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THE STORED-ENERGY FOR
SOME DISCONTINUOUS DEFORMATIONS
IN NONLINEAR ELASTICITY

PAoLO MARCELLINI

Dedicated to Ennio De Giorgi on his siztieth birthday

Sommario. In questo lavoro viene applicata all’elasticita non
lineare un’idea che Ennio De Giorgi ha dimostrato essere feconda
in contesti diversi, ad esempio nello studio delle superfici minime
o della I'-convergenza. Si tratta della cosiddetta “estensione dello
spazio ambiente”: & opportuno ricercare a priori superfici cartesiane
di area minima nella classe BV delle funzioni a variazione limitata,
piuttosto che tra le funzioni di classe C', come pure in problemi di
I'-convergenza o di esistenza del minimo di integrali del calcolo delle
variazioni & opportuno estendere lo spazio ambiente C! fino ad uno
spazio di Sobolev H'?, od anche perfino ad LP.

L’idea di base, gia sperimentata da De Giorgi e da altri, ha dato
buoni frutti. Il resto non so. L’una e ’altro gli sono dedicati con
affetto in occasione del suo 60° compleanno.

1. Introduction. We consider an elastic body that occupies a
bounded open set  C R™ in a reference configuration. We denote
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by u(z) a deformation of ; that is, a particle z € Q is displaced
to u(z) € R™. By Du we denote the n X n matrix of the deforma-
tion gradient. We are concerned with hyperelastic materials having
stored-energy function W(§),{ € R™*™. That is, the total stored-
energy IV is given by

(1.1) E(u)=LW(Du(m))dz.

If the material is frame-indifferent and isotropic, the energy
function W can be represented by

(1.2) W(£) = d(v1,...,vn),

where vy, ..., v, are the eigenvalues of the symmetric matrix (¢7¢)'/2
assuming that det £ (the determinant of £) is positive.

One of the most interesting problems in this field is to find
appropriate (both from the mathematical and the physical point of
view) assumptions on the behaviour of W; that is, to describe the
largest number of properties of the stored-energy that are common
to a given class of materials and that are useful in a mathematical
approach.

Some models have been proposed and have been studied in in-
compressible elasticity, in which the deformation u(z) is subjected to
the pointwise constraint det Du(z) = 1. There are also papers that
relate the proposed theoretical expression of the stored-energy with
measures in experiments (see the references in Ball [1], [2]).

In the incompressible case, the stored energy W (¢), defined for
€ with det{ = 1, can be extended to every £ with deté > 0, by
setting

(13) W)= W (e )

this kind of extension has been studied in a recent paper by Charrier,
Dacorogna, Hanouzet, Laborde [6].

Up to now the most considered form of stored-energy for com-
pressible materials is of the type:

(1.4) W(£) = Wi(€) + g(det ),
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where g is a given real function.

Odgen in [8] proposed for rubberlike solids a stored-energy of
the form (1.4); more precisely, he proposed an expression in terms
of v; of the form

W(E) = d(viy...,vn)

(1.5) = Za}-v?i + g(vy - va...v,).
]

Some of the exponents a; can be negative; of course the product
V1 *V3...V, is the determinant of the matrix £.

The contribution to the energy, corresponding to the function
g, expressed by the integral

(1.6) fﬂg(det Du(z))dz,

takes into account the part of the energy that depends on changes
in volume. We assume that the energy goes to +oo if we expand
the solid (det Du — +o00) or if we compress the solid to a point
(det Du — 0). More precisely, we assume that g = g(t), defined for
t > 0, goes to 400 both as ¢t —» 400 and as t — 07. We assume also
that g is smooth, so that g has a minimum, say at ¢t = 1.

In the following we quote some considerations by Odgen [18].
First, there are physical reasons to think that g(t) is decreasing for
¢t < 1 and increasing for £ > 1. Secondly, an inequality considered by
Odgen is:

(1.7) (tg)Y =g +tg">0 , Vt>0.

For ¢ < 1, since g’ < 0, we have g” > 0, thus g is convex in (0,1).
The conclusion is not the same for ¢ > 1, where the above inequality
can also be satisfied if g is concave.

In relation to the concavity of g we have two possible situations,
schematized in figures 1 and 2.
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Fig.1. Graph of a convex g.

