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1. Introduction

In these notes of a 1989-CIME Course on Methods of Nonconvez Analysis
we consider problems related to some integrals of the Calculus of Variations whose
integrands are not convex. We present some results for integrals which either lack
completely of any convexity condition, or that satisfy the so called quasiconvexity

condition in the sense of Morrey.

In section 2 we recall the relations between convexity of the integrand and
lower semicontinuity of the integrals. In sections 3 and 4 we consider integrals of
the Calculus of Variations respectively with non convex integrends . and with
quasiconvex integrands; we present in the simpliest way some ideas of the theories,

some results and references on these subjects.

In section 5 we prove new existence theorems for a class of (non coercive)

non convex one-dimensional integrals of the Calculus of Variations that can be
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applied, in particular, to the classical Newton’s problem. Finally, in section 6, we
exhibit an explicit nonconvex functional, arising from nonlinear elasticity, for which

existence of minimizers is still open.

Newton’s problem of motion in a resisting medium can be considered the
first problem in the Calculus of Variations since the introduction of integrals and
derivatives. It was published by Newton in 1685; more than three centuries ago and
some years before the brachystochrone problem, that is one of the most popular
classical problems of the Calculus of Variations, that was solved by Johann
Bernoulli in 1696. Newton formulated the problem to find the shape of a surface of
revolution (whose profile is a function u=u(x), like in figure 1), moving in a
resistent medium in the direction of its axis of symmetry, so that it offers the

least resistence (for example the profile of a missile, or of a submarine).
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FIGURE 1

By assuming that the resistence is proportional to the normal component of
the element of area of the surface, the problem is reduced to minimize the integral
(see for example the chapter IX of the book of Tonelli [147], or section 1.2 of

Goldstine [85]):
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in the class of absolutely continuous functions u=u(x) whith given boundary
values u(a)=0, u(b)=B (B>0) and with the constraint on the derivative u’(x)>0,

for a.e. x in [a,bl.

It seems ([85]), section 1.2) that the contemporaries did not believed to the
solution proposed by Newton. In any case the proofs that followed ware not simple
(for example Tonelli, in section 140 of [147], gives 13 pages of proof) and usually

they are related to the integral in parametric form

1 (uy)?

(1.2) Flu,u,) = 27w L) u, m

In principle (but we will show that it is not necessary), one of the reasons to
prefer the integral (1.2) to (1.1), arises from the fact that the physical solution may
detach from the boundary datum u(a)=0, i.e. the surface of revolution may be flat
at x=a’ {u(a) can be strictly greather than 0) and thus, in principle, it may be
easier to describe the solution by a parametric curve, rather than by a cartesian

function (see section 5 for a cartesian approach to the problem).

FIGURE 2



However, the patology that mainly interest us in the contest of this CIME
Course, is the lack of convexity of the integrand with respect to the derivative
u’=¢ (an other relevant patology is the lack of coercivity). The graph of the

integrand

(1.3) flu,u’) = f(s,6) = 27 s

1+4¢%

is represented in figure 2, for fixed s>0. The function f(s,£) is not convex for

every £>0 and it has an inflection point at €=~r§.

We think that Newton’s problem well motivates the study of integrals of the
Calculus of Variations with non convex integrands (non convex with respect to the
gradient of the unknown solution). In section 5 we present an existence theorem that

can be applied to Newton’s problem too.

2. Convexity and weak lower semicontinuity

Let us consider functions u defined on a bounded open set 2 of R™ with
values in R" (n>1; N>1). Roughly speaking convexity of f(x,s,f) with respect to
¢ is a sufficient condition for the lower semicontinuity, in the weak topology of

Wl’p(Q;]RN), of the integral functional (Du is the gradient of u):
.1 F(u) = J f{x,u,Du) dx .
Q
In fact it is also sufficient for the lower semicontinuity in the product topology of
the strong L° norm-topology and the (sequential) weak topology of LY for some

pa>1, of

2.2) Glu,v) = l fx,u,v) dx .
Q

Precise statements, with sufficient conditions for the weak lower



semicontinuity of F and G, can be found in the original first work by Tonelli
[146] and then in the papers by Serrin [136], De Giorgi [61], Berkowitz [23]), Cesari

[41], loffe [89], Olech [126].

We can schematize the relations between convexity and lower semicontinuity
(1.s.c) in the following way:

f(x,s,£) convex in ¢ = Glu,v) ls.c. = Flu) ls.c. Za f(x,s,£) convex in ¢

Convexity of f(x,s,f) with respect to £ is also necessary for the lower
secontinuity of G(u,v), while it turns out to be necessary for the lower
semicontinuity of F(u) only if either n or N are equal to 1A(in the general
case n>1, N>1 one is lead to introduce the quasiconvexity condition by Morrey

[119]; see also section 4 of this paper).

The necessity of convexity (when N=1) was first discovered by Tonelli
([146], chapter X, section 1) in the case f €C% then by Caccioppoli and Scorza
Dragoni [35] for f€C!; by McShane [115] and Morrey ([119], theorems 4.4.2 and 4.4.3)
for f€C% by Ek.gland and Temam ([67], chapter X) for f Carathéodory inde-
pendent of s; by Marcellini and Sbordone [108] for a general Carathéodory function
f. About necessary conditions for the case nN>1, we quote Morrey [118], [119]

and Acerbi and Fusco [3].

The following theorem can be found in [108] (in the theorem 2.4 of [108] it is '

cosidered the case n>1 and N=1, the other n=1 and N>1 being similar):

THEOREM 2.1 - Let f(x,s£) be a Caratheodory function satisfying the

growth condition
(2.3) If(x,s,e < glx,islleh

with g increasing with respect to Isl and €l and locally integrable with

respect to x. Then, if F(u) in (2.1) is sequentially lower semicontinuous in



the weak topology of WVP(ZRY) for some p € [1,400] (weak™ if p=-+oo)

and if either n=1 or N=1, then f(x,s,6) is convex with respect to ¢.

