/99 =
O0u/09 on 0B;, we have

TV B> ]1 " (9)2(9) v2<9>v5<9>}d9\. (40)

As in the statement of Theorem 12, we denote by (/ ) on @ sequence of disjoint open

intervals in [0, 2] (possibly empty) such that the image v(/;) is contained either in y*

oriny~, and v(3) = (0,0) when 3¢ ;. £;- Then we can write (40) equivalently as

TV(u, B1) > (41)

33 [ @05 — 2k s

jEN

Step 2 (lower bound—second part). Let 6>0 and let {u, = u},u?)}, ., be a sequence
in W'2(By; R?) converging to u in the weak topology of W'?(By;R?),pe(1,2) and
such that

TV(u,Bi) + 6> lim |det Duy,(x)| dx.
h—+o B

Consider ;| = (|uj|,u}) e W'?(By; R?). Clearly {u;} converges to u™ = (|u'|,s?) in
the weak topology of W'”(B;;R?) as h— + co. Since |det Dujf (x)| = |det Duy,(x)|
for almost every xe B;, we obtain

TV(u,B;)) +0> lim |det Duy, (x )\dx— hm |det Duj (x)| dx=TV(u", By).
By

h—+o B

The total variation of the map u* : Bj »7" may be obtained using formula (9), with
ut = (Ju'],u?) = (|v'|,v?). Therefore, as -0 we have

2n 2 d| 1|
TV(u,B))=TV(u", B)) ‘/ {| e }d9.

Recall that v!(9) >0 if 9€1;, where v(l;) =y (and analogously v!(9) <0 if v(l;) =7y,
while v!(9) = 0 if 9 ¢ Ujen £))- Again, as in the statement of Theorem 12, we denote
by [; ', with the + sign, any interval I; such that v(f;)=y*, and by I,_ any interval
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I;; such that v(I;)=y~. Thus,

o2 — Pk} d9 — / o' — v*ol) d9l.
/{ SO RTERED!

keN

TV(u, B)> (42)

jEN

Step 3 (lower bound—conclusion). Using the results of the previous Steps 1 and 2,
in particular (41) and (42), we have

Z/ {v"0} — v} d9+ Z {v"0} — v} d9|.

jeN keN Y1

TV(u, By) > max

Since max4. |a+b| = |a| + |b|, we finally obtain the lower bound (30).

Step 4 (upper bound). Assume first that u: [0,2n] >y =yTuUy~ is a Lipschitz-
continuous map satisfying the further assumptions of Lemma 17. In Particular, we
assume that there exist N disjoint open intervals I;=[0,2n] such that wu(l;) is
contained either in y* or in y~ for every j=1,2,...,N, and u(}) = (0,0) when
9¢ UL, I, We also assume that the function $—u'(9)13(9) — u?(9)u}(9) has
piecewise constant sign in [0,2n]. Then, for every ¢>0, there exists a Lipschitz-
continuous map W : B; —»R? satisfying the boundary condition Ww(l,9) = u(3) for
3€(0,2x], and (37). For every e N we define

P CORN SV
W (e, 9) i 0<o<1/h.

As in Step 2 of the Proof of Theorem 1, u;, converges to u strongly in W'?(B; : R?)
for every p €(1,2), as h— + co. Finally, by (37),

/ |det Duy(x)| dx = / |h* det Dw(oh, 9)| dx = / |det Di(g, 9)| dx
B By,

By

(O)3(9) — P (9)ub(9)} |,

and thus we obtain the conclusion (29) in this case, i.c.,

TV(H, Bl) <TV?® (l/l Bl

/{u ub —tul} d9|.

