Nonlinear elliptic systems with general growth

Paolo Marcellini*, Gloria Papi
Dipartimento di Matematica "U.Dini", Università di Firenze - Viale Morgagni 67/A, I-50134 Firenze, Italy

Received 23 November 2004
Available online 21 February 2005

Abstract

We prove local Lipschitz-continuity and, as a consequence, C^{k} and C^{∞} regularity of weak solutions u for a class of nonlinear elliptic differential systems of the form $\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}^{\alpha}(D u)=$ $0, \alpha=1,2, \ldots, m$. The growth conditions on the dependence of functions $a_{i}^{\alpha}(\cdot)$ on the gradient $D u$ are so mild to allow us to embrace growths between the linear and the exponential cases, and they are more general than those known in the literature. © 2005 Elsevier Inc. All rights reserved.

MSC: 35J50; 35D10
Keywords: Elliptic differential systems; Calculus of variations; Regularity

1. Introduction

Let $n \geqslant 2, m \geqslant 1$, let Ω be an open set of \mathbb{R}^{n} and let $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a weak solution of a nonlinear elliptic system of PDE's of the form

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} a_{i}^{\alpha}(D u)=0, \quad \alpha=1,2, \ldots, m \tag{1.1}
\end{equation*}
$$

[^0]where $D u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}$ denotes the gradient of the map u, by components $x=\left(x_{i}\right)_{i=1,2, \ldots, n}, u=\left(u^{\alpha}\right)^{\alpha=1,2, \ldots, m}$ and $D u=\left(\partial u^{\alpha} / \partial x_{i}\right)=\left(u_{x_{i}}^{\alpha}\right)_{i=1,2, \ldots, n}^{\alpha=1,2, \ldots, m}$. By using the notation $\xi=\left(\xi_{i}^{\alpha}\right)_{i=1,2, \ldots, n}^{\alpha=1,2, \ldots, m}, A(\xi)=\left(a_{i}^{\alpha}(\xi)\right)_{i=1,2, \ldots, n}^{\alpha=1,2, \ldots, m}$ is a given vector field A : $\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$ of class C^{1}, satisfying the ellipticity condition
\[

$$
\begin{equation*}
\sum_{i, j=1}^{n} \sum_{\alpha, \beta=1}^{m} \frac{\partial a_{i}^{\alpha}(\xi)}{\partial \xi_{j}^{\beta}} \lambda_{i}^{\alpha} \lambda_{j}^{\beta}>0, \quad \forall \lambda, \xi \in \mathbb{R}^{m \times n}: \lambda \neq 0 \tag{1.2}
\end{equation*}
$$

\]

as well as the variational condition that the vector field $A(\xi)$ is the gradient of a function $f(\xi)$, i.e., that there exists a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
a_{i}^{\alpha}=\frac{\partial f}{\partial \xi_{i}^{\alpha}}=f_{\xi_{i}^{\alpha}}, \quad \forall \alpha=1,2, \ldots, m ; \quad i=1,2, \ldots, n \tag{1.3}
\end{equation*}
$$

Under the variational condition (1.3), the ellipticity condition (1.2) implies the (strict) convexity of the function f. Finally, we assume that $f(\xi)=g(|\xi|)$ is a function g of the modulus $|\xi|$ (with $g^{\prime}(0)=0$, to respect the condition that the function f is of class $C^{1}\left(\mathbb{R}^{m \times n}\right)$.

The regularity problem for the elliptic system (1.1) consists in asking if the solution $u=u(x)=\left(u^{\alpha}(x)\right)^{\alpha=1,2, \ldots, m}$, a priori only a measurable function in the Sobolev class $W^{1,1}$, in fact is of class C^{∞} (or $C^{0, \alpha}, C^{1}, C^{1, \alpha}$, or C^{k} for some k), under the assumption that the data are smooth.

With the aim to explain the situation, let us assume, for the moment, that the solution $u \in W^{1,1}$ in fact is also in $W_{\text {loc }}^{1, \infty}$, i.e., that the gradient $D u$ is locally bounded in Ω. Then, under the ellipticity condition (1.2) and the variational condition (1.3) with $f(\xi)=g(|\xi|)$, it is possible to show that

$$
u \in W_{\mathrm{loc}}^{1, \infty}, \quad A \in C^{1} \quad \Longrightarrow \quad u \in C_{\mathrm{loc}}^{1, \alpha}
$$

(see for instance [23]; for simplicity of notations, we write $A \in C^{1}$ instead of, more precisely, $A \in C^{1, \gamma}$ for some $\gamma \in(0,1)$). Moreover, it is possible to see (cf. [3,16-18]) that u admits second derivatives in weak form and that, for every $k \in\{1,2, \ldots, n\}$, the partial derivative $u_{x_{k}}=\left(u_{x_{k}}^{\beta}\right)^{\beta=1,2, \ldots, m}$ satisfies the elliptic differential linear system

$$
\sum_{i, j, \beta} \frac{\partial a_{i}^{\alpha}(D u(x))}{\partial \xi_{j}^{\beta}}\left(u_{x_{k}}\right)_{x_{j}}^{\beta}=0, \quad \alpha=1,2, \ldots, m
$$

(see (4.4) and note that $\partial a_{i}^{\alpha} / \partial \xi_{j}^{\beta}=f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}$). The coefficients $\partial a_{i}^{\alpha} / \partial \xi_{j}^{\beta}(D u(x))$ are locally Hölder-continuous, since $u \in C_{\text {loc }}^{1, \alpha}$; thus we can apply the regularity results in the
literature for linear elliptic systems with smooth coefficients (see for instance Section 3 of Chapter 3 of [9]) to infer

$$
u \in C_{\mathrm{loc}}^{1, \alpha}, \quad A \in C^{k} \quad \Longrightarrow \quad u \in C_{\mathrm{loc}}^{k, \alpha}, \quad \forall k=2,3, \ldots
$$

In particular, $u \in C_{\mathrm{loc}}^{\infty}$ if $A \in C^{\infty}$.
Therefore the problem which remains to be solved is under which conditions on $A(\xi)$ is it possible to show that the gradient $D u$ is in fact locally bounded, i.e., $u \in W_{\text {loc }}^{1, \infty}$. Why the local boundedness of the gradient $D u$ is a so relevant condition for regularity?

Because the differential system (1.1) heavily depends on $D u$ in a nonlinear way, in particular through $a_{i}^{\alpha}(D u)$ and, if $D u(x)$ is bounded, then $a_{i}^{\alpha}(D u(x))$ is bounded too and far away from zero. Thus the behavior of $A(\xi)=\left(a_{i}^{\alpha}(\xi)\right)$ for $|\xi| \rightarrow+\infty$ becomes irrelevant.

On the contrary, the local boundedness of the gradient is a property related to the behavior of $A(\xi)$ as $|\xi| \rightarrow+\infty$. This problem has been extensively studied in the literature and a detailed story is presented in the next section. Precisely, in the next section we point out in detail the assumptions made in the earlier mathematical literature on the subject, as well as the results presented in this paper.

We emphasize that the mathematical literature on the subject is large: some references are given in the next section and a good survey, as well as some new interesting regularity results, are given in the recent book by Bildhauer [2]. Our assumptions, in the context of basic elliptic systems of type (1.1) with $A(\xi)=D_{\xi} f(\xi)$ and $f(\xi)=$ $g(|\xi|)$, are more general than those in the literature, and they allow us to consider at the same time variational problems with functions $f(\xi)$ having linear growth as $|\xi| \rightarrow+\infty$, as well as functions $f(\xi)$ with either polynomial or exponential growth at infinity.

2. Description of the problem and statement of the main results

Let Ω be an open set of \mathbb{R}^{n} for some $n \geqslant 2$ and let $u: \Omega \rightarrow \mathbb{R}^{m}(m \geqslant 1)$ be a vector valued local minimizer of an integral of the calculus of variations of the type

$$
\begin{equation*}
\mathcal{F}=\int_{\Omega} f(D u) d x \tag{2.1}
\end{equation*}
$$

related to some convex integrand $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$. Here $D u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}$ denotes the gradient of the map u. By a local minimizer of the integral (2.1) we mean a function $u \in W_{\text {loc }}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ with the property that $\mathcal{F}(u) \leqslant \mathcal{F}(u+\phi)$ for every $\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{m}\right)$; in the context of this paper this definition is consistent.

It is well known that in general we cannot expect that u, either a priori minimizer of integral (2.1) or weak solution of the differential system (1.1) in a Sobolev class of functions $W^{1, p}\left(\Omega ; \mathbb{R}^{m}\right)$, is in fact a smooth function, say of class $C_{\text {loc }}^{\infty}$, or even of
class $C_{\text {loc }}^{1}$ or $C_{\text {loc }}^{0, \alpha}$ for some $\alpha \in(0,1)$. In the vector-valued case $m>2$ examples of nonsmooth minimizers and of nonsmooth weak solutions have been given by De Giorgi [6], Giusti-Miranda [12] and by Necas [21]. A recent counterexample in threedimensional case in the context of smooth strongly convex functionals has been also given by Sverak-Yan [22].

Even in the scalar case $m=1$ it is possible to give examples of local minimizers $u \in$ $W_{\text {loc }}^{1, p}(\Omega ; \mathbb{R})$ for some $p>1$ (this phenomenon is related to the p, q-growth condition described below, with q larger than p), which do not even belong to $L_{\text {loc }}^{\infty}(\Omega$; $\mathbb{R})$; see [10,15-17].

As already mentioned, regularity of solutions is often related to the growth of $f(\xi)$ as $|\xi| \rightarrow+\infty$. More precisely, the so-called natural growth conditions state that there exists a growth exponent $p>1$ and positive constants m, M such that

$$
\begin{equation*}
m|\xi|^{p} \leqslant f(\xi) \leqslant M\left(1+|\xi|^{p}\right), \quad \forall \xi \in \mathbb{R}^{m \times n}, \tag{2.2}
\end{equation*}
$$

as well as the ellipticity conditions on the matrix $D^{2} f$ of the second derivatives of f, of the type

$$
\begin{equation*}
m\left(1+|\xi|^{p-2}\right)|\lambda|^{2} \leqslant\left(D^{2} f(\xi) \lambda, \lambda\right) \leqslant M\left(1+|\xi|^{p-2}\right)|\lambda|^{2}, \quad \forall \xi, \lambda \in \mathbb{R}^{m \times n} \tag{2.3}
\end{equation*}
$$

It was pointed out by Marcellini $[16,17]$ that the above natural growth conditions, sufficient for regularity, can be weakened into anisotropic growth conditions, or into p, q-growth conditions, i.e., with an exponent $q \geqslant p$ in the right-hand side of (2.2), (2.3), or into more general growth conditions. In particular, ellipticity p, q-growth conditions of the type

$$
\begin{equation*}
m\left(1+|\xi|^{p-2}\right)|\lambda|^{2} \leqslant\left(D^{2} f(\xi) \lambda, \lambda\right) \leqslant M\left(1+|\xi|^{q-2}\right)|\lambda|^{2}, \quad \forall \xi, \lambda \in \mathbb{R}^{m \times n} \tag{2.4}
\end{equation*}
$$

with exponents $q \geqslant p>1$ such that $\frac{q}{p}<\frac{n}{n-2}$ if $n>2$.
In the general vectorial setting only few contributions are available for general growth: we like to refer to the papers by Giusti [11], Giusti-Miranda [13], AcerbiFusco [1] and by Esposito et al. [7]. A recent book by Bildhauer [2] gives a complete overview and a detailed list of references. If some additional structure conditions are assumed then several results can be found in the mathematical literature on the subject. For instance, as a generalization of the " p-growth" case considered by Uhlenbeck [23], Marcellini proposed in [19] an approach to the regularity of minimizers of the integral

$$
\begin{equation*}
F(u)=\int_{\Omega} g(|D u|) d x \tag{2.5}
\end{equation*}
$$

i.e. with the integrand in (2.1) of the form $f(\xi)=g(|\xi|)$, where $g:[0,+\infty) \rightarrow$ $[0,+\infty)$ is an increasing convex function, without growth assumption on $g(t)$ as $t \rightarrow$
$+\infty$. For example, the regularity result can be applied to the exponential growth, such as any finite composition of the type

$$
\begin{equation*}
f(\xi)=\left(\exp \left(\ldots\left(\exp \left(\exp |\xi|^{2}\right)^{p_{1}}\right)^{p_{2}}\right) \ldots\right)^{p_{k}} \tag{2.6}
\end{equation*}
$$

with $p_{i} \geqslant 1, \forall i=1,2, \ldots, k$. However, some other restrictions ware imposed in [19], such as, for instance, the fact that $t \in(0,+\infty) \rightarrow \frac{g^{\prime}(t)}{t}$ is assumed to be an increasing function. To exemplify, the model case $g(t)=t^{p}$ gives the restriction $p \geqslant 2$. Afterwards, in [14] Leonetti-Mascolo-Siepe consider the case of subquadratic p, q-growth conditions, i.e. in (2.4) they assume $1<p<q<2$. Their result includes energy densities f of the type $f(\xi)=|\xi|^{p} \log ^{\alpha}(1+|\xi|)$ with $p<2$. In [8] Fuchs-Mingione concentrate on the case of nearly linear growth, for which (2.4) fails to be true. Typical examples are the logarithmic case $f(\xi)=|\xi| \log (1+|\xi|)$ and its iterated version

$$
\begin{cases}f_{k}(\xi) & =|\xi| L_{k}(|\xi|) \tag{2.7}\\ L_{s+1}(t) & =\log \left(1+L_{s}(t)\right), \quad L_{1}(t)=\log (1+t)\end{cases}
$$

for $k \in$ arbitrary. Bildhauer [2] considers linear behaviors for functional (2.5); he gives conditions that can keep γ-elliptic linear growth with $\gamma<1+\frac{2}{n}$. Examples of γ-elliptic linear integrands are given by

$$
\begin{equation*}
g_{\gamma}(t)=\int_{0}^{t} \int_{0}^{s}\left(1+z^{2}\right)^{-\frac{\gamma}{2}} d z d s, \quad \forall t \geqslant 0 \tag{2.8}
\end{equation*}
$$

For $\gamma=1, g_{\gamma}(t)$ behaves like $t \log (1+t)$ and in the limit case $\gamma=3, g_{\gamma}(t)$ becomes $\left(1+t^{2}\right)^{1 / 2}$. Hence the functions $g_{\gamma}(t)$ provide a one parameter family connecting logarithmic examples with the minimal surface integrand. As further reference see also [4].

