
Nonlinear elliptic systems
with general growth

Paolo Marcellini and Gloria Papi
Dipartimento di Matematica �U.Dini"

Università di Firenze - Viale Morgagni 67/A
I-50134 Firenze, Italy

Abstract

We prove local Lipschitz-continuity and, as a consequence, Ck and C1 reg-
ularity of weak solutions u for a class of nonlinear elliptic di¤erential systems
of the form

Pn
i=1

@
@xi
a�i (Du) = 0; � = 1; 2 : : :m. The growth conditions on the

dependence of functions a�i (�) on the gradient Du are so mild to allow us to em-
brace growths between the linear and the exponential cases, and they are more
general than those known in the literature.
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1 Introduction

Let n � 2, m � 1, let 
 be an open set of Rn and let u : 
 � Rn ! Rm be a weak
solution of a nonlinear elliptic system of PDE�s of the form

nX
i=1

@

@xi
a�i (Du) = 0; � = 1; 2 : : :m; (1.1)

where Du : 
 � Rn ! Rm�n denotes the gradient of the map u, by components
x = (xi)i=1;2;:::;n, u = (u�)�=1;2;:::;m and Du = (@u�=@xi) = (u�xi)

�=1;2;:::;m
i=1;2;:::;n . By using

the notation � = (��i )
�=1;2;:::;m
i=1;2;:::;n , then A (�) = (a�i (�))

�=1;2;:::;m
i=1;2;:::;n is a given vector �eld

A : Rm�n ! Rm�n of class C1, satisfying the ellipticity condition
nX

i;j=1

mX
�;�=1

@a�i (�)

@��j
��i �

�
j > 0; 8 �; � 2 Rm�n : � 6= 0; (1.2)
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as well as the variational condition that the vector �eld A (�) is the gradient of a
function f (�); i.e., that there exists a function f : Rm�n ! R such that

a�i =
@f

@��i
= f��i ; 8 � = 1; 2; : : : ;m; i = 1; 2; : : : ; n: (1.3)

Under the variational condition (1.3), the ellipticity condition (1.2) implies the (strict)
convexity of the function f . Finally, we assume that f (�) = g (j�j) is a function g of
the modulus j�j (with g0 (0) = 0, to respect the condition that the function f is of class
C1 (Rm�n)).

The regularity problem for the elliptic system (1.1) consists in asking if the solution
u = u (x) = (u� (x))�=1;2;:::;m, a-priori only a measurable function in the Sobolev class
W 1;1, in fact is of class C1(or C0;�, C1, C1;�, or Ck for some k), under the assumption
that the data are smooth.

With the aim to explain the situation, let us assume, for the moment, that the solution
u 2 W 1;1 in fact is also in W 1;1

loc ; i.e., that the gradient Du is locally bounded in 
.
Then, under the ellipticity condition (1.2) and the variational condition (1.3) with
f (�) = g (j�j), it is possible to show that

u 2 W 1;1
loc ; A 2 C1 =) u 2 C1;�loc

(see for instance [23]; for simplicity of notations, we write A 2 C1 instead of, more
precisely, A 2 C1; for some  2 (0; 1)). Moreover, it is possible to see (cfr. [3], [18], [19],
[20]) that u admits second derivatives in weak form and that, for every k 2 f1; 2; : : : ; ng,
the partial derivative uxk =

�
u�xk
��=1;2;:::;m

satis�es the elliptic di¤erential linear systemX
i;j;�

@a�i (Du (x))

@��j
(uxk)

�
xj
= 0; � = 1; 2 : : :m;

(see (4.4) and note that @a�i =@�
�
j = f��i �

�
j
). The coe¢ cients @a�i =@�

�
j (Du (x)) are locally

Hölder-continuous, since u 2 C1;�loc ; thus we can apply the regularity results in the
literature for linear elliptic systems with smooth coe¢ cients (see for instance Section
3 of Chapter 3 of [9]) to infer

u 2 C1;�loc ; A 2 Ck =) u 2 Ck;�loc ; 8 k = 2; 3; : : :

In particular, u 2 C1loc if A 2 C1.
Therefore the problem which remains to be solved is: under which conditions on A (�)
is it possible to show that the gradient Du is in fact locally bounded, i.e., u 2 W 1;1

loc .

Why the local boundedness of the gradient Du is a so relevant condition for regularity?

Because the di¤erential system (1.1) heavily depends on Du in a nonlinear way, in
particular trough a�i (Du) and, if Du (x) is bounded, then a

�
i (Du (x)) is bounded too
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and far away from zero. Thus the behavior of A (�) = (a�i (�)) for j�j ! +1 becomes
irrelevant.

On the contrary, the local boundedness of the gradient is a property related to the
behavior of A (�) as j�j ! +1. This problem has been extensively studied in the liter-
ature and a detailed story is presented in the next section. Precisely, in the next section
we point out in details the assumptions made in the earlier mathematical literature on
the subject, as well as the results presented in this paper.

We emphasize that the mathematical literature on the subject is large: some refer-
ences are given in the next section and a good survey, as well as some new interesting
regularity results, are given is the recent book by Bildhauer [2]. Our assumptions,
in the context of basic elliptic systems of the type (1.1) with A (�) = D�f (�) and
f (�) = g (j�j), are more general then that ones in the literature, and they allow us
to consider at the same time variational problems with functions f (�) having linear
growth as j�j ! +1, as well as functions f (�) with either polynomial or exponential
growth at in�nity.

2 Description of the problem and statement of the
main results

Let 
 be an open set of Rn for some n � 2 and let u : 
 ! Rm (m � 1) be a vector
valued local minimizer of an integral of the calculus of variations of the type

F =
Z



f(Du)dx; (2.1)

related to some convex integrand f : Rm�n ! R: Here Du : 
 � Rn ! Rm�n denotes
the gradient of the map u. By a local minimizer of the integral (2.1) we mean a function
u 2 W 1;1

loc (
;Rm) with the property that F(u) � F(u+ �) for every � 2 C10(
;Rm); in
the context of this paper this de�nition is consistent. It is well known that in general
we cannot expect that u, a-priori either minimizer of the integral (2.1) or weak solution
of the di¤erential system (1.1) in a Sobolev class of functions W 1;p(
;Rm), is in fact a
smooth function, say of class C1loc, or even of class C

1
loc or C

0;�
loc for some � 2 (0; 1): In

the vector-valued case m > 2 examples of non smooth minimizers and of non smooth
weak solutions have been given by De Giorgi [6], Giusti-Miranda [12] and by Necas [15].
A recent counterexample in three dimensional case in the context of smooth strongly
convex functionals has been also given by Sverak-Yan [22].

