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Abstract

A characterization of the total variation TVðu;OÞ of the Jacobian determinant detDu is

obtained for some classes of functions u : OCR2-R2 outside the traditional regularity space

W 1;2ðO;R2Þ: In particular, explicit formulas are deduced for functions that are locally
Lipschitz continuous away from a given one point singularity x0AO; i.e., uAW 1;p

ðO;R2Þ-W 1;NðO \fx0g;R2Þ for some p41:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Well-established theories in the calculus of variations and in partial differential
equations have been challenged in recent years by new phenomena in solid physics
and in materials sciences which demand innovative approaches and new ideas. In
this paper, we address the study of the Jacobian determinant detDu of fields

u :O-Rn outside the traditional regularity space W 1;nðO;RnÞ; where OCRn is an
open, bounded set. The analysis will be mostly centered on the plane, i.e., n ¼ 2;
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where more general results may be obtained and the arguments of the proofs
are geometrically more intuitive. A forthcoming paper [14] will address the
n-dimensional setting.
The role of the distributional determinant in the study of harmonic mappings with

singularities was first identified by Brezis et al. in a seminal paper (see [7]) that paved
the way for a wealth of developments in the subject, with relevance in many areas of
applications such as the study of liquid crystals and Ginzburg–Landau type theories.
In [7,8], the authors bridge the notion of topological degree to the appearance of
Dirac measures as singular parts of the underlying generalized, measure-valued
determinant.

To fix the notations, we consider a map u :OCR2-R2; defined in an open set O of
R2: If uAW 1;2ðO;R2Þ; since jdetDuðxÞjp1=2jDuðxÞj2; then the Jacobian determinant
detDu is a function of class L1ðOÞ: When ueW 1;2ðO;R2Þ; it may still be possible to
consider the distributional Jacobian determinant

DetDu :¼ @

@x1
u1

@u2

@x2

� �
� @

@x2
u1

@u2

@x1

� �
: ð1Þ

An equivalent definition may be obtained by interchanging the roles of u1 and u2

with signs reversed accordingly. The definition of the distributional Jacobian
determinant DetDu is based on integration by parts of the formal expression in (1),
after multiplication by a test function. To render definition (1) mathematically

precise it is necessary to make some assumptions on u: We may take u1 to be

bounded and the gradient Du to be of class L1; i.e., uALNðO;R2Þ-W 1;1ðO;R2Þ:
Another possibility is to require that uAW 1;pðO;R2Þ for some p44

3
: In fact, in this

case by the Sobolev Imbedding Theorem we have uAL4ðO;R2Þ and the products in
(1) are well defined in L1: In this paper, we assume that uALN

locðO;R2Þ-W 1;pðO;R2Þ
for some p41; and we focus in particular on those maps u which are locally
Lipschitz-continuous away from a given point x0AO (and thus the Jacobian
determinant detDu may only be singular at x0). These maps were treated also in the
book by Bethuel et al. (see [5]) where a detailed study of one-point singularities
(vortices) of stationary solutions for complex-valued Ginzburg–Landau equations
may be found. Here, again, the notion of topological degree comes into play. Along
the same lines, we refer also to the study of density results of smooth functions in

H1ðBð0; 1Þ;S2Þ; where Bð0; 1ÞCR3: Bethuel [4] showed that this density result holds

for uAH1ðBð0; 1Þ;S2Þ if detDu ¼ 0:
Since the fundamental work of Morrey [24], who treated weak continuity

properties of DetDu in (1) (see also [26]), DetDu has played a pivotal role in the
calculus of variations (see, also [3,25]). In recent years, several attempts have been
made to establish relations between DetDu and the total variation of the Jacobian
determinant detDuðxÞ: One possible definition for the latter is based on the
following limit formula: given uALN

locðO;R2Þ-W 1;pðO;R2Þ for some p41; the
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total variation TVðu;OÞ of the Jacobian determinant is defined by

TVðu;OÞ ¼ inf lim inf
h-þN

Z
O
jdetDuhðxÞj dx :

�

uh,u weakly in W 1;pðO;R2Þ; uhAW 1;2ðO;R2Þ
�
: ð2Þ

Note that, a priori, definition (2) may depend on p and, more precisely, we should
use the notation TVpðu;OÞ instead of TVðu;OÞ: However, the representation
formulas for TVðu;OÞ given in this paper turn out to be independent of p; and,

surprisingly, it can be shown that weak convergence in W 1;pðO;R2Þ may be
equivalently replaced by strong convergence in W 1;pðO;R2Þ for certain classes of
functions u: This approach has been considered by Marcellini [23], Giaquinta et al.
[18,19], Fonseca and Marcellini [16], Bouchitté et al. [6], among others. In particular,
Marcellini [23] and Fonseca and Marcellini [16] noticed that the total variation of the
Jacobian determinant may have a nonzero singular part, while Bouchitté et al. [6]
proved that this singular part is a measure. Giaquinta et al. [18,19] found that the
lower limit in (2) can be different from the total variation of the measure DetDu:
It has been first noted by Malý [21] and by Giaquinta et al. [18] (see also [20]) that,

for some maps uALNðO;R2Þ-W 1;pðO;R2Þ with pAð1; 2Þ; it may happen that the
distribution DetDu is identically equal to zero while the total variation of the
Jacobian determinant is different from zero. Also, when DetDu is a measure, it turns
out that, in general, TVðu;OÞ is not the total variation of the measure DetDu: Some
examples illustrating this phenomenon may found in Section 3.
In this paper, we give an explicit characterization of the total variation TVðu;OÞ of the

Jacobian determinant for maps u as described above (see Theorem 1). We relate the total
variation of the Jacobian determinant jDetDujðOÞ to TVðu;OÞ; and, in turn, TVðu;OÞ
is expressed in terms of the topological degree (see Remark 3). In particular, denoting by

B1 the unit ball of R
2 and by S1 :¼ @B1 its boundary, we prove that, if v : S1-S1 is a

map of class C1 onto S1; locally invertible with local inverse of class C1 at any point of

S1; and if u : B1\f0g-S1 is defined by uðxÞ :¼ v x
jxj

� �
; then the total variation TVðu;B1Þ

may be expressed in terms of the topological degree of the maps v and ṽ; where
ṽ : B1-B1 is any Lipschitz-continuous extension of v to the unit ball B1: Precisely,

TVðu;B1Þ ¼ o2jdeg vj ¼ o2jdeg ṽj: ð3Þ

Note that formula (3) does not hold, in general, if the map v : S1-R2 takes values on a

set vðS1Þ not diffeomorphic to S1 (see Theorem 12 and the examples of Section 3).

2. Maps with values in a curve diffeomorphic to S1

In the sequel O is an open, bounded subset of R2; we denote by v : ½0; 2p�-GCR2

a Lipschitz-continuous map with values on a curve G; with vð0Þ ¼ vð2pÞ; and with
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components vðWÞ ¼ ðv1ðWÞ; v2ðWÞÞ: We assume that G may be parametrized as

G :¼ fxþ rðWÞðcos W; sin WÞ : WA½0; 2p�g; ð4Þ

where rðWÞ is a periodic piecewise C1-function such that rð0Þ ¼ rð2pÞ; and rðWÞXr0
for every WA½0; 2p� and for some r040: Condition (4) reduces to saying that G is the
boundary of a domain

D :¼ fxþ Rðcos W; sin WÞ : WA½0; 2p�; 0pRprðWÞg; ð5Þ

starshaped with respect to a point x in the interior of D:We have the following result.

Theorem 1. Let u be a function of class W 1;pðO;R2Þ-W
1;N
loc ðO\f0g;R2Þ for some

pAð1; 2Þ: Let v : ½0; 2p�-G; vðWÞ ¼ ðv1ðWÞ; v2ðWÞÞ; WA½0; 2p�; be a Lipschitz-continuous

map, with vð0Þ ¼ vð2pÞ and G as in (4), and such that

lim
R-0

jjuðR; �Þ � vð�ÞjjLNðð0;2pÞ;R2Þ ¼ 0: ð6Þ

If the tangential derivative Dtu of u satisfies the bound

sup
R40

1

R2�p

Z
BR

jDtujp dx ¼ sup
R40

1

R2�p

Z R

0

r1�p dr

Z 2p

0

juWðr; WÞjp dWpM0 ð7Þ

for some positive constant M0; then the total variation of u is given by

TVðu;OÞ ¼
Z
O
jdetDuðxÞj dx þ 1

2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����: ð8Þ

In order to illustrate a class of functions squarely fitting into the hypotheses
of Theorem 1, consider the particular case in which the map u ¼ uðR; WÞ does
not depend on R; that is u ¼ uðWÞ: Then, as a function of W; u ¼ uðWÞ : ½0; 2p�-R2

is a Lipschitz-continuous map and uð0Þ ¼ uð2pÞ: Considered as a function of
two variables, i.e., u :O ¼ B1-R2 constant with respect to RAð0; 1�; it turns
out that uALNðO;R2Þ-W 1;pðO;R2Þ-W

1;N
loc ðO\f0g;R2Þ for every pA½1; 2Þ; but

ueW 1;2ðO;R2Þ unless uðWÞ is constant. From the previous result, with u ¼ v; we
immediately obtain the following consequence.