Step 5 (upper bound again). Consider first the case where u : [0, 2n] — 7 satisfies the
conditions of the previous Step 4, with the possible additional assumption that the
function 9 —u' (3)u3(9) — u*(9)ul(9) has piecewise constant sign in [0,27]. Assume
further that there exist N disjoint open intervals ;< [0,2n] such that wu(l;) is
contained either in y* or in y~ for every j = 1,2, ...,N, and u(9) = (0,0) when

3¢ U/I\; 1 1;. We proceed in a way similar to that of Step 3 of the proof of Theorem 1.
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We consider one of such intervals I; such that u(l;)cy™ and, without loss of
generality, we can assume that u(0) = (2,0)ey*. Note that the map u(9) can be
represented in the form

u(¥) =2cos A, (9)(cos 4,,(3), sin 4,,(3))

for 3el;. As in Step 3 of the proof of Theorem 1, we may find a sequence (k) cy
with u;y : I;— R?, such that, as k— + oo,

dujr  du

ujr—u in C°(I),

545 strongly in Li(l;) Vg=1.
Moreover u;(9) = u(9) for 9€dl;, and uj, du7, /d3 — w7, duj, /d9 has piecewise
constant sign in /;. Then the map u; () satisfies all the assumptions of the previous
Step 4. We define

wir(9) if Yel;,
Ww%:{]<> ;

0,0) if 8¢ U, 1.

Clearly the maps u(9) converge to u in the strong topology of W7 (By; R?) for every
pe[l,2), as k— + oo, and from Step 4 we obtain the upper bound (29) under our
assumptions, i.e.,

TV(u,B))< TV:(u, B)) < llim inf TV®(ug, By)

-+

du? du!
ul, 2k 2 TR g
/,{ NV AT

(43)

Finally, when the intervals /; are infinitely many, the upper bound (29) is deduced
from the previous case of finitely many intervals I; (j = 1,2, ..., N), approximating
u by
u(®) it 9eUY, I,
uy(9) = { . "
(070) if ‘9¢ Uj:l Ija
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Indeed, applying (43) to each uy and passing to the limit as N— + oo, we
obtain

TV(u,B;) < TV*(u, By) < lAifm inf TV®*(uy, B)
— 400

du 5 du
d9
[}
du 2 du'
/{ d9 } a9).

As an application of the estimates (29) and (30) we propose some examples related
to the “eight” curve. Notice that these examples illustrate cases where TV (u, B))
differs from the total variation |Det Du|(B)) of the distributional determinant.

s NEIEOF 22

1 0
:EE

O

Example 18. Let /1, keZ, and let v:[0,2n] >y be the curve whose image turns |/
times in y~ and |k| times in 7", according to the parametric representation

(9) = (—1,0) + (cos 2A9,sin 2h9) if 0<I< T,
TN (1,0) = (cos 2k9,sin 2k8)  if n<9<2n.

Since

Lo 2h(1 —cos2hy) if 0<I<m,
2k(cos2k3 — 1) if n<I<2m,

then, with u(x) := v(x/|x|), by the representation formulas (29), (30), we have

{TV(u,Bl) = (Al + KDz, s (44)

|Det Du|(By) = |h — k|,

Example 19. We consider the map
o) = ( ,0) + (cos 29, s‘in 29) %f 0<3<m, (45)
)i( cos29,sin29) if <3< 2n,

and we extend it by periodicity from [0, 27] to R. Then we define v,(3) = v(h9), for a
given parameter i€ Z. The image of v, is contained in y* and 7~ in correspondence
with two sets of disjoint open intervals of [0, 2] which, with the notations introduced
above, we denote by ;" and I, respectively. Then v(f;) =y* and v(f) =y~. With



L Fonseca et al. | Journal of Functional Analysis 207 (2004) 1-32

up(x) = vp(x/|x|), by (29) and (30) we obtain
Oz 5 0o}
I*{ h—_ Uh ag}d‘g

L, Ovy 5 0o}
{ 2q  Un ag}d‘g

2h(1 — cos 2h9) d3

V(uy, By)

+
I/.

2h(cos 219 — 1) d9

I

In this situation we have

TV(uy. By) = 2|h
{ (. B) =2l

Det Duy|(By) = 0,

Example 20. The map v: [0,27n] — 7y defined by

1,0) + (cos43,sin43) if 0<I<n/2,
1,0) + (—cos 49,sin49) if n/2<I<m,
1,0) + (cos43,sin43) if n<I<3n/2,
)

(=
(
v(9) = (—
(1,0) + (—cos 493,sin49) if 3n/2<9<2x,

= 2|h|n.