To give an idea of the proof of theorem 2.1 we begin, for general nN>1,

with the following result:

LEMMA 2.2 - Assume (for simplicity) that f=f(¢) does not depend on
(x,s). If the corresponding integral F(u) is sequentially lower semi-

continuous in the weak topology of W' then

(2.9) J f(¢ + Do(x) dx > [ f(g) dx = (&) I
Q Q

Jor every ¢ € Wé’"(Q;]RN). Here Il is the measure of QCR" and nN

are greather or equal than one.

Proof - Let Y be an n-dimensional cube containing 2. We can extend o
€ Wy™(R™ to Y by defining ¢ =0 in  Y—. Then we can extend © to
R™ by periodicity. In this way ¢ turns out to be an  Y-periodic function on

R™. The sequence ¢, , defined by
oxx) = L plicx) Y kKEN, Vxé€e RY

converges to zero, uniformly in R” (consequence of lp,(x)l < (l/k)[lw"L,, ). Since
the gradient Dgp,(x) = Dp(kx) is bounded in W'~ uniformly with respect to k
€N (IIDS%IIL,. = "Dtpllx_“), then ¢, converges to zero also in the weak™ topology
of WUT(QRY. Then, for every ¢ € R™, the sequence <EX> 4 Pp(x)
converges to <£,x> . By the lower semicontinuity assumption we have

w

(2.5) I f§) dx <  lim inf I f(¢ + Dep,(x)) dx
Q AERRR 1)



Since Dy (x) = Dp(kx), by the changement of coordinates x’ = kx and by
the fact that ¢ is Y-periodic (so that the integral over kY is equal k" times

the integral over Y), we get

J f(€¢ + Dpy(x)) dx = I f(¢ 4+ Dp(kx)) dx = 1% J f(¢ + De(x7) dx’
Q Q kQ
(2.6)

= l%‘ J f(¢ + De(x)) dx = J f(¢ 4+ Do(x)) dx = J f(¢ 4+ Dp(x)) dx
kY Y Q

From (2.5), (2.6), we get the conclusion (2.4).

Sketch of the proof of theorem 2.1 - Take for example ﬁ=1 and N>1
and, like in lemma 2.2, f=f(¢). Let Q = (0,1). Let ¢ = A¢, + (1 —N)¥¢,, with
§,62 € RY and N € (0,1). Let us consider a function u € WU((0,1;R™ with

gradient u’ satisfying

£ if x € [O,A]
£, it x €MD
then
1 A 1
u(l) = u(0) + L u’/(x) dx = u(0) + Jo £, dx 4+ L\ £, dx = u(0) + ¢ .

If we define (%) = u(x)—u(0)—£¢x, then (0) = p(1) = 0; thus, by (2.4):

1 A 1
(e < J fl€ + De(x)) dx = I f(¢) dx 4+ J f(gz) dx = M(§) + 1—Nf(¢,) .
0 0 A

This completes the proof for the case f=f(£), n=1 and N>1. A similar
argument holds if n>1 and N=1 (see [108] for general f=f(x,5¢) too). On the
contrary, if both n and N are greather than one, then the above argument holds

only if ¢, and ¢, satisfy a compatibility condition: the nXN matrix £,— &



must be of rank one. In this case one get the rank-one convexity, as stated in

section 4 (proposition 4.2).

If the integral F in (2.1) is not lower semicontinuous, then it is useful to

consider the relazed functional F (in the weak topology of W!P) defined on
WP by
2.7 Fu) = sup{Glu): G <F, G weaklyl.s.c.in wiPy .

If f(xs¢ > mig° for p>1 and m>0, then the relaxed functional F in

W' can obtained also through the formula

(2.8) Fw) = inf} { lilxcn_.inf Fluy,) : u weakly converges to u in Wl"’} .
Uz g :

An elementary, but important property is that, under some growth conditions
on f, the infimum of F on 1wy Wcl,'p(ﬂ) (u, is the boundary datum and it is
fixed in Wl'p(Q)) is equal to the infimum of F on the same set. The advantage to
consider F is that, being the supremum of a family of lower semicontinuous

functionals, it is lower semicontinuous in the weak topology of WP,

A relevant problem related to F is to know if it is a functional of integral
form; the so called “integral representation” of F , posed in our context for the
weak topology of whP , can be posed for other topologies too, like for example the
norm-L® topology. Some references are: Serrin [136], Rockafellar [132], Ferro [70],
Buttazzo and Dal Maso [33], Carbone and Sbordone [37], Marcellini [99] and most of
the quoted papers on I'-convergence ; in any case a good reference on relaxation in

the weak topology of W'® remains the book by Ekeland and Temam [67].

In the following we quote a theorem of relaxation, proved by Ekeland and

Temam ([67], chapter X) for f=f(x,£) independent of s and by Marcellini and ~



Sbordone ([108], corollary 3.12) in the general case. We mention also a

corresponding relaxation theorem by Acerbi and Fusco [3] in the quasiconvex case.

THEOREM 2.3 - Let f(x,5¢) be a Caratheodory function satisfying the

growth condition (2.3) and the coercivity condition
(2.9) f(x,5,¢) > migl* — k

for some m>0, k>0 and o«o>l. Then the functional F (relazed in the

weak topology of wiP ; here N=1), can be represented by the integral
(2.10) F(u) = J‘ **(x,u,Du) dx YV ue wWhQ, .
Q

where, as usual, **(x,5,¢) is the greathest function less than or equal to

f(x,5,£) and convex with respect to ¢.

3. Non convex integrals

In this section we consider the integral F(u) in (2.1), when either n or N
are equal to one, with integrand f(x,s,6) possibly not convex with respect to £. We

consider also the integral F in (2.10), with integrand f** .