Even in the scalar case m = 1 it is possible to give examples of local minimizers
u 2 W 1;p

loc (
;R) for some p > 1 (this phenomenon is related to the p; q�growth condition
described below, with q larger than p), which do nor even belong to L1loc(
;R); see [10],
[17], [18], [19].
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As already mentioned, regularity of solutions is often related to the growth of f(�)
as j�j ! +1: More precisely, the so-called natural growth conditions state that there
exists a growth exponent p > 1 and positive constants m;M such that

mj�jp � f(�) �M(1 + j�jp); 8� 2 Rm�n; (2.2)

as well as the ellipticity conditions on the matrix D2f of the second derivatives of f ,
of the type

m
�
1 + j�jp�2

�
j�j2 �

�
D2f(�)�; �

�
�M(1 + j�jp�2)j�j2; 8�; � 2 Rm�n: (2.3)

It was pointed out by Marcellini in [18], [19] that the above natural growth conditions,
su¢ cient for regularity, can be weakened into anisotropic growth conditions, or into
p; q�growth conditions; i.e., with an exponent q � p in the right hand side of (2.2),
(2.3), or into more general growth conditions. In particular, ellipticity p; q�growth
conditions of the type

m
�
1 + j�jp�2

�
j�j2 �

�
D2f(�)�; �

�
�M(1 + j�jq�2)j�j2; 8�; � 2 Rm�n; (2.4)

with exponents q � p > 1 such that q
p
< n

n�2 if n > 2:

In the general vectorial setting only a few contributions are available for general growth:
we like to refer to the papers by Giusti [11], Giusti-Miranda [13], Acerbi-Fusco [1] and
by Esposito-Leonetti-Mingione [7]. A recent book by Bildhauer [2] gives a complete
overview and a detailed list of references. If some additional structure conditions are
assumed then several results can be found in the mathematical literature on the subject.
For instance, as a generalization of the �p�growth�case considered by Uhlenbeck [23],
Marcellini proposed in [21] an approach to the regularity of minimizers of the integral

F (u) =

Z



g(jDuj)dx; (2.5)

i.e. with the integrand in (2.1) of the form f(�) = g(j�j), where g : [0;+1)! [0;+1)
is an increasing convex function, without growth assumption on g(t) as t! +1: For
example, the regularity result can be applied to the exponential growth, such as any
�nite composition of the type

f(�) = (exp(: : : (exp(exp j�j2)p1)p2) : : : )pk (2.6)

with pi � 1;8i = 1; 2 : : : k: However, some other restrictions ware imposed in [21], such
as, for instance, the fact that t 2 (0;+1)! g0(t)

t
is assumed to be an increasing func-

tion. To exemplify, the model case g(t) = tp gives the restriction p � 2. Afterwards, in
[14] Leonetti-Mascolo-Siepe consider the case of subquadratic p; q�growth conditions,
i.e. in (2.4) they assume 1 < p < q < 2. Their result includes energy densities f of
the type f(�) = j�jp log�(1 + j�j) with p < 2. In [8] Fuchs-Mingione concentrate on the
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case of nearly-linear growth, for which (2.4) fails to be true. Typical examples are the
logarithmic case f(�) = j�j log(1 + j�j) and its iterated version�

fk(�) = j�jLk(j�j);
Ls+1(t) = log(1 + Ls(t)); L1(t) = log(1 + t)

(2.7)

for k 2 arbitrary. Bildhauer in [2] considers linear behaviors for the functional (2.5);
he gives conditions that can keep -elliptic linear growth with  < 1+ 2

n
. Examples of

-elliptic linear integrands are given by

g(t) =

Z t

0

Z s

0

(1 + z2)�

2 dzds; 8t � 0: (2.8)

For  = 1, g(t) behaves like t log(1+ t) and in the limit case  = 3, g(t) becomes (1+
t2)1=2. Hence the functions g(t) provide a one parameter family connecting logarithmic
examples with the minimal surface integrand.

As further reference see also [4].

In this paper we are engaged to �nd conditions which include di¤erent kind of growths.
At this purpose we give a general condition on function g embracing growths moving
between linear and exponential functions. The condition is the following:

Let t0; H > 0 and � 2
�
1
n
; 2
n

�
. For every � 2

�
1; n

n�1
�
there exists K = K (�) such

that

Ht�2�

"�
g0(t)

t

�n�2
n

+
g0(t)

t

#
� g00(t) � K

�
g0(t)

t
+

�
g0(t)

t

���
; 8t � t0 : (2.9)

The exponent � in the right hand side is a parameter to play; i.e., to use to test more
functions g. The condition in the left-hand side of (2.9) permits to achieve functions,
for instance, with second derivative going to zero as a power t�; (i.e. -elliptic ),
where  is not too large and is related to the dimension n, i.e.  < 1 + 2

n
: As well as

functions in (2.8), others examples in the linear case include:

g(t) = 1 + t�
p
t; 8t � 1; n < 4 ;

or more in general, for r 2 (0; 1),

gr(t) = h(t)� tr; 8t � 1; n < 2

1� r ;

and also
gr(t) = h(t) + (1� tr)

1
r ; 8t � 1; n < 2

r
;
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where h(t) is a convex function such that, for suitable constants C1, C2,

C1(1 + t) � h(t) � C2(1 + t):

We observe that the functions gk(t) = (1 + tk)
1
k , related tominimal surfaces, are convex

if k � 1, and g00k(t) = (k � 1) tk�2(1 + tk)
1
k
�2 = O

�
1

tk+1

�
when t ! +1, so that they

do not satisfy left-hand side of condition (2.9).

As far as p; q�growth is concerned, we like to remark that condition (2.9) is satis�ed
without assuming any restriction on p and q. For example, �xed 1 < p < q, consider
the function (cfr. [5])

g(t) =

�
tp if t � � 0;
t
p+q
2
+ q�p

2
sin log log log t if t > � 0;

(2.10)

where � 0 is such that sin log log log � 0 = �1: First of all we observe that function g oscil-
lates between the function tp, to which it is tangent in �n such that sin log log log �n =
�1, and the function tq, to which it is tangent in �n such that sin log log log �n = 1. By
a direct computation it is possible to see that one can choose � 0 and t0 large enough
such that g is convex and satis�es (2.9). We observe that the left-hand side of (2.9)
implies g00(t) > 0 for t � t0. For this reason the function in (2.10), with p = 1, does
not satisfy condition (2.9); in fact if p = 1 we have g00(�n) = 0:

Also high growths like that in (2.6) are included in condition (2.9). In other words our
results unify and generalize that ones obtained in the literature for the integral (2.5),
including in particular the linear case treated in [2], the non-standard p; q� growth, the
exponential growth considered in [21] and also the new example of oscillating function
in (2.10). Part of the techniques of this paper have been introduced by Marcellini in
[21]. The starting point is the second variational weak equation for which we need the
supplementary assumption that g00(t) and g0(t)

t
are bounded by constants N and M

for all t > 0. In this case we give a-priori estimates for sup jD(u)j by using only the
properties of function g, so that the constants in the a-priori bounds do not depend
on M and N . Successively we remove this assumption by approximating the original
problem with regular variational ones. This is possible because the constants N and
M do not enter in the a-priori bounds for the L1-norm of the gradient.

In this paper we prove in particular the following two results, the �rst one valid under
general growth conditions, the second one speci�c for the linear case.

Theorem A (General growth) Let g : [0;+1)! [0;+1) be a convex function of
class W 2;1

loc with g(0) = g0(0) = 0, satisfying the general growth condition (2.9) with
� 2

�
1
n
; 2
n

�
as before. Let u 2 W 1;1

loc (
;R
m) be a local minimizer of the integral (2.5).

Then u 2 W 1;1
loc (
;R

m). Moreover the following estimate holds: for every � > 0 and
R > � > 0 there exists a constant C (depending on �; n; �; R;H;K and sup0�t�t0 g

00(t))
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such that

kDuk2��nL1(B�;Rm�n) � C
�Z

BR

(1 + g(jDuj)) dx
� 1

1��+�

: (2.11)

Theorem B (Linear growth) Let g : [0;+1) ! [0;+1) be a convex function of
class W 2;1

loc with g(0) = g0(0) = 0. Let us assume that g has the linear behavior at
in�nity

lim
t!+1

g(t)

t
= l 2 (0;+1) (2.12)

and that its second derivative satis�es the inequalities

H
1

t
� g00(t) � K 1

t
; 8t � t0 ; (2.13)

for some positive constants H;K; t0 and for some  2
�
1; 1 + 2

n

�
. Then every local

minimizer u of the integral (2.5) is of class W 1;1
loc (
;R

m) and, for every R > � > 0
the following estimate is satis�ed

kDuk2��nL1(B�;Rm�n) � C
Z
BR

(1 + g(jDuj)) dx ; (2.14)

where � = 
2
� n�2

2n
and the constant C depends on n, �, R, l, H, K and sup0�t�t0 g

00(t).