25

(40)

spans y~ twice counter-clockwise, and y* twice clockwise. It is a particular case of
the previous Example 19 and, with the usual notation u(x) := v(x/|x|), we have

TV(u, B)) = 4r and |Det Du|(B;) = 0.
Consider now the map o: [0, 27] -y defined by

1,0) + (cos43,sin43)  if 0<I<n/2,
1,0) + (—cos43,sin49)  if n/2<I<m,
1

(=
5(9) = (
(—1,0) + (cos 49, —sin49) if n<I<3n/2,
(

1,0) + (—cos 49, —sin49) if 3n/2<9<2n,

(47)

which spans y~ twice, the first time counter-clockwise and the second time clock-
wise; while y* is spanned first clockwise and then counter-clockwise. Then again,
with @(x) = 5(x/|x|), the estimate (29) yields TV(i, B;)<4n, while (30) gives
TV (@, B1) >0 = |Det Dii|(B;). Therefore, this is an example where there is a gap

between the estimates (29) and (30).
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The last example related to & was already considered by Maly [21] and by
Giaquinta et al. [18], who proved that the graph of # cannot be approximated in area
by the graphs of smooth maps.

4. Some lower semicontinuity estimates

In this section, we prove some lower semicontinuity estimates used in the previous
sections. Since there are no major technical differences between the 2- and the
n-dimensional case, we consider here the general n-dimensional case. We first recall a
lower semicontinuity result, valid for polyconvex integrands (and for quasiconvex
integrands as well), related to the weak topology of W'”(Q; R") for some p below the
critical exponent n. These may be called nonstandard lower semicontinuity results, as
opposed to the classical setting of lower semicontinuity results in the weak topology
of W'»(Q;R") when p is equal to the growth exponent of the integrand f
(see [2,22,24]). We refer to polyconvex integrals as in Theorem 21 below, of the type

/f(Du) dx, with 0<f(&)<e(l + |E").
Q

In the case considered here, the integrand f(¢) = |det | <n~"/?|Du(x)|" has growth
exponent equal to n, while we need to consider the weak topology of W'?(Q;R") for
some p <n.

Theorem 21 below has been proved by Marcellini [22,23] for p>n?/(n + 1) and by
Dacorogna and Marcellini [12] for p>n—1 (p=1 if n =2). A limiting case, with
p = n — 1, has been considered under different assumptions by Acerbi and Dal Maso
[1], Celada and Dal Maso [11], Dal Maso and Sbordone [13] and by Fusco and
Hutchinson [17]. The relaxation in this context has been first considered by Fonseca
and Marcellini [16].

Precisely, the following theorem holds (we limit ourselves to quote here the
polyconvex case, related to maps u:QcR"—>R"™ with m =mn). Given a map
u:Q—R" we denote by M(Du) the vector-valued map

M (Du) = (Du,adj, Du, ..., adj,_; Du,det Du)eR",
where, for j =2,...,n — 1, adj; Du denotes the matrix of all minors j x j of Du and

2
N=3T, (7) (in particular N = 5 if n = 2).

Theorem 21 (Lower semicontinuity below the critical exponent). Let Q be an open
set of R". Let g: RY >R be a nonnegative convex function. Then

liminf/g(M(Duh)) dx;/g(M(Du))dx7
h—+ow Q Q
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for every sequence w;, which converge to u in the weak topology of W'?(Q;R") for some
p>n—1, with u,u, e Wllo’"(Q; R™) for every heN.

C

The first result stated in Lemma 22 gives a lower bound for the total variation. It is
a variant of Lemma 5.1 (see also Lemma 2.3) by Marcellini [23], who considered the
general quasiconvex case with the exponent p below the critical growth exponent n,
precisely n*/(n+ 1) <p<n.