We already said in section 2 that, under growth conditions for f such as
(3.1 mEl® — k < f(x,88) < M1 + KP)
for some p>1 and M>m>0, then the infimum of F on Ug + Wé'p(Q) is equal

to the infimum of F on the same linear space. Let us assume that F has a

minimizer u; then

Fu) = inf F = inf F < F(u) € F) ;

therefore u is a minimizer for F too, and F(u) = F(u), i.e.:
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J {f(x,u,Du) — f**(x,u,Du)} dx = 0
Q

Since the integrand  — f** in nonnegative, it follows that

(3.2) f(x,ulx),Dux)) = f**(x,u(x),Du(x)),’ a.e. in Q.

This is a simple but important fact: if the original integral functional F has
a minimizer u, then it must be a minimizer of F too, and the identity (3.2)
necessarily holds. Thus, to look for minimizers of F, we can see if there is at
least & minimizer of F that is also a minimizer of F. Lot us see how to apply
these considerations to one of the simplest problems in the Calculué of Variations,

related to f=f(¢), with n=N=1:

1
(3.3) inf { I fw) dx : u(0)=0, u(l)=£c} .
0

Let us assume that

. e
(3.4) G_l_l.rr:l*:°c> e = +o0

Then ** is a proper convex function (i.e. it does not assume the value
—oo). By Jensen’s inequality (see for example (4.4) in this peper), valid for the

convex function f**, we have

1 1
(3.5) Fluj = - J P*Fux) dx > 1 J w(x) dx) = £*¥%)
0

(recall that u(l)—u(0)= £,). Since (3.5) holds with the equality sign if uw’ is

identically equal to £, then uy(x)= §,x is a minimizer for F.

Of course, if f(§)= 1**(¢,), then 1wy (x) is a minimizer for (3.3) too.
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Otherwise, by (3.4), there are ¢, £ and X € (0,1) such that

(3.6) f(¢) = *%¢), £(¢,) = %) ;
(3.7 €o= M+ (1 =NEz;  F¥E) = M¥¥¢) + 0 —M*¥E,) .

Then the function T € W' (0,1) defined by the conditions: T(0)=0 and
T(x) = ¢ if x € [0\], u'(x) = £, if x € (\1),

clearly is a solution of problem (3.3); in fact

1
£**¢) dx  + J £**¢,) dx =
A

1 A

A
F(@) = I £¢) dx + I f(¢,) dx = J

0 A 0

= AMFKE) + Q) = ) = Flu) < Fu) < F) , V u.

We have proved the following result (the part of the statement on the

unigqueness and on the regularity it is easy to verify):

PROPOSITION 3.1 - Let f: R— R be a continuous function satisfying
(3.4). Then the variational problem (3.3) has a solution in the class W' (0,1),
for every ¢, € R. Moreover, if f(§,) f**(Eo), then the solution is not

unique and no solution is of class CY0,1).

With an argument similar to that one used to prove proposition 3.1, it is
possible to obtain the following existence theorem for non convex integrands

f=f(x.£), in the case n=1, N>1:

THEOREM 3.2 - Let f(x,§) be a Caratheodory function for x € [a,b] and

¢ € R, satisfying the growth conditions

(3.8) £(x,£) > P, f(.,£) € L'a,b) ,



for some p > 1 and m > 0. Then, for every firxed boundary value uy,

the integral

b
(3.9) F(u) = J fix,w{x)) dx
a

has a minimizer in uy + Wé"p((a,b);]RN) .

Theorem 3.2 has been proved by Olech [125]; results of similar type have
been given by Cesari [42], Aubert and Tahraoui [10], [11] and Marcellini [100] (see
also [148), [92], [65]). About the minimization of integral-functional involving non
convex integrands we refer also to Marcellini [101], [102], Mascolo and Schianchi
[112], [113], f114], Aubert and Tahraoui [12], Tahraoui [141], Raymond [128], [129],
[130], Kinderlherer and Mascolo [90], Mascolo [110], [111], Cellina and Colombo [40].
We refer also to chapter 16 of the book by Cesari [43] and to chapter 5 of the

book by Dacorogna [54].

In the remainder of this section we state some of the existence results
proved in the papers quoted above. Before, let us mention that, if f(x,s,£) depends
explicitly on s, then the related Dirichlet minimization problem may lack the

solution. For example, the coercive integral
1

(3.10) Flu) = I {[? — 12 + v* } ax
0

has not a minimizer in the class of functions uEWH(O,l) such that
u(0)=u(1)=0. In fact, for every u, F(u)>0, F(u)s20 ( F(u)=0 would imply at
the same time that u’=+41 and that u=0 for a.e. x € [0,1] ) and also
inf{F(u)}=0 (in fact it is possible to construct explicitly minimizing sequences u,

such that

u, = +1 a.e. in [0,1] and g (x)l gll( for all x € 00,11 ).
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The following theorems 3.3 and 3.4, due to Raymond (both consequence of
theorem 6.11 of [129]), give existence of solutions, in the case n=N=1, to the

variational (non convex) problem

b
(3.11) min { J f(x,u,u’) dx u € u + Wyta,b) },
a

where u, is a fixed boundary datum and f is a smooth function that satisfies,

for some p>1 and M>m>0, the growth conditions

(3.12) melP < f(xs8) < MU + IsP + EP) ;

(3.13) Ifs(x.5,8) < MO + f(x,5£) .

As before f** is the greathest function, convex with respect to £, less

than or equal to f.

THEOREM 3.3 (Raymond [129]) - Let f** be a function of class

C%([a,bL,R?). Under the assumptions (3.12), (3.13), if
(3.14) f3% — I — i =0, V (x5¢),

then problem (3.11) has a solution.

THEOREM 3.4 (Raymond [129]) - Let f be a function of class C*(la,b,R2).
Under the assumptions (3.12).(3.13) (and under some cther thecnical condi-
tions states in (3.3) and (5.4) of [129]), if

(3.15) S — ffew — Efe <0, V¥V (x50

then problem (3.11) has a solution.
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The following theorem, due to Cellina and Colombo [40], is the most general
result (up to now) relative to the case n=1 and N>1. The proof in [40] is based
on Liapunov’s theorem on the range of vector valued measures (see the lecture by

Olech in this CIME Course).