Corollary 2. Let G be as in (4), and let u ¼ v : ½0; 2p�-G be a Lipschitz-continuous

map such that vð0Þ ¼ vð2pÞ: Then detDuðxÞ ¼ 0 for almost every xAR2 and the total

variation of the Jacobian determinant is given by

TVðu;OÞ ¼ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����: ð9Þ
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Remark 3. (i) We observe that formula (9) has a relevant geometrical meaning. In
fact, the right-hand side is equal to p times the ‘‘winding number’’ of the curve
v ¼ ðv1; v2Þ; i.e., pjdeg vj:
(ii) A careful scrutiny of the proof of Theorem 1 yields easily that an analog result

stiff holds if we assume that u is in W 1;pðO;R2Þ for some pAð1; 2Þ and is locally
Lipschitz outside a finite number of points aiAO; i ¼ 1;y;N; provided that
u satisfies in a neighborhood of each ai both assumptions (7) and (6) for suitable
functions vi: In this case, the total variation of the Jacobian of u is given by (see [15])

TVðu;OÞ ¼
Z
O
jdetDuðxÞj dx þ

XN

i¼1
pjdeg vij:

For possible extensions of this formula to more general spaces we refer to [9,10].
(iii) A suitable adaptation of the proof enables us to replace the assumption

uAW
1;N
loc ðO\f0g;R2Þ by the weaker condition uAW

1;2
loc ðO\f0g;R

2Þ: On the other
hand, the requirement that p41 is essential since our proof of the lower estimate for
TVðu;OÞ does not work in the case p ¼ 1:
(iv) It is also interesting to observe that, under the assumptions of Theorem 1, the

distributional determinant DetDu is a measure and that its total variation
jDetDujðOÞ coincides with TVðu;OÞ: This property is proved, in a more general
context, in the forthcoming paper [14]. However, the equality between the total
variation of DetDu and TVðu;OÞ is due to the fact that here we are essentially
dealing with maps valued into S1: The examples given at the end of Section 3 show
that this equality may no longer be true otherwise, and in particular this equality
fails for maps valued on the ‘‘eight’’ curve.

The remainder of this section is devoted to the proof of Theorem 1 and
Corollary 2.

For every x ¼ ðx1; x2ÞAR2; xa0; we denote by Arg x the unique angle in ½�p; pÞ
such that

cos Arg x ¼ x1

jxj; sin Arg x ¼ x2

jxj:

By Br; we denote the circle in R2 with center in 0 and radius r40; B1 is the circle

of radius r ¼ 1; and @B1 ¼ S1 is its boundary. If a; bA½0; 2p�; aob; then Sða; bÞ
represents the polar sector

Sða; bÞ :¼ fx ¼ Rðcos W; sin WÞAR2 : Rp1; WA½a; b�g:

Let v : ½0; 2p�-R2 be a Lipschitz-continuous closed curve, i.e., vð0Þ ¼ vð2pÞ: We
denote by vW :¼ ðv1W; v2WÞ the gradient of v; which exists for almost every WA½0; 2p�; and
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if vðWÞa0 for every WA½0; 2p�; then AvðWÞ stands for

AvðWÞ :¼ Arg vð0Þ þ
Z W

0

v1ðtÞv2WðtÞ � v2ðtÞv1WðtÞ
jvðtÞj2

dt:

There exists a simple relation between Av and Arg v; which may be inferred from
the next lemma. Its simple proof is omitted.

Lemma 4. If v : ½0; 2p�-R2 is a Lipschitz-continuous curve such that vðWÞa0 for every

WA½0; 2p�; then for every a;bA½0; 2p� with aob; there exists kAZ such that

AvðbÞ � AvðaÞ ¼ Arg vðbÞ �Arg vðaÞ þ 2kp: ð10Þ

Lemma 5. Let G be as in (4) and let v : ½0; 2p�-G be a Lipschitz-continuous map. If

Argðvð0Þ � xÞ ¼ 0 then the curve v may be represented as

vðWÞ :¼ xþ rðAv�xðWÞÞðcosAv�xðWÞ; sinAv�xðWÞÞ ð11Þ

for all WA½0; 2p�:

Proof. Since Av�xð0Þ ¼ Argðvð0Þ � xÞ ¼ 0; by Lemma 4 for every WA½0; 2p� there
exists kAZ such that Av�xðWÞ ¼ ArgðvðWÞ � xÞ þ 2kp: Also, as vðWÞAG for all W;
we have

rðAv�xðWÞÞ ¼ rðArgðvðWÞ � xÞÞ ¼ jvðWÞ � xj;

and we obtain

rðAv�xðWÞÞðcosAv�xðWÞ; sinAv�xðWÞÞ

¼ jvðWÞ � xjðcos ArgðvðWÞ � xÞ; sin ArgðvðWÞ � xÞÞ ¼ vðWÞ � x:

This concludes the proof. &

The next lemma plays a central role in this section.

Lemma 6 (The ‘‘umbrella’’ lemma). Let G be as in (4) and let v : ½0; 2p�-G be a

Lipschitz-continuous map. If a; bA½0; 2p�; aob; are such that Av�xðaÞ ¼ Av�xðbÞ; then

for every e40 there exists a Lipschitz-continuous map w : Sða; bÞ-R2 satisfying the

boundary conditions

wð1; WÞ ¼ vðWÞ 8WA½a; b�;
wðR; aÞ ¼ wðR; bÞ ¼ xþ RðvðaÞ � xÞ 8RA½0; 1�;

(
ð12Þ
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and such that Z
Sða;bÞ

jdetDwðxÞj dxoe: ð13Þ

Proof. Without loss of generality we can assume that Argðvð0Þ � xÞ ¼ 0: Fix hAN

and set

whðR; WÞ :¼ xþ RrðjhðR; WÞÞðcos jhðR; WÞ; sinjhðR; WÞÞ; ð14Þ

where, for every RA½0; 1� and for every WA½a; b�;

jhðR; WÞ :¼ RhAv�xðWÞ þ ð1� RhÞAv�xðaÞ:

Since jhð1; WÞ ¼ Av�xðWÞ;jhðR; aÞ ¼ jhðR; bÞ ¼ Av�xðaÞ; by the representation for-
mula (11) of Lemma 5 we obtain the validity of the boundary conditions (12).

Now we evaluate the left-hand side in (13). We observe that, if uðxÞ ¼
ðu1ðR; WÞ; u2ðR; WÞÞ; and using the notation @ui

@R ¼ ui
R;

@ui

@W ¼ ui
W ði ¼ 1; 2Þ; we have

detDuðxÞ ¼ 1
R

u1RðR; WÞ u1WðR; WÞ
u2RðR; WÞ u2WðR; WÞ

�����
�����: ð15Þ

For the function wh we obtainZ
Sða;bÞ

jdetDwhðxÞj dx ¼
Z 1

0

dR
Z b

a

@ðw1h;w2hÞ
@ðR;WÞ

����
���� dW:

Now the Jacobian determinant of wh is

@ðw1h;w2hÞ
@ðR; WÞ ¼ Rr2ðjhÞ

@jh

@W
¼ Rhþ1r2ðjhÞA0

v�xðWÞ

and we conclude thatZ
Sða;bÞ

jdetDwhðxÞj dx ¼
Z 1

0

Rhþ1 dR
Z b

a
r2ðjhÞ jA0

v�xðWÞj dWp
c

h þ 2;

where we denote by c a suitable constant. The conclusion follows by choosing hAN

sufficiently large. &

The following elementary lemma is stated without proof.

Lemma 7. Let f : ½a; b�-R be a continuous function, piecewise strictly monotone in

½a; b� (with a finite number of monotonicity intervals) and such that f ðaÞof ðbÞ: Then

there exists a partition a ¼ a0oa1o?oaN ¼ b of ½a; b� such that, for every

i ¼ 1; 2;y;N; either f is strictly increasing in ½ai�1; ai�; or f ðai�1Þ ¼ f ðaiÞ:

ARTICLE IN PRESS
I. Fonseca et al. / Journal of Functional Analysis 207 (2004) 1–32 7



Lemma 8. Let v : ½0; 2p�-G be a Lipschitz-continuous map, with G as in (4). Let

a; bA½0; 2p�; aob; be such that Av�xðaÞ ¼ Av�xðbÞ: If Av�xðWÞ is piecewise strictly

monotone in ½a; b� (with a finite number of monotonicity intervals) then

Z b

a
fðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞg dW ¼ 0:

Proof. Without loss of generality we may assume that x ¼ ð0; 0Þ: Since AvðWÞ is
piecewise strictly monotone in ½a; b� and AvðaÞ ¼ AvðbÞ; there exists a partition of the
interval ½a; b�; a ¼ W0oW1o?oWN ¼ b; NX2; such that, for every i ¼ 1; 2;y;N;
the real function AvðWÞ is strictly increasing in ½Wi�1; Wi� and is strictly decreasing in
½Wi; Wiþ1� (or vice versa).
The lemma can be proved via an induction argument based on the number N of

these maximal intervals of monotonicity. However, in order to simplify the proof, we
consider here only the case N ¼ 2: Hence, there exists W1Aða; bÞ such that AvðWÞ is
strictly increasing in ½a; W1� and is strictly decreasing in ½W1; b�; or conversely. To fix
the ideas, let us assume that AvðWÞ is strictly increasing in ½a; W1�: For every
ðR; WÞASða; bÞ let us define ṽðR; WÞ :¼ RvðWÞ: If AvðW1Þ � AvðaÞp2p; then ṽ restricted
to the interior of Sða;W1Þ and SðW1; bÞ is one-to-one. Moreover, the images
ṽðSða; W1ÞÞ and ṽðSðW1; bÞÞ are equal, and by the area formula,Z