Fig.2. Graph of a non convex g.
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Finally let us quote from Odgen [18], pages 572, 573: “Little has
been determined experimentally about situations in which t > 17;
“It seems likely (though it is not certain) that, so long as the material
remains elastic, an increase in all-round tension would always be
required to effect a volume increase; we would then have g" > 0
for allt (> 0). Once the elastic limit is reached the possibility of g"
being less than zero cannot be ruled out”.

From a mathematical point of view, in particular from the point
of view of the existence of an energy minimum, the situation schema-
tized in figure 1 is easier for at least two reasons.

First, the convexity of g plays a role in the existence of equilib-
rium solutions. In fact Ball [1] pointed out the importance in this
theory of the assumption of quasi-convezity (see (5.2)) of W(§), and
recently Ball and Murat ([4], lemma 4.3) proved that quasiconvexity
of a function of the type

(1.8) W (&) = [§]” + g(det &)

implies convexity of g, if 1 < p < 2n.
A second reason to say that the situation schematized in figure 1
is easier for existence of minima, depends on the coercivity condition:

(1.9) g(t) > constant -t" , t>0

for an exponent r > 1. Such an r may exist in the case of figure 1,
but it cannot exist in the case of figure 2, if g is concave for large .
The validity of (1.9) for some r > 1 is one of the assumptions in
the well known existence theorem by Ball [1]. Recently, new existence
results for some integrals of elasticity have been obtained by Ball and
Murat ([4], theorem 6.1) and by Marcellini ([14], theorem 1).

Here we present a mathematical argument to show that the case
7 = 1 in (1.9) is one of the most relevant in this theory. In some
sense, 7 = 1 is an “intermediate” case between the scheme considered
in figure 1 (with g convex) and the scheme in figure 2 (with g concave
for large t), since, if r = 1, then g is “linear at infinity”.

The mathematical argument is based on studying an hypere-
lastic material for which the phenomenon of cavitation may occur.
We describe the phenomenon of cavitation in the next section. We
present an approach substantially different from Ball’s approach on
cavitation [2]. We will show that, under our approach, cavitation
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may occur only if g is not convex and if it is linear at infinity.
Moreover, if g is linear at +oo and cavitation occurs, then the slope
g'(+00) should be equal to the radial component of the Cauchy stress
at the surface of the cavity. Thus we propose an indirect method to
find experimentally the behaviour of the function g(¢) for large values
of t.

On reading this paper a referee pointed out to me the references
[27], [28], [29], where it is studied the ”Blatz-Ko material”. The
energy function W, proposed by Blatz and Ko for n = 3, with respect
to ¢t = det Du is of the form (see formula (2.21) of [29])

(1.10) W(..,.nt) = 26t71 + (1 - B) (72 + 2¢).

The parameter 3, determinated experimentally under three distinct
homogeneous deformations, takes the values:

(L11) (@) B=013 () B=007 () B=-0.19.

In our context it is very interesting to notice that g(¢) is linear
at infinity and, in the cases (a), (b), g is convex like in figure 1, while
in the case (c) g is not convex and behaves like the function in figure
2.

2. The phenomenon of cavitation. The phenomenon of
cavitation has been first studied by Ball [2]. The reader interested
in cavitation is also referred to the papers by Stuart [25], [26], Podio
Guidugli, Vergara Caffarelli, Virga [19], [20], Sivaloganathan [23],
[24].

The idea of cavitation is as follows: we consider a body that
occupies the unit ball Q = {|z| < 1} of R™, with n > 2. We expand
the body with deformation u(z) = Az at |z]| = 1, for some A > 1
(that is, we impose the boundary condition that the deformed surface
of the body is a sphere of radius A). We expect that, if X is too large,
then for some materials a hole forms inside the body.

To describe mathematically the phenomenon of cavitation, fol-
lowing Ball [2], we consider radial deformations

(2.1) u(z) = v(r)

, with r = |z|,
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where v(r) is a function defined for » € [0,1], such that v > 0, »' > 0.
A computation shows that the eigenvalues v; of (DuTDu)U 2 are

v(r)

(2.2) v =v(r) , U= s ot 4= 2 pu i

Thus the determinant of Du, i.e. the product of the v; for i =
1,...,n,is equal to

(2.3) det Du = '(r) ((_)) .

