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Abstract

In this paper we present a new extension of a celebrated Serrin’s lower
semicontinuity theorem. We consider an integral of the calculus of varia-
tion

∫
Ω
f (x, u,Du) dx and we prove its lower semicontinuity in W 1,1

loc (Ω)
with respect to the strong L1

loc norm topology, under the usual continuity
and convexity property of the integrand f(x, s, ξ), only assuming a mild
(more precisely, local) condition on the independent variable x ∈ Rn, say
local Lipschitz continuity, which - we show with a specific counterexample
- cannot be replaced, in general, by local Hölder continuity.
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1 Introduction

The aim of this paper is to determinate some new sufficient conditions for lower
semicontinuity with respect to the strong convergence in L1

loc for functionals of
integral type

F (u,Ω) =
∫

Ω

f (x, u(x), Du(x)) dx , (1)

where Ω is an open set of Rn, u varies in the Sobolev class W 1,1
loc (Ω), Du denotes

the gradient of u, and the function f = f(x, s, ξ), for x ∈ Ω, s ∈ R, ξ ∈ Rn,
satisfies the conditions f is continuous in Ω× R× Rn,

f is nonnegative in Ω× R× Rn,
f(x, s, ξ) is convex in ξ ∈ Rn for all (x, s) ∈ Ω× R.

(2)
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The integral functional F is lower semicontinuous in W 1,1
loc (Ω) with respect to

the strong convergence in L1
loc if, for every uh, u ∈ W 1,1

loc (Ω) such that uh → u
in L1

loc (Ω), then
lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) .

Since the example given in 1941 by Aronzjain (see Pauc [15]; in particular
page 54), it is known that condition (2) alone is not sufficient for strong lower
semicontinuity of the integral F in (1). Serrin published in 1961 an article
[16] proposing, in addition to (2), some sufficient conditions for strong lower
semicontinuity. One of the most known and celebrated Serrin’s theorem on this
subject is the following one (see Theorem 12 in [16]).

Theorem .1 (Serrin) Let f satisfy, in addition to (2), one of the following
conditions:

(a) f(x, s, ξ)→ +∞ when |ξ| → +∞, for all (x, s) ∈ Ω× R;

(b) f(x, s, ξ) is strictly convex in ξ ∈ Rn for all (x, s) ∈ Ω× R;

(c) the derivatives fx(x, s, ξ), fξ(x, s, ξ) and fξx(x, s, ξ) exist and are continu-
ous.

Then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong

convergence in L1
loc.

Many attempts have been made to weaken the assumptions on the integrand
f . Serrin himself gave in 1961 the following further result (see Theorem 11 in
[16]).

Theorem .2 (Serrin) Let us assume that f satisfies (2) and the following
(uniform) continuity condition

|f(x1, s1, ξ)− f(x2, s2, ξ)| ≤ λ (|x1 − x2|+ |s1 − s2|) · {1 + f(x1, s1, ξ)} , (3)

for every (x1, s1), (x2, s2) ∈ Ω× R and for all ξ ∈ Rn, where λ is a modulus of
continuity. Then

lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) ,

for every uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω), assuming in addition
that u ∈ C0(Ω).

The aims of some further studies in the direction of Theorem .2 tempt to
remove the assumption of continuity of u and to weaken the uniform continuity
condition (3) on f . Dal Maso [3] in 1980 gave the following lower semicontinuity
result, without continuity assumptions on the limit function u (and in fact Dal
Maso was able to extend his analysis to u ∈ BV (Ω), the functional space of
functions of class L1 (Ω) with bounded variation, also considering more generally
sequences of integral functionals which Γ-converge). However Dal Maso had to
introduce some coercivity and growth conditions, as follows.
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Theorem .3 (Dal Maso) Let us assume that f satisfies (2), (3) and that there
exist functions m, q ∈ C0(Ω), with m(x) > 0 for every x ∈ Ω, and a positive
constant M such that

m(x) |ξ| ≤ f(x, s, ξ) ≤M |ξ|+ q(x) ,

for every (x, s, ξ) ∈ Ω × R× Rn. Then F (u,Ω) is lower semicontinuous in
W 1,1
loc (Ω) with respect to the strong convergence in L1

loc.

Let us also mention that Dal Maso himself, revisiting the already quoted
example by Aronzjain [15], emphasized that the continuity of f with respect
to (x, u) alone is not sufficient for lower semicontinuity of F (u,Ω) in L1. See
Section 4 of this paper for further details.

A recent extension of Theorem .2 is due to Fonseca and Leoni (see Theorem
1.1 in [10], where the case u ∈ BV (Ω) is considered too; see also [11]).

Theorem .4 (Fonseca - Leoni) Let f(x, s, ξ) be a Borel function, convex with
respect to ξ ∈ Rn. Let us also assume that, for every (x0, s0) ∈ Ω × R and for
every ε > 0, there exists δ > 0 such that

f(x0, s0, ξ)− f(x, s, ξ) ≤ ε {1 + f(x, s, ξ)} , (4)

for every (x, s) ∈ Ω × R such that |x− x0| + |s− s0| ≤ δ and for all ξ ∈ Rn.
Then F (u,Ω) is lower semicontinuous in W 1,1

loc (Ω) with respect to the strong
convergence in L1

loc.

Notice that assumption (4) is a kind of lower semicontinuity of f with respect
to (x, s) ∈ Ω × R, uniform with respect to ξ ∈ Rn. Lower semicontinuity of
integrands of the type f(x, ξ) with respect to x ∈ Ω has been pointed out by
Fusco [12] in 1979, as a necessary condition for lower semicontinuity of the
respective (one-dimensional) integrals with respect to the strong convergence in
L1(Ω), on discussing the case of linear growth, with f(x, ξ) = a(x) |ξ|.

As already said, Theorems .3 and .4 has been obtained, respectively by Dal
Maso and by Fonseca and Leoni, in the more general setting of BV (Ω), the
subspace of L1 (Ω) whose functions have bounded variation. We quoted above
the particular case when uh, u ∈ W 1,1

loc (Ω), for a better comparison with the
other results presented in this paper.

Some researches, as in Theorem .4, had the aim to relax the assumptions
on f(x, s, ξ) related to the dependence on s, starting from a result in [7] by De
Giorgi, Buttazzo and Dal Maso in 1983.

Theorem .5 (De Giorgi - Buttazzo - Dal Maso) Let f = f(s, ξ) be a non-
negative Borel function, convex with respect to ξ ∈ Rn, only measurable with
respect to s ∈ R, although lower semicontinuous with respect to s ∈ R at ξ = 0.
If

lim sup
|ξ|→0

(f(s, 0)− f(s, ξ))+

|ξ|
∈ L1

loc(R) ,

then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong

convergence in L1
loc.
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Theorem .5 has been generalized in 1987 by Ambrosio [2], and in 1990-91 by
De Cicco [4], [5] to the BV (Ω) setting. In [10] Fonseca and Leoni obtained the
same conclusion of Theorem .5 for integrands f(x, s, ξ), depending explicitly on
the x variable too, under the assumption of uniform continuity of f with respect
to x ∈ Ω, similarly to (4).

From the above exposition it should be clear that the dependence of f on
(x, s) must be treated carefully in studying lower semicontinuity of the inte-
gral F (u,Ω) with respect to the strong convergence in L1(Ω). Of course (x, s)
dependence gives some difficulties in the proofs, which are not only technical
difficulties, since the existence of a counterexample to lower semicontinuity un-
der explicit (x, s) dependence of the integrand f . In particular measurability
of f(x, s, ξ) with respect to (x, s), or only with respect to x, is not appropri-
ate for strong lower semicontinuity. As already mentioned, Fusco [12] gave
a one-dimensional example, related to the integrand f(x, ξ) = a(x) |ξ|, where
lower semicontinuity with respect to x was a necessary condition; in this con-
text we refer also to the example in [14], related to an integrand of the type
f(x, ξ) = a(x) |ξ|2, which may have a relaxed functional in the strong L1 norm
topology identical equal to zero, although the coefficient a(x) is a nonnegative
function, not identical equal to zero (thus the corresponding integral F (u,Ω)
is not lower semicontinuous). In Section 5 of this paper we will give further
details, as well as we will propose a coercivity condition also sufficient for lower
semicontinuity in L1

loc .
In this paper we consider specifically the dependence of f(x, s, ξ) with re-

spect to x ∈ Ω. In the previous results some qualified assumptions of uniform
continuity, or of uniform lower semicontinuity, of f(x, s, ξ) with respect to x
have been made (in the sense made more precise in the statements). On the
contrary, in this paper we propose a new simple condition, in addition to (2),
sufficient for lower semicontinuity. In fact we assume that f(x, s, ξ) is Lips-
chitz continuous with respect to x, locally respect to (s, ξ) and not necessarily
globally. That is, we do not assume that the Lipschitz constant is uniform for
(s, ξ) ∈ R× Rn. This main difference allows us to obtain, as a corollary, an
improvement of Serrin’s Theorem .1(c); in fact we get the lower semicontinuity
of F (u,Ω) under the only assumption that the derivative fx(x, s, ξ) exist and is
continuous, condition which clearly implies Lipschitz continuity of f on compact
subsets of Ω× R× Rn, but not necessarily Lipschitz continuity of f on the full
set Ω× R× Rn.