Note that 2 � �n 2 (0; 1] since  2
�
1; 1 + 2

n

�
. Note also that the estimate (2.14) in

Theorem B is sharper than the estimate (2.11) of Theorem A, when we reduce the
general assumption (2.9) of Theorem A to linear growth, since in the second case the
proof is more direct, as explained at the end of this paper. Therefore Theorem B
cannot be considered a particular case of Theorem A.

The plan of the paper is the following. In Section 2 we discuss some consequences of
assumption (2.9) and we prove for g some estimates that will be used in Section 3,
where we get a-priori bounds for the gradient of local minimizers of functional (2.5).
In Section 4 we de�ne the approximating regular variational problems and we obtain
a-priori bounds for the gradient of their minimizers. Finally in Section 5 we go to the
limit and we obtain the regularity Theorems A and B.

3 Ellipticity estimates and their consequences

With the aim to study integrals of the Calculus of Variations of the type (2.5), we
consider f(�) = g(j�j), for � 2 Rm�n; (� = (��i ); i = 1; 2; : : : ; n; � = 1; 2; : : :m), where

g : [0;+1)! [0;+1) is a convex function of class
W 2;1[0; T ];8T > 0; g(0) = g0(0) = 0:

(3.1)
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By the representation f(�) = g(j�j), we have

f��i = g
0(j�j) �

�
i

j�j ; f��i ��j =
�
g00(j�j)
j�j2 � g

0(j�j)
j�j3

�
� ��i �

�
j +

g0(j�j)
j�j ���i �

�
j :

(3.2)

Since X
i;j;�;�

��i �
�
j �

�
i �

�
j = (

X
i;�

��i �
�
i )
2 � (j�jj�j)2; 8�; � 2 Rm�n

(and the equality holds when � is proportional to � ), then we easily obtain the following
ellipticity estimates

minfg00(j�j); g
0(j�j)
j�j g �

P
i;j;�;� f��i �

�
j
��i �

�
j

j�j2 � maxfg00(j�j); g
0(j�j)
j�j g; 8�; � 2 Rm�n:

(3.3)
Let us de�ne

H(t) = maxfg00(t); g
0(t)

t
; 8t > 0g: (3.4)

We observe that, since g0(t) =
tR
0

g00(s)ds � MT t; ; 8t � T then the function g0(t)
t
(and

consequently H(t) ) is bounded on (0; T ];8T > 0: We observe that in (3.1) we do not
assume g0(0) > 0 but, more generally, we allow g0(t) and g(t) to be equal to zero in
(0; �t]; with �t > 0: The sequel of this section is devoted to derive some useful estimates
on the function g, starting by the general assumption (2.9). With this aim we begin
with the following lemma (were by 2� we denote the Sobolev�s exponent, i.e 2� = 2n

n�2
if n � 3; while 2� is any �xed number greater than 2 if n = 2).

Lemma 3.1 Let g be as in (3.1). Let �; H positive constants such that 1
n
< � < 2

n
.

Let us assume that for every � 2
�
1; n

n�1
�
there exists a constant K (depending on �)

such that

Ht�2�

"�
g0(t)

t

� 2
2�

+
g0(t)

t

#
� g00(t) � K

�
g0(t)

t
+

�
g0(t)

t

���
; 8t � t0 : (3.5)

Then for every � with 2�
2�� � � � 2

� and for every  � 0 there exists a constant C such
that

1 +

tZ
0

s
p
g00(s)ds � C

"
1 +

�
t+1��

 + 1

��
H(t)

# 1
�

; 8t � 0 : (3.6)

Proof. In order to simplify this proof, up to a rescaling, we will assume, without lost
on generality, that t0 = 1 and g(t0) > 0:We observe that"

1 +

�
t+1��

 + 1

��
H(t)

# 1
�

�
�
1 +

�
t+1��

 + 1

�
H(t) 1�

�
; 8t > 0;8 � 0 : (3.7)
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Now, let us call

F1(t; ) = 1 +

tZ
0

s
p
g00(s)ds ; (3.8)

G1(t; ) = 1 +

�
t+1��

 + 1

�
H(t) 1� ; (3.9)

and let us de�ne the quotient

Q1(t; ) =
F1(t; )

G1(t; )
: (3.10)

It is easy to see that Q1(t; ) is lower bounded in the strip (t; ) 2 [0; t0]� [0;+1] (we

remember that t0 = 1) by the constant C1 =
�
1 + max0<t�1 [

g0(t)
t
+ g00(t)]

1
�

��1
. From

this (3.6) follows for 0 � t � t0:Now let t � t0 : By the de�nition (3.4) of function H(t)
we get

H(t) � g0(t)

t
+ g00(t)

and by the right-hand side of (3.5) we can write

H(t) � (K + 1)

�
g0(t)

t
+

�
g0(t)

t

���
: (3.11)

From this, instead to prove (3.6) we can prove the following

1 +

tZ
0

s
p
g00(s)ds � C

"
1 +

t+1��

 + 1

�
g0(t)

t
+

�
g0(t)

t

��� 1�#
; 8t � t0: (3.12)

(where we still denote by C the new constant). At this end it is su¢ cient to show the
inequality between the derivatives side to side with respect to t of (3.12)

p
g00(t) � C1 t��

"�
g0(t)

t

� 1
�

+

�
g0(t)

t

��
�

+

�
g0(t)

t

� 1
�
�1

g00(t) +

�
g0(t)

t

��
�
�1

g00(t)

#
;

(3.13)
or, since � > 1,8>>>><>>>>:

p
g00(t) � 2C1 t��

��
g0(t)
t

� 1
�
+
�
g0(t)
t

� 1
�
�1
g00(t)

�
; if g

0(t)
t
� 1

p
g00(t) � 2C1 t��

��
g0(t)
t

��
�
+
�
g0(t)
t

��
�
�1
g00(t)

�
; if g

0(t)
t
� 1 :
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If g
0(t)
t
� 1 by the left-hand side of (3.5) we get, since 1

�
� 1

2� ,

p
g00(t) �

p
H t��

�
g0(t)

t

� 1
2�

�
p
H t��

�
g0(t)

t

� 1
�

(3.14)

and also, by the right-hand side of (3.5)

g00(t)

�
g0(t)

t

��1
� 2K :

As a result we have

p
g00(t) �

p
H

2K
t��
�
g0(t)

t

� 1
�

2K �
p
H

2K
t��
�
g0(t)

t

� 1
�
�1

g00(t): (3.15)

Adding (3.14) to (3.15) we get, if g
0(t)
t
� 1,

p
g00(t) �

p
H

4K
t��

"�
g0(t)

t

� 1
�

+

�
g0(t)

t

� 1
�
�1

g00(t)

#
: (3.16)

If g
0(t)
t
� 1, with similar arguments we have

p
g00(t) �

p
H t��

�
g0(t)

t

� 1
2

; (3.17)

and since � � 2�
2�� > 2�, i.e.

�
�
< 1

2
, we get

p
g00(t) �

p
H t��

�
g0(t)

t

��
�

: (3.18)

Moreover, by the right-hand side of (3.5) we get

p
g00(t) �

p
2K

�
g0(t)

t

��
2

;

equivalently

g00(t) �
p
2K

�
g0(t)

t

��
2p
g00(t)

and, since t � t0 = 1, we can also write

p
g00(t) � 1p

2K

�
g0(t)

t

���
2

g00(t) � ( 1p
2K
)t��

�
g0(t)

t

���
2

g00(t) :

10



Since � � 2�
2�� , i.e.