7

By using polar coordinates, the stored-energy (1.1), (1.2) takes
the form:

(2.4) E:wn/:r"_lqﬁ (v',g,...,g) dr,

T

where, as usual, w, is the (n — 1)-measure of the surface of the unit
sphere in R™,

The transformation u(z) defined in (2.1) is a map of the unit
sphere to the sphere of radius v(1). If ¥(0) > 0, then in this defor-
mation a cavity forms at the center, with radius v(0). In this case it
is easy to see that u belongs to the Sobolev space H':*(Q2; R"™) for
every p < m, but u does not belong to H''™(Q; R™).

If v(0) > 0, then u(z) = v(r)z/r is a singular transformation at
z = 0, and the corresponding energy needs to be defined carefully.
We propose a definition in the next section.

3. Definition of the stored-energy for discontinuous de-
formations. From this point we follow a different approach from
Ball’s approach in [2]. For fixed p > 1, we consider the set

3.1) A={veHP0,1):v(0)=0, v>0, v'>0 ael;
where by the notation "v > 0” we mean v(r) > 0 for every r € (0,1);

and by "v’ > 0 a.e.” we mean v'(r) > 0 for almost every r € (0,1).
We recall that every function v € H,F(0,1) is continuous in (0,1).
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Since we consider functions v = wv(r) that are increasing with
respect to 7, we can define v at the endpoints of (0,1), by defining,
for example at z = 0:

(3.2) v(0) = inf{v(r) : r € (0,1)} = rli,’ﬁi v(r).

Thus the value v(0) in (3.1) is defined by (3.2).
It is easy to see that the set A is dense, with respect to the
strong topology of H !1 ,P(0,1), in the set A defined by

{3.3) A={ve H?(0,1):v>0, v >0 ael}.

By its convexity, the set A is closed both in the strong and in
the weak topology of H}‘;f({], 1).

With abuse of notation we denote the energy either by E(u) or
by E(v), where u(z) and v(r) are associated by (2.1). The integral
E in (2.4) is well defined in A, since the integrand is assumed to
be positive; in fact E is the supremum (with respect to a,b) of the
corresponding integrals on subintervals [a,b] C (0,1).

We extend E from A to .A. We denote the extension by F. The

idea is to define the energy F(v) for v € A by continuity:
(3.4) F(v) = li}]cn E(vg),

where v}, is a sequence in A that converges (we will consider either
the strong or the weak topology) to v. To be sure that the definition
is independent of the particular sequence vy, we proceed as follows.

As usual we use the letter s to denote the strong topology, and
the letter w to denote the weak topology of H,’?(0,1). For every v €
A we define:

(3.5) B fy) = inf{]iIIJ}cinfE'(vk) t v € A, v},

Falv)= inf{limkinf E(vy) : v € A,v>v}.

The scheme of the above definitions is classical. It was intro-
duced by Lebesgue in his thesis [11], and then considered again by
De Giorgi, Giusti, Miranda (see e.g. [10], [16]), Serrin [22], and re-
cently by many others (see for example [5], [7], [9]). In this context
this scheme was introduced by the author in [13].
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It is easy to see that F, is lower semicontinuous in the strong
topology of H,2?(0,1) and that (under coercivity conditions) F,, is
lower semicontinuous in the weak topology. It is less easy to derive
representation formulas for F, and F,,; we consider this problem in
the next section.

4. Representation formulas for the stored-energy. With
the aim of giving a characterization of Fy, F,,, we state our assump-
tions on the integrand ¢ in (2.4).

(4.1) é(E,m,---,m) 15 a continuous function for
. £>0 and n>0.
There exist an exponent q < mn, some
(4.2) positive constants ¢, &, and a convex
function h:[0,+00) — [0,+00) such that :
(4.2a) d(&m,--om 2 R(ERTY), VEZ0, V>0

(4.26) B(§:€,..,€) S c(1+ &) +R(E"), VE2&o.

Note that we do not require that ¢ = ¢(€,7, ...,7) is convex with
respect to £, neither do we require that ¢ is bounded from above as
£ —0t,

Assumptions (4.1), (4.2) are very general and natural in the
theory of nonlinear elasticity by Ball [1], [2]. Of course they can
be satisfied by integrands of the type (1.8) with p < n and g as in
figures 1 or 2.

Theorem 1. Let E,F,,F, be defined respectively by (2.4),
(8.5), (3.6). Under assumptions (4.1), (4.2) the following repre-
sentation formule holds:

(43)  Fy(v) =wn /01 g (v, 2,0, ) dr + RER (O,
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for every v € A, where the constant h € [0,400] ts given by

. e ’
(4.4) h = tllflw h(t)/t = tETwh (t).