One of the main results of this paper (an other is Example .11) is the fol-
lowing Theorem .6. It has as a direct consequence Corollary .7, which of course
generalizes Serrin’s Theorem .1(c).

Theorem .6 Assume that f(x, s, ξ) satisfies (2) and that, for every compact
set K ⊂ Ω× R× Rn, there exists a constant L = L(K) such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| , (5)

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. Then the integral F (u,Ω) in (1) is lower
semicontinuous in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc(Ω).

4



The proof of Theorem .6 is divided in several steps. In one of these steps
we use an approximation procedure, due to De Giorgi [6], of the integrand f
by a sequence fj , each fj being the maximum of a finite number of functions
g(x, s, ξ) = a0(x, s) +

∑n
i=1 ai(x, s)ξi, linear with respect to ξ, with coefficients

a0(x, s) and ai(x, s) (i = 1, 2, . . . , n) as in (18), which can be reduced to have
compact support in Ω×R. By this reason it is enough to assume local Lipschitz
continuity of f with respect to x as in (5), and not necessarily global Lipschitz
continuity.

Direct consequence of the Theorem .6 is the following result.

Corollary .7 Assume that f(x, s, ξ) satisfies (2) and that the derivative fx(x, s, ξ)
exists and is continuous (or only locally bounded). Then F (u,Ω) is lower semi-
continuous in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc(Ω).

In Sections 2 and 3 we will give the proof of Theorem .6. In Section 4 we will
exhibit some examples showing that assumptions made in Theorem .6 (and in
Corollary .7) are relevant for strong lower semicontinuity, in the sense that the
only property of continuity of f(x, s, ξ) with respect to x ∈ Ω (of course, together
with the other conditions in (2)) is not enough for strong lower semicontinuity of
F (u,Ω) in L1

loc , although sufficient for weak lower semicontinuity in W 1,1
loc (Ω).

More precisely, in Example .11 we will compare the assumptions of local
Lipschitz continuity of f with respect to x with the assumption of local Hölder
continuity of f (with respect to x) with exponent α < 1. In fact we will
show that, for every exponent α ∈ (0, 1), there exists an n-dimensional integral
F (u,Ω) (the dimension n depends on α, precisely n > 4α/(1−α)) which is not
lower semicontinuous in L1

loc and whose integrand f(x, s, ξ) is Hölder continuous
with respect to x (and of course nonnegative, continuous for (x, s, ξ) ∈ Ω ×
R× Rn and convex with respect to ξ ∈ Rn).

In Section 5 we will show that lower semicontinuity results, corresponding
to those of Theorem .6 and Corollary .7, do not hold in the vector-valued case,
for applications u ∈ W 1,1

loc (Ω,Rm), i.e., u : Ω ⊂ Rn → R
m with m > 1, not just

for quasiconvex integrands, but under convexity conditions too. Finally, having
in mind some relaxation formulas due to Marcellini [14] and Fusco [12], we give
in Proposition .17 a coercivity condition sufficient for lower semicontinuity in
L1
loc of the integral F (u,Ω) in (1).

Acknowledgment. This research, partially done while Michele Gori was
carrying out his degree thesis in Mathematics [13] at the Università di Firenze,
has been supported by the Italian Ministero dell’Università e della Ricerca Sci-
entifica e Tecnologica (MURST).

2 A preliminary lemma

In this section we give some preliminary results that will be used in the proof
of Theorem .6. The first lemma is a modification of an argument introduced by
Serrin (see the proof of Theorem 12 in [16]).
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Lemma .8 Let us assume that f satisfies (2) and that the derivative fξ(x, s, ξ)
exists and is a continuous function in Ω×R×Rn. Let us also assume that, for
every compact set K ⊂ Ω×R×Rn, there exists a constant L = L (K) such that

|fξ(x1, s, ξ)− fξ(x2, s, ξ)| ≤ L |x1 − x2| , ∀ (x1, s, ξ) , (x2, s, ξ) ∈ K, (6)

and, for every compact set K1 ⊂ Ω × R, there exists a constant L1 = L1 (K1)
such that |fξ(x, s, ξ)| ≤ L1, ∀ (x, s) ∈ K1, ∀ ξ ∈ Rn,

|fξ(x, s, ξ1)− fξ(x, s, ξ2)| ≤ L1 |ξ1 − ξ2| , ∀ (x, s) ∈ K1, ∀ ξ1, ξ2 ∈ Rn.
(7)

Then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong

convergence in L1
loc.

Proof. Let us consider a sequence fi(x, s, ξ) = αi(x, s)f(x, s, ξ), i = 1, 2, . . .,
where {αi}i∈N is an increasing sequence of smooth functions with compact sup-
port in Ω × R, converging pointwise to 1 in Ω × R. It is clear that, for all
i ∈ N, fi still satisfies the hypothesis of Lemma .8 and also vanishes if (x, s)
vary outside a compact set of Ω × R. Moreover fi is an increasing sequence of
functions which pointwise converge to f . Thus, by the monotone convergence
theorem we can go to the limit as i→ +∞ and, since the supremum of a family
of lower semicontinuous functionals is lower semicontinuous, it is sufficient to
prove the stated lower semicontinuity for the integral functional associated to a
generic integrand αif . In other words, in the proof of Lemma .8, without loss
of generality, we can assume that the integrand f(x, s, ξ) vanishes if (x, s) vary
outside a compact set of Ω × R. For the same reason in the exposition below
we will always assume that (x, s) vary on a compact set of Ω×R and that f is
equal to zero in the complement of this compact set.

Let uh, u ∈W 1,1
loc (Ω) such that uh → u in L1

loc (Ω). We will prove that

lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) . (8)

Without loss of generality, we can assume that uh converges to u almost every-
where in Ω and that

lim inf
h→+∞

F (uh,Ω) = lim
h→+∞

F (uh,Ω) .

Let Ω′ be an open set whose closure is contained in Ω, such that f(x, s, ξ) = 0
when x ∈ Ω − Ω′; thus in particular F (uh,Ω) = F (uh,Ω′) and F (u,Ω) =
F (u,Ω′). Let us denote by αρ a mollifier and by uρ = u ∗ αρ the mollified
function of u with step ρ. Since u ∈W 1,1

loc (Ω), for every ε > 0 there exists ρ > 0
such that ∫

Ω′
|Du−Duρ| dx ≤ ε . (9)
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By Fatou lemma we can choose ρ small enough such that uρ satisfies also the
condition ∫

Ω′
f(x, u,Duρ) dx ≥

∫
Ω′
f(x, u,Du) dx − ε . (10)

We estimate the difference of the integrands in (8)

f(x, uh, Duh)− f(x, u,Du) = f(x, uh, Duh)− f(x, uh, Duρ) (11)

+f(x, uh, Duρ)− f(x, u,Duρ) + f(x, u,Duρ)− f(x, u,Du) .

From (11), by the convexity of f(x, s, ξ) with respect to ξ, we have

f(x, uh, Duh)− f(x, u,Du) ≥ (fξ(x, uh, Duρ), Duh −Duρ)

+ {f(x, uh, Duρ)− f(x, u,Duρ)}+ {f(x, u,Duρ)− f(x, u,Du)}

= (fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)

+ (fξ(x, u,Duρ), Du−Duρ) + (fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ)

+ {f(x, uh, Duρ)− f(x, u,Duρ)}+ {f(x, u,Duρ)− f(x, u,Du)} .

We observe that (x, s)→ fξ(x, s,Duρ(x)) is a continuous function with compact
support in Ω×R and that, by (7), |fξ(x, s,Duρ(x))| ≤ L1 for every (x, s) ∈ Ω×R
and for every ρ. We obtain

f(x, uh, Duh)− f(x, u,Du) ≥ (fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)

−L1 |Du−Duρ|+ (fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ)

+ {f (x, uh, Duρ)− f (x, u,Duρ)}+ {f (x, u,Duρ)− f (x, u,Du)} .

We integrate both sides over Ω′. By (9) and (10) we have∫
Ω′
{f(x, uh, Duh)− f(x, u,Du)} dx (12)

≥
∫

Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx

+
∫

Ω′
(fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ) dx

+
∫

Ω′
{f(x, uh, Duρ)− f(x, u,Duρ)} dx − (1 + L1) ε .

We can go to the limit as h → +∞. First we observe that, since (x, s) →
f(x, s,Duρ(x)) and (x, s) → fξ(x, s,Duρ(x)) are bounded functions (in fact
are continuous function with compact support), by the Lebesgue’s dominated
convergence theorem we obtain

lim
h→+∞

∫
Ω′

(fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ) dx = 0 ,

lim
h→+∞

∫
Ω′
{f(x, uh, Duρ)− f(x, u,Duρ)} dx = 0 .

7



Since ε in (12) can be arbitrarily small, to obtain the conclusion (8) it remains
to prove that

lim
h→+∞

∫
Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx = 0 . (13)

With the aim to prove (13), similarly to Tonelli [17], we denote by g(x, s) the
continuous vector-valued function with compact support (g : Ω × R → R

n)
defined by g(x, s) = fξ(x, s,Duρ(x)), i.e., more precisely,

g(x, s) =
(
g(i)(x, s)

)n
i=1

=
(
fξi(x, s,Duρ(x))

)n
i=1

.