In this paper we attempt to find conditions which include different kinds of growths. At this purpose we give a general condition on function g embracing growths moving between linear and exponential functions. The condition is the following:

Let $t_{0}, H>0$ and $\beta \in\left(\frac{1}{n}, \frac{2}{n}\right)$. For every $\alpha \in\left(1, \frac{n}{n-1}\right]$ there exists $K=K(\alpha)$ such that

$$
\begin{equation*}
H t^{-2 \beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{n-2}{n}}+\frac{g^{\prime}(t)}{t}\right] \leqslant g^{\prime \prime}(t) \leqslant K\left[\frac{g^{\prime}(t)}{t}+\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}\right], \quad \forall t \geqslant t_{0} \tag{2.9}
\end{equation*}
$$

The exponent α in the right-hand side is a parameter to play, i.e., to use to test more functions g. The condition in the left-hand side of (2.9) permits to achieve functions, for instance, with second derivative going to zero as a power $t^{-\gamma}$, (i.e. γ-elliptic), where γ is not too large and is related to the dimension n, i.e. $\gamma<1+\frac{2}{n}$. As well as functions in (2.8), other examples in the linear case include

$$
g(t)=1+t-\sqrt{t}, \quad \forall t \geqslant 1, \quad n<4,
$$

or more in general, for $r \in(0,1)$,

$$
g_{r}(t)=h(t)-t^{r}, \quad \forall t \geqslant 1, \quad n<\frac{2}{1-r}
$$

and also

$$
g_{r}(t)=h(t)+\left(1-t^{r}\right)^{\frac{1}{r}}, \quad \forall t \geqslant 1, \quad n<\frac{2}{r}
$$

where $h(t)$ is a convex function such that, for suitable constants C_{1}, C_{2},

$$
C_{1}(1+t) \leqslant h(t) \leqslant C_{2}(1+t)
$$

We observe that the functions $g_{k}(t)=\left(1+t^{k}\right)^{\frac{1}{k}}$, related to minimal surfaces, are convex if $k \geqslant 1$, and $g_{k}^{\prime \prime}(t)=(k-1) t^{k-2}\left(1+t^{k}\right)^{\frac{1}{k}-2}=\mathcal{O}\left(\frac{1}{t^{k+1}}\right)$ when $t \rightarrow+\infty$, so that they do not satisfy left-hand side of condition (2.9).

As far as p, q-growth is concerned, we like to remark that condition (2.9) is satisfied without assuming any restriction on p and q. For example, fixed $1<p<q$, consider the function (cf. [5])

$$
g(t)= \begin{cases}t^{p} & \text { if } t \leqslant \tau_{0} \tag{2.10}\\ t^{\frac{p+q}{2}+\frac{q-p}{2} \sin \log \log \log t} & \text { if } t>\tau_{0}\end{cases}
$$

where τ_{0} is such that $\sin \log \log \log \tau_{0}=-1$. First of all we observe that function g oscillates between the function t^{p}, to which it is tangent in τ_{n} such that $\sin \log \log \log \tau_{n}=$ -1 , and the function t^{q}, to which it is tangent in σ_{n} such that $\sin \log \log \log \sigma_{n}=1$. By a direct computation it is possible to see that one can choose τ_{0} and t_{0} large enough such that g is convex and satisfies (2.9). We observe that the left-hand side of (2.9) implies $g^{\prime \prime}(t)>0$ for $t \geqslant t_{0}$. For this reason the function in (2.10), with $p=1$, does not satisfy condition (2.9); in fact if $p=1$ we have $g^{\prime \prime}\left(\sigma_{n}\right)=0$.

Also high growths like that in (2.6) are included in condition (2.9). In other words, our results unify and generalize those obtained in the literature for integral (2.5), including in particular the linear case treated in [2], the non-standard p, q-growth, the exponential growth considered in [19] and also the new example of oscillating function in (2.10). Part of the techniques of this paper have been introduced by Marcellini [19]. The starting point is the second variational weak equation for which we need the supplementary assumption that $g^{\prime \prime}(t)$ and $\frac{g^{\prime}(t)}{t}$ are bounded by constants N and M for all $t>0$. In this case we give a priori estimates for $\sup |D(u)|$ by using only the properties of function g, so that the constants in the a priori bounds do not depend on M and N. Successively we remove this assumption by approximating the original problem with regular variational ones. This is possible because the constants N and M do not enter in the a priori bounds for the L^{∞}-norm of the gradient.

In this paper we prove in particular the following two results, the first one valid under general growth conditions, the second one specific for the linear case.

Theorem A (General growth). Let $g:[0,+\infty) \rightarrow[0,+\infty)$ be a convex function of class $W_{\mathrm{loc}}^{2, \infty}$ with $g(0)=g^{\prime}(0)=0$, satisfying the general growth condition (2.9) with $\beta \in\left(\frac{1}{n}, \frac{2}{n}\right)$ as before. Let $u \in W_{\mathrm{loc}}^{1,1}\left(\Omega ; R^{m}\right)$ be a local minimizer of integral (2.5). Then $u \in W_{\text {loc }}^{1, \infty}\left(\Omega ; R^{m}\right)$. Moreover, the following estimate holds: for every $\varepsilon>0$ and $R>$ $\rho>0$ there exists a constant C (depending on $\varepsilon, n, \rho, R, H, K$ and $\sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t)$) such that

$$
\begin{equation*}
\|D u\|_{L^{\infty}\left(B \rho ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C\left\{\int_{B_{R}}(1+g(|D u|)) d x\right\}^{\frac{1}{1-\beta}+\varepsilon} \tag{2.11}
\end{equation*}
$$

Theorem B (Linear growth). Let $g:[0,+\infty) \rightarrow[0,+\infty)$ be a convex function of class $W_{\mathrm{loc}}^{2, \infty}$ with $g(0)=g^{\prime}(0)=0$. Let us assume that g has the linear behavior at infinity

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{g(t)}{t}=l \in(0,+\infty) \tag{2.12}
\end{equation*}
$$

and that its second derivative satisfies the inequalities

$$
\begin{equation*}
H \frac{1}{t^{\gamma}} \leqslant g^{\prime \prime}(t) \leqslant K \frac{1}{t}, \quad \forall t \geqslant t_{0} \tag{2.13}
\end{equation*}
$$

for some positive constants H, K, t_{0} and for some $\gamma \in\left[1,1+\frac{2}{n}\right)$. Then every local minimizer u of integral (2.5) is of class $W_{\mathrm{loc}}^{1, \infty}\left(\Omega ; R^{m}\right)$ and, for every $R>\rho>0$, the following estimate is satisfied:

$$
\begin{equation*}
\|D u\|_{L^{\infty}\left(B \rho ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C \int_{B_{R}}(1+g(|D u|)) d x \tag{2.14}
\end{equation*}
$$

where $\beta=\frac{\gamma}{2}-\frac{n-2}{2 n}$ and the constant C depends on n, ρ, R, l, H, K and $\sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t)$.
Note that $2-\beta n \in(0,1]$ since $\gamma \in\left[1,1+\frac{2}{n}\right)$. Note also that estimate (2.14) in Theorem B is sharper than estimate (2.11) of Theorem A, when we reduce the general assumption (2.9) of Theorem A to linear growth, since in the second case the proof is more direct, as explained at the end of this paper. Therefore, Theorem B cannot be considered a particular case of Theorem A.

The plan of the paper is the following. In Section 2 we discuss some consequences of assumption (2.9) and we prove for g some estimates that will be used in Section 3,
where we get a priori bounds for the gradient of local minimizers of functional (2.5). In Section 4 we define the approximating regular variational problems and we obtain a priori bounds for the gradient of their minimizers. Finally in Section 5 we go to the limit and we obtain the regularity Theorems A and B.

3. Ellipticity estimates and their consequences

With the aim to study integrals of the Calculus of Variations of the type (2.5), we consider $f(\xi)=g(|\xi|)$, for $\xi \in \mathbb{R}^{m \times n},\left(\xi=\left(\xi_{i}^{\alpha}\right), i=1,2, \ldots, n, \alpha=1,2, \ldots, m\right)$, where

$$
g:[0,+\infty) \rightarrow[0,+\infty) \quad \begin{array}{ll}
\text { is a convex function of class } \tag{3.1}\\
W^{2, \infty}[0, T], \forall T>0, \quad g(0)=g^{\prime}(0)=0
\end{array}
$$

By the representation $f(\xi)=g(|\xi|)$, we have

$$
\begin{equation*}
f_{\xi_{i}^{\alpha}}=g^{\prime}(|\xi|) \frac{\xi_{i}^{\alpha}}{|\xi|}, \quad f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}=\left(\frac{g^{\prime \prime}(|\xi|)}{|\xi|^{2}}-\frac{g^{\prime}(|\xi|)}{|\xi|^{3}}\right) \cdot \xi_{i}^{\alpha} \xi_{j}^{\beta}+\frac{g^{\prime}(|\xi|)}{|\xi|} \delta_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} \tag{3.2}
\end{equation*}
$$

Since

$$
\sum_{i, j, \alpha, \beta} \xi_{i}^{\alpha} \xi_{j}^{\beta} \lambda_{i}^{\alpha} \lambda_{j}^{\beta}=\left(\sum_{i, \alpha} \xi_{i}^{\alpha} \lambda_{i}^{\alpha}\right)^{2} \leqslant(|\xi||\lambda|)^{2}, \quad \forall \lambda, \xi \in \mathbb{R}^{m \times n}
$$

(and the equality holds when λ is proportional to ξ), we easily obtain the following ellipticity estimates:

$$
\begin{align*}
\min \left\{g^{\prime \prime}(|\xi|), \frac{g^{\prime}(|\xi|)}{|\xi|}\right\} & \leqslant \frac{\sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} j_{j}^{\mu}} \lambda_{i}^{\alpha} \lambda_{j}^{\beta}}{|\lambda|^{2}} \\
& \leqslant \max \left\{g^{\prime \prime}(|\xi|), \frac{g^{\prime}(|\xi|)}{|\xi|}\right\}, \quad \forall \lambda, \xi \in \mathbb{R}^{m \times n} \tag{3.3}
\end{align*}
$$

Let us define

$$
\begin{equation*}
\mathcal{H}(t)=\max \left\{g^{\prime \prime}(t), \frac{g^{\prime}(t)}{t}, \quad \forall t>0\right\} \tag{3.4}
\end{equation*}
$$

We observe that, since $g^{\prime}(t)=\int_{0}^{t} g^{\prime \prime}(s) d s \leqslant M_{T} t, \forall t \leqslant T$, the function $\frac{g^{\prime}(t)}{t}$ (and consequently $\mathcal{H}(t))$ is bounded on ($0, T], \forall T>0$. We observe that in (3.1) we do not assume $g^{\prime}(0)>0$ but, more generally, we allow $g^{\prime}(t)$ and $g(t)$ to be equal to zero in
$(0, \bar{t}]$, with $\bar{t}>0$. The sequel of this section is devoted to derive some useful estimates on the function g, starting by the general assumption (2.9). With this aim we begin with the following lemma (where by 2^{*} we denote the Sobolev's exponent, i.e $2^{*}=\frac{2 n}{n-2}$ if $n \geqslant 3$, while 2^{*} is any fixed number greater than 2 if $n=2$).