Moreover, if ¢ = ¢(€,m,...,m) is conver with respect to €, the
above representation formula holds also for F,,, i.e. Fy(v) = F,(v)
for every v € A.

Note that in principle F, and F,, in (3.5), (3.6) depend on p;
but, under the assumptions of the above theorem, F, and F,, are
actually independent of p.

Before giving the proof of theorem 1 we state in the following
lemma 2 a known result about convex functions.

For a convex function h : R — R U {+00} the inequality of
convexity can be written by:

@9 srXaex(35)

where §; € R and A; > 0, with ) \; # 0. By approximating L!-
functions A(r),£(r) by step functions, each of them assuming a fi-
nite number of values A;,{;, we easily obtain the following form of
Jensen’s inequality (the usual Jensen’s inequality is obtained for A(r)
= constant):

Lemma 2. Let h: R —» R U {+00} be a conver function and
let A, € be L' functions, with X > 0, Z0.

(4.6) f A(r)h r))dr > (f A(r)E 'r)dr)‘
fa A(r)dr f A(r)d

Proof of Theorem 1. If v(0) = 0 formula (4.3), i.e. F, = E,
follows from the lower semicontinuity of F in the strong topo]ogy
of Hh;f([] 1) (by Fatou’s lemma) and, if ¢(€,n,...,n) is convex with
respect £, then F, = F, = F follows from the lower semicontinuity
of E in the weak topology of H,JP(0,1).

Thus let us consider v(0) > 0 and let vy, be a sequence in A

that converges to v in the strong topology of H» 17(0,1). We extract
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a subsequence of vy, that we still denote by v, with the properties:
(i) the subsequence of real numbers E(vj) admits a limit and this
limit is equal to the limes inferior of the original sequence; (ii) vg(r)
converges to v(r) for every r € (0,1).

Let M be an upper bound for v4(1/2), so that

(4.7) w(l/2)<M ,  Vk
For every r € (0,1) we have
(4.8) Hin vi(r) = v(r) > v(0);
thus, for every natural v, by choosing r = 1/v, there exists k, such
that
(4.9) ve, (1/v) > v(0) — 1/v.
If we define w,(r) = (v(0)v — 1)r and if v is sufficiently large (v >
(2M + 1)/v(0)), by (4.7) and (4.9) we obtain
(4.10) w, (1/2) > M > v, (1/2) ,  wg, (1/v) < v, (1/v).

Therefore, if v is sufficiently large, there exists r, € (1/v,1/2)
such that vy, (r,,) = wi, (7,) = (v(0)v — 1)r,; moreover the following
relations hold:

(4.11) limr, =0 ; lim inf vy, (r,,) > v(0).
In fact r, converges to zero since, by (4.7), we have

1 Vg, (T0) vk, (1/2) M
4.12 = i gy 2 e % ;
(4.12) » <7 v(0)y -1~ v(0)y -1~ v(0)r -1
while the second relation in (4.11) holds by (4.9), since vy, (r,) >
v, (1/v) > v(0) — 1/v.
With the aim of finding a lower bound for Fy in (3.5), we use
assumption (4.2a) to obtain

limkinf E(v) = lim E(vg,) >
1
- * n—1 ! 'Ukv ’Uku)
(4.13) 211my1nf wnfr r ¢(”kva e, dr+

v

Tv n—1
+ lim inf wnf r"h ('U;c., (Ui”) ) dr.
e o
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We estimate the second term on the right hand side by using
Jensen’s inequality (4.6) with A(r) = r™~! and &(r) = v}, (vg, /7)™ L.

. n . v ape ;  n—1
Since vg, /n is a primitive of v; vy ", we have

/‘rv ™ h (v;v (v:” )n_l) dr >

(4.14) oliey, (l‘_ . ”2_(’"”))

n
n \rp n

— v;:., (1",,) h(tv)
n tis

’

where we have posed t, = (v, (r,)/r,)". By (4.11) t, — +co. By
again using (4.11) and definition (4.4), we obtain

Ty n—1
lim infwn/ ™ 1h ('vi, (&) ) dr >
o Y T

(4.15) . .
h—"[v(0)]".