Lemma 22 (Lower bound—first estimate). Let uel™(Q;R")nW'?(Q;R")n
VVli)f (Q\{0}; R") for some pe(n— 1,n). The following estimate holds

TV(u,Q) =

/ det Dii(x) dx
Q

; (48)

whenever i : Q — R" is a Lipschitz-continuous map which agrees with u on the boundary
of Q, ie., t(x) = u(x) on 0Q.

Proof. For fixed pe (n — 1,n), >0, consider a sequence {u,}, . in W (Q; R") that
converges to u in the weak topology of W!#(Q;R"), and such that

lim / |det Duy,(x)| dx<TV (u,Q) + 6. (49)
h—+w Jo
Let M = |[ul[~ o €R. Truncate each uj into wy, = (wh, w2, ..., w!") whose compo-
nents are given by
~M if W (x)< — M,
wh(x) =<l (x) if — M<u(x)<M,
M if d(x)=M,
forall j =0,1,...,n. Clearly {u}, . still converges to u, as h— + oo, in the weak

topology of W!?(Q;R") and the L*-norm |[whllz @.g is uniformly bounded as
heN. Moreover, since

wp(x) #up(x) = det Dwy(x) =0,
we obtain |det Dwy,(x)|<|det Duy(x)| for almost every xe Q, and

lim inf/ |det Dwy,(x)] dx< lim |det Duy,(x)| dx<TV (u, Q) + 6.
Q Q

h—>+ow h—+ow
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Therefore, without loss of generality, passing to a subsequence if necessary, we can
assume that the limit relation (49) holds, together with the uniform bound

/SUIN’ lun|| Lo @y = M < + 0. (50)
he

Let Qp be an open set compactly contained in Q and let R = dist(Qy,0Q)/2, with
0€Qq. For every keN set

iR
Q= {er: dist(x,Qo)<%}, Vi=1,2,..., k.

For every i = 1,2, ..., k, consider a smooth cut-off scalar function ¢; with compact
support in Q;, such that ¢,(x) = 1 in Q;_1, 0<¢;(x)<1 and |De,(x)| <! for all x.
Then, for every i = 1,2, ..., k, and for he N, define

wii(x) = (1 = ¢;(x))u(x) + @;(x)up(x)-

Then wy,;(x) = u(x) for every xeQ\Q;, and in particular for every xeQ\Qy. Since
u(x) is a smooth map in Q\Q and since W} ;(x) and #(x) are smooth maps in Q,
which coincide with #(x) on the boundary 9Q, using the fact that the integral of the
Jacobian depends only on the trace at the boundary, we have

/ det Dii(x) dx
Q

/ det Dwy,;(x) dx
Q

</|detth7i(x)|dx
Q

= / |det Duy,(x)] dx+/ |det Dwy, ;(x)| dx
Qi

Qi1

+/ |det Du(x)| dx.
felye)

Letting #— + oo, taking into account the limit relation (49), summing up the above
relation with respect to i = 1,2, ..., k, and dividing both sides by k, we obtain

/ det Dii(x) dx| < TV(u, Q) + 6
0
1 k
+ — lim sup / det Dwy,;(x)| dx
glmsup 2 J, o et Dnil)

+ / |det Du(x)| dx. (51)
Q\Q
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We estimate the second integral in the right-hand side. To this aim, we recall the
following inequality (which, for instance, can be obtained from inequality (2.9) of
Marecellini [22])

[[det ] — [detn|[<e(l + &' + [nl"~")IE = nl. (52)

As Dwy,i(x) = D[(I — @;(x))u(x) + ¢;(x)up(x)], in Q\Q;_; we have

[Dwii(x) = @;(x) Dup (x)| < [Dp; (x)|[n(x) — u(x))|

+1

+ 1= <P,-(X)||DU(X)|<k |un(x) — u(x)| + [Du(x)].