Lemma 3.1. Let g be as in (3.1). Let β, H be positive constants such that $\frac{1}{n}<\beta<\frac{2}{n}$. Let us assume that for every $\alpha \in\left(1, \frac{n}{n-1}\right]$ there exists a constant K (depending on α) such that

$$
\begin{equation*}
H t^{-2 \beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+\frac{g^{\prime}(t)}{t}\right] \leqslant g^{\prime \prime}(t) \leqslant K\left[\frac{g^{\prime}(t)}{t}+\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}\right], \quad \forall t \geqslant t_{0} \tag{3.5}
\end{equation*}
$$

Then for every δ with $\frac{2 \alpha}{2-\alpha} \leqslant \delta \leqslant 2^{*}$ and for every $\gamma \geqslant 0$ there exists a constant C such that

$$
\begin{equation*}
1+\int_{0}^{t} s^{\gamma} \sqrt{g^{\prime \prime}(s)} d s \geqslant C\left[1+\left(\frac{t^{\gamma+1-\beta}}{\gamma+1}\right)^{\delta} \mathcal{H}(t)\right]^{\frac{1}{\delta}}, \quad \forall t \geqslant 0 . \tag{3.6}
\end{equation*}
$$

Proof. In order to simplify this proof, up to a rescaling, we will assume, without loss of generality, that $t_{0}=1$ and $g\left(t_{0}\right)>0$. We observe that

$$
\begin{equation*}
\left[1+\left(\frac{t^{\gamma+1-\beta}}{\gamma+1}\right)^{\delta} \mathcal{H}(t)\right]^{\frac{1}{\delta}} \leqslant\left[1+\left(\frac{t^{\gamma+1-\beta}}{\gamma+1}\right) \mathcal{H}(t)^{\frac{1}{\delta}}\right], \quad \forall t>0, \forall \gamma \geqslant 0 \tag{3.7}
\end{equation*}
$$

Now, let us call

$$
\begin{gather*}
F_{1}(t, \gamma)=1+\int_{0}^{t} s^{\gamma} \sqrt{g^{\prime \prime}(s)} d s \tag{3.8}\\
G_{1}(t, \gamma)=1+\left(\frac{t^{\gamma+1-\beta}}{\gamma+1}\right) \mathcal{H}(t)^{\frac{1}{\gamma}} \tag{3.9}
\end{gather*}
$$

and let us define the quotient

$$
\begin{equation*}
Q_{1}(t, \gamma)=\frac{F_{1}(t, \gamma)}{G_{1}(t, \gamma)} \tag{3.10}
\end{equation*}
$$

It is easy to see that $Q_{1}(t, \gamma)$ is lower bounded in the strip $(t, \gamma) \in\left[0, t_{0}\right] \times[0,+\infty]$ (we remember that $t_{0}=1$) by the constant $C_{1}=\left(1+\max _{0<t \leqslant 1}\left[\frac{g^{\prime}(t)}{t}+g^{\prime \prime}(t)\right]^{\frac{1}{\delta}}\right)^{-1}$.

From this (3.6) follows for $0 \leqslant t \leqslant t_{0}$. Now let $t \geqslant t_{0}$. By definition (3.4) of function $\mathcal{H}(t)$ we get

$$
\mathcal{H}(t) \leqslant \frac{g^{\prime}(t)}{t}+g^{\prime \prime}(t)
$$

and by the right-hand side of (3.5) we can write

$$
\begin{equation*}
\mathcal{H}(t) \leqslant(K+1)\left[\frac{g^{\prime}(t)}{t}+\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}\right] . \tag{3.11}
\end{equation*}
$$

From this, instead proving (3.6) we can prove the following:

$$
\begin{equation*}
1+\int_{0}^{t} s^{\gamma} \sqrt{g^{\prime \prime}(s)} d s \geqslant C\left[1+\frac{t^{\gamma+1-\beta}}{\gamma+1}\left[\frac{g^{\prime}(t)}{t}+\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}\right]^{\frac{1}{\delta}}\right], \quad \forall t \geqslant t_{0} \tag{3.12}
\end{equation*}
$$

where we still denote by C the new constant. At this end it is sufficient to show the inequality between the derivatives side to side with respect to t of (3.12)

$$
\begin{align*}
\sqrt{g^{\prime \prime}(t)} \geqslant & C_{1} t^{-\beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}-1} g^{\prime \prime}(t)\right. \\
& \left.+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}-1} g^{\prime \prime}(t)\right] \tag{3.13}
\end{align*}
$$

or, since $\alpha>1$,

$$
\begin{cases}\sqrt{g^{\prime \prime}(t)} \geqslant 2 C_{1} t^{-\beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}-1} g^{\prime \prime}(t)\right] & \text { if } \frac{g^{\prime}(t)}{t} \leqslant 1 \\ \sqrt{g^{\prime \prime}(t)} \geqslant 2 C_{1} t^{-\beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}-1} g^{\prime \prime}(t)\right] & \text { if } \frac{g^{\prime}(t)}{t} \geqslant 1 .\end{cases}
$$

If $\frac{g^{\prime}(t)}{t} \leqslant 1$, by the left-hand side of (3.5) we get, since $\frac{1}{\delta} \geqslant \frac{1}{2^{*}}$,

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \sqrt{H} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{2^{*}}} \geqslant \sqrt{H} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}} \tag{3.14}
\end{equation*}
$$

and also, by the right-hand side of (3.5)

$$
g^{\prime \prime}(t)\left(\frac{g^{\prime}(t)}{t}\right)^{-1} \leqslant 2 K
$$

As a result we have

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \frac{\sqrt{H}}{2 K} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}} 2 K \geqslant \frac{\sqrt{H}}{2 K} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}-1} g^{\prime \prime}(t) . \tag{3.15}
\end{equation*}
$$

Adding (3.14) to (3.15) we get, if $\frac{g^{\prime}(t)}{t} \leqslant 1$,

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \frac{\sqrt{H}}{4 K} t^{-\beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{\delta}-1} g^{\prime \prime}(t)\right] . \tag{3.16}
\end{equation*}
$$

If $\frac{g^{\prime}(t)}{t} \geqslant 1$, with similar arguments we have

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \sqrt{H} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{1}{2}} \tag{3.17}
\end{equation*}
$$

and since $\delta \geqslant \frac{2 \alpha}{2-\alpha}>2 \alpha$, i.e. $\frac{\alpha}{\delta}<\frac{1}{2}$, we get

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \sqrt{H} t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}} \tag{3.18}
\end{equation*}
$$

Moreover, by the right-hand side of (3.5) we get

$$
\sqrt{g^{\prime \prime}(t)} \leqslant \sqrt{2 K}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{2}}
$$

equivalently

$$
g^{\prime \prime}(t) \leqslant \sqrt{2 K}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{2}} \sqrt{g^{\prime \prime}(t)}
$$

and, since $t \geqslant t_{0}=1$, we can also write

$$
\sqrt{g^{\prime \prime}(t)} \geqslant \frac{1}{\sqrt{2 K}}\left(\frac{g^{\prime}(t)}{t}\right)^{-\frac{\alpha}{2}} g^{\prime \prime}(t) \geqslant\left(\frac{1}{\sqrt{2 K}}\right) t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{-\frac{\alpha}{2}} g^{\prime \prime}(t)
$$

Since $\delta \geqslant \frac{2 \alpha}{2-\alpha}$, i.e. $\frac{\alpha}{\delta} \leqslant \frac{2-\alpha}{2}$, we have $\frac{\alpha}{\delta}-1 \leqslant-\frac{\alpha}{2}$; hence

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant\left(\frac{1}{\sqrt{2 K}}\right) t^{-\beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}-1} g^{\prime \prime}(t) \tag{3.19}
\end{equation*}
$$

Therefore, in the case $\frac{g^{\prime}(t)}{t} \geqslant 1$, from (3.18) and (3.19) we obtain

$$
\begin{equation*}
\sqrt{g^{\prime \prime}(t)} \geqslant \min \left\{\frac{\sqrt{H}}{2}, \frac{1}{2 \sqrt{2 K}}\right\} t^{-\beta}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}}+\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{\alpha}{\delta}-1} g^{\prime \prime}(t)\right] . \tag{3.20}
\end{equation*}
$$

Therefore (3.13) holds for $t \geqslant t_{0}$ too, as a consequence of (3.16) and (3.20).
Lemma 3.2. Let g be as in (3.1). Suppose that g satisfies the right-hand side of condition (3.5). Then there exists a constant C, depending on $K, g^{\prime}\left(t_{0}\right), t_{0}, \alpha$, such that

$$
\begin{equation*}
g^{\prime}(t) t \leqslant C(1+g(t))^{\frac{1}{2-\alpha}}, \quad \forall t \geqslant 0 \tag{3.21}
\end{equation*}
$$

Proof. Let $t \geqslant t_{0}=1$. A multiplication for t and an integration side to side in the right-hand side of (3.5) give

$$
\int_{t_{0}}^{t} s g^{\prime \prime}(s) d s \leqslant K \int_{t_{0}}^{t} g^{\prime}(s) d s+K \int_{t_{0}}^{t} s\left(\frac{g^{\prime}(s)}{s}\right)^{\alpha} d s
$$

An integration by parts of the left-hand side in the previous inequality gives

$$
g^{\prime}(t) t \leqslant g^{\prime}\left(t_{0}\right) t_{0}+(K+1) \int_{t_{0}}^{t} g^{\prime}(s) d s+K \int_{t_{0}}^{t} s^{2-2 \alpha} g^{\prime}(s)\left(g^{\prime}(s) s\right)^{\alpha-1} d s
$$

Since $g\left(t_{0}\right) \geqslant 0$ and $t \geqslant t_{0}$ we have

$$
g^{\prime}(t) t \leqslant g^{\prime}\left(t_{0}\right) t_{0}+(K+1) g(t)+K t_{0}{ }^{2-2 \alpha}\left(g^{\prime}(t) t\right)^{\alpha-1} g(t) .
$$

By dividing both sides for $\left(g^{\prime}(t) t\right)^{\alpha-1}$ we obtain

$$
\left(g^{\prime}(t) t\right)^{2-\alpha} \leqslant\left(g^{\prime}\left(t_{0}\right) t_{0}\right)^{2-\alpha}+\left(\frac{K+1}{\left(g^{\prime}\left(t_{0}\right) t_{0}\right)^{\alpha-1}}+K t_{0}^{2-2 \alpha}\right) g(t)
$$

Let $C_{1}^{2-\alpha}=\max \left\{\left(g^{\prime}\left(t_{0}\right) t_{0}\right)^{2-\alpha}, \frac{K+1}{\left(g^{\prime}\left(t_{0}\right) t_{0}\right)^{\alpha-1}}+K t_{0}{ }^{2-2 \alpha}\right\}$. Then we have for all $t \geqslant t_{0}$

$$
g^{\prime}(t) t \leqslant C_{1}(1+g(t))^{\frac{1}{2-\alpha}}
$$

Finally (3.21) follows with $C \geqslant C_{1}$ because $g^{\prime}(t) t \leqslant g^{\prime}\left(t_{0}\right) t_{0}$, for all $t \leqslant t_{0}$.

Lemma 3.3. Let g be as in (3.1) and let \mathcal{H} be the function defined in (3.4). Suppose that g satisfies the right-hand side of condition (3.5). Then there exists a constant C such that for any $\eta, 1<\eta \leqslant \frac{3 n}{3 n-4}$,

$$
\begin{equation*}
1+\mathcal{H}(t) t^{2} \leqslant C(1+g(t))^{\eta}, \quad \forall t \geqslant 0, \tag{3.22}
\end{equation*}
$$

where $\eta=\eta(\alpha)=\frac{\alpha}{2-\alpha}$ and the constant C depends on $K, \sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t), \alpha$.
Proof. Since $\mathcal{H}(t)=\max \left\{\frac{g^{\prime}(t)}{t}, g^{\prime \prime}(t)\right\}$ we have that $\mathcal{H}(t) t^{2} \leqslant g^{\prime}(t) t+g^{\prime \prime}(t) t^{2} \quad \forall t \geqslant 0$. Let $t \geqslant t_{0} \geqslant 1$. By the right-hand side of (3.5) and by 3.2 we obtain

$$
g^{\prime \prime}(t) t^{2} \leqslant K C(1+g(t))^{\frac{1}{2-\alpha}}+K C^{\alpha}(1+g(t))^{\frac{\alpha}{2-\alpha}} t^{-2 \alpha+2} .
$$

Let $C_{1}=\max \left\{K C, K C^{\alpha} t_{0}{ }^{-2 \alpha+2}\right\}$. Then we have that for all $t \geqslant t_{0}$

$$
\begin{equation*}
g^{\prime \prime}(t) t^{2} \leqslant 2 C_{1}(1+g(t))^{\frac{\alpha}{2-\alpha}} . \tag{3.23}
\end{equation*}
$$

On the other hand, if $t \leqslant t_{0}$, we have

$$
\begin{equation*}
g^{\prime \prime}(t) t^{2} \leqslant \sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t) t^{2} \leqslant t_{0}^{2} \sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t) \leqslant C_{t_{0}} \tag{3.24}
\end{equation*}
$$

By putting together (3.23), (3.24) and Lemma 3.2, from the definition of $\mathcal{H}(t)$, we obtain the result.