THEOREM 3.5 (Cellina-Colombo [40]) - Let p>1. The variational problem

min { J {fx,u) + glx,w}ldx: u € uy + Wé’p((a,b);]RN)}
a

has a solution if we assume that f: [a,b]XR" - RU{+x} and g: [a,b]XR" —-R

are Carathéodory functions such that

(3.16) g(x,s) is concave with respect to s € R" ;

(3.17) glx,s) > —MU1 + Isf®) for some M>0 ;

(3.18) f(x£) > ml + KI)  for some m>0 ;

(3.19) the quotient M/m is strictly smaller than the best constant

in Sobolev's inequality for functions of Wé’p .

We end this section by considering functions u: R® - R (i.e. n>1
and N=1). In this context there are existence results ({112}, [113), [114); [12]; [130];

[90} [110], [111]) and nonexistence and uniqueness results ({101}, [102)).

Let us state a uniqueness theorem for convex, but not strictly convex,
integrals and, as a consequence, a nonexistence result. Note the assumption n>2 in

theorem 3.6 and in corollary 3.7.

THEOREM 3.6 ([102]) - Let g:[0,+o0)—[0,+o) be a convex function such
that g(t)>g(0) for every t>0. Let Q be a convex bounded open set of R™

with n>2. If there exists a solution u of class CYQ) to the problem

(3.20) min{F(u) = J gllDubldx : u € uy, + Wé’”(Q) }
Q
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then u is the unique minimizer in ug + Wé’"(Q) .

COROLLARY 3.7 ([101]) - Let g: [0,4 ) — [0,4o0) be a function of class
C! and let g*x* be the greatest convex function in [0,+o) less than or
equal to g. Let ¢ be a vector in R", with n>2, such that g(f,)) >
g**(IEs) and  (g¥*) () > 0 ( (g**) is the derivative of g**). Then the

following variational problem lacks the solution

(3.21) min { Fu) = J gDud dx : u € (Ex) + WU }.
Q

The following is one of the existence results given by Mascolo and Schianchi;

it is the theorem 2.2 of [114] (see also [90], [110], [111],[112},[113]).

THEOREM 3.8 (Mascolo-Schianchi [114]) - Let f be a function of class

CHOXR™) satisfying the growth conditions:

(3.22) m(iE? — 1) < f(x,58 < MU + P,
(3.23) If.el < MQ + KD Ifeel <M ,

for all (x£) € OXR". Let ?:cs assume qlso that the set Kix) = {¢ € R™

I**(x,8) < f(x,6) } is connected and bounded in R* and that, for every x€Q,

(3.24) P8 = 3 mE + ax) V £ = () € K ;

i=1

(3.25) m, € CY&) and  meas{ x€Q: 3 (m)y, =0} = 0.
i=1
Let uq € W'AQ). Then the following variational problem has a solution:

(3.26) min { F(u) = I fxDw dx : uw € u, + WHA@ ) .
Q
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then u is the unique minimizer in u, + Wy () .

COROLLARY 3.7 ([101]) - Let g: [0,4) — [0,+) be a function of class
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equal to g. Let ¢ be a vector in R", with n>2, such that g§l) >

g**(IE) and (g**)(g]) > 0 ( (g**) 1is the derivative of g**). Then the

following variational problem lacks the solution

(3.21) min{F(u) = J g(Dul) dx : u € (fo,x) + Wg™(Q) }
Q

The following is one of the existence results given by Mascolo and Schianchi;

it is the theorem 2.2 of [114] (see also [90], [110], [111],[112),[113D).

THEOREM 3.8 (Mascolo-Schianchi [114]) - Let f be a function of class

CHOQXR™ satisfying the growth conditions:

(3.22) m(EPR — 1) < f(x,58) < MA + P,
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(3.24) **(x,8) = i mi(x)¢; + q(x) , vV ¢ = (§) € K(x) ;

i=1

(3.25) m € C'ED and  meas{x€Q: 3 (m); =0} = 0.
i=1
Let u, € W'AQ). Then the Jollowing variational problem has a solution:

(3.26) min { Flu) = J f(x,Du)dx : u € uy + Wé’z(Q)} .
Q
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REMARK 3.9 - The function f(§) = g(l¢l) in corollary 3.7 is not convex in
R”, if g€ > g**(Igl) . In this case the set K = {fcR™ f(€)>I™* ()=
g**(I¢))} has radial symmetry and {** is not linear on K (its graph is not a
plane if  (g**) (£, ) >0, but it is a cone on every connected component). This
suggests that assumption (3.24) in theorem 3.8 is a necessary condition. On the

contrary, (3.25) should not be necessary.

4. Quasiconvex integrals

In this section we consider again integrals of the Calculus of Variations of

the type
4.1) F(u) = J f(x,u,Du) dx ,
Q

where f=f(x,5,6) is a Carathéodory function, Q is a bounded open set of R”
and u € Wl'p(Q;IRN), for some p € [1,4], is a vector-valued function

defined in Q € R® with valuesin R (n>1 and N>1).

Here we consider functions f that are quasiconvex with respect to £. We
an';icipate that quasiconvexity is different from convexity when both n and N are
greater then one, and that it reduces itself to the usual convexity if either nor N
are equal to one. We‘say that f(x,s,6) 1is Quasiconvexr with respect to ¢ in

Morrey’s sense (see [118], [119]; see also lemma 2.2 of this paper) if
4.2) J f(%x0:S0€ + Dp(x)) dx >  f(x4,80,8) 12
Q

for a.e. x4 € 2, for every so€ RV and for every ¢ € Wé’”(Q;IRN).

As we will state more precisely later, roughly speaking quasiconvexity of f
is equivalent to the lower semicontinuity of the integral F (in the weak topology
of Wl’p, for some p). This mathematical condition has been first considered by

Morrey [118] in 1952; then Ball [15] in 1977 pointed out its interest and
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applicability to nonlinear elasticity. The book by Morrey [119] (expecially section
4.4) and the paper by Ball [15] are the first references for quasiconvexity; a good

reference is also the recent book by Dacorogna [54].