From (52) with ¢ :== Dwj,;(x) and n == @;(x)Du;(x) we obtain

[|det Dwy,;(x)| — |det ¢, (x) Dup(x)||

k+1

<c(U+ [P (0" + |Dun(x)") | =

[un(x) — u(x)| + [Du(x)[|-

Set My = [|Du||;» (0,0, €R. Then, since p>n — 1, for the second integral in the
right-hand side of (51) we have the following bound

/ |det Dwy, ;(x)| dx
Q\Qi—y

< / |det ¢,(x) Dup(x)| dx
Q\Qiy

+ C/Ql\ﬂ,»l {(1 + \th,i(x)|”71 + | Duy (x)|" 1) [k; 1 lun(x) — u(x)| + Ml} } dx

n=1
P

</ |det<ol-<x>Duh<x>|dx+c{ / <1+|thv,»(x>|"*1+|Duh<x>|"*>n’*ldx}
Q/\Qi Q\Qi

p—(n=1)
P

p
k p—(n—1)
X —up(x) —u(x)| + M dx
/Qf\Qil |:(R—7’)| h( ) ( )| 1:|

The sequences {up},.n and {w,},.n converge to u in the weak topology of
W'2(Q;R") and the IP-norm of their gradients remains bounded. Up to a
subsequence, as h— + oo, the difference {u;(x) —u(x)},.n converges almost
everywhere to zero. By taking into account the uniform bound (50), we can pass
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to the limit as 27— + oo and we obtain

h—+o

k
lim sup Z / |det Dwy, ;(x)| dx
i—1 JQ\Qi

k p=(n—1)
< lim sup Z/ |det @,;(x)Duy(x)| dx + ¢1 - M1|Q)\Qi—1| P
i—1 Y 2\Qi

h—+w

p—(n—1)

< lim sup / |det Dup,(x)| dx + c1kM|Q\Qo| 7
Q\Q[}

h—+w

p—(n—1)

=TV(u, Q)+ 0+ kM |Q\Q| 7 . (53)
From (51) and (53) we deduce that

<TV(u,Q) +6

/ det Dii(x) dx
Q

p—(n—1)

+%{TV(u, Q)+ 0+ kM |Q\Q| » T+ / |det Du(x)| dx.
Q\Q

Letting k— + o0, Qy—Q and 6— 0", we conclude

<TVw,Q). O

/ det Dii(x) dx
Q

Lemma 23 (Lower bound—second estimate). Let u be a function of class
L*(Q;R") n W(Q;R") N Wl:)f (Q\{0}; R") for some pe(n— 1,n). For every r>0

such that B, < Q the following estimate holds

; (54)

TV(u,Q)> /

|det Du(x)| dx + ‘/ det Dii(x) dx
B, B,

where ii: B,—R" is any Lipschitz-continuous map which coincides with u on the
boundary of B,, i.e., ii(x) = u(x) on 0B,.

Proof. Fix §>0 and consider a sequence {u;}, .y in W' (Q; R") which converges to
u in the weak topology of W!7(Q;R") for some pe(n— 1,n) and such that (49)
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holds. For every r>0 such that B, <Q we have

TV(u,Q)+ 6= hlim / |det Duy,(x)| dx
Q

-+

h—+o0 -+

> lim inf / |det Duy(x)| dx + lim inf / |det Duy,(x)| dx
Q\B, h B,

> lim inf/ |det Duy(x)| dx + TV (u, B,).
Q\B,

h—+w

We estimate the term TV(u, B,) with (48). Moreover, since u,u;, belong to
W (Q\B,; R") for every he N (and u;, converge to u in the weak topology of
W (Q\B,;R") for p>n — 1), we can apply the lower semicontinuity result below the
critical exponent stated in Theorem 21. We reach the conclusion (54) as 6—0". O

Acknowledgments

The research of Irene Fonseca was partially supported by the National Science
Foundation under Grant No. DMS-9731957 and through Center for Nonlinear
Analysis (CNA). The research of Nicola Fusco was partially supported by the Italian
Ministero dell Istruzione, dell’ Universitd e della Ricerca (MIUR). The research of
Paolo Marcellini was partially supported by the Italian Ministero dell Istruzione,
dell’ Universita e della Ricerca (MIUR) and through the contribution of the Italian
Ministero degli Affari Esteri, Direzione Generale per la Promozione e la Cooperazione
Culturale (MAE).