�
�
� 2��

2
, we have �

�
� 1 � ��

2
; hence

p
g00(t) � ( 1p

2K
)t��

�
g0(t)

t

��
�
�1

g00(t) : (3.19)

Therefore, in the case g0(t)
t
� 1, from (3.18) and (3.19) we obtain

p
g00(t) � min

(p
H

2
;

1

2
p
2K

)
t��

"�
g0(t)

t

��
�

+

�
g0(t)

t

��
�
�1

g00(t)

#
: (3.20)

Therefore (3.13) holds for t � t0 too, as consequence of (3.16) and (3.20).

Lemma 3.2 Let g be as in (3.1). Suppose that g satis�es the right-hand side of con-
dition (3.5). Then there exists a constant C, depending on K, g0(t0), t0, �, such that

g0(t)t � C(1 + g(t))
1

2�� ; 8t � 0: (3.21)

Proof. Let t � t0 = 1. A multiplication for t and an integration side to side in the
right-hand side of (3.5) giveZ t

t0

sg00(s)ds � K
Z t

t0

g0(s)ds+K

Z t

t0

s

�
g0(s)

s

��
ds:

An integration by parts of the left-hand side in the previous inequality get

g0(t)t � g0(t0)t0 + (K + 1)

Z t

t0

g0(s)ds+K

Z t

t0

s2�2�g0(s) (g0(s)s)
��1

ds:

Since g(t0) � 0 and t � t0 we have

g0(t)t � g0(t0)t0 + (K + 1)g(t) +Kt0
2�2� (g0(t)t)

��1
g(t):

By dividing both sides for (g0(t)t)��1 we obtain

(g0(t)t)
2�� � (g0(t0)t0)2�� +

�
K + 1

(g0(t0)t0)
��1 +Kt0

2�2�
�
g(t):

Let C12�� = maxf(g0(t0)t0)2�� ; K+1
(g0(t0)t0)

��1 +Kt0
2�2�g: Then we have for all t � t0

g0(t)t � C1(1 + g(t))
1

2�� :

Finally (3.21) follows with C � C1 because g0(t)t � g0(t0)t0, for all t � t0.
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Lemma 3.3 Let g be as in (3.1) and let H be the function de�ned in (3.4) . Suppose
that g satis�es the right-hand side of condition (3.5). Then there exists a constant C
such that for any �, 1 < � � 3n

3n�4 ,

1 +H(t)t2 � C(1 + g(t))�; 8t � 0; (3.22)

where � = �(�) = �
2�� and the constant C depends on K, sup0�t�t0 g

00(t), �.

Proof. SinceH(t) = max
n
g0(t)
t
; g00(t)

o
we have thatH(t)t2 � g0(t)t+g00(t)t2 8t � 0 :

Let t � t0 � 1. By the right-hand side of (3.5) and by 3.2 we obtain

g00(t)t2 � KC(1 + g(t))
1

2�� +KC�(1 + g(t))
�

2�� t�2�+2:

Let C1 = maxfKC;KC� t0�2�+2g: Then we have that for all t � t0
g00(t)t2 � 2C1(1 + g(t))

�
2�� (3.23)

On the other hand, if t � t0 we have

g00(t)t2 � sup
0�t�t0

g00(t)t2 � t02 sup
0�t�t0

g00(t) � Ct0 ; (3.24)

By putting together (3.23), (3.24) and lemma 3.2, from the de�nition ofH(t), we obtain
the result.

4 A-priori estimates

In this section we consider the integral of the Calculus of Variations

F (u) =

Z



f(Du)dx; (4.1)

with f(Du) = g(jDuj); were g satis�es (3.1). We make the following assumption:

Assumption 4.1 There exist two positive constants N and M such that

N j�j2 �
X
i;j;�;�

f��i �
�
j
(�)��i �

�
j �M j�j2; 8�; � 2 Rm�n; f(�) = g(j�j): (4.2)

This is equivalent to say that both g0(t)
t
and g00(t) are bounded by constants N;M; 8t >

0: This assumption allows us to consider u as a function of class W 1;1
loc (
;Rm) \

W 2;2
loc (
;Rm). Similarly in [21], assumption (4.2) will be successively removed. The

reason that will make this removal possible relies on the fact that the constants N and
M do not enter in the a-priori bound obtained for the L1-norm of the gradient. We
will denote by B�, BR balls of radii respectively � and R (� < R) contained in 
 and
with the same center.
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Lemma 4.1 Let g be as in (3.1), satisfying (4.2) and (3.6). Let u 2 W 1;1
loc (
;Rm) be a

minimizer of the integral (4.1). Then there exists a constant C, which does not depend
of N and M , such that (the function H is de�ned in (3.4))

kDuk2��nL1(B�;Rm�n) �
C

(R� �)n
Z
BR

�
1 + jDuj2H(jDuj)

�
dx :

Proof. Let u be a local minimizer of (4.1). By the left-hand side of (4.2), u 2
W 1;2(
;Rm) and by the right-hand side of (4.2) it satis�es the weak Euler �rst variation:Z




X
i;�

f��i (Du)'
�
xi
dx = 0; 8' = ('�) 2 W 1;2

0 (
;Rm): (4.3)

Using some known techniques (see for example ([3]), ([9]), ([18]), ([19]), ([20])) we
can prove that u admits second order weak partial derivatives, precisely that u 2
W 2;2
loc (
;Rm) and it satis�es the second variationZ



X
i;j;�;�

f��i �
�
j
(Du)u�xjxk'

�
xi
dx = 0; 8k = 1; 2; : : : n; 8' = ('�) 2 W 1;2

0 (
;Rm):

(4.4)
For k 2 f1; 2; : : : ; ng we consider ' 2 W 1;2

0 (
;Rm) (we do not denote explicitly the
dependence on k) de�ned by:

' := �2uxk�(jDuj);

where � 2 C10(
) and � : [0;+1) ! [0;+1) is an increasing bounded Lipschitz
continuous function. We plug ' in (4.4) and, since

'�xi = 2��xiu
�
xk
�(jDuj) + �2u�xixk�(jDuj) + �

2u�xk�
0(jDuj)(jDuj)xi

we obtain Z



2��
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xk
�xidx +

+

Z



�2�
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xixk
dx (4.5)

+

Z



�2�0
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xk
(jDuj)xidx = 0:
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De�ning

Ak =

Z



2��
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xk
�xidx (4.6)

Bk =

Z



�2�
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xixk
dx (4.7)

Ck =

Z



�2�0
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xk
(jDuj)xidx; (4.8)

equation (4.5) takes the concise form

Ak +Bk + Ck = 0: (4.9)

We start estimating the �rst addendum Ak in (4.9) with the inequality 2ab � 1
2
a2+2b2

jAkj �
Z



2�

"
�2
X
i;j;�;�

f��i �
�
j
u�xjxku

�
xixk

# 1
2
"X
i;j;�;�

f��i �
�
j
�xiu

�
xk
�xju

�
xk

# 1
2

dx (4.10)

�
Z



�

"
�2

2

X
i;j;�;�

f��i �
�
j
u�xjxku

�
xixk

+ 2
X
i;j;�;�

f��i �
�
j
�xiu

�
xk
�xju

�
xk

#
dx:

From (4.9) and (4.10) we obtain

1

2
Bk + Ck � 2

Z



�(jDuj)
X
i;j;�;�

f��i �
�
j
(Du)�xiu

�
xk
�xju

�
xk
dx: (4.11)

We use the expression of the second derivatives of f in (3.2) to estimate Ck in the
left-hand side. Since