Part of the interest on quasiconvexity relies on the following semicontinuity

result (due to Morrey [118] for f continuos; see [2], [3] for f Carathéodory):

THEOREM 4.1 - Let {=f(x,5,£) be a Caratheodory function such that
(4.3) If(x,s,6) < glx,lsh g ,
where g is a function locally integrable with respect to x and increasing
with respect to Isl and €. Then the integral F(u) in (4.1) is sequentially

lower semicontinuous in the weak™ topology of Wl'”(Q;RN) if and only if

f(x,s,£) is quasiconvex with respect to ¢.

Note that x and s play the role of parameters in the definition (4.2); thus,
in speaking of properties of f, we can omit to denote explicitly the dependence on

x and s and we can use the notation f=f(§).

If f=f(¢) is convex then it is quasiconvex too; this fact is a consequence

of Jensen’s inequality (valid for every convex function f: R®— R ):

(4.4) i & J v dx | < Elz‘lI fvx) dx , V¥ v € LYZR™
o Q

(12! is the measure of 2). By taking m=nN and vix)=¢-4-De(x), if
f:R™ R is convex, then, for every ¢ € Wé'“(ﬂ;lRN) we have
1 1 _
FE4+Dpt) dx > f | € +Dpx) dx ] = f©®
Q2 Q 194] Q

the integral of D¢ on the set 2 being zero, since ¢ is equal to zero on the

boundary 3Q2.
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That quasiconvexity is equivalent to convexity if either n or N are equal
to 1 is a consequence, as a particular case, of the following proposition 4.2, due to
Morrey. Recall that &N € R™ are nXN matrices and that, if either n or N

are equal to 1, then automatically any A0 it is a rank-1 matrix.

PROPOSITION 4.2 - If f: R™ —R is quasiconvex, then the function
g(t)=f(¢ + t\) is conver on R for every £€R™ and for every matriz

AER™  of rank-1 (in this case f is said to be rank-1 convex).

iIf f € CHR™) then rank-1 convexity is equivalent to the Legendre-
Hadamard condition (see also the strong ellipticity condition by Nirenberg

[123D) :

(4.5) }:fsuxaxﬁnn > 0, YV N\€ER*, VYneR".

An important example of quasiconvex function {f(¢) that is not convex is
given, for n=N=2, by
g€, £

(4.6) f(s) = det G = £1£4_ E2£3 ( heTe s == ) .
€3 £

The prove that the function f(§) in (4.6) is quasiconvex is based on the

following identity, valid for every u = (u},u?) € CHLR):
f(Du) = detDu = u§1u§2— u§{2u§1 = [u uxz] - [u uxl]x2 .

Since f(Du) is a divergence, the integral of f(Du) over € can be reduced to a
surface integral on the boundary 98{2; thus it depends only on the boundary values
of ux)=<f£,x> + ¢(x), that are the same as the boundary values of <£,x>, if

¢ is equal to zero on 3§2. Therefore
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J f(§+Dp(x)) dx = J f(§) dx = f(¢) I .
Q Q

In two dimensions (n=N=2), by mean of det £ = £,£,— £,£5;, we can charac-
terize the notion of gquasiconvexity for quadratic forms (see Terpstra [145], D.Serre

[135], Marcellini [103]):

THEOREM 4.3 - Let (a;;) be a 4X4 real matrix. The quadratic form
4
f(§) = 3 a,€f, is quasiconvex in R* if and only if there exists a real
i,J=1

number A such that the new gquadratic form f(¢§)—hdet§¢ is positive

semidefinite in R°.

The fact that functions of the type f(Du) = det Du play a role in this
context is not casual; they have important applications in nonlinear elasticity (see
the references at the end of this section) and in differential geometry. For example,
the area of a paramatric 2-dimensional regular surface in R®  represented in
parametric form by u = (ul(x),uz(x),us(k)) with x=(x,x,)EQCR?, is given by

the integral
au%u)] [a(us,u‘)]2 [a(u‘,u2)]2
4.7 d(u,u’)
7 ‘[Q J[a(xnxz):’ + 3(Xy,X5) + AXy,X,) dx

Up to now the deepest lower semicontinuity result for quasiconvex integrals

is the following:

THEOREM 4.4 - Let f=f(x,5,£) be a Caratheodory function, quasiconvex

with respect to ¢ and satisfying the growth conditions

(4.8) —m(l +Isl” 4 BN < f(x,5¢) < M(x,8) 1 + K19
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where Ml(x,s) is a Carathéodory function, m&€R and l1<r<q. Then the

integral F(u) in (4.1) is sequentially lower semicontinuous in the weak

topology of W (ERM.

Theorem 4.4 has been proved by Acerbi and Fusco [3], by assuming slightly
more restrictive growth conditions than (4.8). In the form presented here it can be
found in [104]. It extends analogous semicontinuity results by Morrey [118],(119] and
Meyers [116], who assumed é type of uniform continuity of f with respect to (x,s).
None of the known proofs of theorem 4.4 are elementary and it would be interesting
to find a simpler way to get the conclusion. In particular, the proof in [104] follows
a procedure introduced in [109] and uses a representation formula by Dacorogna [53],
the variational principle by Ekeland [66] (see also Ekeland’s lecture in this book) and

a higher summability result by Giaquinta and Giusti [78].

We note explicitly that the assumption r<q is necessary, in the sense that
there exists a counterexample by Murat and Tartar (see section 4.1 of [121]; see
also Ball and Murat [21]) in the case n=N=q=r=2. Note also that this fact is
typical of the quasiconvex case and it is in contrast with the convex case, wherg
the condition r=q is enough for the weak lower semicontinuity in W9 (see for

example (23], [41], [89], [126]).