Let us first prove that g is Lipschitz continuous with respect to x ∈ Ω′. Recall
that (x, s) vary on a compact set of Ω × R (and out of this compact set f is
equal to zero; in particular f(x, s, ξ) = 0 when x ∈ Ω − Ω′); also recall that
ξ = Duρ is bounded. For all x1, x2 ∈ Ω′ and s ∈ R, by using the assumptions
(6) and (7), we have

|g(x1, s)− g(x2, s)| = |fξ(x1, s,Duρ(x1))− fξ(x2, s,Duρ(x2))|

≤ |fξ(x1, s,Duρ(x1))− fξ(x2, s,Duρ(x1))|

+ |fξ(x2, s,Duρ(x1))− fξ(x2, s,Duρ(x2))|

≤ L |x1 − x2|+ L1 |Duρ(x1)−Duρ(x2)| ≤ L2 |x1 − x2| ,

where L2 = max
{
L;L1 ‖Duρ‖W 1,∞(Ω′)

}
. As before, let us denote by ασ a molli-

fier with parameter σ → 0+ (ασ ∈ C∞c (Rn), with ασ ≥ 0 and
∫
Rn
ασ(η) dη = 1);

then we pose

gσ(x, s) =
∫
Rn

ασ(y) g(x− y, s) dy =
(∫

Rn

ασ(y) g(i)(x− y, s) dy
)n
i=1

.

Let us observe that, if σ is sufficiently small, then gσ ∈ C0
c (Ω′ × R), because

g ∈ C0
c (Ω′ × R) too. Moreover, for every x1, x2 ∈ Ω′ and for every s ∈ R, we

obtain

|gσ(x1, s)− gσ(x2, s)| =
∣∣∣∣∫
Rn

ασ(y) [g(x1 − y, s)− g(x2 − y, s)] dy
∣∣∣∣

≤
∫
Rn

ασ(y) |g(x1 − y, s)− g(x2 − y, s)| dy ≤ L2 |x1 − x2| .

Therefore we also have∣∣∣∣∣∂g(i)
σ

∂xj
(x, s)

∣∣∣∣∣ ≤ L2 , ∀ i, j = 1, 2, . . . n, ∀ (x, s) ∈ Ω′ × R. (14)
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For every σ > 0 we denote by Gσ,h(x) =
(
G

(i)
σ,h(x)

)n
i=1

the sequence of vector-
valued functions defined by

Gσ,h(x) =
∫ uh(x)

u(x)

gσ(x, s) ds .

By the chain rule we can compute the trace of the n× n matrix DGh ; we have

traceDGσ,h(x) =
n∑
i=1

∂G
(i)
σ,h

∂xi
= (gσ (x, uh(x)) , Duh(x)) (15)

− (gσ (x, u(x)) , Du(x)) +
n∑
i=1

∫ uh(x)

u(x)

∂g
(i)
σ

∂xi
(x, s) ds .

Since also Gσ,h(x) vanishes outside Ω′, it results∫
Ω′
DGσ,h(x) dx = 0 , ∀h ∈ N . (16)

From (15), (16) and (14) we deduce that∣∣∣∣∫
Ω′
{(gσ (x, uh(x)) , Duh(x))− (gσ (x, u(x)) , Du(x))} dx

∣∣∣∣
=

∣∣∣∣∣−
∫

Ω′

{
n∑
i=1

∫ uh(x)

u(x)

∂g
(i)
σ

∂xi
(x, s) ds

}
dx

∣∣∣∣∣ ≤ nL2

∫
Ω′
|uh(x)− u(x)| dx .

We go first to the limit as σ → 0+ (and h fixed). We obtain the same inequality
when in the left hand side gσ is replaced by g. Thus we also have∣∣∣∣∫

Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx

∣∣∣∣
=
∣∣∣∣∫

Ω′
{(g (x, uh(x)) , Duh(x))− (g (x, u(x)) , Du(x))} dx

∣∣∣∣
≤ nL2

∫
Ω′
|uh(x)− u(x)| dx ,

which goes to zero as h → +∞, since, by assumption, uh → u in L1
loc (Ω).

Therefore (13) holds and the proof of Lemma .8 is complete.

The following approximation result has been given by De Giorgi (see [6]).

Lemma .9 If f = f(x, s, ξ) satisfies (2) and vanishes outside a compact set
of Ω × R, there exists an increasing sequence of functions {fj(x, s, ξ)}j∈N that
converges to f(x, s, ξ) uniformly on the compact sets of Ω × R × Rn and such
that, for all j ∈ N, fj satisfies (2) and

|fj(x, s, ξ1)− fj(x, s, ξ2)| ≤ Lj |ξ1 − ξ2| , (17)

for some constant Lj and for every (x, s, ξ1), (x, s, ξ2) ∈ Ω× R× Rn.
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Proof. We do not give all the details and we refer to the original proof by De
Giorgi [6]. By using the support tangent hyperplanes to the graph of f(x, s, ξ),
up to a regularization procedure, De Giorgi shows that, for every j ∈ N, fj can
be defined as the maximum between the zero function and a finite number of
(affine with respect to ξ ∈ Rn) functions of the type

g(x, s, ξ) = a0(x, s) +
n∑
i=1

ai(x, s)ξi .

For the use that we will make in the next section, we recall that the coefficients
ai (i = 0, 1, 2, . . . , n) are given by ai(x, s) = −

∫
Rn
f(x, s, η)Diα(η) dη , ∀ i = 1, 2, . . . , n,

a0(x, s) =
∫
Rn
f(x, s, η) {(n+ 1)α(η) +

∑n
i=1 ηiDiα(η)} dη ,

(18)

for some mollifier α ∈ C∞c (Rn), with α ≥ 0 and
∫
Rn
α(η) dη = 1.

3 Proof of theorem 6

In this section we will prove Theorem .6. With the same argument used at the
beginning of the proof of Lemma .8, without loss of generality, we can assume
that f(x, s, ξ) vanishes outside a compact set of Ω × R. Therefore we can also
assume that Ω is a set with finite measure (we will use this remark in the
definition (20) of the integral Fj(u,Ω)).

Let {fj(x, s, ξ)}j∈N be the increasing sequence that pointwise converges to
f(x, s, ξ), as in Lemma .9. Let us denote by ϕρ a mollifier (ϕρ ∈ C∞c (Rn), ϕρ ≥
0, ϕρ(η) = 0 if |η| ≥ ρ,

∫
Rn
ϕρ(η) dη = 1) and, for all j ∈ N, by fj,ρ = fj ∗ϕρ the

mollified function of fj , with respect to the variable ξ ∈ Rn, with step ρ. That
is, for every j ∈ N and ρ > 0, the function fj,ρ : Ω× R× Rn → R is defined by

fj,ρ(x, s, ξ) =
∫
Rn

fj(x, s, ξ − η)ϕρ(η) dη .

By the Lipschitz continuity (17) of fj with respect to ξ ∈ Rn, we have

|fj,ρ(x, s, ξ)− fj(x, s, ξ)| ≤
∫
Rn

|fj(x, s, ξ − η)− fj(x, s, ξ)|ϕρ(η) dη

≤
∫

suppϕρ

Lj |η|ϕρ(η) dη ≤ Ljρ .

Thus we can choose ρ = ρj =: 1/ (jLj)→ 0 so that

fj(x, s, ξ)−
2
j
≤ fj,ρj (x, s, ξ)−

1
j
≤ fj(x, s, ξ) ≤ f(x, s, ξ) , (19)

10



for every (x, s, ξ) ∈ Ω×R×Rn. By the monotone convergence theorem we have

lim
j→+∞

∫
Ω

fj (x, u(x), Du(x)) dx =
∫

Ω

f (x, u(x), Du(x)) dx .

Thus, if we consider the sequence of integrals

Fj(u,Ω) =
∫

Ω

{
fj,ρj (x, u(x), Du(x))− 1

j

}
dx , (20)

by (19) we obtain that Fj(u,Ω) converges, as j → +∞, to the main integral
F (u,Ω) =

∫
Ω
f (x, u(x), Du(x)) dx , and at the same time Fj(u,Ω) ≤ F (u,Ω) for

every j ∈ N. Therefore F (u,Ω), being the supremum of the family of functionals
{Fj(u,Ω)}j∈N , will be lower semicontinuous if every of such Fj(u,Ω) is lower
semicontinuous.

Thus we must prove that, for every fixed j ∈ N, the integral functional Fj in
(20) is lower semicontinuous in W 1,1

loc (Ω) with respect to the strong convergence
in L1

loc. To this aim we apply Lemma .8. Of course fj,ρj (x, s, ξ) satisfies (2)
and (17); thus it satisfies also the bound for the derivative in (7). It remains
to verify that fj,ρj (x, s, ξ) also satisfies the second assumption in (7) and (6).
We first compute the n partial derivatives of fj,ρj with respect to the gradient
variable ξ, i.e., we compute the vector field ∂fj,ρj/∂ξ :

∂fj,ρj
∂ξ

(x, s, ξ) =
∫
Rn

fj(x, s, ξ − η)
∂ϕρj
∂ξ

(η) dη .