Sða;W1Þ
jdetDṽðxÞj dx ¼ areaðṽðSða; W1ÞÞÞ ¼ areaðṽðSðW1; bÞÞÞ ¼

Z
SðW1;bÞ

jdetDṽðxÞj dx:

Since detDṽX0 in Sða; W1Þ and detDṽp0 in SðW1; bÞ; we obtainZ
Sða;W1Þ

detDṽðxÞ dx ¼ areaðṽðSða; W1ÞÞÞ ¼ areaðṽðSðW1; bÞÞÞ

¼ �
Z

SðW1;bÞ
detDṽðxÞ dx:

Using again (15), we have

detDṽðR; WÞ ¼ v1ðWÞv2WðWÞ � v2ðWÞv1WðWÞ ¼ AvðWÞjvðWÞj2: ð16Þ

Therefore, as claimed,

0 ¼
Z

Sða;bÞ
detDṽðxÞ dx ¼

Z 1

0

R dR
Z b

a
fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW

¼ 1
2

Z b

a
fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW:

If 2kpoAvðW1Þ � AvðaÞp2pðk þ 1Þ for some kX1; then we denote by

W0Aða; W1Þ; W00AðW1; bÞ the points such that AvðW0Þ ¼ AvðW00Þ ¼ 2kp: Again, using
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the area formula, we have Z
Sða;W1Þ

detDṽðxÞj j dx

¼
Z

Sða;W0Þ
detDṽðxÞj j dx þ

Z
SðW0;W1Þ

detDṽðxÞj j dx

¼ k area D þ area E;

where D is the domain in (5) enclosed by G and E is the domain represented in polar
coordinates by

E ¼fRðcosAvðWÞ; sinAvðWÞÞ : WA½W0; W1�; 0pRprðWÞg

¼ fRðcosAvðWÞ; sinAvðWÞÞ : WA½W1; W00�; 0pRprðWÞg:

Therefore, we also have Z
SðW1;bÞ

detDṽðxÞj j dx

¼
Z

SðW1;W00Þ
detDṽðxÞj j dx þ

Z
SðW00;bÞ

detDṽðxÞj j dx

¼ area E þ k area D:

Arguing as before we get the thesis (with N ¼ 2)

1

2

Z b

a
v1ðWÞv2WðWÞ � v2ðWÞv1WðWÞ

� �
dW ¼

Z
Sða;bÞ

detDṽðxÞ dx

¼
Z

Sða;W1Þ
detDṽðxÞj j dx �

Z
SðW1;bÞ

detDṽðxÞj j dx ¼ 0: &

Lemma 9. Let v : ½0; 2p�-G be a Lipschitz-continuous map, with G as in (4). Let

Av�xðWÞ be piecewise strictly monotone in ½a; b� (with a finite number of monotonicity

intervals). For every e40; there exists a Lipschitz-continuous map w : B1-R2 such

that wð1; WÞ ¼ vðWÞ for every WA½0; 2p�; andZ
B1

jdetDwðxÞj dxoeþ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����:
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Proof. If Av�xð0Þ ¼ Av�xð2pÞ then the result follows from Lemma 6. Otherwise,

without loss of generality we may assume that Av�xð0ÞoAv�xð2pÞ: By Lemma 7, we
can consider a partition of ½0; 2p� by means of points 0 ¼ a0oa1o?oaN ¼ 2p
such that, for every i ¼ 1; 2;y;N; either Av�x is strictly increasing in ½ai�1; ai�; or
Av�xðai�1Þ ¼ Av�xðaiÞ: Denote by I the set of indices

I :¼ fiAf1; 2;y;Ng : Av�xðai�1Þ ¼ Av�xðaiÞg:

Given e40; if iAI then we denote by wi : Sðai�1; aiÞ-R2 the Lipschitz-continuous
map provided by Lemma 6, satisfying the boundary conditions

wið1; WÞ ¼ vðWÞ 8WA½ai�1; ai�;
wiðR; ai�1Þ ¼ wiðR; aiÞ ¼ xþ Rðvðai�1Þ � xÞ 8RA½0; 1�;

(

and the bound Z
Sðai�1;aiÞ

jdetDwiðxÞj dxoe: ð17Þ

For every RA½0; 1� we define the Lipschitz-continuous map w : B1-R2;

wðR; WÞ :¼
xþ RðvðWÞ � xÞ 8WA½ai�1; ai� if ieI ;

wiðR; WÞ 8WA½ai�1; ai� if iAI :

(

Note that, in particular, w satisfies the boundary condition wð1; WÞ ¼ vðWÞ:
Moreover, if WA½ai�1; ai� for some ieI ; then, in view of (16), we have

jdetDwðxÞj ¼ jdetD½xþ RðvðWÞ � xÞ�j ¼ ðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞ; ð18Þ

where we have used the fact that Av�xðWÞ is strictly increasing for WA½ai�1; ai�: By
(17) and (18) we obtainZ

B1

jdetDwðxÞj dx

¼
X
iAI

Z
Sðai�1;aiÞ

jdetDwiðxÞj dx þ
X
ieI

Z
Sðai�1;aiÞ

jdetDwðxÞj dx

pe �#ðIÞ þ
X
ieI

Z 1

0

R dR
Z ai

ai�1

fðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞg dW

¼ e �#ðIÞ þ
X
ieI

1

2

Z ai

ai�1

fðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞg dW:

By Lemma 8, for every iAI we haveZ ai

ai�1

fðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞg dW ¼ 0;
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hence,Z
B1

jdetDwðxÞj dxp e � N þ 1
2

Z 2p

0

fðv1ðWÞ � x1Þv2WðWÞ � ðv2ðWÞ � x2Þv1WðWÞg dW

¼ e � N þ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW: &

Next we consider maps u ¼ uðR; WÞ depending explicitly on R as well. The following
result, valid for smooth maps, can also be easily obtained in the Lipschitz case by
means of an approximation argument.

Lemma 10. Let uAW 1;NðB1;R2Þ: For every rAð0; 1� we have

Z
Br

detDuðxÞ dx ¼ 1
2

Z 2p

0

u1ðr; WÞ @u2

@W
ðr; WÞ � u2ðr; WÞ @u1

@W
ðr; WÞ

� �
dW: ð19Þ

We start by focusing on maps u of class W 1;pðO;R2Þ-W
1;N
loc ðO\f0g;R2Þ for

some pAð1; 2Þ:

Lemma 11. Let u be a map satisfying the assumptions of Theorem 1. There exists a

sequence Rj-0 such that

lim
j-þN

Z 2p

0

u1ðRj; WÞ
@u2

@W
ðRj ; WÞ � u2ðRj; WÞ

@u1

@W
ðRj ; WÞ

� �
dW

¼
Z 2p

0

v1ðWÞ dv2

dW
ðWÞ � v2ðWÞ dv1

dW
ðWÞ

� �
dW:

Proof. First we use assumption (7), which implies that for every jX2 we have

Z 1=j

1=ð2jÞ
dR

Z
@BR

jDtujp dH1p
Z

B1=j

jDtujp dxp
M0

j2�p
:

From this inequality, we immediately get that there exist RjAð 1
2j
; 1

j
Þ such that

ðRjÞ
p�1

Z
@BRj

jDtujp dH1pcM0:

Since

ðRjÞ
p�1

Z
@BRj

jDtujp dH1 ¼
Z 2p

0

@u

@W
ðRj; WÞ

����
����
p

dW;
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we deduce that f@u
@WðRj; �ÞgjAN is a bounded sequence in Lpð0; 2pÞ: By assumption

(6), fuðRj; �ÞgjAN converges to vð�Þ in LNðð0; 2pÞ;R2Þ: Since f@u
@WðRj; �ÞgjAN remains

bounded in Lpðð0; 2pÞ;R2Þ; then it converges to @v
@W weakly in Lpðð0; 2pÞ;R2Þ as

j-þN: We reach the conclusion

lim
j-þN

Z 2p

0

u1ðRj; WÞ
@u2

@W
ðRj ; WÞ � u2ðRj; WÞ

@u1

@W
ðRj ; WÞ

� �
dW

¼
Z 2p

0

v1ðWÞ dv2

dW
ðWÞ � v2ðWÞ dv1

dW
ðWÞ

� �
dW: &

We are now ready to give the proof of Theorem 1. Actually, we shall prove a
stronger statement, i.e., not only that the representation formula (8) holds, but also
that TVðu;OÞ ¼ TVsðu;OÞ; where

TVsðu;OÞ ¼ inf lim inf
h-þN

Z
O
jdetDuhðxÞj dx :

�

uh-u strongly in W 1;pðO;RnÞ; uhAW 1;nðO;RnÞ
�

ð20Þ

is the total variation of the Jacobian in the strong topology. We divide the proof into
four steps, and we will refer to the preliminary lemmas above and to Lemma 23 of
Section 4.