4. A priori estimates

In this section we consider the integral of the Calculus of Variations

$$
\begin{equation*}
F(u)=\int_{\Omega} f(D u) d x, \tag{4.1}
\end{equation*}
$$

with $f(D u)=g(|D u|)$, where g satisfies (3.1). We make the following assumption:
Assumption 4.1. There exist two positive constants N and M such that

$$
\begin{equation*}
N|\lambda|^{2} \leqslant \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(\xi) \lambda_{i}^{\alpha} \lambda_{j}^{\beta} \leqslant M|\lambda|^{2}, \quad \forall \lambda, \xi \in \mathbb{R}^{m \times n}, \quad f(\xi)=g(|\xi|) . \tag{4.2}
\end{equation*}
$$

This is equivalent to say that both $\frac{g^{\prime}(t)}{t}$ and $g^{\prime \prime}(t)$ are bounded by constants $N, M, \forall t>$ 0 . This assumption allows us to consider u as a function of class $W_{\text {loc }}^{1, \infty}\left(\Omega, \mathbb{R}^{m}\right) \cap$
$W_{\text {loc }}^{2,2}\left(\Omega, \mathbb{R}^{m}\right)$. Similarly in [19], assumption (4.2) will be successively removed. The reason that will make this removal possible relies on the fact that the constants N and M do not enter in the a priori bound obtained for the L^{∞}-norm of the gradient. We will denote by B_{ρ} and B_{R} balls of radii, respectively, ρ and $R(\rho<R)$ contained in Ω and with the same center.

Lemma 4.1. Let g be as in (3.1), satisfying (4.2) and (3.6). Let $u \in W_{\mathrm{loc}}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ be a minimizer of integral (4.1). Then there exists a constant C, which does not depend on N and M, such that (the function \mathcal{H} is defined in (3.4))

$$
\|D u\|_{L^{\infty}\left(B_{\rho} ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant \frac{C}{(R-\rho)^{n}} \int_{B_{R}}\left(1+|D u|^{2} \mathcal{H}(|D u|)\right) d x .
$$

Proof. Let u be a local minimizer of (4.1). By the left-hand side of (4.2), $u \in$ $W^{1,2}\left(\Omega ; \mathbb{R}^{m}\right)$ and by the right-hand side of (4.2) it satisfies the weak Euler first variation:

$$
\begin{equation*}
\int_{\Omega} \sum_{i, \alpha} f_{\xi_{i}^{\alpha}}(D u) \varphi_{x_{i}}^{\alpha} d x=0, \quad \forall \varphi=\left(\varphi^{\alpha}\right) \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{m}\right) \tag{4.3}
\end{equation*}
$$

Using some known techniques (see for example [3,9,16-18]) we can prove that u admits second-order weak partial derivatives, precisely that $u \in W_{\text {loc }}^{2,2}\left(\Omega ; \mathbb{R}^{m}\right)$ and it satisfies the second variation

$$
\begin{align*}
& \int_{\Omega} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{*} \xi_{j}^{\beta}}(D u) u_{x_{j} x_{k}}^{\beta} \varphi_{x_{i}}^{\alpha} d x=0, \quad \forall k=1,2, \ldots, n, \\
& \forall \varphi=\left(\varphi^{\alpha}\right) \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{m}\right) \tag{4.4}
\end{align*}
$$

For $k \in\{1,2, \ldots, n\}$ we consider $\varphi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{m}\right)$ (we do not denote explicitly the dependence on k) defined by

$$
\varphi:=\eta^{2} u_{x_{k}} \Phi(|D u|)
$$

where $\eta \in C_{0}^{1}(\Omega)$ and $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ is an increasing bounded Lipschitz continuous function. We plug φ in (4.4) and, since

$$
\varphi_{x_{i}}^{\alpha}=2 \eta \eta_{x_{i}} u_{x_{k}}^{\alpha} \Phi(|D u|)+\eta^{2} u_{x_{i} x_{k}}^{\alpha} \Phi(|D u|)+\eta^{2} u_{x_{k}}^{\alpha} \Phi^{\prime}(|D u|)(|D u|)_{x_{i}}
$$

we obtain

$$
\int_{\Omega} 2 \eta \Phi \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \beta} \psi_{j}^{\beta} u_{x_{j} x_{k}} u_{x_{k}}^{\alpha} \eta_{x_{i}} d x
$$

$$
\begin{align*}
& +\int_{\Omega} \eta^{2} \Phi \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{*}} u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha} d x \\
& +\int_{\Omega} \eta^{2} \Phi^{\prime} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{k}}^{\alpha}(|D u|)_{x_{i}} d x=0 \tag{4.5}
\end{align*}
$$

Defining

$$
\begin{align*}
A_{k} & =\int_{\Omega} 2 \eta \Phi \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{k}}^{\alpha} \eta_{x_{i}} d x, \tag{4.6}\\
B_{k} & =\int_{\Omega} \eta^{2} \Phi \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha} d x, \tag{4.7}\\
C_{k} & =\int_{\Omega} \eta^{2} \Phi^{\prime} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j} \beta_{j}} u_{x_{j} x_{k}}^{\beta} u_{x_{k}}^{\alpha}(|D u|)_{x_{i}} d x, \tag{4.8}
\end{align*}
$$

Eq. (4.5) takes the concise form of

$$
\begin{equation*}
A_{k}+B_{k}+C_{k}=0 \tag{4.9}
\end{equation*}
$$

We start estimating the first addendum A_{k} in (4.9) with the inequality $2 a b \leqslant \frac{1}{2} a^{2}+2 b^{2}$

$$
\begin{align*}
\left|A_{k}\right| \leqslant & \int_{\Omega} 2 \Phi\left[\eta^{2} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha}\right]^{\frac{1}{2}} \\
& \times\left[\sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{*}} \eta_{x_{i}} u_{x_{k}}^{\alpha} \eta_{x_{j}} u_{x_{k}}^{\beta}\right]^{\frac{1}{2}} d x \\
\leqslant & \int_{\Omega} \Phi\left[\frac{\eta^{2}}{2} \sum_{i, j, \alpha, \beta} f_{\xi_{\xi_{i}^{\alpha}} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha}\right. \\
& \left.+2 \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} \eta_{x_{i}} u_{x_{k}}^{\alpha} \eta_{x_{j}} u_{x_{k}}^{\beta}\right] d x \tag{4.10}
\end{align*}
$$

From (4.9) and (4.10) we obtain

$$
\begin{equation*}
\frac{1}{2} B_{k}+C_{k} \leqslant 2 \int_{\Omega} \Phi(|D u|) \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(D u) \eta_{x_{i}} u_{x_{k}}^{\alpha} \eta_{x_{j}} u_{x_{k}}^{\beta} d x \tag{4.11}
\end{equation*}
$$

We use the expression of the second derivatives of f in (3.2) to estimate C_{k} in the left-hand side. Since

$$
\begin{equation*}
(|D u|)_{x_{i}}=\frac{1}{|D u|} \sum_{\alpha, k} u_{x_{i} x_{k}}^{\alpha} u_{x_{k}}^{\alpha} \tag{4.12}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\sum_{k} & \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}} u_{x_{j} x_{k}}^{\beta} u_{x_{k}}^{\alpha}(|D u|)_{x_{i}} \\
= & \left(\frac{g^{\prime \prime}}{|D u|^{2}}-\frac{g^{\prime}}{|D u|^{3}}\right)_{k, i, j, \alpha, \beta} u_{x_{i}}^{\alpha} u_{x_{j}}^{\beta} u_{x_{j} x_{k}}^{\beta} u_{x_{k}}^{\alpha}(|D u|)_{x_{i}} \\
& +\frac{g^{\prime}}{|D u|} \sum_{k, i, \alpha} u_{x_{i} x_{k}}^{\alpha} u_{x_{k}}^{\alpha}(|D u|)_{x_{i}} \\
= & \left(\frac{g^{\prime \prime}}{|D u|}-\frac{g^{\prime}}{|D u|^{2}}\right) \sum_{k, i, \alpha} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}} u_{x_{k}}^{\alpha}(|u|)_{x_{k}}+g^{\prime} \sum_{i}(|D u|)_{x_{i}}^{2} \\
= & \left(\frac{g^{\prime \prime}}{|D u|}-\frac{g^{\prime}}{|D u|^{2}}\right) \sum_{\alpha}\left[\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right]^{2}+g^{\prime}|D(|D u|)|^{2} \tag{4.13}
\end{align*}
$$

Now we recall definition (4.8) for C_{k}. The previous equality shows that

$$
\begin{align*}
\sum_{k} C_{k}= & \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|)\left\{\left(\frac{g^{\prime \prime}(|D u|)}{|D u|}-\frac{g^{\prime}(|D u|)}{|D u|^{2}}\right)\right. \\
& \left.\cdot \sum_{\alpha}\left[\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right]^{2}+g^{\prime}(|D u|)|D(|D u|)|^{2}\right\} d x \tag{4.14}
\end{align*}
$$

Now we consider the first term $\frac{1}{2} B_{k}$ in inequality (4.11). From (3.2) we get

$$
\begin{aligned}
\sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(D u) u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha}= & \left(\frac{g^{\prime \prime}(|D u|)}{|D u|^{2}}-\frac{g^{\prime}(|D u|)}{|D u|^{3}}\right)\left(\sum_{i, \alpha} u_{x_{i} x_{k}}^{\alpha} u_{x_{i}}^{\alpha}\right)^{2} \\
& +\frac{g^{\prime}(|D u|)}{|D u|} \sum_{i, \alpha}\left(u_{x_{i} x_{k}}^{\alpha}\right)^{2} .
\end{aligned}
$$

By (4.12), summing with respect to k,

$$
\begin{aligned}
\sum_{k} \sum_{i, j, \alpha, \beta} f_{\xi_{i}^{\alpha} \xi_{j}^{\beta}}(D u) u_{x_{j} x_{k}}^{\beta} u_{x_{i} x_{k}}^{\alpha}= & \left(g^{\prime \prime}(|D u|)-\frac{g^{\prime}(|D u|)}{|D u|}\right)|D(|D u|)|^{2} \\
& +\frac{g^{\prime}(|D u|)}{|D u|}\left|D^{2} u\right|^{2}
\end{aligned}
$$

By definition (4.7) we can write

$$
\begin{align*}
\sum_{k} B_{k}= & \int_{\Omega} \eta^{2} \Phi(|D u|)\left(\left(g^{\prime \prime}(|D u|)-\frac{g^{\prime}(|D u|)}{|D u|}\right)|D(|D u|)|^{2}\right. \\
& \left.+\frac{g^{\prime}(|D u|)}{|D u|}\left|D^{2} u\right|^{2}\right) d x \tag{4.15}
\end{align*}
$$

By (4.12) and applying the Cauchy-Schwarz inequality we have

$$
|D(|D u|)|^{2}=\sum_{i}(|D u|)_{x_{i}}^{2}=\frac{1}{|D u|^{2}} \sum_{i}\left(\sum_{\alpha, k} u_{x_{i} x_{k}}^{\alpha} u_{x_{k}}^{\alpha}\right)^{2} \leqslant \sum_{i, \alpha, k}\left(u_{x_{i} x_{k}}^{\alpha}\right)^{2}=\left|D^{2} u\right|^{2}
$$

from which we deduce that

$$
\begin{equation*}
\sum_{k} B_{k} \geqslant \int_{\Omega} \eta^{2} \Phi(|D u|) g^{\prime \prime}(|D u|)|D(|D u|)|^{2} d x \tag{4.16}
\end{equation*}
$$

Now, we consider $\sum_{k} C_{k}$ in formula (4.14). We can write that

$$
\begin{aligned}
\sum_{k} C_{k}= & \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|)\left(\frac{g^{\prime \prime}(|D u|)}{|D u|} \sum_{\alpha}\left(\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right)^{2}+g^{\prime}(|D u|)|D(|D u|)|^{2}\right. \\
& \left.-\frac{g^{\prime}(|D u|)}{|D u|^{2}} \sum_{\alpha}\left(\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right)^{2}\right) d x .
\end{aligned}
$$

Since, by Cauchy-Schwarz inequality, we get

$$
\sum_{\alpha}\left(\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right)^{2} \leqslant \sum_{i, \alpha}\left(u_{x_{i}}^{\alpha}\right)^{2} \sum_{i}(|D u|)_{x_{i}}^{2} \leqslant|D u|^{2}|D(|D u|)|^{2}
$$

then we can conclude that

$$
\begin{equation*}
\sum_{k} C_{k} \geqslant \int_{\Omega} \eta^{2} \Phi^{\prime}(|D u|) \frac{g^{\prime \prime}(|D u|)}{|D u|} \sum_{\alpha}\left(\sum_{i} u_{x_{i}}^{\alpha}(|D u|)_{x_{i}}\right)^{2} d x \geqslant 0 \tag{4.17}
\end{equation*}
$$

By using the inequalities obtained for $\sum_{k} B_{k}$ and $\sum_{k} C_{k}$ in (4.16) and (4.17) we obtain from formula (4.11) where we sum on k