An other important difference with respect to the convex case is the
following: il f(x,s,£) is a Carathéodory integrand, nonnegative and convex with
respect to £, then the corresponding integral (4.1) is sequentially lower semi-
continuous in the weak topology of Wl’l; on the contrary, theorem 4.4 states that
(even under the further assumption that f(x,s,£) is nonnegative) the integral (4.1)
is sequentially lower semicontinuous in the weak topology of Wl’q, where q is the

growth-exponent in (4.8).

Under (4.8), it is still not closed the problem to know whether the integral
F(u) is sequentially weakly lower semicontinuous in Wl’p, for p<gq. Related to

this problem of lower semicontinuity there is a problem of definition of the integral



F(u) when u € WHPELRY, but u ¢ WHUER™N); we do not enter into details on
this point and we refer to [105]. We quote below a semicontinuity result (theorem
2.1 of [105); see also [104] and [36]) for some p smaller than q; we emphasize that

the semicontinuity problem for general p€ll,q) is still open.

THEOREM 4.5 [105] - Let f=f(x,£) be a quasiconvex function satisfying:

4.9) 0 < f(x8) < M1 +EI)
(4.10) fxte) < M1+ 1(x8) , YV te [0,1]
(4.11) [FGu8)—f(x08)| < Mixy— %20 (1 + £(x,6))

where M>0, q>1, and MRY-RY is a modulus of continui_ty (A=\(t) is

increasing for t>0 and At)—0 as t—0%). Then
I fx,bu) dx < liixcn_.inf I f(x,Du,) dx ,
Q Q

for every u, u, € CHRN), such that u, converges to u in the weak

topology of W'P(GRY , for p> qn/(n+1).

The interest of quasiconvexity in the Calculus of Variations has been
pointed out by Morrey [118] in 1952 and later in his deep and important (but also
difficult to read) book [119] (for guasiconvexity see especially section 4.4). In 1977
J.Ball gave a big impulse to a new study of this condition by showing, in his
celebrated paper [15), how quasiconvexity can be interpreted and used in the context
of nonlinear elasticity. Since the paper by Ball, many other contributions come out
{only a few of them have been .quoctied is this section). The interested reader can
see the references at the end of this paper (surely incomplete, like unfortunately

often it happens in these cases) and, like already said, the recent book [54].
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5. New existence theorems for non convex integrals

To give an idea of our approach to the existence of minimizers for a class of
one-dimensional non convex integrals, we consider again Newton’s problem of motion
in a resisting medium. In the class of absolutely continuous functions u(x) with
boundary values u(a)=0, u(b)=B (>0), satisfying the constraint u’(x)>0 a.e.

in [a,b] (see figure 3), the integral to minimize is

u (u/)3
1+u)?

b
(5.1) F(u) = ZWJ
a

5 B+

u(a)

WV
A 4

FIGURE 3 FIGURE 4

In principle, expecially from the physical point of view, it is interesting to
consider also functions u(x) that assume a positive value ufa) at x=a, as in
figure 4. This corresponds, in the application, to have a surface of revolution that

is flat at x=a.

Newton’s model is based on the assumption that the resistence of the medium
is proportional (and the constant of proportionality is assumed to be equal to 1) to
the normal component of the element of the area of the surface. Therefore, in
general, the total resistence F , corresponding to u in figure 4, according to

Newton’s model it should be given by

b

— n3
(5.2) Flu) = 7 [u@f + 27rL u 111(1)1')2




The value of F in (5.2), deduced from physical considerations, can be
obtained by a mathematical argument too. In fact it turns out to be the value that
we get if we extend F by lower semicontinuity”. The scheme is the following: let

F be the integral

b

(5.3 Fu) = I f(x,u,u’) dx
a
defined for u belonging to
(5.4) Wp = {uE WhP(a,b): ula)=A, u(b)=B, u’>0 a.e}

where A<B and p>1. The closure of W, in the (either strong or weak)

topology of W;;’Z(a,b) is given by
5.5 o = {u€ WiR(,b): u@)2A, u(b)<B, u'>0 a.e}

(here, by definition, the values u{a) and u(b) are respectively the infimum and
the supremum of {u(x): x€(a,b)} ). The extension of F  ”"by lower semiconti-
nuity” from W, to Wp is the functional F defined for u€Wp by

(5.6) F(w ={inf}{]i{n_.inf Flug): (up)CWp, u, weakly converges to u in W:;f,}.
Uy =

In the different context of the change of the functional set from W, to Wp,

the definition in (5.6) is similar to the definition (2.8) of a relaxed functional.

For our applications, we shall consider Caratheodory functions f(x,s,£) that
satisfy the conditions (please, excuse the abuse of notation of the letter a as

lefth endpoint of the interval [e,b] and as function a(x,s)):
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(5.7) there exist K>0, a convex function h(§) and continuous functions
a(x,s), b(x,s) such that, for every x€l[a,b), s€R and £>0,
(a) a(xs)h(E) — K < f(xs¢) < alxsh(f) + blxs)

(b) hi(t) >0 ; a(x,s) > 0

THEOREM 5.1 ([29], theorem 2.4) - Let f=f(x,s,£) be a Caratheodory func-
tion, convex with respect to ¢ > 0 and satisfying (5.7). Then, for every u €

¥, F(u) can be represented by

b - u(a) B

(5.8) Fu) = I f(x,u,u’)dx + h { J a(a,s)ds - I a(b,s)ds }
a A u(b)

where h = lim @

REMARK 5.2 - In principle h may assume also the value oo} in this case,
if a(x,s) is positive at x—a and x=b for a.e. s€R, then F is finite if and
only if u assumes the boundary values u(a)=A, u(b)=B. Therefore, if
Eli’r-{-loa h(§)/¢ = 4o , then the minimization of F on W, is equivalent to the

minimization of F on Wp.

REMARK 5.3 - In Newton’s problen, the function f(s,£) = 2mse®/(14+¢?) is
not convex with respect to €€[0,+00); however we will apply theorem 5.1 to the
integral functional defined through the convexified function f**(s,E). In any case
in Newton’s problen a(x,s)=2%s, h = m_ [23/(1 —}—EZ)J/E = 1 and p=1; thus
the extended functional F in (5.8), for uEWl'l(a,b) such that u(a)>0 and

u(b)=B, agrees with (5.2).