Proof of Theorem 1. Step 1 (lower bound). Let u be a function in

W 1;pðO;R2Þ-W 1;N
loc ðO\f0g;R2Þ for some pAð1; 2Þ: Observe that, by assumption

(6), there exists r40 such that BrCO and uALNðBr;R
2Þ: Let Rj-0 be the sequence

provided by Lemma 11 and let jAN be sufficiently large so that BRj
CBr: For such

values of jAN; we use the estimate (54) of Lemma 23 to obtain

TVðu;OÞX
Z
O\BRj

jdetDuðxÞj dx þ
Z

BRj

detDũðxÞ dx

�����
�����;

where ũ : BRj
-R2 is any Lipschitz-continuous map such that ũðxÞ ¼ uðxÞ on @BRj

:

By formula (19) of Lemma 10 (valid on each ball BRj
), since ũ ¼ u; @ũ=@W ¼ @u=@W

on @BRj
; we have

TVðu;OÞX
Z
O\BRj

jdetDuðxÞj dx

þ 1

2

Z 2p

0

u1ðRj ; WÞ
@u2

@W
ðRj; WÞ � u2ðRj ; WÞ

@u1

@W
ðRj; WÞ

� �
dW

����
����:
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Letting j-þN; by Lemma 11 we obtain the lower bound

TVðu;OÞX
Z
O
jdetDuðxÞj dx þ 1

2

Z 2p

0

v1ðWÞ dv2

dW
ðWÞ � v2ðWÞ dv1

dW
ðWÞ

� �
dW

����
����: ð21Þ

Step 2 (upper bound—first part). To assert the opposite inequality in (21), let us
first assume that u is radially symmetric, i.e., u ¼ v ¼ vðWÞ ¼ uðWÞ; and that it satisfies
the assumptions of Lemma 9. By the conclusion of Lemma 9, given e40 there exists
a Lipschitz-continuous map w : B1-R2 such that wð1; WÞ ¼ vðWÞ for every WA½0; 2p�
and

Z
B1

jdetDwðxÞj dxoeþ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����:
For every hAN we set

uhðR; WÞ :¼
wðRh; WÞ if 0pRp1=h;

vðWÞ if RX1=h:

(

Then fuhghAN converges to u in LpðOÞ and
Z
O
jDuhðxÞ � DuðxÞjp dx ¼

Z
B1=h

jhDwðRh; WÞjp dx ¼ hp�2
Z

B1

jDwðxÞjp dx;

and so, since 1ppo2; fDuhghAN converges to Du strongly in LpðB1;R2�2Þ and,
finally,

Z
O
jdetDuhðxÞj dx ¼

Z
B1=h

jh2 detDwðRh; WÞj dx ¼
Z

B1

jdetDwðxÞj dx

o eþ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����:
Therefore, making use of definition (20) of the total variation of the Jacobian
TVsðu;OÞ in the strong topology, we can conclude that

TVsðu;OÞp1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����:
This inequality, together with the obvious inequality

TVðu;OÞpTVsðu;OÞ; 8uALNðO;RnÞ-W 1;pðO;RnÞ;
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and with Step 1, yields the conclusion

TVðu;OÞ ¼ TVsðu;OÞ ¼ 1
2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

���� ð22Þ

whenever u ¼ v ¼ vðWÞ ¼ uðWÞ satisfies the assumptions of Lemma 9.
Step 3 (upper bound—second part). As in the previous Step 2, we still assume that

u ¼ v ¼ vðWÞ ¼ uðWÞ; but we no longer require that the conditions of Lemma 9 are
satisfied. Without loss of generality, we can assume that Argðvð0Þ � xÞ ¼ 0 and thus,
by Lemma 5, the map vðWÞ may be represented as

vðWÞ ¼ xþ rðAv�xðWÞÞðcosAv�xðWÞ; sinAv�xðWÞÞ:

Construct a sequence fAkðWÞgkAN of piecewise affine functions, Lipschitz-continuous

with bounded Lipschitz constants, satisfying the conditions

Akð0Þ ¼ 0 8kAN;

A0
kðWÞa0 a:e: WA½0; 2p�; 8kAN;

Ak-Av�x in C0ð½0; 2p�Þ;
A0

kðWÞ-A0
v�xðWÞ a:e: WA½0; 2p�;

jA0
kðWÞjpL0 a:e: WA½0; 2p�; 8kAN;

8>>>>>><
>>>>>>:

and define

vkðWÞ :¼ xþ rðAkðWÞÞðcosAkðWÞ; sinAkðWÞÞ:

Then the map vkðWÞ satisfies all the assumptions of the previous Step 2 and

vk-v in C0ð½0; 2p�Þ;
dvk

dW

�� ���� ��
LNð0;2pÞpL0 8kAN:

(

We prove that fdvk

dWgkAN converges to
dv
dW for almost every WA½0; 2p�; as k-þN: To

this aim, let us recall that

v; vk : ½0; 2p�-G ¼ fxþ rðWÞðcos W; sin WÞ : WA½0; 2p�g;

where rðWÞ is a piecewise C1-function, i.e., there exist a finite number of points

0pa0oa1o?oaNp2p; such that rðWÞ is a function of class C1ð½aj�1; aj�Þ for every
j ¼ 1; 2;y;N: Define

E :¼ fWA½0; 2p� : (j ¼ 1; 2;y;N :Av�xðWÞ ¼ ajg:

Then

A0
v�xðWÞ ¼ 0 and v0ðWÞ ¼ 0; for a:e: WAE; ð23Þ
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and for almost every WA½0; 2p� we have also

dvk

dW
¼A0

kðWÞfr0ðAkðWÞÞðcosAkðWÞ; sinAkðWÞÞ

þ rðAkðWÞÞð�sinAkðWÞ; cosAkðWÞÞg ð24Þ

As k-þN; fr0ðAkðWÞÞgkAN converges to r0 ðAv�xÞ for every WeE: Thus, by (24)

we have that fdvk

dWgkAN converges to
dv
dW for almost every WA½0; 2p�\E: On the other

hand, by (23) for almost every WAE; fA0
kðWÞgkAN converges to A0

v�xðWÞ ¼ 0 and, since
fr0ðAkðWÞÞgkAN is uniformly bounded, by (24) we can conclude that fdvk

dWgkAN

converges to 0 ¼ dv
dW for almost every WAE; as k-þN: Therefore, fvkðWÞgkAN

converges to vðWÞ in the strong topology ofW 1;qðB1;R2Þ for every qX1; as k-þN;
and, in turn, this implies that the map ukðR; WÞ :¼ vkðWÞ (independent of R), which
belongs to W 1;pðB1;R2Þ for every pA½1; 2Þ; converges to uðR; WÞ ¼ vðWÞ; as k-þN;

in the strong topology of W 1;pðB1;R2Þ for every pA½1; 2Þ: From Step 2, and in
particular from (22), we deduce that

TVðu;OÞpTVsðu;OÞp lim inf
k-þN

TVsðuk;OÞ ¼ lim inf
k-þN

TVsðuk;OÞ

¼ lim
k-þN

1

2

Z 2p

0

v1k
@v2k
@W

� v2k
@v1k
@W

� �
dW

����
����

¼ 1
2

Z 2p

0

v1
dv2

dW
� v2

dv1

dW

� �
dW

����
����:

By (21) of Step 1 we finally obtain

TVðu;OÞ ¼ TVsðu;OÞ ¼ 1
2

Z 2p

0

fv1v2W � v2v1Wg dW
����

����:
Step 4 (upper bound—third part). Here we study the general case where u ¼ uðR; WÞ

may depend explicitly on R as well.
Using the argument of Lemma 22, for every uALNðO;R2Þ-W 1;pðO;R2Þ

-W
1;N
loc ðO\f0g;R2Þ with p41; it can be shown that admissible sequences for

TVsðu;OÞ; defined in (20), may be required to assume prescribed boundary
values, precisely

TVsðu;OÞ ¼ inf lim inf
h-þN

Z
O
jdetDuhðxÞj dx :

�

uh-u strongly in W 1;pðO;R2Þ; uhAu þ W
1;N
0 ðO;R2Þ

�
ð25Þ
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For every e40 there exists a map wAv þ W 1;N
0 ðB1;R2Þ such that

Z
B1

jdetDwðxÞj dxoeþ TVsðv;B1Þ: ð26Þ

From the proof of Lemma 11, it follows that there exists a sequence fRhghAN

converging to zero, such that

ðRjÞ
p�1

Z
@BRj

jDtujp dH1 ¼
Z 2p

0

juWðRh; WÞj
p

dWpM0; 8hAN: ð27Þ

Introduce the sequence of functions

uhðR; WÞ :¼
wð R

Rhð1�shÞ; WÞ if 0pRpRhð1� shÞ;
ZhðRÞvðWÞ þ ½1� ZhðRÞ�uðRh; WÞ if Rhð1� shÞoRoRh;

uðR; WÞ if RhpR;