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega} \eta^{2} \Phi(|D u|) g^{\prime \prime}(|D u|)|D(|D u|)|^{2} d x \\
& \quad \leqslant \frac{1}{2} \sum_{k} B_{k} \leqslant \frac{1}{2} \sum_{k} B_{k}+\sum_{k} C_{k} \\
& \quad \leqslant 2 \int_{\Omega} \Phi(|D u|) \sum_{i, j, \alpha, \beta, k} f_{\xi^{\prime}{ }_{i}^{\alpha} \xi_{j}^{\beta}}(D u) \eta_{x_{i}} u_{x_{k}}^{\alpha} \eta_{x_{j}} u_{x_{k}}^{\beta} d x \tag{4.18}
\end{align*}
$$

By the right-hand side in (3.3), finally we obtain

$$
\begin{equation*}
\int_{\Omega} \eta^{2} \Phi(|D u|) g^{\prime \prime}(|D u|)|D(|D u|)|^{2} d x \leqslant 4 \int_{\Omega} \Phi(|D u|) \mathcal{H}(|D u|)|D \eta|^{2}|D u|^{2} d x \tag{4.19}
\end{equation*}
$$

for every $\Phi:[0,+\infty) \rightarrow[0,+\infty)$, increasing, local Lipschitz continuous function with Φ and Φ^{\prime} bounded on $[0,+\infty)$. If we consider a more general Φ not bounded, with derivative Φ^{\prime} not bounded too, then we can approximate it by a sequence of functions Φ_{r}, each of them being equal to Φ in the interval [$0, r$], and then extended to $[r,+\infty$) with the constant value $\Phi(r)$. We insert $\Phi(r)$ in (4.19) and we go to the limit as $r \rightarrow+\infty$ by the monotone convergence theorem. So we obtain that (4.19) is true for every Φ positive, increasing, local Lipschitz continuous function in $[0,+\infty)$. Let us define

$$
\begin{equation*}
G(t)=1+\int_{0}^{t} \sqrt{\Phi(s) g^{\prime \prime}(s)} d s, \quad \forall t \geqslant 0 \tag{4.20}
\end{equation*}
$$

By Hölder inequality, since function Φ is increasing and $g^{\prime}(0)=0$, we get

$$
\begin{aligned}
{[G(t)]^{2} } & =\left(1+\int_{0}^{t} \sqrt{\Phi(s) g^{\prime \prime}(s)}\right)^{2} \leqslant 2+2 \Phi(t) t \int_{0}^{t} g^{\prime \prime}(s) d s \\
& =2+2 \Phi(t) t g^{\prime}(t) \leqslant 2+2 \Phi(t) \mathcal{H}(t) t^{2}
\end{aligned}
$$

Then we can write the following estimate for the gradient of function $\eta G(|D u|)$:

$$
\begin{aligned}
|D(\eta G(|D u|))|^{2} & =\left|(D \eta) G(|D u|)+\eta G^{\prime}(|D u|) D(|D u|)\right|^{2} \\
& \leqslant 2|D \eta|^{2}|G(|D u|)|^{2}+2 \eta^{2}\left|G^{\prime}(|D u|)\right|^{2} \cdot|D(|D u|)|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & 4|D \eta|^{2}\left(1+\Phi(|D u|) \mathcal{H}(|D u|)|D u|^{2}\right) \\
& +2 \eta^{2} \Phi(|D u|) g^{\prime \prime}(|D u|)|D(|D u|)|^{2}
\end{aligned}
$$

By integrating over Ω the previous inequality we obtain

$$
\begin{aligned}
& \int_{\Omega}|D(\eta G(|D u|))|^{2} d x \\
& \quad \leqslant 4 \int_{\Omega}|D \eta|^{2}\left(1+\Phi(|D u|) \mathcal{H}(|D u|)|D u|^{2}\right) d x \\
& \quad+2 \int_{\Omega} \eta^{2} \Phi(|D u|) g^{\prime \prime}(|D u|) \mid D(|D u|) d x
\end{aligned}
$$

Now we use inequality (4.19) and we get

$$
\begin{equation*}
\int_{\Omega}|D(\eta G(|D u|))|^{2} d x \leqslant 4 \int_{\Omega}|D \eta|^{2}\left(1+3 \Phi(|D u|) \mathcal{H}(|D u|)|D u|^{2}\right) d x \tag{4.21}
\end{equation*}
$$

As a consequence of (4.2), $D u$ is locally bounded; hence we can apply Sobolev's inequality: there exists a constant C_{1} such that

$$
\begin{equation*}
\left\{\int_{\Omega}[\eta G(|D u|)]^{2^{*}} d x\right\}^{\frac{2}{2^{*}}} \leqslant C_{1} \int_{\Omega}|D(\eta G(|D u|))|^{2} d x \tag{4.22}
\end{equation*}
$$

Let us define $\Phi(t)=t^{2 \gamma}$, with $\gamma \geqslant 0$ (so that Φ is increasing). Since g satisfies (3.6) we can choose $\delta=2^{*}$ and combining (4.22) and (4.21) we have that there exist constants C_{3}, C_{4} and same $\beta, 0 \leqslant \beta<\frac{2}{n}$ such that

$$
\begin{align*}
& \int_{\Omega}|D \eta|^{2}\left(1+3 \Phi(|D u|) \mathcal{H}(|D u|)|D u|^{2}\right) d x \geqslant \frac{1}{4} \int_{\Omega}|D(\eta G(|D u|))|^{2} d x \\
& \quad \geqslant C_{3}\left\{\int_{\Omega}[\eta G(|D u|)]^{2^{*}} d x\right\}^{\frac{2}{2^{*}}} \\
& \quad \geqslant \frac{C_{4}}{(\gamma+1)^{2}}\left\{\int_{\Omega} \eta^{2^{*}}\left(1+|D u|^{(\gamma+1-\beta) 2^{*}} \mathcal{H}(|D u|)\right) d x\right\}^{\frac{2}{2^{*}}} \tag{4.23}
\end{align*}
$$

Substituting in the left-hand side of inequality (4.23) the expression of function Φ we get that there exist a constant C_{5} and same numbers $\beta, 0 \leqslant \beta<\frac{2}{n}$ such that for every $\gamma \geqslant 0$

$$
\begin{aligned}
& \left\{\int_{\Omega} \eta^{2^{*}}\left(1+|D u|^{(\gamma+1-\beta) 2^{*}} \mathcal{H}(|D u|)\right) d x\right\}^{\frac{2}{2^{*}}} \\
& \quad \leqslant C_{5}(\gamma+1)^{2} \int_{\Omega}|D \eta|^{2}\left(1+|D u|^{2 \gamma} \mathcal{H}(|D u|)|D u|^{2}\right) d x
\end{aligned}
$$

Let the test function η be equal to 1 in B_{ρ}, with support contained in B_{R} and such that $|D \eta| \leqslant \frac{2}{(R-\rho)}$. Let us denote by $\delta=2(\gamma+1)$ (note that, since $\gamma \geqslant 0$, then $\delta \geqslant 2$). We have

$$
\begin{align*}
& \left\{\int_{B_{\rho}}\left(1+|D u|^{(\delta-2 \beta) \frac{2 *}{2}} \mathcal{H}(|D u|)\right) d x\right\}^{\frac{2}{2^{*}}} \\
& \quad \leqslant C_{5}\left(\frac{\delta}{R-\rho}\right)^{2} \int_{B_{R}}\left(1+|D u|^{\delta} \mathcal{H}(|D u|)\right) d x \tag{4.24}
\end{align*}
$$

Fixed \bar{R} and $\bar{\rho}$, with $\bar{R}>\bar{\rho}$ we define the decreasing sequence of radii $\left\{\rho_{i}\right\}_{i} \geqslant 0$

$$
\rho_{i}=\bar{\rho}+\frac{\bar{R}-\bar{\rho}}{2^{i}}, \quad \forall i \geqslant 0 .
$$

We observe that $\rho_{0}=\bar{R}>\rho_{i}>\rho_{i+1}>\bar{\rho}$. We define also the increasing sequence of exponents $\left\{\delta_{i}\right\}_{i} \geqslant 0, \delta_{0}=2, \delta_{i+1}=\left(\delta_{i}-2 \beta\right) \frac{2^{*}}{2}, i \geqslant 0$, and we rewrite the (4.24) with $R=\rho_{i}, \rho=\rho_{i+1}$ and $\delta=\delta_{i}$. Then we obtain for every $i \geqslant 0$,

$$
\begin{align*}
& \left\{\int_{B_{\rho_{i+1}}}\left(1+|D u|^{\delta_{i+1}} \mathcal{H}(|D u|)\right) d x\right\}^{\frac{2}{2^{*}}} \\
& \quad \leqslant C_{5}\left(\frac{\delta_{i} 2^{i+1}}{\bar{R}-\bar{\rho}}\right)^{2} \int_{B_{\rho_{i}}}\left(1+|D u|^{\delta_{i}} \mathcal{H}(|D u|)\right) d x \tag{4.25}
\end{align*}
$$

By iterating (4.25) we get

$$
\begin{align*}
& \left\{\int_{B_{\rho_{i+1}}}\left(1+|D u|^{(2-\beta n)\left(\frac{2^{*}}{2}\right)^{i+1}+\beta n} \mathcal{H}(|D u|)\right) d x\right\}^{\left(\frac{2}{2^{*}}\right)^{i+1}} \\
& \quad \leqslant C_{6} \int_{B_{\bar{R}}}\left(1+|D u|^{2} \mathcal{H}(|D u|)\right) d x \tag{4.26}
\end{align*}
$$

where the exponent in the first integral is given by computing

$$
\delta_{i+1}=2\left(\frac{2^{*}}{2}\right)^{i+1}-2 \beta \sum_{k=1}^{i+1}\left(\frac{2^{*}}{2}\right)^{k}=(2-\beta n)\left(\frac{2^{*}}{2}\right)^{i+1}+\beta n
$$

and

$$
\begin{aligned}
C_{6} & \leqslant \prod_{k=0}^{+\infty}\left[\frac{C_{5} 8}{(\bar{R}-\bar{\rho})^{2}}\left(2^{*}\right)^{2 k}\right]^{\left(\frac{2}{\left.2^{*}\right)^{k}}\right.}=\left(\left(\frac{C_{5} 8}{(\bar{R}-\bar{\rho})^{2}}\right)^{\sum_{k=0}^{+\infty}\left(\frac{2}{\left.2^{*}\right)^{k}}\right.}\right)\left(2^{*}\right)^{\sum_{k=0}^{+\infty} k\left(\frac{2}{\left.2^{*}\right)^{k}}\right.} \\
& =\left(\frac{C_{5} 8}{(\bar{R}-\bar{\rho})^{2}}\right)^{\frac{n}{2}} \cdot\left(2^{*}\right)^{\frac{n(n-2)}{2}}=\frac{C_{7}}{(\bar{R}-\bar{\rho})^{n}},
\end{aligned}
$$

for every $n \geqslant 3$; otherwise, if $n=2$, then for every $\varepsilon>0$ we can choose 2^{*} so that $C_{6}=\frac{C_{7}}{(\bar{R}-\bar{\rho})^{2+\varepsilon}}$ for some constant C_{7}. Now, we observe that the function $1+t^{\alpha} \mathcal{H}(t) \geqslant 1+$ $t^{\alpha-1} g^{\prime}(t)$, since $\mathcal{H}(t) \geqslant \frac{g^{\prime}(t)}{t}$ for every $t>0$. Now, if $t \geqslant 1$, since $g^{\prime}(t)$ is increasing we have $1+t^{\alpha-1} g^{\prime}(t) \geqslant t^{\alpha-1} g^{\prime}(1)$ and, if $t \leqslant 1$ we have $1+t^{\alpha-1} g^{\prime}(t) \geqslant 1 \geqslant t^{\alpha-1}$. Hence, we can write

$$
\begin{align*}
& \left\{\int_{B_{\bar{\rho}}}|D u|^{\left(2-\beta n+\frac{\beta n-1}{\left(\frac{2^{*}}{2}\right)^{i+1}}\right)\left(\frac{2^{*}}{2}\right)^{i+1}} d x\right\}^{\left(\frac{2}{2^{*}}\right)^{i+1}} \\
& \quad \leqslant \frac{C_{7}}{(\bar{R}-\bar{\rho})^{n}} \int_{B_{\bar{R}}}\left(1+|D u|^{2} \mathcal{H}(|D u|)\right) d x . \tag{4.27}
\end{align*}
$$

Finally we go to the limit as $i \rightarrow+\infty$ and we obtain

$$
\begin{aligned}
& \sup \left\{|D u(x)|^{2-\beta n}: x \in B_{\bar{\rho}}\right\} \\
& \quad=\lim _{i \rightarrow+\infty}\left\{\int_{B_{\bar{\rho}}}|D u|^{\left(2-\beta n+\frac{\beta n-1}{\left(\frac{2^{*}}{2}\right)^{i+1}}\right)\left(\frac{2^{*}}{2}\right)^{i+1}} d x\right\}^{\left(\frac{2}{2^{*}}\right)^{i+1}} \\
& \quad \leqslant \frac{C_{7}}{(\bar{R}-\bar{\rho})^{n}} \int_{B_{\bar{R}}}\left(1+|D u|^{2} \mathcal{H}(|D u|)\right) d x .
\end{aligned}
$$

Lemma 4.2. Let g be as in (3.1). Let us assume that g satisfies (4.2) and (3.5). Let $u \in W_{\mathrm{loc}}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ be a minimizer of integral (4.1). Then, for every $\varepsilon>0$ and for every $\rho, R(0<\rho<R)$, there exists a constant $C=C(n, \varepsilon, \rho, R)$ such that

$$
\int_{B_{\rho}}\left(1+|D u|^{2} \mathcal{H}(D u)\right) d x \leqslant C\left\{\int_{B_{R}}(1+g|D u|) d x\right\}^{\frac{1}{1-\beta}+\varepsilon}
$$

the constant C depends also on $g\left(t_{0}\right), g^{\prime}\left(t_{0}\right), K, H, \sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t), \inf _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t)$, but it does not depend on the constants N and M in (4.2).