Then from (17) we deduce that∣∣∣∣∂fj,ρj∂ξ
(x, s, ξ1)−

∂fj,ρj
∂ξ

(x, s, ξ2)
∣∣∣∣ ≤MjLj |ξ1 − ξ2| ,

for every (x, s, ξ1), (x, s, ξ2) ∈ Ω× R× Rn, where

Mj =
∫
Rn

∣∣∣∣∣∂ϕρj∂ξ
(η)

∣∣∣∣∣ dη . (21)

Therefore the second assumption in (7) is satisfied. To prove (6), we recall that
fj(x, s, ξ) is the maximum between the zero function and a finite number of
affine functions, with respect to ξ ∈ Rn, of the type

g(x, s, ξ) = a0(x, s) +
n∑
i=1

ai(x, s)ξi , (22)

where the coefficients ai(x, s) (i = 0, 1, 2, . . . , n) are given in (18). From assump-
tion (5), of local Lipschitz continuity of f with respect to x, for every compact
set K ⊂ Ω× R× Rn and for every (x1, s, ξ) , (x2, s, ξ) ∈ K we have

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| ,

11



for some constant L = L(K). Then the coefficients ai (i = 0, 1, 2, . . . , n) in (18)
are locally Lipschitz continuous with respect to x too; in fact, for example, for
every i = 1, 2, . . . , n,

|ai(x1, s)− ai(x2, s)| =
∣∣∣∣∫
Rn

{f(x1, s, η)− f(x2, s, η)}Diα(η) dη
∣∣∣∣

≤ miL (K) |x1 − x2| ,

for every (x1, s), (x2, s) which vary on a compact set K0 of Ω × R (in fact the
two points (x1, s, η), (x2, s, η) vary in the compact set K = K0 × suppα) and
mi is given by

mi =
∫
Rn

∣∣∣∣ ∂α∂ξi (η)
∣∣∣∣ dη .

Therefore the affine functions g(x, s, ξ) in (22), since ξ vary on a bounded set,
are local Lipschitz continuous with respect to x, for (x, s, ξ) ∈ K. Finally
fj(x, s, ξ), being the maximum between the zero function and a finite number
of affine functions of the type of g(x, s, ξ) in (22), is local Lipschitz continuous
with respect to x, i.e., for every compact set K ⊂ Ω × R× Rn, there exists a
constant L′j = L′j(K) such that

|fj(x1, s, ξ)− fj(x2, s, ξ)| ≤ L′j(K) |x1 − x2| ,

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. For the same values of (xi, s, ξ), i = 1, 2, we
deduce that ∣∣∣∣∂fj,ρj∂ξ

(x1, s, ξ)−
∂fj,ρj
∂ξ

(x2, s, ξ)
∣∣∣∣

≤
∫
Rn

|fj(x1, s, ξ − η)− fj(x2, s, ξ − η)| ·
∣∣∣Dϕρj (η)

∣∣∣ dη
≤MjL

′
j(K

′) |x1 − x2| ,

where Mj is the constant in (21) and K ′ is a suitable compact subset of Ω ×
R× Rn containing K. Therefore also the assumption (6) is satisfied and the
proof of Theorem .6 is complete.

4 Aronzjain-Dal Maso’s example revisited

In this section, and in the next one, we collect some examples, partially known,
partially new or revisited, modified and adapted to a more general context, with
the aim to introduce some parameters which will allow us to test more carefully
the assumptions. More precisely, we will show that the assumption of continuity
alone of f(x, s, ξ) with respect to x ∈ Ω (together with (2)) is not sufficient for
the lower semicontinuity of the integral functional F (u,Ω) with respect to the
strong convergence in L1

loc(Ω) (see Example .10). Then, with a more precise
analysis of some parameters and with the study of the n-dimensional context,

12



we compare in Example .11 assumptions of Lipschitz continuity of f with respect
to x with the weaker assumption of Hölder continuity.

The first example that we propose in this section has been inspired by an
old example by Aronzjain in 1941 (see Pauc [15], starting from page 54), more
recently exploited by Dal Maso (see Section 4 in [3]). In the new version pro-
posed here we consider, in particular, a simplified sequence uh ; as already said,
this simplification will allow us to compare Lipschitz continuity versus Hölder
continuity of f with respect to x. Notice also that the original example by
Aronzjain is related to a multiple integral, i.e., with n = 2, although Aronzjain’s
integrand f(x, ξ) does not explicitly depends on s. A one-dimensional version
of Aronzjain’s example was known to Dal Maso, who gave us some handwritten
notes on the subject.

In this and in the following section we propose several examples; for com-
pleteness we also mention the case considered by Acerbi, Buttazzo and Fusco
[1], with the main difference that their example is posed in the vector-valued
setting of polyconvex integrands, but similar to the next two examples, at least
for two aspects: the fact that the integrand f(x, s, ξ) = |a(x, s) ξ − 1| has not
minimum at ξ = 0 and the L∞ convergence of the sequence uh. Other simi-
larities seem to exist, and we hope to come back to the vectorial setting in the
future.

Example .10 Let Ω be the open interval (0, 2π). Let uh be the sequence (con-
verging to u ≡ 0 in L∞(Ω), but not in the weak topology of W 1,1(Ω)) defined
by

uh(x) =
1
2h

(
1− 1

4
cos
(
4hx

))
.

Then there exists a function a(x, s), bounded and uniformly continuous for
(x, s) ∈ Ω× R, such that, if we define

f(x, s, ξ) = |a(x, s) ξ − 1| , x ∈ Ω ⊂ R, s ∈ R, ξ ∈ R,

then
lim

h→+∞
F (uh,Ω) = lim

h→+∞

∫
Ω

f (x, uh, u′h) dx = 0 ,

while of course

F (u,Ω) =
∫

Ω

f (x, 0, 0) dx = 2π .

Thus in this case the integral F is not lower semicontinuous with respect to the
strong convergence in L∞(Ω), although f(x, s, ξ) is a continuous nonnegative
function, convex with respect to ξ, i.e., f satisfies (2).

Proof. Let us observe that, for every h ∈ N,

min {uh(x) : x ∈ [0, 2π]} =
1
2h

(
1− 1

4

)
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>
1

2h+1

(
1 +

1
4

)
= max {uh+1(x) : x ∈ [0, 2π]} ;

thus the graph Gh = {(x, s) ∈ Ω× R : s = uh(x)} of uh is disjoint from the
graph of uh+1 , more precisely, they have positive distance each other. We will
first define the function a(x, s) on a subset of the union

⋃
h∈NGh .

With the aim to define this subset, we notice that, for periodicity reasons,
for every positive λ the measure of the set {x ∈ [0, 2π] : |sin(mx)| < λ} does
not depend on the integer m. Moreover, since for x > 0 sufficiently small
sinx > x/2, then for the same x values (i.e., for λ > 0 sufficiently small) the
following inclusion holds {x : sinx < λ} ⊂ {x : x/2 < λ}. This implies that
the measure of the set {x > 0 close to zero such that sinx < λ} is less than 2λ.
Taking into account the three zeroes x = 0, π, 2π of the sinus function in the
interval [0, 2π], finally we have

meas {x ∈ [0, 2π] : |sin(mx)| < λ} < 8λ, ∀ m ∈ N. (23)

Let us denote by Eh the open subset of [0, 2π] given by

Eh =
{
x ∈ [0, 2π] :

∣∣sin (4hx)∣∣ < h2−h
}
.

By (23) we have meas (Eh) < h2−h+3. For every h ∈ N we compute the deriva-
tive u′h(x) = 2h−2 sin

(
4hx

)
. We define the function a(x, s) on the following

subset of the union {Gh}h∈N : if x ∈ [0, 2π]− Eh and s = uh(x), then

a(x, s) =
1

u′h(x)
=

1
2h−2 sin (4hx)

.

Since h by h the graphs Gh are disjoint sets of Ω×R, then the above definition
is consistent. Here we use the relevant fact that the derivative u′h of uh, as
h→ +∞, diverges (in absolute value) for x ∈ [0, 2π]−Eh (otherwise we should
expect lower semicontinuity of the integral F ); in fact 2h−2

∣∣sin (4hx)∣∣ ≥ h/4
for every x ∈ [0, 2π]−Eh. Therefore 1/u′h(x) converges to zero as h→ +∞ and
we can also define by continuity

a(x, s) = 0, if x ∈ [0, 2π] and s = 0.

At this stage the function a(x, s) has been defined as a continuous function on a
compact subset of Ω×R. Then it can be extended to the full Ω×R remaining
uniformly continuous (and bounded) on Ω× R.

By definition, for every h ∈ N and for x ∈ [0, 2π]− Eh , we have

f (x, uh(x), u′h(x)) = |a(x, uh(x))u′h(x)− 1| = 0 .

Thus, since |u′h(x)| = 2h−2
∣∣sin (4hx)∣∣ ≤ 2h−2h2−h = h/4 for x ∈ Eh, and

meas (Eh) < h2−h+3, if we denote by M > 0 a bound for a(x, s) in Ω × R, we
obtain ∫

Ω

f (x, uh, u′h) dx =
∫
Eh

f (x, uh, u′h) dx

14



=
∫
Eh

|a(x, uh(x))u′h(x)− 1| dx

≤
∫
Eh

{M |u′h(x)|+ 1} dx ≤
(
Mh

4
+ 1
)
h2−h+3,

which converges to zero as h→ +∞.