8><
>:

where sh :¼ ðRhÞ
2�p
p�1 and Zh is a cut-off function, i.e., ZhðRÞ ¼ 1 if 0pRpRhð1�

shÞ; ZhðRÞ ¼ 0 if RhpRp1; ZhðRÞ is linear in the interval ½Rhð1� shÞ; Rh�: Notice that
uh-u in Lp ðB1;R2Þ; as h-þN; and that the sequence of gradients ðDuhÞhAN

converges in Lp to Du: Indeed

Z
O
jDuh � Dujp dxp c1

Z
BRhð1�shÞ

Dw
x

Rhð1� shÞ

� �����
����
p

dx

þ c1

Z
BRh

\BRhð1�shÞ

jvWjp

jxjp dx þ c1

Z
BRh

\BRhð1�shÞ

juWðRh; WÞj
p

jxjp dx

þ c1

Rp
hs

p
h

Z
BRh

\BRhð1�shÞ

u Rh

x

jxj

� �
� v

x

jxj

� �����
����
p

dx

þ c1

Z
BRh

jDujp dx

p c2R
2�p
h þ c2R

2�p
h sh

Z 2p

0

juWðRh; WÞj
p

dW

þ c2
R2�p

h

sp�1
h

jjuðRh; WÞ � vðWÞjjp
LNð0;2pÞ þ c1

Z
BRh

jDujp dx;
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and this quantity goes to zero since sh ¼ ðRhÞ
2�p
p�1: Therefore, by (26) we get

TVsðu;OÞp lim inf
h-þN

Z
O
jdetDuhðxÞj dx

¼
Z

B1

jdetDwðxÞj dx þ lim inf
h-þN

Z
BRh

\BRhð1�shÞ

jdetDuhðxÞj dx

þ
Z
O
jdetDuðxÞj dxpeþ TVsðv;B1Þ

þ lim inf
h-þN

Z
BRh

\BRhð1�shÞ

jdetDuhðxÞj dx þ
Z
O
jdetDuðxÞj dx: ð28Þ

We evaluate the last integral in the right-hand side. For Rhð1� shÞoRoRh; we have

detDuh ¼ 1
R

@u1
h
ðR;WÞ
@R

@u1
h
ðR;WÞ
@W

@u2
h
ðR;WÞ
@R

@u2
h
ðR;WÞ
@W

������
������

¼ 1
R
Z0hðRÞ½v1ðWÞ � u1ðRh; WÞ� ZhðRÞ

@v1ðWÞ
@W þ ½1� ZhðRÞ�

@u1WðRh;WÞ
@W

Z0hðRÞ½v2ðWÞ � u2ðRh; WÞ� ZhðRÞ
@v2ðWÞ
@W þ ½1� ZhðRÞ�

@u2ðRh;WÞ
@W

������
������;

and thus, since jZ0hðRÞjp c1
shRh

for some constant c1; we have

Z
BRh

\BRhð1�shÞ

jdetDuhj dxp
c1

shRh

Z Rh

Rhð1�shÞ
dR

Z 2p

0

jvðWÞ � uðRh; WÞj

� @vðWÞ
@W

����
����þ @uðRh; WÞ

@W

����
����

� �
dW

p c2 supfjvðWÞ � uðRh; WÞj : WA½0; 2p�g
Z 2p

0

@vðWÞ
@W

����
����þ @uðRh; WÞ

@W

����
����

� �
dW:

By (27), there exists a new constant c3 such thatZ
BRh

\BRhð1�shÞ

jdetDuhj dxpc3 supfjvðWÞ � uðR; WÞj : WA½0; 2p�g;

and thus, by assumption (6) and by (28), letting e-0 we obtain

TVðu;OÞpTVsðu;OÞp
Z
O
jdetDuj dx þ TVðv;B1Þ:

This upper bound, together with the lower bound of Step 1, yields the
conclusion. &
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3. Maps with values on the ‘‘eight’’ curve

In this section we consider maps with values on the ‘‘eight’’ curve. The ‘‘eight’’ curve

in R2 is the union g of the two circles gþ; g�; of radius 1 with centers at ð1; 0Þ and at
ð�1; 0Þ; respectively. Some explicit examples of such maps are given below. In the
next theorem we present two estimates yielding an upper bound and a lower bound.

Theorem 12 (The ‘‘eight’’ curve). Let g ¼ gþ,g�CR2 be the union of the two circles

of radius 1 with centers at ð1; 0Þ and at ð�1; 0Þ: Let v : ½0; 2p�-g be a Lipschitz-

continuous curve such that vð0Þ ¼ vð2pÞ: Let ðIjÞjAN be a sequence of disjoint open

intervals (possibly empty) of ½0; 2p� such that the image vðIjÞ is contained either in gþ

or in g�; and vðWÞ ¼ ð0; 0Þ when We
S

jAN Ij: Then, if uðxÞ :¼ vðx=jxjÞ; the following

upper estimate holds

TVðu;B1Þp
1

2

X
jAN

Z
Ij

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW

�����
�����: ð29Þ

Moreover, denoting by Iþj any previous interval Ij such that vðIjÞCgþ; and by I�k any

previous interval Ik such that vðIkÞCg�; we have the following lower estimate

TVðu;B1ÞX
1

2

X
jAN

Z
Iþ

j

fv1v2W � v2v1Wg dW

�����
�����þ

X
kAN

Z
I�

k

fv1v2W � v2v1Wg dW

�����
�����

( )
: ð30Þ

Remark 13. If the curve v : ½0; 2p�-g ¼ gþ,g� admits only two intervals Iþ1 and I�2
such that vðIþ1 ÞCgþ; vðI�2 ÞCg�; then the above estimates for TVðu;B1Þ are in fact
equalities. The same happens if the intervals are three, say Iþ1 ; I�2 and Iþ3 : In fact, this
case can be reduced to the previous one by periodicity. If the intervals are four, say

Iþ1 ; I�2 ; Iþ3 and I�4 ; then we may have a gap between the lower bound and the upper

bound stated in Theorem 12, unless the integral of v1v2W � v2v1W has the same sign,

respectively, in Iþ1 ; Iþ3 and in I�2 ; I�4 : These considerations are exploited in the study
some of the examples below.

Let us denote by g the image of the ‘‘eight’’ curve, i.e., the union of the two circles

gþ and g� of radius 1, with center at ð1; 0Þ and at ð�1; 0Þ; respectively, Below we will
use some elementary representation formulas for gþ and g�: Precisely, for gþ we will
use the representation formulas

gþ :¼ fðx1; x2ÞAR2 : x21 þ x22 � 2x1 ¼ 0g; ð31Þ

xAgþ\ð0; 0Þ 3
x1 ¼ 2 cos2 Arg x;
x2 ¼ 2 cos Arg x � sin Arg x:

(
ð32Þ
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With the aim to prove Theorem 12, we start with some preliminary results

concerning a map w with values in the circle gþ:We give a first lemma without proof.

Lemma 14. Let w : ½0; 2p�-gþ be a Lipschitz-continuous curve such that wð0Þ ¼
ð2; 0Þ: The real function

RðWÞ :¼
0 if wðWÞ ¼ ð0; 0Þ;
w1ðWÞw2WðWÞ�w2ðWÞw1WðWÞ

jwðWÞj2 if wðWÞað0; 0Þ;

8<
: ð33Þ

is bounded in ½0; 2p� by a constant depending only on the Lipschitz constant of w:
Moreover, setting

AwðWÞ :¼
Z W

0

w1ðtÞw2WðtÞ � w2ðtÞw1WðtÞ
jwðtÞj2

dt; ð34Þ

then for every a; bA½0; 2p� such that wðaÞað0; 0Þ and wðbÞað0; 0Þ; there exists kAZ

such that

AwðbÞ � AwðaÞ ¼ Arg wðbÞ �Arg wðaÞ þ kp: ð35Þ

The proof of this lemma is simple and is left to the reader. The next result is similar
to the umbrella Lemma 6, with the main difference that here the starting point of the

umbrella-stick is placed at a boundary point of the circle gþ: The proof is similar to
the proof of Lemma 6, and therefore we do not give the details.