Proof. In Lemma 3.1 we considered parameters α and γ such that $\alpha \in\left(1, \frac{n}{n-1}\right]$ and $\gamma \geqslant 0$. Here we restrict ourselves to the case $1<\alpha \leqslant \frac{2 n}{2 n-1}=1+\frac{1}{2 n-1}$ and $\gamma=0$. Then (3.6) holds for any $\delta \in\left[\frac{2 \alpha}{2-\alpha}, 2^{*}\right]$. We define $v=\frac{2^{*}}{\delta}$, so that $v \in\left[1,2^{*} \frac{2-\alpha}{2 \alpha}\right]$. The condition $\beta<\frac{2}{n}$ is equivalent to $1<(1-\beta) \frac{2^{*}}{2}$; therefore it is possible to limit v (and δ) to satisfy the conditions $1<v<(1-\beta) \frac{2^{*}}{2}$ too. Finally, since $\beta>\frac{1}{n}$ we have $\alpha \leqslant \frac{2 n}{2 n-1}<\frac{2}{2-\beta}$ and this implies $1-\beta<\frac{2-\alpha}{\alpha}$. Thus

$$
v \in\left[1,(1-\beta) \frac{2^{*}}{2}\right] \Longrightarrow v \in\left[1,2^{*} \frac{2-\alpha}{2 \alpha}\right] \Leftrightarrow \delta \in\left[\frac{2 \alpha}{2-\alpha}, 2^{*}\right]
$$

so that the parameter δ satisfies the condition of Lemma 3.1. Therefore there exists a constant C_{1} (we still denote by C_{1}, C_{2}, etc.. the constants in this proof) such that

$$
(G(t))^{2^{*}}=\left[\left(1+\int_{0}^{t} \sqrt{g^{\prime \prime}(s)} d s\right)^{\frac{2^{*}}{v}}\right]^{v} \geqslant C_{2}\left[1+t^{(1-\beta) \frac{2^{*}}{v}} \mathcal{H}(t)\right]^{v}
$$

Under the notations of the previous Lemma 4.1, let us consider again estimates (4.23) with ϕ identically equal to 1 (or, equivalently, with $\gamma=0$); we have

$$
\left\{\int_{\Omega}(\eta G(|D u|))^{2^{*}} d x\right\}^{\frac{2}{2^{*}}} \leqslant 4 C_{2} \int_{\Omega}|D \eta|^{2}\left(1+3 \mathcal{H}(|D u|)|D u|^{2}\right) d x
$$

and thus

$$
\begin{align*}
& \left\{\int_{\Omega} \eta^{2^{*}}\left[1+|D u|^{(1-\beta) \frac{2^{*}}{v}} \mathcal{H}(|D u|)\right]^{v} d x\right\}^{\frac{2}{2^{*}}} \\
& \quad \leqslant C_{3} \int_{\Omega}|D \eta|^{2}\left(1+\mathcal{H}(|D u|)|D u|^{2}\right) d x \tag{4.28}
\end{align*}
$$

Since $v<(1-\beta) \frac{2^{*}}{2}$, we have $(1-\beta) \frac{2^{*}}{v}>2$. Under the notation $V=V(x)=$ $1+|D u|^{2} \mathcal{H}(|D u|)$ (4.28) becomes

$$
\begin{equation*}
\left\{\int_{\Omega} \eta^{2^{*}} V^{v} d x\right\}^{\frac{2}{2^{*}}} \leqslant C_{3} \int_{\Omega}|D \eta|^{2} V d x \tag{4.29}
\end{equation*}
$$

As in the previous Lemma 4.1 we consider a test function η equal to 1 on B_{ρ} with support contained in B_{R} and such that $|D \eta| \leqslant \frac{2}{R-\rho}$, we obtain

$$
\begin{equation*}
\left\{\int_{B_{\rho}} V^{v} d x\right\}^{\frac{2}{2^{*}}} \leqslant \frac{4 C_{4}}{(R-\rho)^{2}} \int_{B_{R}} V d x \tag{4.30}
\end{equation*}
$$

Let $\gamma>\frac{2^{*}}{2}$. By the Holder inequality we have

$$
\begin{align*}
& \left\{\int_{B_{\rho}} V^{v} d x\right\}^{\frac{2}{2^{*}}} \leqslant \frac{4 C_{4}}{(R-\rho)^{2}} \int_{B_{R}} V^{\frac{v}{\gamma}} V^{1-\frac{v}{\gamma}} d x \\
& \quad \leqslant \frac{4 C_{4}}{(R-\rho)^{2}}\left\{\int_{B_{R}} V^{v} d x\right\}^{\frac{1}{\gamma}}\left\{\int_{B_{R}} V^{\frac{\gamma-v}{\gamma-1}} d x\right\}^{\frac{\gamma-1}{\gamma}} . \tag{4.31}
\end{align*}
$$

Let R_{0} and ρ_{0} be fixed. For any $i \in \mathbb{N}$ we consider (4.31) with $R=\rho_{i}$ and $\rho=\rho_{i-1}$, where $\rho_{i}=R_{0}-\frac{R_{0}-\rho_{0}}{2^{i}}$. By iterating (4.31), since $R-\rho=\frac{R_{0}-\rho_{0}}{2^{i}}$, similar to the computation in [19, p. 19], we can write

$$
\begin{align*}
\int_{B_{\rho_{0}}} V^{v} d x \leqslant & \left\{\int_{B_{\rho_{i}}} V^{v} d x\right\}^{\left(\frac{2^{*}}{2 \gamma}\right)^{i}} C_{5}\left\{\frac{1}{\left(R_{0}-\rho_{0}\right)^{2}}\right\}^{\left(\frac{2^{*} \gamma}{2 \gamma-2}\right)^{i}} \\
& \times\left\{\int_{B_{\rho_{0}}} V^{\frac{\gamma-v}{\gamma-1}} d x\right\}^{\frac{2^{*}(\gamma-1)}{2 \gamma-2^{*}}} \tag{4.32}
\end{align*}
$$

Since $\frac{\gamma-v}{\gamma-1}<1$ we can apply Lemma (3.3) with $\eta=\frac{\gamma-1}{\gamma-\nu}$ and we obtain

$$
\begin{aligned}
\int_{B_{\rho}} V^{v} d x \leqslant & \left\{\int_{B_{\rho_{i}}} V^{v} d x\right\}^{\left(\frac{2^{*}}{2 \gamma}\right)^{i}} C_{5}\left\{\frac{1}{\left(R_{0}-\rho_{0}\right)^{2}}\right\}^{\frac{2^{*} \gamma}{2 \gamma-2^{*}}} \\
& \times\left\{\int_{B_{\rho_{0}}}[1+g(|D u|)] d x\right\}^{\frac{2^{*}(\gamma-1)}{2 \gamma-2^{*}}}
\end{aligned}
$$

In the limit as $i \rightarrow+\infty$ we get

$$
\int_{B_{\rho_{0}}} V^{v} d x \leqslant C_{6}\left\{\frac{1}{\left(R_{0}-\rho_{0}\right)^{2}}\right\}^{\frac{2^{*} \gamma}{2 \gamma-2^{*}}}\left\{\int_{B_{R_{0}}}[1+g(|D u|)] d x\right\}^{\frac{2^{*}(\gamma-1)}{2 \gamma-2^{*}}}
$$

Finally

$$
\begin{align*}
\int_{B_{\rho_{0}}} V d x & \leqslant \operatorname{meas}\left\{B_{\rho_{0}}\right\}^{1-\frac{1}{v}}\left\{\int_{B_{\rho_{0}}} V^{v} d x\right\}^{\frac{1}{v}} \\
& \leqslant C_{7}\left\{\frac{1}{\left(R_{0}-\rho_{0}\right)^{2}}\right\}^{\frac{2^{*} \gamma}{\left(2 \gamma-2^{*}\right) v}}\left\{\int_{B_{R_{0}}}[1+g(|D u|)] d x\right\}^{\frac{2^{*}(\gamma-1)}{\left(2 \gamma-2^{*}\right) v}} \tag{4.33}
\end{align*}
$$

As $v \rightarrow(1-\beta) \frac{2^{*}}{2}$ and $\gamma \rightarrow+\infty$ the two exponents in (4.33) converge to $\frac{1}{1-\beta}$ and we have the result.

By combining together Lemmas 3.1, 4.1 and 4.2 we proved the following theorem.
Theorem 4.1. Let g be as in (3.1). Suppose that g satisfies (4.2) and (3.5). Let $u \in$ $W_{\mathrm{loc}}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ be a minimizer of integral (4.1). Then $u \in W_{\mathrm{loc}}^{1, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ and for every $\varepsilon>0$ and for every $\rho, R(0<\rho<R)$, there exists a constant $C=C(n, \varepsilon, \rho, R)$ such that

$$
\|D u\|_{L^{\infty}\left(B \rho ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C\left\{\int_{B_{R}}(1+g(|D u|)) d x\right\}^{\frac{1}{1-\beta}+\varepsilon}
$$

the constant C depends also on $H, K, \sup _{0 \leqslant t \leqslant t_{0}} g^{\prime \prime}(t)$, but does not depend on the constants N and M in (4.2).

5. The approximating regular problems

Let us consider a function g with the properties described in (3.1). Now we consider the function $\frac{g^{\prime}(t)}{t}$. It is possible to have one and only one of the following three cases:
(i) There exists a sequence $\left\{t_{n}\right\}, \lim _{n \rightarrow+\infty} t_{n}=+\infty$ such that $\frac{g^{\prime}\left(t_{n}\right)}{t_{n}}=1$.
(ii) There exists T such that for all $t \geqslant T$ it follows that $\frac{g^{\prime}(t)}{t}>1$.
(iii) There exists T such that for all $t \geqslant T$ it follows that $\frac{\mathrm{g}^{\prime}(t)}{t}<1$.

Let $\bar{t}=\inf \left\{t>0: \frac{g^{\prime}(t)}{t}>0\right\}$; up to a rescaling we can assume that $0 \leqslant \bar{t}<1 \leqslant t_{0}$. We consider a sequence $\varepsilon_{n}, \lim _{n \rightarrow+\infty} \varepsilon_{n}=0$, in the following way. In case (i) we put $\varepsilon_{n}=\frac{1}{t_{n}}$, in case (ii) or (iii) we consider any sequence $\varepsilon_{n} \rightarrow 0$, with $\frac{1}{\varepsilon_{n}} \geqslant T$. It is obvious that we can choose n sufficiently large such that $\bar{t}+\varepsilon_{n}<1$ and $\frac{1}{\varepsilon_{n}} \geqslant \max \left\{T, \bar{t}+\varepsilon_{n}\right\}$. Now we define the function

$$
g_{\varepsilon_{n}}^{\prime}(t)=\left\{\begin{array}{l}
\frac{g^{\prime}\left(\bar{t}+\varepsilon_{n}\right)}{\bar{t}+\varepsilon_{n}} t, \quad 0 \leqslant t \leqslant \bar{t}+\varepsilon_{n}, \tag{5.1}\\
g^{\prime}(t), \quad \bar{t}+\varepsilon_{n}<t \leqslant \frac{1}{\varepsilon_{n}}, \\
\min \left\{\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) t, g^{\prime}(t)+\varepsilon_{n} t-1\right\}, \quad t>\frac{1}{\varepsilon_{n}}
\end{array}\right.
$$

Then obviously we can define

$$
\begin{equation*}
g_{\varepsilon_{n}}(t)=\int_{0}^{t} g_{\varepsilon_{n}}^{\prime}(s) d s \tag{5.2}
\end{equation*}
$$

The function $g_{\varepsilon_{n}}(t)$ results to be a convex function of class $C^{1}([0,+\infty)$, satisfying (3.1) and (4.2) with suitable constants $N\left(\varepsilon_{n}\right)$ and $M\left(\varepsilon_{n}\right)$.