(jDuj)xi =
1

jDuj
X
�;k

u�xixku
�
xk

(4.12)

we obtainX
k

X
i;j;�;�

f��i �
�
j
u�xjxku

�
xk
(jDuj)xi =

=

�
g00

jDuj2 �
g0

jDuj3

� X
k;i;j;�;�

u�xiu
�
xj
u�xjxku

�
xk
(jDuj)xi +

g0

jDuj
X
k;i;�

u�xixku
�
xk
(jDuj)xi =

=

�
g00

jDuj �
g0

jDuj2

�X
k;i;�

u�xi(jDuj)xiu
�
xk
(juj)xk + g0

X
i

(jDuj)2xi

=

�
g00

jDuj �
g0

jDuj2

�X
�

"X
i

u�xi(jDuj)xi

#2
+ g0jD(jDuj)j2: (4.13)
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Now we recall the de�nition (4.8) for Ck. The previous equality shows thatX
k

Ck =

Z



�2�0(jDuj)
��

g00(jDuj)
jDuj � g

0(jDuj)
jDuj2

�
� (4.14)

�
X
�

"X
i

u�xi(jDuj)xi

#2
+ g0(jDuj)jD(jDuj)j2

9=; dx

Now we consider the �rst term 1
2
Bk in the inequality (4.11). From (3.2) we get

X
i;j;�;�

f��i �
�
j
(Du)u�xjxku

�
xixk

=

�
g00(jDuj)
jDuj2 � g

0(jDuj)
jDuj3

� X
i;�

u�xixku
�
xi

!2
+
g0(jDuj)
jDuj

X
i;�

(u�xixk)
2:

By (4.12), summing with respect to kX
k

X
i;j;�;�

f��i �
�
j
(Du)u�xjxku

�
xixk

=

�
g00(jDuj)� g

0(jDuj)
jDuj

�
jD(jDuj)j2 + g

0(jDuj)
jDuj jD2uj2:

By the de�nition (4.7) we can writeX
k

Bk =

Z



�2�(jDuj)
��
g00(jDuj)� g

0(jDuj)
jDuj

�
jD(jDuj)j2 + g

0(jDuj)
jDuj jD2uj2

�
dx:

(4.15)
By (4.12) and applying the Cauchy-Schwarz inequality we have

jD(jDuj)j2 =
X
i

(jDuj)2xi =
1

jDuj2
X
i

(
X
�;k

u�xixku
�
xk
)2 �

X
i;�;k

(u�xixk)
2 = jD2uj2;

from which we deduce thatX
k

Bk �
Z



�2�(jDuj)g00(jDuj)jD(jDuj)j2dx: (4.16)

Now, we consider
P

k Ck in formula (4.14). We can write that

X
k

Ck =

Z



�2�0(jDuj)

0@g00(jDuj)
jDuj

X
�

 X
i

u�xi(jDuj)xi

!2
+ g0(jDuj)jD(jDuj)j2

� g0(jDuj)
jDuj2

X
�

 X
i

u�xi(jDuj)xi

!21A dx:
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Since, by Cauchy - Schwarz inequality, we get

X
�

 X
i

u�xi(jDuj)xi

!2
�
X
i;�

(u�xi)
2
X
i

(jDuj)2xi � jDuj
2jD(jDuj)j2;

then we can conclude thatX
k

Ck �
Z



�2�0(jDuj)g
00(jDuj)
jDuj

X
�

 X
i

u�xi(jDuj)xi

!2
dx � 0: (4.17)

By using the inequalities obtained for
P

k Bk and
P

k Ck in (4.16) and (4.17) we obtain
from the formula (4.11) where we sum on k

1

2

Z



�2�(jDuj)g00(jDuj)jD(jDuj)j2dx � 1

2

X
k

Bk �
1

2

X
k

Bk +
X
k

Ck �

� 2

Z



�(jDuj)
X

i;j;�;�;k

f��i �
�
j
(Du)�xiu

�
xk
�xju

�
xk
dx: (4.18)

By the right-hand side in (3.3), �nally we obtainZ



�2�(jDuj)g00(jDuj)jD(jDuj)j2dx � 4
Z



�(jDuj)H(jDuj)jD�j2jDuj2dx: (4.19)

for every � : [0;+1) ! [0;+1), increasing, local Lipschitz continuous function with
� and �0 bounded on [0;+1): If we consider a more general � not bounded, with
derivative �0 not bounded too, then we can approximate it by a sequence of functions
�r, each of them being equal to � in the interval [0; r], and then extended to [r;+1)
with the constant value �(r). We insert �(r) in (4.19) and we go to the limit as
r ! +1 by the monotone convergence theorem. So we obtain that (4.19) is true
for every � positive, increasing, local Lipschitz continuous function in [0;+1): Let us
de�ne

G(t) = 1 +

tZ
0

p
�(s)g00(s)ds; 8t � 0: (4.20)

By Hölder inequality, since function � is increasing and g0(0) = 0, we get

[G(t)]2 =

0@1 + tZ
0

p
�(s)g00(s)

1A2

� 2 + 2�(t)t
tZ
0

g00(s)ds

= 2 + 2�(t)tg0(t) � 2 + 2�(t)H(t)t2

Then we can write the following estimate for the gradient of function �G(jDuj)

jD(�G(jDuj))j2 = j(D�)G(jDuj) + �G0(jDuj)D(jDuj)j2
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� 2jD�j2jG(jDuj)j2 + 2�2jG0(jDuj)j2 � jD(jDuj)j2

� 4jD�j2
�
1 + �(jDuj)H(jDuj)jDuj2

�
+ 2�2�(jDuj)g00(jDuj)jD(jDuj)j2

By integrating over 
 the previous inequality we obtainZ



jD(�G(jDuj))j2dx �

� 4

Z



jD�j2
�
1 + �(jDuj)H(jDuj)jDuj2

�
dx+ 2

Z



�2�(jDuj)g00(jDuj)jD(jDuj)dx:

Now we use the inequality (4.19) and we getZ



jD(�G(jDuj))j2dx � 4
Z



jD�j2
�
1 + 3�(jDuj)H(jDuj)jDuj2

�
dx: (4.21)

As a consequence of (4.2), Du is locally bounded; hence we can apply Sobolev�s in-
equality: there exists a constant C1 such that�Z




[�G(jDuj)]2
�
dx

� 2
2�

� C1
Z



jD(�G(jDuj))j2dx : (4.22)

Let us de�ne �(t) = t2, with  � 0 ( so that � is increasing). Since g satis�es (3.6) we
can choose � = 2� and combining (4.22) and (4.21) we have that there exist constants
C3, C4 and same �, 0 � � < 2

n
such thatZ




jD�j2
�
1 + 3�(jDuj)H(jDuj)jDuj2

�
dx � 1

4

Z



jD(�G(jDuj))j2dx � (4.23)

C3

�Z



[�G(jDuj)]2
�
dx

� 2
2�

� C4
( + 1)2

�Z



�2
� �
1 + jDuj(+1��)2�H(jDuj)

�
dx

� 2
2�

:

Substituting in the left-hand side of inequality (4.23) the expression of function � we
get that there exist a constant C5 and same numbers �, 0 � � < 2

n
such that for every

 � 0 �Z



�2
� �
1 + jDuj(+1��)2�H(jDuj)

�
dx

� 2
2�

� C5( + 1)2
Z



jD�j2
�
1 + jDuj2H(jDuj)jDuj2

�
dx:

Let the test function � be equal to 1 in B�, with support contained in BR and such
that jD�j � 2

(R��) : Let us denote by � = 2( + 1) (note that, since  � 0, then � � 2).
We have (Z

B�

�
1 + jDuj(��2�) 2�2 H(jDuj)

�
dx

) 2
2�

� C5
�

�

R� �

�2 Z
BR

�
1 + jDuj�H(jDuj)

�
dx: (4.24)

17



Fixed R and �, with R > � we de�ne the decreasing sequence of radii f�igi�0

�i = �+
R� �
2i

; 8i � 0;