Lemma 15 (The ‘‘umbrella’’ lemma for the ‘‘eight’’ curve). Let w : ½0; 2p�-gþ be

a Lipschitz-continuous curve. Assume that there exist a; bA½0; 2p�; aob; such that

AwðaÞ ¼ AwðbÞ: Then for every e40 there exists a Lipschitz-continuous map

w̃ : Sða; bÞ-R2 satisfying the boundary conditions

w̃ð1; WÞ ¼ wðWÞ 8WA½a; b�;
w̃ðR; aÞ ¼ RwðaÞ 8RA½0; 1�;
w̃ðR; bÞ ¼ RwðbÞ 8RA½0; 1�;

8><
>:

and such that
R

Sða;bÞ jdetDw̃ðxÞj dxoe:

Lemma 16. Let w : ½0; 2p�-gþ be a Lipschitz-continuous map. If a; bA½0; 2p�; aob;
are such that AwðaÞ ¼ AwðbÞ; and if the function AwðWÞ is piecewise strictly monotone

in ½a; b� (with a finite number of monotonicity intervals), then

Z b

a
fw1ðWÞw2WðWÞ � w2ðWÞw1WðWÞg dW ¼ 0:
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Proof. This result can be proved following an argument just as that of
Lemma 8. &

Lemma 17. Let u : ½0; 2p�-g ¼ gþ,g� be a Lipschitz-continuous map. Assume that

there exist N disjoint open intervals IjC½0; 2p� such that uðIjÞ is contained either in

gþ or in g� for every j ¼ 1; 2;y;N; and uðWÞ ¼ ð0; 0Þ when We
SN

j¼1 Ij : Assume, in

addition, that the function

W-u1ðWÞu2WðWÞ � u2ðWÞu1WðWÞ ð36Þ

has piecewise constant sign in ½0; 2p�: Then, for every e40; there exists a Lipschitz-

continuous map w̃ : B1-R2 satisfying the boundary condition w̃ð1; WÞ ¼ uðWÞ for every

WA½0; 2p�; and such that

Z
B1

jdetDw̃ðxÞj dxoeþ 1
2

XN

j¼1

Z
Ij

fu1ðWÞu2WðWÞ � u2ðWÞu1WðWÞg dW

�����
�����: ð37Þ

Proof. Fix jAf1; 2;y;Ng and assume that uðIjÞCgþ: We follow the method of
proof of Lemma 9, using Lemma 15 in place of Lemma 6, and Lemma 16 in
place of Lemma 8. Setting Ij :¼ ðaj; bjÞ; we construct a Lipschitz-continuous
map w̃j : Sðaj; bjÞ-R2

w̃ið1; WÞ ¼ uðWÞ 8WA½aj; bj �;
w̃iðR; ajÞ ¼ R � uðajÞ ¼ ð0; 0Þ 8RA½0; 1�;
w̃iðR; bjÞ ¼ R � uðbjÞ ¼ ð0; 0Þ 8RA½0; 1�;

8><
>: ð38Þ

and the estimate

Z
Sðaj ;bjÞ

jdetDw̃iðxÞj dxo
e
N

þ 1
2

Z
Ij

fu1ðWÞu2WðWÞ � u2ðWÞu1WðWÞg dW

�����
�����: ð39Þ

A similar conclusion holds if, instead, we have uðIjÞCg�: Then the result follows by
taking w̃ : B1-R2 defined by

w̃ðR; WÞ :¼
w̃jðR; WÞ 8WAðaj; bjÞ ¼ Ij;

ð0; 0Þ 8We
SN

j¼1 Ij:

(
&

Proof of Theorem 12. Step 1 (lower bound—first part). Let v : ½0; 2p�-g ¼ gþ,g�

be a Lipschitz-continuous map. With uðxÞ :¼ vðx=jxjÞ then uALNðB1;R2Þ-
W 1;pðB1;R2Þ-W 1;N

loc ðB1\f0g;R2Þ for every pAð1; 2Þ: By (48) (lower bound obtained
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in Lemma 22 in the general n—dimensional case) we have

TVðu;B1ÞX
Z

B1

detDũðxÞ dx

����
����;

where ũ : B1-R2 is any Lipschitz-continuous map which assumes the boundary
value ũ ¼ u on @B1 (e.g., ũðxÞ ¼ jxjvðx=jxjÞ ¼ jxjuðxÞ for xAB1\f0g and ũð0Þ ¼ 0).
By formula (19) of Lemma 10 (valid on Br for every rAð0; 1�Þ; since ũ ¼ u; @ũ=@W ¼
@u=@W on @B1; we have

TVðu;B1ÞX
1

2

Z 2p

0

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW
����

����: ð40Þ

As in the statement of Theorem 12, we denote by ðIjÞjAN a sequence of disjoint open

intervals in ½0; 2p� (possibly empty) such that the image vðIjÞ is contained either in gþ
or in g�; and vðWÞ ¼ ð0; 0Þ when We

S
jAN Ij: Then we can write (40) equivalently as

TVðu;B1ÞX
1

2

X
jAN

Z
Ij

fv1ðWÞv2WðWÞ � v2ðWÞv1WðWÞg dW

�����
�����: ð41Þ

Step 2 (lower bound—second part). Let d40 and let fuh ¼ u1h; u2hÞghAN be a sequence

in W 1;2ðB1;R2Þ converging to u in the weak topology of W 1;2ðB1;R2Þ; pAð1; 2Þ and
such that

TVðu;B1Þ þ dX lim
h-þN

Z
B1

jdetDuhðxÞj dx:

Consider uþ
h :¼ ðju1hj; u2hÞAW 1;2ðB1;R2Þ: Clearly fuhg converges to uþ ¼ ðju1j; u2Þ in

the weak topology of W 1;pðB1;R2Þ as h-þN: Since jdetDuþ
h ðxÞj ¼ jdetDuhðxÞj

for almost every xAB1; we obtain

TVðu;B1Þ þ dX lim
h-þN

Z
B1

jdetDuhðxÞj dx ¼ lim
h-þN

Z
B1

jdetDuþ
h ðxÞj dxXTVðuþ;B1Þ:

The total variation of the map uþ : B1-gþ may be obtained using formula (9), with
uþ ¼ ðju1j; u2Þ ¼ ðjv1j; v2Þ: Therefore, as d-0þ we have

TVðu;B1ÞXTVðuþ;B1Þ ¼
1

2

Z 2p

0

jv1j dv2

dW
� v2

djv1j
dW

� �
dW

����
����:

Recall that v1ðWÞ40 if WAIj; where vðIjÞCgþ (and analogously v1ðWÞo0 if vðIjÞCg�;
while v1ðWÞ ¼ 0 if We

S
jAN Ij). Again, as in the statement of Theorem 12, we denote

by Iþj ; with the þ sign, any interval Ij such that vðIjÞCgþ; and by I�k any interval
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Ik such that vðIkÞCg�: Thus,

TVðu;B1ÞX
1

2

X
jAN

Z
Iþ

j

fv1v2W � v2v1Wg dW�
X
kAN

Z
I�

k

fv1v2W � v2v1Wg dW

�����
�����: ð42Þ

Step 3 (lower bound—conclusion). Using the results of the previous Steps 1 and 2,
in particular (41) and (42), we have

TVðu;B1ÞX
1

2
max
7

X
jAN

Z
Iþ

j

fv1v2W � v2v1Wg dW7
X
kAN

Z
I�

k

fv1v2W � v2v1Wg dW

�����
�����:

Since max7 ja7bj ¼ jaj þ jbj; we finally obtain the lower bound (30).
Step 4 (upper bound). Assume first that u : ½0; 2p�-g ¼ gþ,g� is a Lipschitz-

continuous map satisfying the further assumptions of Lemma 17. In Particular, we
assume that there exist N disjoint open intervals IjC½0; 2p� such that uðIjÞ is
contained either in gþ or in g� for every j ¼ 1; 2;y;N; and uðWÞ ¼ ð0; 0Þ when
We

SN
j¼1 Ij: We also assume that the function W-u1ðWÞu2WðWÞ � u2ðWÞu1WðWÞ has

piecewise constant sign in ½0; 2p�: Then, for every e40; there exists a Lipschitz-
continuous map w̃ : B1-R2 satisfying the boundary condition w̃ð1; WÞ ¼ uðWÞ for
WA½0; 2p�; and (37). For every hAN we define

uhðR; WÞ :¼
uðWÞ if 1=hpRp1;
w̃ðRh; WÞ if 0pRp1=h:

(

As in Step 2 of the Proof of Theorem 1, uh converges to u strongly in W 1;pðB1 : R2Þ
for every p Að1; 2Þ; as h-þN: Finally, by (37),Z

B1

jdetDuhðxÞj dx ¼
Z

B1=h

jh2 detDwðRh; WÞj dx ¼
Z

B1

jdetDw̃ðR; WÞj dx

o eþ 1
2

XN

j¼1

Z
Ij

fu1ðWÞu2WðWÞ � u2ðWÞu1WðWÞg dW

�����
�����;

and thus we obtain the conclusion (29) in this case, i.e.,

TVðu;B1ÞpTVsðu;B1Þp
1

2

XN

j¼1

Z
Ij

fu1u2W � u2u1Wg dW

�����
�����:

Step 5 (upper bound again). Consider first the case where u : ½0; 2p�-g satisfies the
conditions of the previous Step 4, with the possible additional assumption that the

function W-u1ðWÞu2WðWÞ � u2ðWÞu1WðWÞ has piecewise constant sign in ½0; 2p�: Assume
further that there exist N disjoint open intervals IjC½0; 2p� such that uðIjÞ is
contained either in gþ or in g� for every j ¼ 1; 2;y;N; and uðWÞ ¼ ð0; 0Þ when
We

SN
j¼1 Ij:We proceed in a way similar to that of Step 3 of the proof of Theorem 1.
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We consider one of such intervals Ij such that uðIjÞCgþ and, without loss of

generality, we can assume that uð0Þ ¼ ð2; 0ÞAgþ: Note that the map uðWÞ can be
represented in the form

uðWÞ ¼ 2 cosAwðWÞðcosAwðWÞ; sinAwðWÞÞ

for WAIj: As in Step 3 of the proof of Theorem 1, we may find a sequence ðuj;kÞkAN;

with uj;k : Ij-R2; such that, as k-þN;

uj;k-u in C0ðIjÞ;
duj;k

dW -
du
dW strongly in LqðIjÞ 8qX1:

(

Moreover uj;kðWÞ ¼ uðWÞ for WA@Ij; and u1j;k du2j;k=dW� u2j;k du1j;k=dW has piecewise
constant sign in Ij: Then the map uj;kðWÞ satisfies all the assumptions of the previous
Step 4. We define

ukðWÞ :¼
uj;kðWÞ if WAIj;

ð0; 0Þ if We
S

j Ij :

(

Clearly the maps ukðWÞ converge to u in the strong topology ofW 1;pðB1;R2Þ for every
pA½1; 2Þ; as k-þN; and from Step 4 we obtain the upper bound (29) under our
assumptions, i.e.,

TVðu;B1ÞpTVsðu;B1Þp lim inf
k-þN

TVsðuk;B1Þ

¼ lim
k-þN

1

2

XN

j¼1

Z
Ij

u1j;k
du2j;k

dW
� u2j;k

du1j;k

dW

( )
dW

�����
�����

¼ 1
2

XN

j¼1

Z
Ij

u1
du2

dW
� u2

du1

dW

� �
dW

�����
�����: ð43Þ

Finally, when the intervals Ij are infinitely many, the upper bound (29) is deduced

from the previous case of finitely many intervals Ij ð j ¼ 1; 2;y;NÞ; approximating
u by

uNðWÞ :¼
uðWÞ if WA

SN
j¼1 Ij;

ð0; 0Þ if We
SN

j¼1 Ij;

(
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Indeed, applying (43) to each uN and passing to the limit as N-þN; we
obtain

TVðu;B1ÞpTVsðu;B1Þp lim inf
N-þN

TVsðuN ;B1Þ

p lim
N-þN

1

2

XN

j¼1

Z
Ij

u1
du2

dW
� u2

du1

dW

� �
dW

�����
�����

¼ 1
2

XN
j¼1

Z
Ij

u1
du2

dW
� u2

du1

dW

� �
dW

�����
�����: &

As an application of the estimates (29) and (30) we propose some examples related
to the ‘‘eight’’ curve. Notice that these examples illustrate cases where TVðu;B1Þ
differs from the total variation jDetDujðB1Þ of the distributional determinant.

Example 18. Let h; kAZ; and let v : ½0; 2p�-g be the curve whose image turns jhj
times in g� and jkj times in gþ; according to the parametric representation

vðWÞ :¼
ð�1; 0Þ þ ðcos 2hW; sin 2hWÞ if 0pWpp;

ð1; 0Þ � ðcos 2kW; sin 2kWÞ if ppWp2p:

(

Since

v1v2W � v2v1W ¼
2hð1� cos 2hWÞ if 0oWop;

2kðcos 2kW� 1Þ if poWo2p;

(

then, with uðxÞ :¼ vðx=jxjÞ; by the representation formulas (29), (30), we have

TVðu;B1Þ ¼ ðjhj þ jkjÞp;
jDetDujðB1Þ ¼ jh � kjp;

(
8h; kAZ: ð44Þ

Example 19. We consider the map

vðWÞ :¼
ð�1; 0Þ þ ðcos 2W; sin 2WÞ if 0pWpp;

ð1; 0Þ7ð�cos 2W; sin 2WÞ if ppWp2p;

(
ð45Þ

and we extend it by periodicity from ½0; 2p� to R: Then we define vhðWÞ :¼ vðhWÞ; for a
given parameter hAZ: The image of vh is contained in gþ and g� in correspondence
with two sets of disjoint open intervals of ½0; 2p� which, with the notations introduced
above, we denote by Iþj and I�k ; respectively. Then vðIjÞCgþ and vðIkÞCg�: With
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uhðxÞ :¼ vhðx=jxjÞ; by (29) and (30) we obtain

TVðuh;B1Þ ¼
1

2

X
j

Z
Iþ

j

v1h
@v2h
@W

� v2h
@v1h
@W

� �
dW

�����
�����

þ 1

2

X
k

Z
I�

k

v1h
@v2h
@W

� v2h
@v1h
@W

� �
dW

�����
�����

¼ 1
2

X
j

Z
Iþ

j

2hð1� cos 2hWÞ dW

�����
�����

þ 1

2

X
k

Z
I�

k

2hðcos 2hW� 1Þ dW

�����
����� ¼ 2jhjp:

In this situation we have

TVðuh;B1Þ ¼ 2jhjp;
jDetDuhjðB1Þ ¼ 0;

(
8hAZ:

Example 20. The map v : ½0; 2p�-g defined by

vðWÞ :¼

ð�1; 0Þ þ ðcos 4W; sin 4WÞ if 0pWpp=2;

ð1; 0Þ þ ð�cos 4W; sin 4WÞ if p=2pWpp;

ð�1; 0Þ þ ðcos 4W; sin 4WÞ if ppWp3p=2;
ð1; 0Þ þ ð�cos 4W; sin 4WÞ if 3p=2pWp2p;

8>>><
>>>:

ð46Þ

spans g� twice counter-clockwise, and gþ twice clockwise. It is a particular case of
the previous Example 19 and, with the usual notation uðxÞ :¼ vðx=jxjÞ; we have
TVðu;B1Þ ¼ 4p and jDetDujðB1Þ ¼ 0:
Consider now the map %v : ½0; 2p�-g defined by

%vðWÞ :¼

ð�1; 0Þ þ ðcos 4W; sin 4WÞ if 0pWpp=2;

ð1; 0Þ þ ð�cos 4W; sin 4WÞ if p=2pWpp;

ð�1; 0Þ þ ðcos 4W;�sin 4WÞ if ppWp3p=2;
ð1; 0Þ þ ð�cos 4W;�sin 4WÞ if 3p=2pWp2p;

8>>><
>>>:

ð47Þ

which spans g� twice, the first time counter-clockwise and the second time clock-
wise; while gþ is spanned first clockwise and then counter-clockwise. Then again,
with %uðxÞ :¼ %vðx=jxjÞ; the estimate (29) yields TVð %u;B1Þp4p; while (30) gives
TVð %u;B1ÞX0 ¼ jDetD %ujðB1Þ: Therefore, this is an example where there is a gap
between the estimates (29) and (30).
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The last example related to %v was already considered by Malý [21] and by
Giaquinta et al. [18], who proved that the graph of %u cannot be approximated in area
by the graphs of smooth maps.

4. Some lower semicontinuity estimates

In this section, we prove some lower semicontinuity estimates used in the previous
sections. Since there are no major technical differences between the 2- and the
n-dimensional case, we consider here the general n-dimensional case. We first recall a
lower semicontinuity result, valid for polyconvex integrands (and for quasiconvex

integrands as well), related to the weak topology ofW 1;pðO;RnÞ for some p below the
critical exponent n: These may be called nonstandard lower semicontinuity results, as
opposed to the classical setting of lower semicontinuity results in the weak topology

of W 1;pðO;RnÞ when p is equal to the growth exponent of the integrand f

(see [2,22,24]). We refer to polyconvex integrals as in Theorem 21 below, of the type

Z
O

f ðDuÞ dx; with 0pf ðxÞpcð1þ jxjpÞ:

In the case considered here, the integrand f ðxÞ :¼ jdet xjpn�n=2jDuðxÞjn has growth
exponent equal to n; while we need to consider the weak topology ofW 1;pðO;RnÞ for
some pon:

Theorem 21 below has been proved by Marcellini [22,23] for p4n2=ðn þ 1Þ and by
Dacorogna and Marcellini [12] for p4n � 1 (pX1 if n ¼ 2). A limiting case, with
p ¼ n � 1; has been considered under different assumptions by Acerbi and Dal Maso
[1], Celada and Dal Maso [11], Dal Maso and Sbordone [13] and by Fusco and
Hutchinson [17]. The relaxation in this context has been first considered by Fonseca
and Marcellini [16].
Precisely, the following theorem holds (we limit ourselves to quote here the

polyconvex case, related to maps u :OCRn-Rm with m ¼ n). Given a map
u :O-Rn; we denote by MðDuÞ the vector-valued map

MðDuÞ ¼ ðDu; adj2 Du;y; adjn�1 Du; detDuÞARN ;

where, for j ¼ 2;y; n � 1; adjj Du denotes the matrix of all minors j � j of Du and

N ¼
Pn

j¼1
n
j

� �2
(in particular N ¼ 5 if n ¼ 2).