Lemma 5.1. Let g be as in (3.1) satisfying the left-hand side of (3.5). Let $g_{\varepsilon_{n}}(t)$ be defined in (5.2). Then there exists a constant $H_{1}>0$ such that we have

$$
\begin{equation*}
H_{1} t^{-2 \beta}\left[\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right] \leqslant g_{\varepsilon_{n}}^{\prime \prime}(t), \quad \forall t \geqslant t_{0} \tag{5.3}
\end{equation*}
$$

Proof. Let $\bar{t}+\varepsilon_{n}<1 \leqslant t_{0}$ and $t \geqslant t_{0}$.
(1) If $\bar{t}+\varepsilon_{n}<t \leqslant \frac{1}{\varepsilon_{n}}$, then (5.3) holds because $g_{\varepsilon_{n}}^{\prime}(t)=g^{\prime}(t)$ and $g_{\varepsilon_{n}}^{\prime \prime}(t)=g^{\prime \prime}(t)$.
(2) Let $t>\frac{1}{\varepsilon_{n}}$.
(2a) If $g_{\varepsilon_{n}}^{\prime}(t)=\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) t$, then $g_{\varepsilon_{n}}^{\prime \prime}(t)=\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)$ and we have

$$
\begin{aligned}
t^{-2 \beta}\left(\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)\right)^{\frac{2}{2^{*}}}+t^{-2 \beta} \varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) \leqslant & \varepsilon_{n}^{2 \beta+\frac{2}{2^{*}}}\left[\frac{g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)}{g^{\prime}\left(t_{0}\right)}\right]^{\frac{2}{2^{*}}}\left(g^{\prime}\left(t_{0}\right)\right)^{\frac{2}{2^{*}}} \\
& +\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)
\end{aligned}
$$

Since $2 \beta+\frac{2}{2^{*}}>1$ and $\varepsilon_{n} \leqslant 1$ we have $\varepsilon_{n}{ }^{2 \beta+\frac{2}{2^{*}}} \leqslant \varepsilon_{n}$; moreover, from the monotonicity of function $g^{\prime}(t)$ we get $\frac{g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)}{g^{\prime}\left(t_{0}\right)} \geqslant 1$. As a consequence we can write

$$
\begin{aligned}
t^{-2 \beta}\left[\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right] & \leqslant\left(\left(g^{\prime}\left(t_{0}\right)\right)^{\frac{2}{2^{*}}-1}+1\right) \varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) \\
& =\left(\left(g^{\prime}\left(t_{0}\right)\right)^{\frac{2}{2^{*}}-1}+1\right) g_{\varepsilon_{n}}^{\prime \prime}(t),
\end{aligned}
$$

i.e. (5.3) holds with $H_{1} \leqslant\left(\left(g^{\prime}\left(t_{0}\right)\right)^{\frac{2}{2^{*}-1}}+1\right)^{-1}$.
(2b) Let $g_{\varepsilon_{n}}^{\prime}(t)=g^{\prime}(t)+\varepsilon_{n} t-1$. Then

$$
\frac{g^{\prime}(t)}{t} \leqslant \frac{g^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t}=\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t} \leqslant \varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)
$$

If we are in case (i) or (iii), then we have as a consequence $\frac{g^{\prime}(t)}{t} \leqslant 1$. Hence by the left-hand side of (3.5) we can write

$$
\begin{align*}
t^{-2 \beta}\left[\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right] & \leqslant 2 t^{-2 \beta}\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}=2 t^{-2 \beta}\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t}\right)^{\frac{2}{2^{*}}} \\
& \leqslant 2 t^{-2 \beta}\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+2 t^{-2 \beta} \varepsilon_{n}^{\frac{2}{2^{*}}} \\
& \leqslant \frac{2}{H} g^{\prime \prime}(t)+2 \varepsilon_{n}^{\frac{2}{2^{*}}+2 \beta} \tag{5.4}
\end{align*}
$$

Since the exponent $\frac{2}{2^{*}}+2 \beta>1$ and $\varepsilon_{n}<1$, then

$$
\begin{align*}
\frac{2}{H} g^{\prime \prime}(t)+2 \varepsilon_{n}^{\frac{2}{2^{*}}+2 \beta} & <\frac{2}{H} g^{\prime \prime}(t)+2 \varepsilon_{n}<\left(2+\frac{2}{H}\right)\left(g^{\prime \prime}(t)+\varepsilon_{n}\right) \\
& =\left(2+\frac{2}{H}\right) g_{\varepsilon_{n}}^{\prime \prime}(t) \tag{5.5}
\end{align*}
$$

By (5.4) and (5.5) we have the estimate in (5.3) with $H_{1} \leqslant\left(2+\frac{2}{H}\right)^{-1}$.
If we are in case (ii) then $\frac{g^{\prime}(t)}{t}>1$ and again by the left-hand side of (3.5) we obtain

$$
\begin{aligned}
t^{-2 \beta}\left[\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}}+\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right] & \leqslant 2 t^{-2 \beta} \frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}=2 t^{-2 \beta}\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t}\right) \\
& \leqslant 2\left(t^{-2 \beta} \frac{g^{\prime}(t)}{t}+\varepsilon_{n}\right) \leqslant\left(2+\frac{2}{H}\right)\left(g^{\prime \prime}(t)+\varepsilon_{n}\right)
\end{aligned}
$$

This last inequality completes the proof.
Lemma 5.2. Let g be as in (3.1) satisfying the right-hand side of (3.5). Let $g_{\varepsilon_{n}}(t)$ be defined in (5.2). Then there exists a constant $K_{1}>0$ such that for any $\alpha>1$ we have

$$
\begin{equation*}
g_{\varepsilon_{n}}^{\prime \prime}(t) \leqslant K_{1}\left[\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}+\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\alpha}\right], \quad \forall t \geqslant t_{0} \tag{5.6}
\end{equation*}
$$

Proof. Let $\bar{t}+\varepsilon_{n}<1 \leqslant t_{0}$ and $t \geqslant t_{0}$.
(1) If $\bar{t}+\varepsilon_{n}<t \leqslant \frac{1}{\varepsilon_{n}}$, then (5.6) holds because $g_{\varepsilon_{n}}^{\prime}(t)=g^{\prime}(t)$ and $g_{\varepsilon_{n}}^{\prime \prime}(t)=g^{\prime \prime}(t)$.
(2) Let $t>\frac{1}{\varepsilon_{n}}$.
(2a) If $g_{\varepsilon_{n}}^{\prime}(t)=\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) t$, then $g_{\varepsilon_{n}}^{\prime \prime}(t)=\varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right)$ and (5.6) is obviously satisfied.
(2b) Let $g_{\varepsilon_{n}}^{\prime}(t)=g^{\prime}(t)+\varepsilon_{n} t-1$. Then $g_{\varepsilon_{n}}^{\prime \prime}(t)=g^{\prime \prime}(t)+\varepsilon_{n}$ and

$$
\frac{g^{\prime}(t)}{t} \leqslant \frac{g^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t} \leqslant \varepsilon_{n} g^{\prime}\left(\frac{1}{\varepsilon_{n}}\right) .
$$

If we are in case (i) or (iii), then we have as a consequence $\frac{g^{\prime}(t)}{t} \leqslant 1$. By the right-hand side of (3.5) we can write

$$
\begin{equation*}
g_{\varepsilon_{n}}^{\prime \prime}(t)=g^{\prime \prime}(t)+\varepsilon_{n} \leqslant 2 K \frac{g^{\prime}(t)}{t}+\varepsilon_{n} \leqslant 2 K\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}\right) \tag{5.7}
\end{equation*}
$$

Since $g^{\prime}(t)$ is an increasing function, we have

$$
\begin{align*}
g_{\varepsilon_{n}}^{\prime \prime}(t) & \leqslant 2 K\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}+\left(\frac{1+g^{\prime}\left(t_{0}\right)}{g^{\prime}\left(t_{0}\right)}\right) \frac{g^{\prime}(t)}{t}-\frac{1}{t}\right) \\
& \leqslant 4 K\left(\frac{1+g^{\prime}\left(t_{0}\right)}{g^{\prime}\left(t_{0}\right)}\right)\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t}\right)=4 K\left(\frac{1+g^{\prime}\left(t_{0}\right)}{g^{\prime}\left(t_{0}\right)}\right) \frac{g_{\varepsilon_{n}}^{\prime}(t)}{t} \tag{5.8}
\end{align*}
$$

i.e. (5.6) with $K_{1} \geqslant 4 K\left(\frac{1+g^{\prime}\left(t_{0}\right)}{g^{\prime}\left(t_{0}\right)}\right)$.

If case (ii) is realized, then $\frac{g^{\prime}(t)}{t}>1$ and we can write

$$
\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\alpha}=\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}-\frac{1}{t}\right)^{\alpha} \geqslant \frac{1}{2^{\alpha}}\left(\frac{g^{\prime}(t)}{t}+\varepsilon_{n}\right)^{\alpha}=\frac{1}{2^{\alpha}}\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}\left(1+\frac{\varepsilon_{n}}{\frac{g^{\prime}(t)}{t}}\right)^{\alpha} .
$$

Since

$$
\left(1+\frac{\varepsilon_{n}}{\frac{g^{\prime}(t)}{t}}\right)^{\alpha} \geqslant 1+\alpha \frac{\varepsilon_{n}}{\frac{g^{\prime}(t)}{t}}
$$

we can write

$$
\begin{equation*}
\left(\frac{g_{\varepsilon_{n}}^{\prime}(t)}{t}\right)^{\alpha} \geqslant \frac{1}{2^{\alpha}}\left[\left(\frac{g^{\prime}(t)}{t}\right)^{\alpha}+\varepsilon_{n}\right] \geqslant \frac{1}{2^{\alpha+1} K}\left(g^{\prime \prime}(t)+\varepsilon_{n}\right)=\frac{1}{2^{\alpha} K} g_{\varepsilon_{n}}^{\prime \prime}(t) \tag{5.9}
\end{equation*}
$$

i.e. (5.6) with $K_{1} \geqslant K 2^{\alpha+1}$. Combining (5.8) and (5.9) we obtain the result.

Lemma 5.3. Let g be as in (3.1). Let $g_{\varepsilon_{n}}(t)$ be defined in (5.2). Then there exists a constant C such that

$$
\begin{equation*}
g_{\varepsilon_{n}}(t) \leqslant C(1+g(t))+\varepsilon_{n} t^{2}, \quad \forall t \geqslant 0 . \tag{5.10}
\end{equation*}
$$

Proof. Let $\bar{t}+\varepsilon_{n}<1$ and $0 \leqslant t \leqslant \bar{t}+\varepsilon_{n}$. We have

$$
\begin{equation*}
g_{\varepsilon_{n}}(t)=\frac{g^{\prime}\left(\bar{t}+\varepsilon_{n}\right)}{\bar{t}+\varepsilon_{n}} \frac{t^{2}}{2} \leqslant \frac{1}{2} \frac{g^{\prime}(1)}{\bar{t}} \tag{5.11}
\end{equation*}
$$

If $\bar{t}+\varepsilon_{n}<t \leqslant \frac{1}{\varepsilon_{n}}$, we have

$$
\begin{equation*}
g_{\varepsilon_{n}}(t)=g(t)-g\left(\bar{t}+\varepsilon_{n}\right)+\frac{g^{\prime}\left(\bar{t}+\varepsilon_{n}\right)\left(\bar{t}+\varepsilon_{n}\right)}{2} \leqslant g(t)+\frac{1}{2} g^{\prime}(1) . \tag{5.12}
\end{equation*}
$$

If $t>\frac{1}{\varepsilon_{n}}$, we have $g_{\varepsilon_{n}}^{\prime}(t) \leqslant g^{\prime}(t)+\varepsilon_{n} t$ from which

$$
\begin{align*}
g_{\varepsilon_{n}}(t) & \leqslant g\left(t_{0}\right)+\int_{t_{0}}^{t}\left(g^{\prime}(s)+\varepsilon_{n} s\right) d s \\
& \leqslant g\left(t_{0}\right)+\int_{0}^{t}\left(g^{\prime}(s)+\varepsilon_{n} s\right) d s=g\left(t_{0}\right)+g(t)+\frac{\varepsilon_{n} t^{2}}{2} . \tag{5.13}
\end{align*}
$$

By (5.11), (5.12) and (5.13) we obtain the result with the constant

$$
C \geqslant \max \left\{\frac{1}{2} g^{\prime}(1), g\left(t_{0}\right), \frac{1}{2} \frac{g^{\prime}(1)}{\bar{t}}\right\} .
$$

6. Passage to the limit

Let us consider for every ε_{n} (ε_{n} is the sequence defined in the previous Section 5) the sequence of integral functionals

$$
\begin{equation*}
F_{\varepsilon_{n}}(v)=\int_{\Omega} g_{\varepsilon_{n}}(|D v|) d x \tag{6.1}
\end{equation*}
$$

where $g_{\varepsilon_{n}}(t)$ is defined through its derivative $g_{\varepsilon_{n}}^{\prime}(t)$ by (5.1) and (5.2). Let $u \in$ $W_{\text {loc }}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ be a local minimizer of integral (4.1), i.e. $g(|D u|) \in L_{\text {loc }}^{1}(\Omega)$ and $F(u) \leqslant F(u+\phi)$ for every $\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{m}\right)$. Let B_{R} be a ball of radius R such that $B_{2 R} \subset \subset \Omega$ and let $0<\sigma<\min \{1, R\}$. We indicate by u_{σ} a sequence of smooth functions defined from u by means of standard mollifiers. Then $u_{\sigma} \in W^{1,2}\left(B_{R} ; \mathbb{R}^{m}\right)$. Let
$u_{\varepsilon_{n}, \sigma}$ be a minimizer of the integral $F_{\varepsilon_{n}}(v)$ in (6.1) that satisfies the Dirichlet condition $u_{\varepsilon_{n}, \sigma}=u_{\sigma}$ on the boundary ∂B_{R}, i.e., since $F_{\varepsilon_{n}}$ has a quadratic growth,

$$
\begin{equation*}
\int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right) d x \leqslant \int_{B_{R}} g_{\varepsilon_{n}}(|D v|) d x, \quad \forall v \in W_{0}^{1,2}\left(B_{R} ; \mathbb{R}^{m}\right)+u_{\sigma} \tag{6.2}
\end{equation*}
$$