Let us go back to the main Theorem .6, in particular to the assumption that
f(x, s, ξ) is Lipschitz continuous with respect to x, locally respect to (x, s, ξ),
i.e., for every compact set K ⊂ Ω× R× Rn, there exists a constant L = L(K)
such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| ,

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. We may ask if we can assume a less restrictive
local continuity assumption of f with respect to x. For example, we may ask
if Theorem .6 holds under the only assumption that f(x, s, ξ) satisfies (2) and
is Hölder continuous with respect to x, locally respect to (x, s, ξ), i.e., there
exists a real number α ∈ (0, 1) with the property that, for every compact set
K ⊂ Ω× R× Rn, there exists a constant L = L(K) such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2|α , (24)

for every (x1, s, ξ) , (x2, s, ξ) ∈ K.
By the next example we give an answer to this question; in fact we will prove

that, for every exponent α ∈ (0, 1), it is possible to find a nonnegative continuous
integrand f = fα(x, s, ξ) (depending on α too), convex with respect to ξ ∈ Rn,
satisfying the Hölder continuity property (24), but whose corresponding integral
is not lower semicontinuous, even in C∞(Ω), with respect to the strong L∞(Ω)
convergence.

We emphasize that, in the next example, we do not consider an arbitrary
independent dimension n ≥ 1, but we impose the constraint

n >
4α

1− α
(25)

on the dimension, or equivalently the constraint

α <
n

n+ 4
(26)

on the Hölder exponent α. The less restrictive constraint α < 1/3 is assumed
when n = 1. Thus it remains open the interesting question to know if, for every
n ∈ N, there exists a critical exponent α(n) such that the integral (1) is lower
semicontinuous with respect to the strong convergence in L1

loc under the usual
condition (2) and the Hölder continuity property (24) for some exponent α such
that α(n) ≤ α < 1. In particular we may ask if, for example, the integral (1) is
lower semicontinuous in the one-dimensional case n = 1, when the integrand f
is Hölder continuous with exponent α ≥ 1/3.
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Example .11 We use notations similar to the previous Example .10, with some
parameters. Thus let Ω be the open hyper-rectangle (0, 2π)n ⊂ Rn. For h ∈ N
let uh(x) = uh(x1, x2, . . . , xn) be defined by

uh(x) =
n∑
i=1

1
ah

(
1− 1

4
cos (bhxi)

)
, (27)

with {ah}, {bh} sequences of positive real numbers diverging to +∞ as h→ +∞.
Thus uh converges to u ≡ 0 in L∞(Ω). Then, for every α ∈ (0, 1), if

n >
4α

1− α
, (28)

there exist {ah}, {bh} and a vector-valued function aα : Ω×R ⊂ Rn ×R→ R
n

with the properties:
(i) aα(x, s) is bounded and uniformly continuous for (x, s) ∈ Ω× R;
(ii) for every s ∈ R, aα(x, s) is Hölder continuous (of exponent α) with

respect to x ∈ Ω; more precisely, there exists a constant L such that

|aα(x1, s)− aα(x2, s)| ≤ L |x1 − x2|α , ∀x1, x2 ∈ Ω ⊂ Rn, ∀ s ∈ R;

(iii) if we denote by (·, ·) the scalar product in Rn and we define

fα(x, s, ξ) = |(aα(x, s), ξ)− 1| , x ∈ Ω, s ∈ R, ξ ∈ Rn,

then fα(x, s, ξ) satisfies (2), the Hölder continuity property (24) and

lim inf
h→+∞

∫
Ω

fα (x, uh, Duh) dx = 0 ;
∫

Ω

fα (x, 0, 0) dx = (2π)n . (29)

The same construction for the one-dimensional case n = 1 has all the stated
properties, under the less restrictive assumption (instead of (28)) that α < 1/3.

Proof. Step 1 (definition of aα): passing to a subsequence if necessary (this
is the reason to have in (29) the limit inferior, instead of the limit, that, however,
can be easily reduced to became a limit), we can assume that the graphs of the
functions uh are disjoint; more precisely that

min {uh(x) : x ∈ [0, 2π]n} =
3n
4ah

>
5n

4ah+1
= max {uh+1(x) : x ∈ [0, 2π]n}

for every h ∈ N. With similar notations as in the previous example we define

Eih = {xi ∈ [0, 2π] : |sin (bhxi)| < λh} , i = 1, 2, . . . , n,

Eh =

{
x = (x1, x2, . . . , xn) ∈ [0, 2π]n :

n∑
i=1

sin2 (bhxi) < λ2
h

}
,

where {λh} is a sequence of positive real numbers converging to 0 as h→ +∞.
We have

meas
(
Eih
)
< 8λh , ∀h ∈ N, ∀ i = 1, 2, . . . , n, (30)
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and, since Eh ⊂ E1
h × E2

h × . . .× Enh ,

meas (Eh) < 8n (λh)n , ∀h ∈ N. (31)

The partial derivatives of uh(x) are equal to

∂uh
∂xi

=
bh

4ah
sin (bhxi) , i = 1, 2, . . . , n,

and, for x ∈ [0, 2π]n − Eh, we have

|Duh(x)| = bh
4ah

{
n∑
i=1

sin2 (bhxi)

}1/2

≥ bh
4ah

λh . (32)

Similarly to the previous example, we define the vector-valued function aα(x, s)
on a part of the graphs of the functions uh . Precisely, for every h ∈ N and for
x ∈ [0, 2π]n − Eh and s = uh(x), we define

aα(x, s) =
Duh

|Duh|2
, (33)

i.e., with the notation aα(x, s) =
(
aiα(x, s)

)n
i=1

, we define

aiα(x, s) =
∂uh
∂xi
· 1
|Duh|2

=
4ah sin (bhxi)

bh
∑n
j=1 sin2 (bhxj)

.

We have
|aα(x, s)| = 4ah

bh

{∑n
j=1 sin2 (bhxj)

}1/2
. (34)

We also define aα(x, 0) by continuity

aα(x, s) = 0, if x ∈ [0, 2π]n and s = 0;

to this aim, since uh(x)→ 0 as h→ +∞, we impose the condition

max {|aα(x, s)| : x ∈ [0, 2π]n − Eh , s = uh(x)} =
4ah
bhλh

→ 0 , as h→ +∞.
(35)

At this stage the vector-valued function aα(x, s) has been defined as a continuous
function on a closed subset of Ω × R. In Step 2 we will extend it to the full
Ω× R.

Step 2 (extension of aα to Ω×R): fixed h ∈ N, the vector-valued function
aα(x, s) has been defined in Step 1 at the points (x, s) ∈ Ω × R related by the
conditions x ∈ [0, 2π]n −Eh and s = uh(x) (the function aα(x, s) has been also
defined for s = 0 with the zero value). In fact, for every fixed h ∈ N, aα(x, s)
has been defined at the points (x, s) of the set Rh ⊂ Ω × R (a subset of the
graph of uh) given by

Rh = {(x, s) : x ∈ [0, 2π]n − Eh, s = uh(x)} .
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Recalling the analytic expression of uh in (27), the set Rh is contained in the
hyper-rectangle{

(x, s) : x ∈ [0, 2π]n ,
3
4
· n
ah

< s <
5
4
· n
ah

}
.

We will extend aα(x, s) to the larger hyper-rectangle R′h ⊂ Ω× R, given by

R′h =
{

(x, s) : x ∈ [0, 2π]n ,
1
2
· n
ah
≤ s ≤ 3

2
· n
ah

}
.

First we define aα(x, s) = 0 when s = n
2ah

and s = 3n
2ah

, so that aα will be
continuously defined passing from an hyper-rectangle to an other; in fact we
extend aα also equal to zero out of the union ∪hR′h. Note that, passing possibly
to a subsequence, we can assume that R′h ∩R′k = Ø if h 6= k.

In order to estimate the oscillation |aα(x1, s1)− aα(x2, s2)| when (x1, s1),
(x2, s2) vary in R′h, we first consider (x1, s1), (x2, s2) ∈ Rh and we prove the
following Lipschitz estimate (with constant depending on h)

|aα(x1, s1)− aα(x2, s2)| ≤ 16n · ah
λ4
h

· |x1 − x2| . (36)

In fact, under the conditions x1, x2 ∈ [0, 2π]n − Eh, s1 = uh(x1), s2 = uh(x2)
and with the notations aα(x, s) =

(
aiα(x, s)

)n
i=1

, x1 =
(
xi1
)n
i=1

, x2 =
(
xi2
)n
i=1

,
for every i = 1, 2, . . . , n we have

∣∣aiα(x1, s1)− aiα(x2, s2)
∣∣ =

4ah
bh

∣∣∣∣∣∣ sin
(
bhx

i
1

)∑n
j=1 sin2

(
bhx

j
1

) − sin
(
bhx

i
2

)∑n
j=1 sin2

(
bhx

j
2

)
∣∣∣∣∣∣

≤ 4ah

bh ·
∑n
j=1 sin2

(
bhx

j
1

) ∣∣sin (bhxi1)− sin
(
bhx

i
2

)∣∣
+

4ah ·
∣∣sin (bhxi2)∣∣

bh
∑n
j=1 sin2

(
bhx

j
1

)
·
∑n
j=1 sin2

(
bhx

j
2

)
∣∣∣∣∣∣
n∑
j=1

{
sin2

(
bhx

j
1

)
− sin2

(
bhx

j
2

)}∣∣∣∣∣∣ .
Since x1, x2 /∈ Eh , we also have

∑n
j=1 sin2(bhx

j
1) ≥ λ2

h and
∑n
j=1 sin2(bhx

j
2) ≥

λ2
h; therefore, by the Lipschitz continuity of the sinus function, we obtain

∣∣aiα(x1, s1)− aiα(x2, s2)
∣∣ ≤ 4ah

bhλ
2
h

· bh
∣∣xi1 − xi2∣∣+

4ah
bhλ

4
h

· 2bh
n∑
j=1

∣∣∣xj1 − xj2∣∣∣ .
Since this estimate holds for every i = 1, 2, . . . , n, for the modulus of the vector
field aα(x1, s)− aα(x2, s) we obtain

|aα(x1, s1)− aα(x2, s2)| ≤ 4ah
λ2
h

(
1 +

2n
λ2
h

)
|x1 − x2| .
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The sequence λh converges to zero as h → +∞; therefore, as h is sufficiently
large, we get the proof of (36). Of course (36) also gives

|aα(x1, s1)− aα(x2, s2)| ≤ 16n · ah
λ4
h

· (|x1 − x2|+ |s1 − s2|) , (37)

for every h ∈ N and for every (x1, s1), (x2, s2) ∈ Rh with s1 = uh(x1), s2 =
uh(x2).