We consider f**, the greathest function convex with respect to £>0 and

less than or equal to f. We assume that f** admits continuous partial
derivatives {3, f5F, fac¥ . We assume also that the convex function h(§) in

(5.7) is defined for every £€R and that:
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(5.9) there exist an exponent p>1, a function M: R'XR = RT and a
positive constant L, such that, for every 6,r>0:
@ s < MED1+EF]) , V¥ (xs8€la+6,b—81XI-r,r] XR
® € < L(1+1P) , ¥V €€R

We are ready to give an existence result for the variational problem
(5.10) min {F(u) :  u€ Wi(ab), ul@)2A, u(b)<B, u'>0a.se},

with F given by (5.8). We emphasize that we don’'t make any convexity nor

coercivity assumptions on f.

THEOREM 5.4 - Let f(x,s,) satisfy (5.7) and (5.9). Let us assume that,

for every (x,5)€(a,b)XR and £>0, the Jfunction
(5.11) Px,85€) = 3% — fioF— er¥*

has a definite sign (either ®>0 or ¢<0). Then the variational problem (5.10)

has a solution wu, which belongs to Wi;,:(a,b) and satisfies the estimate

(5.12) lux)] < 2 max{1AlI; BI}, V x€la+8,b—08], V §€(0,259) .

Moreover, if ©>0, then Uy assumes the boundary value ug(a)=A, while, if
#<0, then ub)=B. Finally, if T=  lim hE)/§ = +o (and a(x,) is
positive a.e. at x=a and x=b) then at the same time ugla)=A, uy(b)=B

and u, minimizes F too.

REMARK 5.5 - We shall prove theorem 5.4 following a method developed by
Botteron and Marcellini [29] for the convex case. The condition that ¢ in (5.11) has
a definite sign is similar to (and it improves) the assumption ¢ <0, first considered

by Raymond (see theorem 6.11 of [129); see also theorem 3.3 in this paper).



REMARK 5.6 - If f has the special form
(5.13) f(x,s,£) = a(x,s)g(€) + b(x,s)

(or, in the case of a general f, if ¢, below is independent of x,s), then the
assumption that ¢ in (5.11) has a definite sign, can be replaced by the more direct

condition that
(5.14) <Po(X,S,E) = fs - fsw - Efss

has a definite sign. In fact, if f(x,5,6) > £**(x,5,6), since [** is linear (with

respect to ¢) in a neighbourhood U of (x,s5£), there exists £, such that

£F*(x,5,8) = f(x,5,80) + Fe(x,8,60)€—£0) o Y (%,5¢)€U.
In U then we have
SO(X,S,f) = f:sk* - f:::_ Ef:;* = fs(X,S,EO) + fgs(xss:Eo)(i_so)_

— fea(X,5,£0) — £fes(x,8,60) = Po(X,8:E0) -

Let us also notice that, if f(x,s,f) has the special form (5.13), then in theorem 5.4

it is sufficient to assume that g(¢), a(x,s), b(x,s) are functions of class C'.

Proof of theorem 5.4 - First we extend f** to ¢<0 by
£**(x,5,6) = £F**(x,5,0) + £F*(x,5,0)¢ (€ <0).

With this position, as in remark 5.6 (with f replaced by f **) we can see that the
structure condition (that ©{x,s,£) in (5.11) has a definite sign) is satisfied also for

£<0, and thus for every (x,s,£).

For every €€(0,1] and k>0 we introduce the notations
(5.15) g (x,5,6) = o * T¥(x,5,8) + k(€))7 + (1 +£3%7%

where q=max{p;3}, ¢~ =—min{£;0}, o =alf) is a positive mollifier with compact



support in [-1,1]1 and finally o,(€)=ka(kf) . The variational problem

b
(5.16)  min {G**) =J g (xuu) dx : u€ W'¥a,b), ula)=A, u(b)=B},
a

related to the convex and coercive integral G"’k(u), has a solution wu,. EWl'q(a,b).

We shall use the regularity properties of u.;, stated in the following lemma:

LEMMA 5.7 - For every e¢€(0,1]] and k>0 u.; is of class C¥a,b] and

satisfies the Euler’s equation in strong form:

(5.17) d_di[g:,k(xsue,ksué,k)] = gg'k(x,ue,k,ué,k) .

Moreover, for every fized e€(0,1], ﬂu;,k"Lw( a,b) is bounded uniformly with

respect to k.

We postpone the proof of lemma 5.7 and first we conclude the proof of

theorem 5.4. Since u.; € C% we can write Euler’s equation (5.17) in the form
Jk lk Ik Ik
gee Wl = 88" — [g6d + eelula) = o ® 1 — [og % OF 4 ul, o * 1)

If we denote L(r)=sup{lf?s*(x,s,i)l: x €la,b], Isi<r, lEIgr}, then, for such values of

X,S,6, we have

[ — cner¥)

¢ J oxlt) FEcK(x,s,6 —1) dt — I o ()€ — ) 7oK (x5, —t)dt
R ‘ R

< L(r+1)I ap(titldt = E(rk—“)J aitldt < L—(’E‘*—U J altydt = LI+

R R R k

For r> sup { lutilioqa,b) 3 [exl=ga,p) } We obtain
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L{r +1)
k

= e,k Mk kK 3ok
(5.18) Bee u;,/,k — Oy * [fs‘ - fsm - ué,k f&'s

Now we introduce the further assumption that ¢@(x,s,¢) in (5.11) has a strict
definite sign for every x5, (we will see at the end of the proof how to remove

this assumption).