We observe that �0 = R > �i > �i+1 > �: We de�ne also the increasing sequence of
exponents f�igi�0, �0 = 2; �i+1 = (�i � 2�)2

�

2
; i � 0, and we rewrite the (4.24) with

R = �i; � = �i+1 and � = �i. Then we obtain for every i � 0:(Z
B�i+1

�
1 + jDuj�i+1H(jDuj)

�
dx

) 2
2�

� C5
�
�i2

i+1

R� �

�2 Z
B�i

�
1 + jDuj�iH(jDuj)

�
dx: (4.25)

By iterating (4.25) we get(Z
B�i+1

�
1 + jDuj(2��n)( 2

�
2
)i+1+�nH(jDuj)

�
dx

)( 2
2� )

i+1

� C6
Z
BR

�
1 + jDuj2H(jDuj)

�
dx: (4.26)

where the exponent in the �rst integral is given by computing

�i+1 = 2(
2�

2
)i+1 � 2�

i+1X
k=1

(
2�

2
)k = (2� �n)(2

�

2
)i+1 + �n

and

C6 �
+1Y
k=0

�
C58

(R� �)2
(2�)2k

�( 2
2� )

k

=

 �
C58

(R� �)2

�P+1
k=0(

2
2� )

k
!
(2�)

P+1
k=0 k(

2
2� )

k

=

=

�
C58

(R� �)2

�n
2

� (2�)
n(n�2)

2 =
C7

(R� �)n
;

for every n � 3; otherwise, if n = 2, then for every � > 0 we can choose 2� so that
C6 =

C7
(R��)2+� for some constant C7. Now, we observe that the function 1 + t

�H(t) �

1+ t��1g0(t), since H(t) � g0(t)

t
for every t > 0. Now, if t � 1 , since g0(t) is increasing

we have 1+ t��1g0(t) � t��1g0(1) and, if t � 1 we have 1+ t��1g0(t) � 1 � t��1: Hence,
we can write (Z

B�

jDuj
(2��n+ �n�1

( 2
�
2 )i+1

)( 2
�
2
)i+1

dx

)( 2
2� )

i+1

� C7

(R� �)n

Z
BR

�
1 + jDuj2H(jDuj)

�
dx: (4.27)
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Finally we go to the limit as i! +1 and we obtain

sup
�
jDu(x)j2��n : x 2 B�

	
= lim

i!+1

(Z
B�

jDuj
(2��n+ �n�1

( 2
�
2 )i+1

)( 2
�
2
)i+1

dx

)( 2
2� )

i+1

� C7

(R� �)n

Z
BR

�
1 + jDuj2H(jDuj)

�
dx:

Lemma 4.2 Let g be as in (3.1). Let us assume that g satis�es (4.2) and (3.5). Let
u 2 W 1;1

loc (
;Rm) be a minimizer of the integral (4.1). Then, for every � > 0 and for
every �;R (0 < � < R), there exists a constant C = C(n; �; �; R) such thatZ

B�

�
1 + jDuj2H(Du)

�
dx � C

�Z
BR

(1 + gjDuj) dx
� 1

1��+�

;

the constant C depends also on g(t0), g0(t0), K, H, sup0�t�t0 g
00(t), inf0�t�t0 g

00(t), but
it does not depend on the constants N and M in (4.2).

Proof. In Lemma 3.1 we considered parameters � and  such that � 2
�
1; n

n�1
�
and

 � 0. Here we restrict ourselves to the case 1 < � � 2n
2n�1 = 1 + 1

2n�1 and  = 0:

Then (3.6) holds for any � 2
�
2�
2�� ; 2

��. We de�ne � = 2�

�
, so that � 2

�
1; 2� 2��

2�

�
.

The condition � < 2
n
is equivalent to 1 < (1 � �)2�

2
; therefore it is possible to limit �

(and �) to satisfy the conditions 1 < � < (1� �)2�
2
too. Finally, since � > 1

n
we have

� � 2n
2n�1 <

2
2�� and this implies 1� � <

2��
�
. Thus

� 2
�
1; (1� �)2

�

2

�
=) � 2

�
1; 2�

2� �
2�

�
, � 2

�
2�

2� �; 2
�
�

so that the parameter � satisfy the condition of Lemma 3.1. Therefore there exists a
constant C1 (we still denote by C1; C2, etc.. the constants in this proof) such that

(G(t))2
�
=

264
0@1 + tZ

0

p
g00(s)ds

1A
2�
�

375
�

� C2
h
1 + t(1��)

2�
� H(t)

i�
:

Under the notations of the previous Lemma 4.1, let us consider again the estimates
(4.23) with � identically equal to 1 (or, equivalently, with  = 0); we have�Z




(�G(jDuj))2
�
dx

� 2
2�

� 4C2
Z



jD�j2
�
1 + 3H(jDuj)jDuj2

�
dx
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and thus�Z



�2
�
h
1 + jDuj(1��) 2

�
� H(jDuj)

i�
dx

� 2
2�

� C3
Z



jD�j2
�
1 +H(jDuj)jDuj2

�
dx :

(4.28)
Since � < (1� �)2�

2
, we have (1� �)2�

�
> 2. Under the notation V = V (x) = 1 +

jDuj2H(jDuj) (4.28) becomes�Z



�2
�
V �dx

� 2
2�

� C3
Z



jD�j2V dx : (4.29)

As in the previous Lemma (4.1) we consider a test function � equal to 1 on B� with
support contained in BR and such that jD�j � 2

R�� , we obtain(Z
B�

V �dx

) 2
2�

� 4C4
(R� �)2

Z
BR

V dx : (4.30)

Let  > 2�

2
. By Holder inequality we have(Z

B�

V �dx

) 2
2�

� 4C4
(R� �)2

Z
BR

V
�
 V 1�

�
 dx � 4C4

(R� �)2

�Z
BR

V �dx

� 1

�Z

BR

V
��
�1 dx

� �1


:

(4.31)
Let be R0 and �0 �xed. For any i 2 N we consider (4.31) with R = �i and � = �i�1,
where �i = R0 � R0��0

2i
. By iterating (4.31), since R � � = R0��0

2i
, similarly to the

computation in [21], page 19 we can write

Z
B�0

V �dx �
(Z

B�i

V �dx

)( 2�
2
)
i

C5

�
1

(R0 � �0)2

�� 2�
2�2

�i (Z
B�0

V
��
�1 dx

) 2�(�1)
2�2�

:

(4.32)
Since ��

�1 < 1 we can apply Lemma (3.3) with � =
�1
�� and we obtain

Z
B�

V �dx �
(Z

B�i

V �dx

)( 2�2 )i
C5

�
1

(R0 � �0)2

� 2�
2�2�

(Z
B�0

[1 + g(jDuj)] dx
) 2�(�1)

2�2�

:

In the limit as i! +1 we get

Z
B�0

V �dx � C6
�

1

(R0 � �0)2

� 2�
2�2�

(Z
BR0

[1 + g(jDuj)] dx
) 2�(�1)

2�2�

:
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Finally

Z
B�0

V dx � meas
�
B�0
	1� 1

�

(Z
B�0

V �dx

) 1
�

� C7

�
1

(R0 � �0)2

� 2�
(2�2�)�

(Z
BR0

[1 + g(jDuj)] dx
) 2�(�1)

(2�2�)�

: (4.33)

As � ! (1 � �)2�
2
and  ! +1 the two exponents in (4.33) converge to 1

1�� and we
have the result.

By combining together Lemma (3.1), Lemma (4.1) and Lemma (4.2) we proved the
following theorem.