Recalling (34), we have the bound

max {|aα(x, s)| : (x, s) ∈ Rh} =
4ah
bhλh

;

therefore, if (x1, s1) ∈ Rh and (x2, s2) ∈ R′h with either s = n
2ah

or s = 3n
2ah

, we
deduce that

|aα(x1, s1)− aα(x2, s2)| = |aα(x1, s1)| ≤ 4ah
bhλh

and, since |s1 − s2| ≥ 1
4 ·

n
ah

,

|aα(x1, s1)− aα(x2, s2)| ≤ 16 a2
h

nbhλh
· |s1 − s2| ≤

16 a2
h

nbhλh
· (|x1 − x2|+ |s1 − s2|) .

By (35) we have ah
bhλh

→ 0 as h→ +∞; therefore ahbh λ
3
h → 0 too, which implies

a2
h

nbhλh
≤ n · ah

λ4
h

for every h sufficiently large. This proves that the Lipschitz estimate (37) (with
constant depending on h) holds at every (x1, s1), (x2, s2) ∈ R′h where aα(x, s)
has been already defined.

By using Kirszbraun theorem (see Theorem 2.10.43 in Federer [9]) for the
vector-valued function aα, or in a simpler way by applying Mac Shane lemma
to each component of aα(x, s) =

(
aiα(x, s)

)n
i=1

, we can extend it to the hyper-
rectangle R′h with the same Lipschitz constant as in (37), or, in case of extension
of every component separately, with the same Lipschitz constant times

√
n.

That is we have

|aα(x1, s1)− aα(x2, s2)| ≤ 16n
√
nah

λ4
h

· (|x1 − x2|+ |s1 − s2|) , (38)

for every h ∈ N and for every (x1, s1), (x2, s2) ∈ R′h. Moreover, by truncating
each component aiα, we can assume that the following bound holds

max {|aα(x, s)| : (x, s) ∈ R′h} =
4
√
nah

bhλh
, (39)

for every h ∈ N and for every (x, s) ∈ R′h .
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Step 3 (Hölder continuity of aα): now the parameter α enters. To test
Hölder continuity of aα(x, s) with respect to x we fix h ∈ N and n

2ah
≤ s ≤ 3n

2ah
and we estimate

sup
{
|aα(x1, s)− aα(x2, s)|

|x1 − x2|α
: (x1, s), (x2, s) ∈ R′h

}
. (40)

Let t > 0 be a new real parameter that we will choose later. We estimate the
supremum in (40) separately for |x1 − x2| ≥ t and for |x1 − x2| ≤ t.

Under the further condition |x1 − x2| ≥ t, the supremum in (40) can be
estimate by computing separately the maximum value of the numerator and
the minimum value of the denominator. By (39) we have

max {|aα(x1, s)− aα(x2, s)| : (x1, s), (x2, s) ∈ R′h}

≤ 2 max {|aα(x, s)| : (x, s) ∈ R′h} =
8
√
nah

bhλh
.

For the same s-values, since |x1 − x2| ≥ t, we obtain

sup
{
|aα(x1, s)− aα(x2, s)|

|x1 − x2|α
: (x1, s), (x2, s) ∈ R′h |x1 − x2| ≥ t

}

≤ 8
√
nah

bhλh tα
. (41)

While, if |x1 − x2| ≤ t, we use the Lipschitz estimate (38) (with constant de-
pending on h) with s1 = s2 ≡ s

|aα(x1, s)− aα(x2, s)| ≤
16n
√
nah

λ4
h

· |x1 − x2|

and we obtain

sup
{
|aα(x1, s)− aα(x2, s)|

|x1 − x2|α
: (x1, s), (x2, s) ∈ R′h |x1 − x2| ≤ t

}

≤ 16n
√
nah

λ4
h

· t1−α . (42)

From (41) and (42) we deduce that

sup
{
|aα(x1, s)− aα(x2, s)|

|x1 − x2|α
: (x1, s), (x2, s) ∈ R′h

}

≤ 16n
√
nah

λh
·max

{
1

bh tα
;
t1−α

λ3
h

}
. (43)

The above inequality is valid for every t > 0. We consider the minimum of the
right hand side with respect to t > 0, which is assumed when 1

bh tα
= t1−α

λ3
h

, i.e.,

20



when t = λ3
h

bh
.We obtain that the Hölder quotient in the left hand side of (43)

is less than or equal to

16n
√
nah

λhbh tα
=

16n
√
nah

(bh)1−α (λh)1+3α . (44)

Previously we estimated the Hölder continuity with respect to x of aα(x, s) in
R′h, for every fixed h ∈ N. Thus, to obtain the Hölder continuity of aα(x, s)
with respect to x, with (x, s) ∈ Ω×R, we impose the further condition that the
sequence in (44) remains bounded, i.e., that there exists L > 0 such that

ah

(bh)1−α (λh)1+3α ≤ L , ∀h ∈ N. (45)

Step 4 (lower semicontinuity test): let us prove that

lim
h→+∞

∫
Ω

f (x, uh, Duh) dx = 0 . (46)

By the definition fα(x, s, ξ) = |(aα(x, s), ξ)− 1| and by (33), for every h ∈ N we
obtain

f (x, uh, Duh) = |(aα(x, uh), Duh)− 1| = 0 , ∀ x ∈ [0, 2π]n − Eh .

Thus, since |Duh| < bhλh
4ah

for x ∈ Eh (see (32)) and meas (Eh) < 8n (λh)n (see
(31)), we obtain (46); in fact, if we denote by M > 0 a bound for aα(x, s) in
Ω× R, we have ∫

Ω

f (x, uh, Duh) dx =
∫
Eh

f (x, uh, Duh) dx

≤
∫
Eh

{M |Duh|+ 1} dx ≤
{
M

4
bhλh
ah

+ 1
}

8n (λh)n , (47)

which converges to zero as h → +∞, if we assume that bh
ah

(λh)n+1 → 0 as
h→ +∞.

Step 5 (compatibility conditions; i.e., necessary conditions): looking
above, we required the following limit relations (see in particular (35), (45) and
(47)) 

ah → +∞ , bh → +∞ , λh → 0 ,
ah
bhλh

→ 0 , bh
ah

(λh)n+1 → 0 ,
ah

(bh)1−α(λh)1+3α ≤ L , ∀h ∈ N ,

which, since
ah

(bh)1−α (λh)1+3α =
ah
bhλh

· (bh)α · (λh)−3α
,

can be reduced to 
ah → +∞ , bh → +∞ , λh → 0 ,
bh
ah

(λh)n+1 → 0 ,
ah

(bh)1−α(λh)1+3α ≤ L , ∀h ∈ N .
(48)
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Then, from the identity

ah

(bh)1−α (λh)1+3α =
{
bh
ah

(λh)n+1

}α−1

· (ah)α (λh)n(1−α)−4α
,

we find out the following compatibility condition
{
bh
ah

(λh)n+1
}α−1

→ +∞
(ah)α → +∞

ah
(bh)1−α(λh)1+3α ≤ L

=⇒ (λh)n(1−α)−4α → 0 ,

and, since λh → 0, we must have that n(1−α)−4α > 0, i.e., (28) is a necessary
condition to let this construction work.

Step 6 (sufficient conditions): it remains to exhibit sequences of real
parameters which satisfy the limit relations (48). Fixed α ∈ (0, 1) we consider
n > 4α

1−α so that α < n
n+4 . Then there exists β ∈ N (β > 1) large enough so

that

α <
n(β − 1)

(n+ 4)β − 3
. (49)

By a simple computation we can see that inequality (49) is equivalent to

β − 1
n+ 1

<
β (1− α)− 1

1 + 3α
. (50)

We are ready to choose

ah = 2h, bh = 2βh, λh = 2−γh,

with β−1
n+1 < γ ≤ β(1−α)−1

1+3α , a possibility that we can take since (50) holds. Then
we can verify that all the conditions in (48) are satisfied. In fact ah, bh → +∞,
λh → 0, and

bh
ah

(λh)n+1 = 2h[β−1−γ(n+1)] → 0 ,

since γ > β−1
n+1 . Finally

ah

(bh)1−α (λh)1+3α = 2h[1−β(1−α)+γ(1+3α)] ≤ 1, ∀h ∈ N ,

since γ ≤ β(1−α)−1
1+3α .