Y =i
n

Let us go back to (4.13). For every fixed v,, if r, < 7, , by
Fatou’s lemma we have:

]imkinfE(vk) >

(4.16) 1 v W
n—1 'z = n n
anfr T (U’r""’r)dr+hn[v(ﬂ)]'

Yo

As v, = 400 we obtain

1
voow -w
4.1 F(v) 2wn | 7 (v,2,.,2) dr + B2 [u(0)]".
@ Bz [ (0,2, 2) a4 R p0)

To get the opposite inequality we can compare a fixed function
v € A, having v(0) > 0, with the sequence wy(r) = kr. For every
k > v(1/2) we can choose 7 € (0,1/2) so that v(rg) = kr. Since
v(rx) < v(1/2), then r; converges to zero as k — +o0. let us define
vy by:

kr ifo<r<rg
(4.18) ilr] =
wir) ifry<vrgl.
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Since v, = vg/r = k for r € (0,74), we have

1
F,(v) < iimsupwnf rm1lg (v;“ﬂ,_._’:”_ﬁ) dr-
k o T '
1
(4.19) < wy / 1 (v’, E, ceey E) dr-
° T T

- lim sup ﬁrﬂd)(k,k, . iyl
k n

We estimate the last term on the right hand side using assump-
tion (4.2b). Since kry = v(rx), and since v(ry) converges to v(0), we
have

limsupry¢(k, k, ..., k) <
k
(4.20) <limrge(l + k%) 4 h(k™)]
= m k" fe(1 + k) + h(k) ()] = Rl (O)]"

Here we have used the assumption ¢ < n.

Since vg(r) = vgr) for » > r, and since 7 — 0, the sequence vy,
converges to v in H,;’?(0,1). Thus the opposite inequality to (4.17)
follows from (4.19), (4.20).

The statement relating to F,, follows analogously. The only
difference is that (4.16) then follows from the lower semicontinuity of
the integral with respect to the weak topology of H 11 .P(0,1) whenever
#(&,m, ..., n) is convex with respect to &.

By combining theorem 1 with theorem 3.8 of Marcellini and
Sbordone [15] (see also [8]) it is possible to prove the following further
characterization result when ¢(¢,7,...,n) is not convex with respect
to £.

Theorem 3. For every v > 0 let ¢$**(€,n) be the greatest func-
tion convez with respect to & > 0 and less or equal to ¢(§,m,...,7),
with ¢ satisfying (4.1), (4-2). Let h be the constant given by (4.4)
and let F, be the functional defined in (3.6). Then, for everyv € A

we have

1
(4.21)  F,(v) = wnf rrlgr (v',—z,..., ;) dr + ﬁ%[v(O)]"
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5. Interpretation and consequences of the representa-
tion formulas. A first consequence of the representation formula
(4.3) is stated in the following:

Corollary 4. Let us assume that (4.1), (4.2) hold and that
the energy F, is represented by (4.3). Then the phenomenon of cav-
itation may occur only if h(t) is “(sub-)linear at infinity”. More
precisely, if h(t) > ct” for some r > 1 and ¢ > 0, then Fy(v) = 400
for every v € A with v(0) > 0.

A second consequence can be easier described if we consider
again the general situation without radial symmetry, with the energy

integrand W () of the form (1.4), that is:

(5.1) W(€) = W1(£) + g(det £),

W1(€) being a quasiconvex function in the sense of the following
definition (5.2).

We already pointed out that the linearity of g(t) at co is of in-
terest in our approach. The function g(¢) must be convex or concave
for large values of £7

If g(t) is convex then it is well known that W (£) satisfies the
quasiconvezity condition by Morrey [17]:

[ wie+ Do)z > [ wierz = wiol
V¢ € CL(; R™).

(5.2)

J.Ball pointed out that this mathematical condition by Morrey
has an interpretation in nonlinear elasticity; we quote from Ball [1],
pages 338, 339: ”... for ... a body that admits as a possible displace-
ment a homogeneous strain, we require that this homogeneous strain
be an absolute minimizer for the tolal energy”.

As described in section 2, in cavitation we impose the boundary
condition u(z) = u,(z) at |z| = 1, where u,(z) = Az. The displace-
ment u, is a homogeneous strain. Thus, under quasiconvezity, wu,



Discontinuous deformations in nonlinear elasticity 781

must be an absolute minimizer and the phenomenon of cavitation
should not occur.

This is what happens under the present approach; while this
fact contrasts sharply with the approach of Ball in [2], where the
phenomenon of cavitation occurs with quasiconvex energy integrals.

In fact, under our approach the energy is defined by lower semi-
continuity; thus, if inequality (5.2) holds for smooth test functions
¢, then it holds for the extended energy too.