By results of previous Section 5, for every $\varepsilon_{n}, g_{\varepsilon_{n}}$ satisfies conditions (3.1), (4.2) (with suitable constants $N\left(\varepsilon_{n}\right)$ and $\left.M\left(\varepsilon_{n}\right)\right)$ and (3.5) with constants H and K not depending on ε_{n}. Therefore we can apply to $g_{\varepsilon_{n}}$ the a priori estimate obtained in Theorem 4.1 obtaining that for every ε_{n} and for every ball B_{ρ} of radius $\rho<R$ there exists a constant C_{1} (independent on $N, M, \varepsilon_{n}, \sigma$) such that, for some constants $\beta, \frac{1}{n}<\beta<\frac{2}{n}$, we have

$$
\begin{equation*}
\left\|D u_{\varepsilon_{n}, \sigma}\right\|_{L^{\infty}\left(B \rho ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C_{1}\left\{\int_{B_{R}}\left(1+g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right)\right) d x\right\}^{\frac{1}{1-\beta}+\varepsilon} \tag{6.3}
\end{equation*}
$$

By the minimality of $u_{\varepsilon_{n}, \sigma}$ we can write that

$$
\begin{equation*}
\int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right) d x \leqslant \int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\sigma}\right|\right) d x \tag{6.4}
\end{equation*}
$$

and by (5.10) and the properties of mollifiers we obtain

$$
\begin{align*}
\int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\sigma}\right|\right) d x & \leqslant C_{2}\left\{\int_{B_{R}}\left(1+g\left(\left|D u_{\sigma}\right|\right)\right) d x+\varepsilon_{n} \int_{B_{R}}\left|D u_{\sigma}\right|^{2} d x\right\} \\
& \leqslant C_{2}\left\{\int_{B_{R+\sigma}}(1+g(|D u|)) d x+\varepsilon_{n} \int_{B_{R}}\left|D u_{\sigma}\right|^{2} d x\right\} \\
& \leqslant C_{3}(\sigma) \tag{6.5}
\end{align*}
$$

From this chain of inequalities and (6.3) we obtain as a consequence

$$
\begin{align*}
\left\|D u_{\varepsilon_{n}, \sigma}\right\|_{L^{\infty}\left(B_{\rho} ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} & \leqslant C_{4}\left\{\int_{B_{R+\sigma}}(1+g(|D u|)) d x+\varepsilon_{n} \int_{B_{R}}\left|D u_{\sigma}\right|^{2} d x\right\}^{\frac{1}{1-\beta}+\varepsilon} \\
& \leqslant C_{5}(\sigma) . \tag{6.6}
\end{align*}
$$

Then for every fixed $\sigma,\left|D u_{\varepsilon_{n}, \sigma}\right|$ is equibounded with respect to ε_{n}. Hence, up to a subsequence, $u_{\varepsilon_{n}, \sigma}$ converges in the weak ${ }^{*}$ topology of $W^{1, \infty}\left(B_{\rho} ; \mathbb{R}^{m \times n}\right)$ to a function w_{σ} for some w_{σ}. Going to the limit for $\varepsilon_{n} \rightarrow 0$ in (6.6) we obtain

$$
\begin{equation*}
\left\|D w_{\sigma}\right\|_{L^{\infty}\left(B_{\rho}, \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C_{4}\left\{\int_{B_{R+\sigma}}(1+g(|D u|)) d x\right\}^{\frac{1}{1-\beta}+\varepsilon} \tag{6.7}
\end{equation*}
$$

Hence, we also have that $\left|D w_{\sigma}\right|$ is equibounded in $L^{\infty}\left(B_{\rho}, \mathbb{R}^{m \times n}\right)$ and it is still possible to take a subsequence which converges in the weak* topology of $L^{\infty}\left(B_{\rho}, \mathbb{R}^{m \times n}\right)$ to a function $D w$ for some w.

We will prove that $w=u$. Let us consider ε_{n} sufficiently small in dependence on σ; more precisely, fixed σ, we consider $\varepsilon_{n} \leqslant \overline{\varepsilon_{n}}(\sigma)$, with $\overline{\varepsilon_{n}}(\sigma)$ such that $\frac{1}{\overline{\varepsilon_{n}}(\sigma)}>\left[C_{5}(\sigma)\right]^{\frac{1}{2-\beta n}}$ where $C_{5}(\sigma)$ is the constant obtained in estimate (6.6). Then we have by (6.6) that $\left|D u_{\varepsilon_{n}, \sigma}\right|<\frac{1}{\varepsilon_{n}}$. By the definition of $g_{\varepsilon_{n}}(t)$ we can calculate

$$
g_{\varepsilon_{n}}(t)= \begin{cases}\frac{g^{\prime}\left(\bar{t}+\varepsilon_{n}\right)}{\bar{t}+\varepsilon_{n}} \frac{t^{2}}{2} & \text { if } 0 \leqslant t \leqslant \bar{t}+\varepsilon_{n}, \tag{6.8}\\ g(t)-g\left(\bar{t}+\varepsilon_{n}\right)+\frac{g^{\prime}\left(\bar{t}+\varepsilon_{n}\right)\left(\bar{t}+\varepsilon_{n}\right)}{2} & \text { if } \bar{t}+\varepsilon_{n}<t \leqslant \frac{1}{\varepsilon_{n}},\end{cases}
$$

and hence we can write that

$$
\begin{equation*}
g(t) \leqslant g\left(\bar{t}+\varepsilon_{n}\right)+g_{\varepsilon_{n}}(t), \quad \bar{t}+\varepsilon_{n} \leqslant t \leqslant \frac{1}{\varepsilon_{n}} . \tag{6.9}
\end{equation*}
$$

By lower semicontinuity and (6.9) we obtain

$$
\begin{aligned}
\int_{B_{\rho}} g\left(\left|D w_{\sigma}\right|\right) d x & \leqslant \liminf _{\varepsilon_{n} \rightarrow 0} \int_{B_{R}} g\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right) d x \\
& \leqslant \liminf _{\varepsilon_{n} \rightarrow 0} \int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right) d x
\end{aligned}
$$

From (6.4) and (5.10) we can deduce that $g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right)$ is bounded with respect to ε_{n} and then we can apply in (6.4) the dominant convergence theorem obtaining

$$
\liminf _{\varepsilon_{n} \rightarrow 0} \int_{B_{R}} g_{\varepsilon_{n}}\left(\left|D u_{\varepsilon_{n}, \sigma}\right|\right) d x \leqslant \int_{B_{R}} g\left(\left|D u_{\sigma}\right|\right) d x \leqslant \int_{B_{R+\sigma}} g(|D u|) d x
$$

By resuming we have, for every $\rho<R$,

$$
\begin{equation*}
\int_{B_{\rho}} g\left(\left|D w_{\sigma}\right|\right) d x \leqslant \int_{B_{R+\sigma}} g(|D u|) d x . \tag{6.10}
\end{equation*}
$$

Again by lower semicontinuity and by (6.10) we have

$$
\int_{B_{R}} g(|D w|) d x \leqslant \liminf _{\sigma \rightarrow 0} \int_{B_{R}} g\left(\left|D w_{\sigma}\right|\right) d x \leqslant \int_{B_{R}} g(|D u|) d x
$$

Now, our assumptions on g do not guarantee uniqueness of the minimizer for the Dirichlet problem. However $g(|\xi|)$ is locally strictly convex for $|\xi|>1$, then we can
conclude as in [19] that $w=u$. Going to the limit for $\sigma \rightarrow 0$ in (6.7) we get

$$
\begin{equation*}
\|D w\|_{L^{\infty}\left(B \rho ; \mathbb{R}^{m \times n}\right)}^{2-\beta n} \leqslant C_{4}\left\{\int_{B_{R}}(1+g(|D u|)) d x\right\}^{\frac{1}{1-\beta}+\varepsilon} \tag{6.11}
\end{equation*}
$$

Hence estimate (6.11) holds also for $D u$. Therefore we completed the proof of Theorem A.

Theorem B follows by Theorem A with some simplifications; below we give an outline of its proof.

Outline of the proof of Theorem B. We first observe that assumption (2.12) implies that $\lim _{t \rightarrow+\infty} g^{\prime}(t)=l \in(0,+\infty)$ and hence there exist t_{0} such that $\frac{g^{\prime}(t)}{t}<1$ for every $t \geqslant t_{0}$. Thus, condition (2.13) can be rewritten as

$$
H\left(\frac{g^{\prime}(t)}{t}\right)^{\frac{2}{2^{*}}} t^{-2 \beta} \leqslant g^{\prime \prime}(t) \leqslant K \frac{g^{\prime}(t)}{t}, \quad \forall t \geqslant t_{0}
$$

where $\beta=\frac{\gamma}{2}-\frac{1}{2^{*}}$. Since the case $\gamma=1$, corresponding to the assumption $H \frac{1}{t} \leqslant g^{\prime \prime}(t)$ $\leqslant K \frac{1}{t}$, is easier to be treated, we limit ourselves to consider here $\gamma>1$; in this case we have $\beta=\frac{\gamma}{2}-\frac{1}{2^{*}}>\frac{1}{n}$ and we are in the conditions of Theorem A. Moreover, the function $g^{\prime}(t)$ has the Δ_{2}-property. This make immediate Lemma 4.2 and that is why in the right-hand side of final estimate (2.14) there does not appear the exponent β (see also Remarks 1.2 and 5.1 in [19]).

Acknowledgements

A referee pointed out to us that the first version of this paper presented for publication contained a mistake in the proof of Lemma 3.1. We corrected the proof of Lemma 3.1 and its application in the proof of Lemma 4.2. The main Theorems A and B (stated at the end of Section 2) remain unchanged with respect to the first version. We thank the referee for having read the paper in detail. The research was partially supported by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR).

References

[1] E. Acerbi, N. Fusco, Partial regularity under anisotropic (p, q) growth conditions, J. Differential Equations 107 (1994) 46-67.
[2] M. Bildhauer, Convex variational problems, Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, vol. 1818, Springer, Berlin, Heidelberg, New York, 2003.
[3] T. Bhattacharya, F. Leonetti, $W^{2,2}$-regularity for weak solutions of elliptic systems with non-standard growth, J. Math. Anal. Appl. 176 (1993) 224-234.
[4] G. Cupini, M. Guidorzi, E. Mascolo, Regularity of minimizers of vectorial integrals with $p-q$ growth, Nonlinear Anal. 54 (2003) 591-616.
[5] A. Dall'Aglio, E. Mascolo, G. Papi, Local boundedness for minima of functionals with nonstandard growth conditions, Rend. Mat. 18 (1998) 305-326.
[6] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. 1 (1968) 135-137.
[7] L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of functionals with p, q growth, Nonlinear Differential Equations Appl. 6 (1999) 133-148.
[8] M. Fuchs, G. Mingione, Full $C^{1, \alpha}$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math. 102 (2000) 227-250.
[9] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematical Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983.
[10] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248.
[11] E. Giusti, Regolarità parziale delle soluzioni di sistemi ellittici quasi-lineari di ordine arbitrario, Ann. Scuola Norm. Sup. Pisa 23 (1969) 115-141.
[12] E. Giusti, M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll. Un. Mat. Ital. 2 (1968) 1-8.
[13] E. Giusti, M. Miranda, Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rational Mech. Anal. 31 (1968) 173-184.
[14] F. Leonetti, E. Mascolo, F. Siepe, Everywhere regularity for a class of vectorial functionals under subquadratic general growth conditions, J. Math. Anal. Appl. 287 (2003) 593-608.
[15] P. Marcellini, Un exemple de solution discontinue d'un problème variationnel dans le cas scalaire, Istituto Matematico "U. Dini", n. 11, Università di Firenze, 1987.
[16] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal. 105 (1989) 267-284.
[17] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991) 1-30.
[18] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993) 296-333.
[19] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Annali Sc. Norm. Sup. di Pisa 23 (1996) 1-25.
[20] G.B. Morrey, Partial regularity results for nonlinear elliptic systems, J. Math. and Mech. 17 (1968) 649-670.
[21] J. Necas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, Theory of Nonlinear Operators, Abhandlungen der Akad. der Wissen. der DDR, 1977; Proceedings of a Summer School held in Berlin in 1975.
[22] V. Sverak, X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. 10 (2000) 213-221.
[23] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977) 219-240.

[^0]: * Corresponding author. Fax: +39 0554222695.

 E-mail address: marcell@math.unifi.it (P. Marcellini).