Step 7 (the case n = 1): in the one-dimensional case we can go faster. In
fact to obtain Hölder continuity of aα(x, s) with respect to x we can estimate
the Hölder quotient and we can compute separately the maximum value of the
numerator and the minimum value of the denominator, as follows:

max {|aα(x1, s)− aα(x2, s)| : x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)}

22



≤ 2 max {|aα(x, s)| : x ∈ [0, 2π]− Eh , s = uh(x)} =
8ah
bhλh

.

The minimum value of |x1 − x2| is equal to the measure of E1
h divided by the

number of connected components of E1
h, i.e., |x1 − x2| = meas

(
E1
h

)
/(2bh) . By

(30) we obtain

min {|x1 − x2| : x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)}

=
meas

(
E1
h

)
2bh

<
4λh
bh

.

Therefore, when n = 1, we have

sup
{
|aα(x1, s)− aα(x2, s)|

|x1 − x2|α
: x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)

}

≤ 8ah
bhλh

·
(

4λh
bh

)−α
=

23−2αah

(bh)1−α (λh)1+α .

In order to obtain the Hölder continuity of aα(x, s) with respect to x, we impose
the further condition that there exists L > 0 such that

ah

(bh)1−α (λh)1+α ≤ L , ∀h ∈ N.

Following this estimate, with similar computations as in the step 2 above, we
can extend the function aα(x, s) to Ω×R (or, in a simpler way, we could extend
it linearly). As in Step 5, we obtain the compatibility conditions

ah → +∞ , bh → +∞ , λh → 0 ,
ah
bhλh

→ 0 , bh
ah

(λh)2 → 0 ,
ah

(bh)1−α(λh)1+α ≤ L , ∀h ∈ N ,

(note the exponent in (λh)1+α instead of (λh)1+3α), which gives, as in Steps 5
and 6, the constraint α < 1

3 for n = 1.

5 Some other examples

In this section first we show in Example .12 that the local Lipschitz continuity of
f(x, s, ξ) with respect to x ∈ Ω, although sufficient for the lower semicontinuity
of F (u,Ω) in L1

loc in the scalar case, as proved by our Theorem .6, it is not suf-
ficient in the vector-valued case, i.e., for applications u : Ω ⊂ Rn → R

m, when
m > 1. With Example .13 we show that also Lemma .8 cannot be extended
to the vectorial setting. By Example .16 we emphasize the role of lower semi-
continuity of f with respect to x ∈ Ω in the case of linear growth of f(x, s, ξ)
as |ξ| → +∞, while in Example .14 we show that, however, neither continuity,
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nor even lower semicontinuity, of f(x, s, ξ) with respect to x ∈ Ω are neces-
sary in the case of superlinear growth, also if the usual coercivity condition
f(x, s, ξ) ≥ const |ξ|p, for some p > 1, is not satisfied. We will start from this
example to formulate (see Proposition .17) at the end of this section a sufficient
condition for lower semicontinuity of F (u,Ω) in L1

loc .
We can give all the examples below in the one dimensional case n = 1.

Eisen [8] showed with an example that Theorem .1(c) is false in the vectorial
case. The same example shows that also Theorem .6 and Corollary .7 do not
hold in the vectorial case. We recall this example, related to an integrand f
independent of the variable x.

Example .12 Let Ω be the open interval (0, 1). Let us consider the function
f : Ω × R2×R2→ R defined by f(x, s1, s2, ξ1, ξ2) = (s1ξ2)2; thus, and for all
u = (u1, u2) ∈W 1,1

(
Ω,R2

)
, the functional F is given by

F (u,Ω) =
∫

Ω

(u1 · u′2)2
dx .

Then there exists a sequence uh = (u1,h, u2,h) : Ω → R
2 which converges to a

function u ∈W 1,1
(
Ω,R2

)
in the strong topology of L1

(
Ω,R2

)
, such that

F (uh,Ω) = 0, ∀h ∈ N; F (u,Ω) = 1.

Proof. Let uh : Ω→ R
2 be the sequence defined by

u1,h(x) =


0 if x ∈

(
m
h ,

m
h + 2−h

]
2h+2

(
x− m

h − 2−h
)

if x ∈
(
m
h + 2−h, mh + 2−h + 2−h−2

]
1 if x ∈

(
m
h + 2−h + 2−h−2, m+1

h − 2−h−2
]

1− 2h+2
(
x− m+1

h + 2−h−2
)

if x ∈
(
m+1
h − 2−h−2, m+1

h

] ,

u2,h(x) =
{

m
h + 2h

h

(
x− m

h

)
if x ∈

(
m
h ,

m
h + 2−h

]
m+1
h if x ∈

(
m
h + 2−h, m+1

h

] ,

where m = 0, . . . , (h−1). Then uh is Lipschitz continuous in (0, 1) for all h ∈ N.
With a simple calculation we get

u′2,h(x) =
{

2h

h if x ∈
(
m
h ,

m
h + 2−h

)
0 if x ∈

(
m
h + 2−h, m+1

h

) ,

thus u1,h(x) ·u′2,h(x) = 0 for almost every x ∈ (0, 1). If we denote by u1(x) = 1,
u2(x) = x, we have uh → u = (1, x) in L1

(
(0, 1),R2

)
; in fact∫ 1

0

|u1,h(x)− 1| dx =
h− 1
2h−2

→ 0 , sup
x∈(0,1)

{|x− u2,h(x)|} ≤ 1
h
− 1

2h
→ 0 .

Finally the lower semicontinuity of F does not hold, since F (uh,Ω) = 0 for
every h ∈ N, while F (u,Ω) = 1.

With a similar computation as in the previous example, following Eisen [8],
we can show that also Lemma .8 cannot be extended to the vector-valued setting.
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Example .13 Let Ω be the open interval (0, 1). Let us consider the function
f : Ω× R2×R2→ R defined by

f(x, s1, s2, ξ1, ξ2) = a(x) · b
(√

s2
1 + s2

2

)
s2

1 · c(ξ2) ,

where a(x) is a Lipschitz continuous function with compact support in (0, 1),
not identically equal to zero and such that 0 ≤ a(x) ≤ 1; b : R → [0, 1] is a
Lipschitz continuous function with compact support and such that b(t) = 1 for
every t ∈ [1, 2]; finally c : R→ R is defined by

c(t) =

{
1
2 t

2 if |t| ≤ 1

|t| − 1
2 if |t| > 1

.

Then, the function f satisfies the assumption of Lemma .8 while, on the same se-
quence uh : Ω→ R

2 of the previous example, the integral
∫

Ω
f(x, u1, u2, u

′
1, u
′
2) dx

is not lower semicontinuous.

If there exists p > 1 such that f(x, s, ξ) ≥ const |ξ|p, for some positive con-
stant (i.e., a coercivity condition holds for f), then it is clear that the lower semi-
continuity in W 1,p

loc (Ω) of the integral functional F (u,Ω) =
∫

Ω
f (x, u,Du) dx

with respect to the strong convergence in L1
loc(Ω) is equivalent to the weak-

W 1,p
loc (Ω) lower semicontinuity of F (u,Ω). Therefore, in this case the lower

semicontinuity in L1
loc(Ω) holds under the only assumption that f(x, s, ξ) is a

Carathéodory function, i.e., f is measurable with respect to x ∈ Ω and continu-
ous in (s, ξ) ∈ R × Rn, and of course f is also convex with respect to ξ ∈ Rn.
By the next examples .14 and .15, following [14], we will show that neither
continuity nor even lower semicontinuity of f(x, s, ξ) with respect to x ∈ Ω are
necessary in the case of superlinear growth p > 1; this fact may happen also if
the usual coercivity condition is not satisfied.

Example .14 Let Ω be the open interval (0, 1). Let f(x, ξ) = a(x) |ξ|p for some
p > 1, where a(x) is a bounded measurable function in (0, 1), with a(x) ≥ 0
for almost every x ∈ (0, 1). Then the maximum lower semicontinuous (in the
strong norm topology of L1

loc(Ω)) functional F p (u,Ω), less than or equal to
F (u,Ω) =

∫
Ω
a(x) |u′|p dx, is given by

F p (u,Ω) =
∫

Ω

bp(x) |u′|p dx , (51)

for every u ∈ W 1,p
loc (Ω), where bp is the bounded measurable function defined in

(0, 1) by

bp(x) = lim inf
ε→0+

{
1
2ε

∫ x+ε

x−ε
a(t)−

1
p−1 dt

}−(p−1)

. (52)

Moreover, for every p > 1, bp satisfies the estimates

0 ≤ a(x) ≤ bp(x) ≤ a(x), a.e.x ∈ Ω, (53)
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where a is the maximum lower semicontinuous function less than or equal to a
in Ω. Thus in particular two sufficient conditions so that the integral

F (u,Ω) =
∫

Ω

a(x) |u′|p dx

is lower semicontinuous in W 1,p
loc (Ω) with respect to the strong norm topology

of L1
loc(Ω), are: (i) the coefficient a(x) is lower semicontinuous in Ω; (ii)

a−1/(p−1) ∈ L1
loc(Ω).

Proof. The representation formulas (51), (52) have been established by Mar-
cellini in [14], in the case p = 2. The proof for general p ∈ (1,+∞) is similar.