Therefore, if the stored-energy E in (1.1) is quasiconvex, then
uo(x) = Az is an absolute minimizer among displacements with the
same boundary values. In terms of v(r),v,(r) = Ar is an absolute
minimizer for E given by (2.4), and thus v, is an absolute minimizer
also for Fj, F,, in (3.5), (3.6).

Of interest is the Euler s first variation of the functional F, in
(4.3). We obtain (for a non formal derivation we can proceed like
in theorem 7.3 of Ball [2]) that a minimum of F, on A, with the
condition v(1) = A, formally satisfies the Euler-Lagrange equation:

(5.3) di:"_ (r"lee) = (n — 2., vr € (0,1),
and the boundary conditions
(5.4) at el wll) =
at r=0:
(5.5) : . r \"! -
either v(0)=0 or ,E,%ﬂ (@) be = h.

The expression (r/v)" !¢, that appears in (5.5) is called the
radial component of the Cauchy stress. In principle we could imagine
measuring the stress at » = 0 of an equilibrium solution with cavity.
If & is the value of this measure, then we have an indirect measure
of the behaviour of the function g(t) in (1.5) for large values of ¢; in
fact g(t) should behave like in figure 2, with g(t)/t — h as t — +oo0.

Finally let us observe that the functional F, in (4.3) can be
represented in the form:

F,(v) =wn/: -l [qﬁ (1}’,2 ,g) — k' (;)n—l]dr+

(5.6) r
+ R (),
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for every v € A. Thus in the class of functions v € A such that
v(1) = A, F, can be represented in integral form.

On the contrary, in the representation (4.3), the functional F, is
the sum of an integral and a measure concentrated at » = 0; notice
that this measure is equal to the product of the constant h by the
volume of the cavity that forms around the origin. The measure
h(wn/n)[v(0)]™ can be interpreted as the energy due to the cavity;
this energy is proportional to the volume of the cavity and not to
the surface area, like in some standard models.

6. The non radially symmetric case. Let us consider again
the general situation without radial symmetry, and a stored-energy
of the form

(6.1) ‘ E(u)=./S;W1(Du,adj Du)dm+Lg(det Du)dz,

where adj Du are the adjoints of the n X n matrix Du. Here W; and
g are convex functions.
The reader interested in results on the existence of minima is
referred to Ball [1], Ball and Murat [4] and Marcellini [14].
Similarly to (3.6), we define:

(6.2) Fyu(u)= inf{limkinf E(ug) : up € Ct, Up—u  in H'7},

We use the following well known result from Ball, Currie and
Olver [3], which we quote in loose form: If u € HP(Q,R"™) with
p > n?/(n+1), then Det Du is well defined as a distribution (like in
[1], [3] we use the notation Det Du, instead of det Du, to remember
that the determinant is a distribution).

In the applications to nonlinear elasticity it is natural to im-
pose the restriction that the determinant of the deformation gra-
dient is positive. Since every positive distribution is a measure, if
u € H'?(Q;R™) with p > n?/(n+ 1) and if Det Du > 0, then the
distribution Det Du is a positive measure. We can operate on the
measure Det Du by the Lebesgue decornposition (see for instance [21],
theorem 6.9): we denote by Det g Du the regular part of Det Du, i.e.
the part absolutely continuous with respect to the Lebesgue measure,
and by Dets Du the singular part, i.e. the complement:

(6.3) Dets Du = Det Du — Detg Du.
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On the basis of the representation results of theorem 1, on the
following theorem 5, and on the representation result obtained in
section 5 of [13], we formulate the following:

Conjecture. If p > n?/(n+ 1) and Det Du > 0 we have

Fol%) = / Wi (Du,adj Du)dz+

(6.4) o

+ [ g(Detg Du)dz + g- Total Variation (DetgDu)
Q

for every u € H"P(QR™), where § is the limit, as t — +oo, of

g(t)/t.

Up to now the above conjecture has been not proved even if the
singular part Detg Du is identically zero. It is known only the case
u € C1(Q;R™); in fact the following result has been obtained in [12],
[13]:

Theorem 5. Let p > n?/(n + 1); for every u € C1(Q; R™) we
have Fy,(u) = E(u); thus formula (6.4) holds on C'(;R™). This

means that

(6.5) E(u) < limkinfE(uk),

for every u,up € C1(Q; R™) such that uy converges to u in the weak
topology of H*P(; R™), with p > n?/(n +1).
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