Theorem 4.1 Let g be as in (3.1). Suppose that g satis�es (4.2) and (3.5). Let
u 2 W 1;1

loc (
;Rm) be a minimizer of the integral (4.1). Then u 2 W
1;1
loc (
;Rm) and for

every � > 0 and for every �;R (0 < � < R), there exists a constant C = C(n; �; �; R)
such that

kDuk2��nL1(B�;Rm�n) � C
�Z

BR

(1 + g(jDuj)) dx
� 1

1��+�

;

the constant C depends also on H, K, sup0�t�t0 g
00(t), but does not depend on the

constants N and M in (4.2).

5 The approximating regular problems

Let us consider a function g with the properties described in (3.1). Now we consider
the function g0(t)

t
. It is possible to have one and only one of the following three cases:

i) There exists a sequence ftng; limn!+1 tn = +1 such that g
0(tn)
tn

= 1

ii) There exists T such that for all t � T it follows that g
0(t)
t
> 1

iii) There exists T such that for all t � T it follows that g
0(t)
t
< 1

Let �t = infft > 0 : g
0(t)
t
> 0g; up to a rescaling we can assume 0 � �t < 1 � t0: We

consider a sequence �n, limn!+1 �n = 0, in the following way. In case i) we put �n = 1
tn
,

in case ii) or iii) we consider any sequence �n ! 0, with 1
�n
� T . It is obvious that we
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can choose n su¢ ciently large such that �t + �n < 1 and 1
�n
� maxfT; �t + �ng: Now we

de�ne the function

g0�n(t) =

8>>>>><>>>>>:

g0(�t+ �n)
�t+ �n

t ; 0 � t � �t+ �n

g0(t) ; �t+ �n < t �
1

�n

min
n
�ng

0
�
1
�n

�
t; g0(t) + �nt� 1

o
; t >

1

�n
:

(5.1)

Then obviously we can de�ne

g�n(t) =

tZ
0

g0�n(s)ds : (5.2)

The function g�n(t) results to be a convex function of class C
1([0;+1)), satisfying (3.1)

and (4.2) with suitable constants N(�n) and M(�n).

Lemma 5.1 Let g be as in (3.1) satisfying the left-hand side of (3.5). Let g�n(t) de�ned
in (5.2). Then there exists a constant H1 > 0 such that we have

H1t
�2�

"�
g0�n(t)

t

� 2
2�

+
g0�n(t)

t

#
� g00�n(t); 8t � t0: (5.3)

Proof. Let �t+ �n < 1 � t0 and t � t0.
1) If �t+ �n < t � 1

�n
then (5.3) holds because g0�n(t) = g

0(t) and g00�n(t) = g
00(t).

2) Let t > 1
�n
.

2a) If g0�n(t) = �ng
0
�
1
�n

�
t then g00�n(t) = �ng

0
�
1
�n

�
and we have

t�2�
�
�ng

0(
1

�n
)

� 2
2�

+ t�2��ng
0(
1

�n
) � �n2�+

2
2�

"
g0( 1

�n
)

g0(t0)

# 2
2�

(g0(t0))
2
2� + �ng

0(
1

�n
):

Since 2� + 2
2� > 1 and �n � 1 we have �n2�+

2
2� � �n; moreover the monotonicity of

function g0(t) get
g0( 1

�n
)

g0(t0)
� 1: As a consequence we can write

t�2�

"�
g0�n(t)

t

� 2
2�

+
g0�n(t)

t

#
�
�
(g0(t0))

2
2��1 + 1

�
�ng

0
�
1

�n

�
=
�
(g0(t0))

2
2��1 + 1

�
g00�n(t);

i.e. (5.3) holds with H1 �
�
(g0(t0))

2
2��1 + 1

��1
:
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2b) Let g0�n(t) = g
0(t) + �nt� 1. Then

g0(t)

t
� g0(t)

t
+ �n �

1

t
=
g0�n(t)

t
� �ng0

�
1

�n

�
:

If we are in case i) or iii), then we have as a consequence g0(t)
t
� 1. Hence by the

left-hand side of (3.5) we can write

t�2�

"�
g0�n(t)

t

� 2
2�

+
g0�n(t)

t

#
� 2t�2�

�
g0�n(t)

t

� 2
2�

= 2t�2�
�
g0(t)

t
+ �n �

1

t

� 2
2�

� 2t�2�
�
g0(t)

t

� 2
2�

+ 2t�2��
2
2�
n � 2

H
g00(t) + 2�

2
2�+2�
n : (5.4)

Since the exponent 2
2� + 2� > 1 and �n < 1, then

2

H
g00(t) + 2�

2
2�+2�
n <

2

H
g00(t) + 2�n < (2 +

2

H
)(g00(t) + �n) = (2 +

2

H
)g00�n(t) : (5.5)

By (5.4) and (5.5) we have the estimate in (5.3) with H1 � (2 + 2
H
)�1:

If we are in case ii) then g0(t)
t
> 1 and again by the left-hand side of (3.5) we obtain

t�2�

"�
g0�n(t)

t

� 2
2�

+
g0�n(t)

t

#
� 2t�2�

g0�n(t)

t
= 2t�2�

�
g0�n(t)

t
+ �n �

1

t

�
� 2

�
t�2�

g0(t)

t
+ �n

�
� (2 + 2

H
)(g00(t) + �n) :

This last inequality completes the proof.

Lemma 5.2 Let g be as in (3.1) satisfying the right-hand side of (3.5). Let g�n(t)
de�ned in (5.2). Then there exists a constant K1 > 0 such that for any � > 1 we have

g00�n(t) � K1

�
g0�n(t)

t
+

�
g0�n(t)

t

���
; 8t � t0: (5.6)

Proof. Let �t+ �n < 1 � t0 and t � t0.
1) If �t+ �n < t � 1

�n
then the (5.6) holds because g0�n(t) = g

0(t) and g00�n(t) = g
00(t).

2) Let t > 1
�n
.

2a) If g0�n(t) = �ng
0
�
1
�n

�
t, then g00�n(t) = �ng

0
�
1
�n

�
and (5.6) is obviously satis�ed.
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2b) Let g0�n(t) = g
0(t) + �nt� 1 then g00�n(t) = g00(t) + �n and

g0(t)

t
� g0(t)

t
+ �n �

1

t
� �ng0

�
1

�n

�
:

If we are in case i) or iii), then we have as a consequence g0(t)
t
� 1. By the right-hand

side of (3.5) we can write

g00�n(t) = g
00(t) + �n � 2K

g0(t)

t
+ �n � 2K

�
g0(t)

t
+ �n

�
: (5.7)

Since g0(t) is an increasing function, we have

g00�n(t) � 2K
�
g0(t)

t
+ �n +

�
1 + g0(t0)

g0(t0)

�
g0(t)

t
� 1
t

�
� 4K

�
1 + g0(t0)

g0(t0)

��
g0(t)

t
+ �n �

1

t

�
= 4K

�
1 + g0(t0)

g0(t0)

�
g0�n(t)

t
(5.8)

i.e. (5.6) with K1 � 4K
�
1+g0(t0)
g0(t0)

�
.

If case ii) is realized, then g0(t)
t
> 1 and we can write�

g0�n(t)

t

��
=

�
g0(t)

t
+ �n �

1

t

��
� 1

2�

�
g0(t)

t
+ �n

��
=
1

2�

�
g0(t)

t

�� 
1 +

�n
g0(t)
t

!�
:

Since  
1 +

�n
g0(t)
t

!�
� 1 + � �n

g0(t)
t

we can write�
g0�n(t)

t

��
� 1

2�

��
g0(t)

t

��
+ �n

�
� 1

2�+1K
(g00(t) + �n) =

1

2�K
g00�n(t) ; (5.9)

i.e. (5.6) with K1 � K2�+1. Combining (5.8) and (5.9) we obtain the result.