Theorem 21 (Lower semicontinuity below the critical exponent). Let O be an open

set of Rn: Let g :RN-R be a nonnegative convex function. Then

lim inf
h-þN

Z
O

gðMðDuhÞÞ dxX

Z
O

gðMðDuÞÞ dx;
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for every sequence uh which converge to u in the weak topology of W 1;pðO;RnÞ for some

p4n � 1; with u; uhAW
1;n
loc ðO;R

nÞ for every hAN:

The first result stated in Lemma 22 gives a lower bound for the total variation. It is
a variant of Lemma 5.1 (see also Lemma 2.3) by Marcellini [23], who considered the
general quasiconvex case with the exponent p below the critical growth exponent n;

precisely n2=ðn þ 1Þopon:

Lemma 22 (Lower bound—first estimate). Let uALNðO;RnÞ-W 1;pðO;RnÞ-
W
1;N
loc ðO\f0g;RnÞ for some pAðn � 1; nÞ: The following estimate holds

TVðu;OÞX
Z
O
detDũðxÞ dx

����
����; ð48Þ

whenever ũ :O-Rn is a Lipschitz-continuous map which agrees with u on the boundary

of O; i.e., ũðxÞ ¼ uðxÞ on @O:

Proof. For fixed pAðn � 1; nÞ; d40; consider a sequence fuhghAN inW 1;nðO;RnÞ that
converges to u in the weak topology of W 1;pðO;RnÞ; and such that

lim
h-þN

Z
O
jdetDuhðxÞj dxpTVðu;OÞ þ d: ð49Þ

Let M :¼ jjujjLNðO;RnÞAR: Truncate each uh into wh ¼ ðw1h;w2h;y;wn
hÞ whose compo-

nents are given by

w
j
hðxÞ :¼

�M if u
j
hðxÞp� M;

u
j
hðxÞ if � Mpu

j
hðxÞpM;

M if u
j
hðxÞXM;

8>><
>>:

for all j ¼ 0; 1;y; n: Clearly fuhghAN still converges to u; as h-þN; in the weak

topology of W 1;pðO;RnÞ and the LN-norm jjwhjjLNðO;RnÞ is uniformly bounded as

hAN: Moreover, since

whðxÞauhðxÞ ) detDwhðxÞ ¼ 0;

we obtain jdetDwhðxÞjpjdetDuhðxÞj for almost every xAO; and

lim inf
h-þN

Z
O
jdetDwhðxÞj dxp lim

h-þN

Z
O
jdetDuhðxÞj dxoTVðu;OÞ þ d:
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Therefore, without loss of generality, passing to a subsequence if necessary, we can
assume that the limit relation (49) holds, together with the uniform bound

sup
hAN

jjuhjjLNðO;RnÞ ¼ MoþN: ð50Þ

Let O0 be an open set compactly contained in O and let R :¼ distðO0; @OÞ=2; with
0AO0: For every kAN set

Oi :¼ xAO : distðx;O0Þo
iR

k

� �
; 8i ¼ 1; 2;y; k:

For every i ¼ 1; 2;y; k; consider a smooth cut-off scalar function ji with compact

support in Oi; such that jiðxÞ ¼ 1 in Oi�1; 0pjiðxÞp1 and jDjiðxÞjpkþ1
R
for all x:

Then, for every i ¼ 1; 2;y; k; and for hAN; define

wh;iðxÞ :¼ ð1� jiðxÞÞuðxÞ þ jiðxÞuhðxÞ:

Then wh;iðxÞ ¼ uðxÞ for every xAO\Oi; and in particular for every xAO\O0: Since
uðxÞ is a smooth map in O\O0 and since Wh;iðxÞ and ũðxÞ are smooth maps in O;
which coincide with uðxÞ on the boundary @O; using the fact that the integral of the
Jacobian depends only on the trace at the boundary, we have

Z
O
detDũðxÞ dx

����
���� ¼

Z
O
detDwh;iðxÞ dx

����
����p

Z
O
jdetDwh;iðxÞj dx

¼
Z
Oi�1

jdetDuhðxÞj dx þ
Z
Oi\Oi�1

jdetDwh;iðxÞj dx

þ
Z
O\Oi

jdetDuðxÞj dx:

Letting h-þN; taking into account the limit relation (49), summing up the above
relation with respect to i ¼ 1; 2;y; k; and dividing both sides by k; we obtain

Z
O
detDũðxÞ dx

����
����pTVðu;OÞ þ d

þ 1

k
lim sup
h-þN

Xk

i¼1

Z
Oi\Oi�1

jdetDwh;iðxÞj dx

þ
Z
O\O0

jdetDuðxÞj dx: ð51Þ
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We estimate the second integral in the right-hand side. To this aim, we recall the
following inequality (which, for instance, can be obtained from inequality (2.9) of
Marcellini [22])

jjdet xj � jdet Zjjpcð1þ jxjn�1 þ jZjn�1Þjx� Zj: ð52Þ

As Dwh;iðxÞ ¼ D½ðI � jiðxÞÞuðxÞ þ jiðxÞuhðxÞ�; in Oi\Oi�1 we have

jDwh;iðxÞ � jiðxÞDuhðxÞjp jDjiðxÞjjuhðxÞ � uðxÞj

þ j1� jiðxÞjjDuðxÞjpk þ 1
R

juhðxÞ � uðxÞj þ jDuðxÞj:

From (52) with x :¼ Dwh;iðxÞ and Z :¼ jiðxÞDuhðxÞ we obtain

jjdetDwh;iðxÞj � jdet jiðxÞDuhðxÞjj

pcð1þ jDwh;iðxÞjn�1 þ jDuhðxÞjn�1Þ
k þ 1

R
juhðxÞ � uðxÞj þ jDuðxÞj

� �
:

Set M1 :¼ jjDujjLNðO\O0;Rn�nÞAR: Then, since p4n � 1; for the second integral in the
right-hand side of (51) we have the following bound

Z
Oi\Oi�1

jdetDwh;iðxÞj dx

p
Z
Oi\Oi�1

jdetjiðxÞDuhðxÞj dx

þ c

Z
Oi\Oi�1

ð1þ jDwh;iðxÞjn�1 þ jDuhðxÞjn�1Þ
k þ 1

R
juhðxÞ � uðxÞj þ M1

� �� �
dx

p
Z
Oi\Oi�1

jdet jiðxÞDuhðxÞj dx þ c

Z
Oi\Oi�1

ð1þ jDwh;iðxÞjn�1 þ jDuhðxÞjn�1Þ
p

n�1 dx

� �n�1
p

�
Z
Oi\Oi�1

k

ðR � rÞ juhðxÞ � uðxÞj þ M1

� � p
p�ðn�1Þ

dx

8<
:

9=
;

p�ðn�1Þ
p

:

The sequences fuhghAN and fwhghAN converge to u in the weak topology of

W 1;pðO;RnÞ and the Lp-norm of their gradients remains bounded. Up to a
subsequence, as h-þN; the difference fuhðxÞ � uðxÞghAN converges almost

everywhere to zero. By taking into account the uniform bound (50), we can pass
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to the limit as h-þN and we obtain

lim sup
h-þN

Xk

i¼1

Z
Oi\Oi�1

jdetDwh;iðxÞj dx

p lim sup
h-þN

Xk

i¼1

Z
Oi\Oi�1

jdet jiðxÞDuhðxÞj dx þ c1 � M1jOi\Oi�1j
p�ðn�1Þ

p

p lim sup
h-þN

Z
O\O0

jdetDuhðxÞj dx þ c1kM1jO\O0j
p�ðn�1Þ

p

¼ TVðu;OÞ þ dþ c1kM1jO\O0j
p�ðn�1Þ

p : ð53Þ

From (51) and (53) we deduce that

Z
O
detDũðxÞ dx

����
����pTVðu;OÞ þ d

þ 1
k
fTVðu;OÞ þ dþ c1kM1jO\O0j

p�ðn�1Þ
p g þ

Z
O\O0

jdetDuðxÞj dx:

Letting k-þN; O0-O and d-0þ; we conclude

Z
O
detDũðxÞ dx

����
����pTVðu;OÞ: &

Lemma 23 (Lower bound—second estimate). Let u be a function of class

LNðO;RnÞ-W 1;pðO;RnÞ-W
1;N
loc ðO\f0g;RnÞ for some pAðn � 1; nÞ: For every r40

such that BrCO the following estimate holds

TVðu;OÞX
Z
O\Br

jdetDuðxÞj dx þ
Z

Br

detDũðxÞ dx

����
����; ð54Þ

where ũ : Br-Rn is any Lipschitz-continuous map which coincides with u on the

boundary of Br; i.e., ũðxÞ ¼ uðxÞ on @Br:

Proof. Fix d40 and consider a sequence fuhghAN inW 1;nðO;RnÞ which converges to
u in the weak topology of W 1;pðO;RnÞ for some pAðn � 1; nÞ and such that (49)
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holds. For every r40 such that BrCO we have

TVðu;OÞ þ dX lim
h-þN

Z
O
jdetDuhðxÞj dx

X lim inf
h-þN

Z
O\Br

jdetDuhðxÞj dx þ lim inf
h-þN

Z
Br

jdetDuhðxÞj dx

X lim inf
h-þN

Z
O\Br

jdetDuhðxÞj dx þ TVðu;BrÞ:

We estimate the term TVðu;BrÞ with (48). Moreover, since u; uh belong to

W 1;nðO\Br;R
nÞ for every hAN (and uh converge to u in the weak topology of

W 1;pðO\Br;R
nÞ for p4n � 1), we can apply the lower semicontinuity result below the

critical exponent stated in Theorem 21. We reach the conclusion (54) as d-0þ: &
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