Let us prove (53). Since F p (u,Ω) ≤ F (u,Ω) for every u ∈ W 1,p
loc (Ω), then

bp(x) ≤ a(x) for almost every x ∈ Ω. If c(x) is a lower semicontinuous function
less than or equal to a in Ω, then, for every x ∈ Ω and every µ > 0 there exists
δ > 0 such that

c(x) ≤ c(t) + µ ≤ a(t) + µ , a.e. t ∈ Ω ∩ (x− ε, x+ ε) , ∀ ε ≤ δ.

Again, for 0 < ε ≤ δ, we deduce that∫ x+ε

x−ε
a(t)−

1
p−1 dt ≤ 2ε (c(x)− µ)−

1
p−1

and, from the definition (52) of bp ,

bp(x) = lim inf
ε→0+

{
1
2ε

∫ x+ε

x−ε
a(t)−

1
p−1 dt

}−(p−1)

≥ c(x)− µ .

Thus bp(x) ≥ c(x) and also bp(x) ≥ a(x) for almost every x ∈ Ω.
From the estimates in (53) we obtain the conclusion (i), i.e., that the integral

F (u,Ω) =
∫

Ω
a(x) |u′|p dx, being equal to F p (u,Ω), is lower semicontinuous in

L1
loc if the coefficient a is lower semicontinuous. Finally, if a−

1
p−1 ∈ L1

loc(Ω),
then, by using the Lebesgue points of this function, we have b(x) = a(x) for
almost every x ∈ (0, 1); thus again F = F p, which proves (ii).

As in [14], we give below an explicit application of Example .14. In par-
ticular, given p > 1 and the integral F (u,Ω) =

∫
Ω
ap,s(x) |u′|p dx, where the

nonnegative measurable function ap,s is defined below in (54), we show that
there exist some values of the real parameter s such that F (u,Ω) is not lower
semicontinuous in the strong norm topology of L1

loc(Ω).

Example .15 Let Ω be the open interval (0, 1). Let us denote by {xi}i∈N the set
of rational numbers in (0, 1) ordered in a sequence and let s be a real parameter.
Let f(x, ξ) = ap,s(x) |ξ|p for some p > 1, where ap,s(x) is the bounded measurable
nonnegative function in (0, 1) defined by

ap,s(x) =
1(

1 +
∑∞
i=1 2−i |x− xi|−s

)p−1 , x ∈ (0, 1) (54)

26



if the denominator is finite, otherwise we pose ap,s(x) = 0. Then, for every
s ∈ R, the measurable function ap,s(x) is not identically equal to zero (more
precisely, the set {x ∈ Ω : ap,s(x) 6= 0} has positive measure), while the integral
F (u,Ω) =

∫
Ω
ap,s(x) |u′|p dx is lower semicontinuous in W 1,p

loc (Ω) with respect
to the strong norm topology of L1

loc(Ω) if and only if s < 1.

Proof. With reference to the representation formulas (51), (52), we will prove
that

bp,s(x) = lim inf
ε→0+

{
1
2ε

∫ x+ε

x−ε
ap,s(t)−

1
p−1 dt

}−(p−1)

=

 ap,s(x) if s < 1

0 if s ≥ 1
.

In fact (for simplicity of notations we integrate over the whole interval (0, 1))∫ 1

0

ap,s(x)−
1
p−1 dx =

∫ 1

0

{
1 +

∞∑
i=1

2−i |x− xi|−s
}
dx

= 1 +
∞∑
i=1

2−i
∫ 1

0

|x− xi|−s dx ≤ 1 +
1

1− s
< +∞

if s < 1 (and, in this case bp,s(x) = ap,s(x) for almost every x in (0, 1)), otherwise
the integral is equal to +∞, when computed on any subinterval (x0 − ε, x0 + ε)
too (and, in this case bp,s(x) = 0 for almost every x in (0, 1)).

It remains to show that the set {x ∈ Ω : ap,s(x) 6= 0} has positive measure.
To this aim we observe that, if s < 1, by the above condition∫ 1

0

ap,s(x)−
1
p−1 dx < +∞

we deduce that ap,s(x)−
1
p−1 is finite almost everywhere in Ω; therefore ap,s(x)

is different from zero almost everywhere in Ω. Otherwise, if s ≥ 1, we compute
similarly

∫ 1

0

ap,s(x)−
1

2s(p−1) dx =
∫ 1

0

{
1 +

∞∑
i=1

2−i |x− xi|−s
} 1

2s

dx

≤
∫ 1

0

{
1 +

∞∑
i=1

(
2−i |x− xi|−s

) 1
2s

}
dx ≤ 1+

∞∑
i=1

2
−i
2s

∫ 1

0

|x− xi|−
1
2 dx < +∞ ;

thus again ap,s(x)−
1

2s(p−1) is finite almost everywhere and ap,s(x) is different
from zero almost everywhere in Ω.

In the next example we consider the limit case p = 1. Example .16 is due
to Fusco [12]. We emphasize here that Example .16 can be considered as a
passage to the limit from the case p > 1 in the formulas of Example .14. In fact,
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analogously to the well known limit relation limr→+∞ ‖v‖Lr(Ω) = ‖v‖L∞(Ω) ,
when we replace v by 1/v , as well known we also have

lim
r→+∞

∥∥v−1
∥∥−1

Lr(Ω)
= inf {|v(x)| : x ∈ Ω} .

Therefore, from (52), we obtain the following representation formula for the
maximum lower semicontinuous function a less than or equal to a in Ω

a(x) = lim
ε→0+

inf {a(t) : t ∈ (x− ε, x+ ε)} (55)

= lim
ε→0+

lim
p→1+

{∫ x+ε

x−ε
a(t)−

1
p−1 dt

}−(p−1)

= lim
ε→0+

lim
p→1+

{
1
2ε

∫ x+ε

x−ε
a(t)−

1
p−1 dt

}−(p−1)

.

As already said, the proof of the statement of the following Example .16 can be
found in Fusco [12].

Example .16 Let Ω be the open interval (0, 1). Let f(x, ξ) = a(x) |ξ|, where
a(x) is a bounded measurable function in (0, 1), with a(x) ≥ 0 for almost ev-
ery x ∈ (0, 1). Then the maximum lower semicontinuous (in L1

loc) functional
F 1 (u,Ω), less than or equal to F (u,Ω) =

∫
Ω
a(x) |u′| dx, is given by

F 1 (u,Ω) =
∫

Ω

a(x) |u′| dx , (56)

for every u ∈ W 1,1
loc (Ω), where a is the maximum lower semicontinuous func-

tion less than or equal to a in Ω. Thus in particular the integral F (u,Ω) =∫
Ω
a(x) |u′| dx is lower semicontinuous in L1

loc(Ω) if and only if the coefficient
a is lower semicontinuous in Ω (that is, if the measurable function a is almost
everywhere equal to a lower semicontinuous function in Ω).

Having in mind Examples .14 and .15, we give the following sufficient condi-
tion for lower semicontinuity of F (u,Ω) in L1

loc . Here we go back to the general
n-dimensional case, under the assumption that f(x, s, ξ) is a Carathéodory func-
tion, i.e., that f is measurable with respect to x ∈ Ω ⊂ Rn and continuous with
respect to (s, ξ) ∈ R×Rn. We mention explicitly that the following result holds
in the vector-valued setting too.

We thank Giovanni Leoni, who pointed out to us an improvement of a pre-
vious version of the following Proposition .17.

Proposition .17 Assume that f(x, s, ξ) is a Carathéodory function, convex
with respect to ξ, which satisfies the coercivity condition

f(x, s, ξ) ≥ a(x) |ξ|p , a.e. x ∈ Ω, ∀ (s, ξ) ∈ R× Rn, (57)
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for some p > 1, where a(x) is a measurable function in an open set Ω ⊂ Rn,
a(x) ≥ 0 for almost every x ∈ Ω, and such that

a−
1
p−1 ∈ L1

loc(Ω). (58)

Then the integral F (u,Ω) =
∫

Ω
f (x, u,Du) dx is lower semicontinuous in W 1,1

loc (Ω)
with respect to the strong convergence in L1

loc(Ω).

Proof. By Hölder inequality and by the coercivity assumption (57), for every
open set Ω′ compactly contained in Ω, we have∫

Ω′
|Du| dx =

∫
Ω′
a(x)1/p |Du| · a(x)−1/p dx

≤
{∫

Ω′
a(x) |Du|p dx

}1/p

·
{∫

Ω′
a(x)−

1
p ·

p
p−1 dx

}(p−1)/p

≤
{∫

Ω′
f (x, u,Du) dx

}1/p

·
{∫

Ω′
a(x)−

1
p−1 dx

}(p−1)/p

.

Let uh, u ∈W 1,1
loc (Ω) such that uh → u in L1

loc (Ω). Let us also assume that

lim inf
h→+∞

F (uh,Ω) = lim
h→+∞

F (uh,Ω) = C < +∞ .

Under such conditions Duh is a sequence locally equi-integrable in Ω and so uh
weakly converges to u in W 1,1

loc (Ω); in fact a satisfies (58) and we have∫
Ω′
|Duh| dx ≤ C1/p ·

{∫
Ω′
a(x)−

1
p−1 dx

}(p−1)/p

.

Therefore we can apply the original lower semicontinuity theorem by De Giorgi
[6].
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