Lemma 5.3 Let g be as in (3.1). Let g�n(t) be de�ned in (5.2). Then there exists a
constant C such that

g�n(t) � C (1 + g(t)) + �nt2 ; 8t � 0: (5.10)

Proof. Let �t+ �n < 1 and 0 � t � �t+ �n. We have

g�n(t) =
g0(�t+ �n)
�t+ �n

t2

2
� 1

2

g0(1)
�t
; (5.11)
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If �t+ �n < t � 1
�n
we have

g�n(t) = g(t)� g(�t+ �n) +
g0(�t+ �n)(�t+ �n)

2
� g(t) + 1

2
g0(1) (5.12)

If t > 1
�n
we have g0�n(t) � g0(t) + �nt from which

g�n(t) � g(t0) +
tZ

t0

(g0(s) + �ns) ds � g(t0) +
tZ
0

(g0(s) + �ns) ds = g(t0) + g(t) +
�nt

2

2

(5.13)
By (5.11), (5.12) and (5.13) we obtain the result with the constant

C � max
�
1

2
g0(1); g(t0);

1

2

g0(1)
�t

�

6 Passage to the limit

Let us consider for every �n (�n is the sequence de�ned in the previous section 5) the
sequence of integral functionals

F�n(v) =

Z



g�n (jDvj) dx ; (6.1)

where g�n(t) is de�ned through its derivative g
0
�n(t) by (5.1) and (5.2). Let u 2

W 1;1
loc (
;Rm) be a local minimizer of the integral (4.1), i.e. g(jDuj) 2 L1loc(
) and

F (u) � F (u + �) for every � 2 C10(
;Rm). Let BR be a ball of radius R such that
B2R �� 
 and let 0 < � < minf1; Rg. We indicate by u� a sequence of smooth func-
tions de�ned from u by means of standard molli�ers. Then u� 2 W 1;2(BR;Rm). Let
u�n;� be a minimizer of the integral F�n(v) in (6.1) that satis�es the Dirichlet condition
u�n;� = u� on the boundary @BR, i.e., since F�n has a quadratic growth,Z

BR

g�n (jDu�n;�j) dx �
Z
BR

g�n (jDvj) dx ; 8v 2 W 1;2
0 (BR;Rm) + u� : (6.2)

By results of previous section 5, for every �n, g�n satis�es conditions (3.1), (4.2) (with
suitable constants N(�n) andM(�n)) and (3.5) with constants H and K not depending
on �n. Therefore we can apply to g�n the a-priori estimate obtained in Theorem 4.1
obtaining that for every �n and for every ball B� of radius � < R there exists a constant
C1 (independent on N , M , �n, �) such that, for some constants �; 1n < � <

2
n
we have

kDu�n;�k
2��n
L1(B�;Rm�n) � C1

�Z
BR

(1 + g�n (jDu�n;�j)) dx
� 1

1��+�

: (6.3)
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By the minimality of u�n;� we can write thatZ
BR

g�n (jDu�n;�j) dx �
Z
BR

g�n (jDu�j) dx : (6.4)

and by (5.10) and the properties of molli�ers we obtainZ
BR

g�n (jDu�j) dx � C2
�Z

BR

(1 + g (jDu�j)) dx+ �n
Z
BR

jDu�j2dx
�

� C2

(Z
BR+�

(1 + g(jDuj)) dx+ �n
Z
BR

jDu�j2dx
)
� C3(�) : (6.5)

From this chain of inequalities and (6.3) we obtain as a consequence

kDu�n;�k
2��n
L1(B�;Rm�n) � C4

(Z
BR+�

(1 + g (jDuj)) dx+ �n
Z
BR

jDu�j2dx
) 1

1��+�

� C5(�) :

(6.6)
Then for every �xed �, jDu�n;�j is equibounded with respect to �n. Hence, up to a
subsequence, u�n;� converges in the weak

� topology of W 1;1(B�;Rm�n) to a function
w� for some w�. Going to the limit for �n ! 0 in (6.6) we obtain

kDw�k2��nL1(B�;Rm�n) � C4

(Z
BR+�

(1 + g (jDuj)) dx
) 1

1��+�

: (6.7)

Hence we have that also Dw� is equibounded in L1(B�;Rm�n) and it is still possible to
take a subsequence which converges in the weak� topology of L1(B�;Rm) to a function
Dw for some w.

We will prove that w = u: Let us consider �n su¢ ciently small in dependence on �;
more precisely, �xed �, we consider �n � �n(�), with �n(�) such that 1

�n(�)
> [C5(�)]

1
2��n

where C5(�) is the constant obtained in the estimate (6.6). Then we have by (6.6) that
jDu�n;�j < 1

�n
. By the de�nition of g�n(t) we can calculate

g�n(t) =

(
g0(�t+�n)
�t+�n

t2

2
if 0 � t � �t+ �n ;

g(t)� g(�t+ �n) + g0(�t+�n)(�t+�n)
2

if �t+ �n < t � 1
�n
;

(6.8)

and hence we can write that

g(t) � g(�t+ �n) + g�n(t) ; �t+ �n � t �
1

�n
: (6.9)

By lower semicontinuity and (6.9) we obtainZ
B�

g (jDw�j) dx � lim inf
�n!0

Z
BR

g (jDu�n;�j) dx � lim inf
�n!0

Z
BR

g�n (jDu�n;�j) dx :
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From (6.4) and (5.10) we can deduce that g�n (jDu�n;�j) is bounded with respect to �n
and then we can apply in (6.4) the dominate convergence theorem obtaining

lim inf
�n!0

Z
BR

g�n (jDu�n;�j) dx �
Z
BR

g (jDu�j) dx �
Z
BR+�

g (jDuj) dx :

By resuming we have, for every � < R,Z
B�

g (jDw�j) dx �
Z
BR+�

g (jDuj) dx : (6.10)

Again by lower semicontinuity and by (6.10) we haveZ
BR

g (jDwj) dx � lim inf
�!0

Z
BR

g (jDw�j) dx �
Z
BR

g (jDuj) dx :

Now, our assumptions on g do not guaranty uniqueness of the minimizer for the Dirich-
let problem. However g(j�j) is locally strictly convex for j�j > 1, then we can conclude
as in [21] that w = u: Going to the limit for � ! 0 in (6.7) we get

kDwk2��nL1(B�;Rm�n) � C4
�Z

BR

(1 + g(jDuj)) dx
� 1

1��+�

: (6.11)

Hence the estimate (6.11) holds also for Du: Therefore we completed the proof of
Theorem A.

Theorem B follows by Theorem A with some simpli�cations; below we give an outline
of its proof.

Outline of the proof of Theorem B. We �rst observe that the assumption (2.12)
implies that limt!+1 g

0(t) = l 2 (0;+1) and hence there exist t0 such that g0(t)
t
< 1

for every t � t0: Thus, condition (2.13) can be rewrite as

H

�
g0(t)

t

� 2
2�

t�2� � g00(t) � Kg
0(t)

t
; 8t � t0 ;

where � = 
2
� 1

2� . Since the case  = 1, corresponding to the assumption H 1
t
�

g00(t) � K 1
t
, is easier to be treated, we limit ourselves to consider here  > 1; in this

case we have � = 
2
� 1

2� >
1
n
and we are in the conditions of Theorem A. Moreover,

the function g0(t) has the �2 � property: This make immediate lemma 4.2 and that is
why in the right hand side of �nal estimate (2.14) does not appear the exponent � (see
also Remark 1.2 and Remark 5.1 in [21]).

Acknowledgements. A referee pointed out to us that the �rst version of this paper
presented for publication contained a mistake in the proof of Lemma 3.1. We corrected
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the proof of Lemma 3.1 and its application in the proof of Lemma 4.2. The main
Theorems A and B (stated at the end of section 2) remain unchanged with respect to
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