References

[1]1 E. Acerbi, G. Dal Maso, New lower semicontinuity results for polyconvex integrals case, Calc. Var.
2 (1994) 329-372.

[2] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech.
Anal. 86 (1984) 125-145.

[3] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech.
Anal. 63 (1977) 337-403.

[4] F. Bethuel, A characterization of maps in H'(B?,S?) which can be approximated by smooth maps,
Ann. Inst. H. Poincaré, Anal. Non Lineaire 7 (1990) 269-286.

[5] F. Bethuel, H. Brezis, F. Heléin, Ginzburg-Landau Vortices, Birkhduser, Boston, 1994.

[6] G. Bouchitte, I. Fonseca, J. Maly, The effective bulk energy of the relaxed energy of multiple integrals
below the growth exponent, Proc. Royal Soc. Edinburgh Sect. A 128 (1998) 463—479.

[7] H. Brezis, J.M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986)
649-705.

[8] H. Brezis, J.M. Coron, E.H. Lieb, Jacobian of orientation preserving mappings, J. Funct. Anal 115
(1993) 425-431.



32 L Fonseca et al. | Journal of Functional Analysis 207 (2004) 1-32

[9] H. Brezis, L. Nirenberg, Degree theory and BMO: 1, Sel. Math 2 (1995) 197-263.

[10] H. Brezis, L. Nirenberg, Degree theory and BMO: II, Sel. Math 3 (1996) 309-368.

[11] P. Celada, G. Dal Maso, Further remarks on the lower semicontinuity of polyconvex integrals,
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 661-691.

[12] B. Dacorogna, P. Marcellini, Semicontinuité pour des intégrandes polyconvexes sans continuité des
determinants, C. R. Acad. Sci. Paris 311 (1990) 393-396.

[13] G. Dal Maso, C. Sbordone, Weak lower semicontinuity of polyconvex integrals: a borderline case,
Math. Z. 218 (1995) 603-609.

[14] 1. Fonseca, N. Fusco, P. Marcellin, Topological degree, Jacobian determinants and relaxation,
Un. Mat. Ital., to appear.

[15] 1. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, in: Oxford Lecture Series in
Mathematics and its Applications, Vol. 2, Clarendon Press, Oxford, 1995.

[16] 1. Fonseca, P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom.
Anal. 7 (1997) 57-81.

[17] N. Fusco, J.E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals,
Manuscripta Math. 87 (1995) 35-50.

[18] M. Giaquinta, G. Modica, J. Soucek, Graphs of finite mass which cannot be approximated in area
by smooth graphs, Manuscripta Math. 78 (1993) 259-271.

[19] M. Giaquinta, G. Modica, J. Soucek, Cartesian Currents in the Calculus of Variations I and II,
in: Ergebnisse der Mathematik und Threr Grenzgebiete, Vol. 38, Springer, Berlin, 1998.

[20] R.L. Jerrard, H.M. Soner, Functions of bounded higher variation, to appear.

[21] J. Maly, LP-approximation of Jacobians, Comment. Math. Univ. Carolin. 32 (1991) 659-666.

[22] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple
integrals, Manuscripta Math. 51 (1985) 1-28.

[23] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann.
Inst. Henri Poincare, Anal. Non Linéaire 3 (1986) 391-409.

[24] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.

[25] S. Miiller, Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris 307 (1988)
501-506.

[26] Y. Reshetnyak, Weak convergence and completely additive vector functions on a set, Sibirsk. Math.
9 (1968) 1039-1045.



	On the total variation of the Jacobian
	Introduction
	Maps with values in a curve diffeomorphic to S1
	The ’’umbrella’’ lemma
	Maps with values on the ’’eight’’ curve
	The ’’eight’’ curve
	The ’’umbrella’’ lemma for the ’’eight’’ curve
	Some lower semicontinuity estimates
	Lower semicontinuity below the critical exponent
	Lower bound-first estimate
	Lower bound-second estimate
	Acknowledgements
	References