By the addendum (1 +£2)q/2 we have gggk>0. Since o, is a positive
mollifier and since nug,kﬂLm( a,b)’ "ue,k“Lw( ab) 2re bounded uniformly with respect to
k, for k sufficiently large the sign of uz in (5.18) is the same as the sign of
QXU 3l ) = 3% — for_ ul, feor. Therefore u.; is either convex or
concave in [a,b]. Let us consider the case >0, so that u.x is convex. Since
the difference quotient of u.; is increasing, for every x€f(a,b) we have

ue,k(a) - ue,k(x) ue,k(b) - ue,k(x)

(5.19) % < uly x) < g

Now, if a+0<x<b—& (§€(0,252), we obtain

(5.20) [oe ] < 2 Jocslierap) » Y x€la+8,b—5] .

For €€(0,1]1 fixed, U, is bounded in Wl'w(a,b) uniformly with respect to
k (see lemma 5.7; here it is sufficient to know that u.; is bounded in W' ¥a,b)); as
k—-+4oo, up to a subsequence, u.; converges to a function ue in the weak™
topology of Wl'm(a,b) and in the strong topology of L*(a,b). Thus, by (5.20) (and

by the lower semicontinuity of k-|ul, "L“(a+6 b—g) )

(5.21) )] < 2 fuel o ) V x€la+8,b—61, V §€(0,259) .

Since k " [uf x ]—"f'_"(a b) is bounded (it follows from the following formula
(5.30)), the negative part of ul;, converges to zero strongly in L%a.b) and thus

u¢ > 0 a.e.in [a,bl. Therefore uc(x) is increasing in [a,b] and it is bounded in
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L>=(a,b) independently of ¢ (A=uc(a)< ux)< ub)=B for every x€la,b].

By (5.21) as €e—0 , up to a subsequence, u. converges in the weak™
topology of W;;:(a,b) to a function uOEW:C’,:(a,b) that satisfies the estimate
(5.12). This function u, is the minimizer we are looking for. With the aim to

prove this fact, let us show first that u. is a minimizer of the variational problem

b

(5.22) min{ J g*(x,u,u’) dx : u€c Wl'q(a,b), u(a)=A, u(b)=B, u' >0 a.e.} s
a

where

(5.23) g(x,5,8) = (x5 + el +£)¥?

In fact, since ul, is bounded in L%(a4§,b—35) uniformly with respect to k
and since ak*f** converges to e uniformly on bounded sets of [a,b]XRXR,

then we have

b—§
lim j { O * f’""‘(x,ue,k,ug,;c ) —f """(x,ue,k,u;,c ) } dx =0

Therefore, by the lower semicontinuity of the integral, for every

VEW"(a,b) such that v(a)=A, v(b)=B and v’>0 a.. in [ab], we obtain

b—§6 b—é
J g*(xuc,ud) dx < li{n_'inf J gi(x,u. pouly ) dx =
P a-td '

b—&
- li{n—*ierelf I { Ox * f**(xsue,kaué.,k ) + €1 + ugk)qlz } dx
a—+6

< liminf G**(uen) < lim jnf G*(v)

b b
= lim J { oy * T*¥¥(x,v,v) + el + v2 )2 } dx = j- g(x,v,v") dx .

Kk —4eo
a a

As § -0, by the monotone convergence theorem, we see that u. is solution to (5.22).
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Before to go to the limit as ¢—0, we recall the notations W, Wp respec-

tively in (5.4), (5.5) and, for every u € %o, similarly to (5.6) we define

Glu) = inf}{liltcn inf J £¥*(x,u,,ul)dx: (U) CWp, u, weakly converges to u in W:C’f;}.
U, e a

By theorem 5.1 we can represent G(u) in ths form

b uf(a) B

(5.24) G(u) = I f**xu,u’) dx + h { I a(a,s)ds + j a(b,s)ds } .

a A u(b)

By the definition of G , for every VEWq=W,NW'%(a,b) we have

b

b
Gluy) < liﬁ 0inf **(x,ueud) dx < liem_.%nf I g (%,ue,ud) dx
Ja a
b b _
< ligl _}gxf gé(x,v,v) dx = J **(x,v,v’) dx = G(v) .
Ja a

Therefore Glu,) < G(v) for every vEWg. Again by the definition of G and by

its continuity in W'%(a,b) we get also Gluy) < G(v) for every VvEWp .

Thus u, minimizes (5.24). We will obtain that u, minimizes (5.8) too, by

showing that

(5.25) f(x,uo(x),ua(x)) = **(x,u(x),u4x)), a.e. in [a,b].

We know that u, is either convex or concave in [a,b]l. Therefore, the set
I={x€la,bl: ufx)=0} is an intervzl (possibly empty) and on this set (5.25) holds,
since  f(x,8,0) = 1**(x,s,0) (recall that f{** is the greathest convex function
less than or equal to f for £>0). If, for example, u, is concave in [a,b] and
I=[xq,b] for some xy€la,b]l, then uyx)>uyx;)>0 for all x < x,< Xy and, in
the set (a,x,), u, solves Euler’s equation in weak form and also (see for example

[119], theorem 1.10.1) in the form
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X
(5.26) f?*(x,uo(x),ué,(x)) = constant + J TH(t,up(t),ult)) dt

a
Since ugx) is monotone, then it is continuous almost everywhere in (a,x;). Now
let us assume that at a point x€(a,x,) , of continuity of uix), we have
f(x,ue(x)ufx) = £**(x,up(x),u4x)) . We use the fact that £** is linear in a
£F*

neighbourhood of g£=uf{x) and thus is independent of §£; we take the

derivative at x in both sides of (5.26) and we obtain
£ (0o (X),ulx)) + L I*(x,uo(x)ulx)) = £¥F*(x,uqx),ulx)) ;

this contrasts with our main assumption that ¢ in (5.11) is different from zero if

€>0. Therefore (5.25) holds and u, minimizes (5.10).

About the boundary values of u,, if the variational problem is coercive, in
the sense that 3=EET h(¢)/¢ = <o and a(x,s) is positive a.e. at x=a and

x=b, then F(uy,)<+oo implies that u(a)=A and u(b)=B (see also remark 5.2).

Finally, if ©>0 (respectively ¢<0 ), then, for every €>0, Ue is
increasing and convex (respectively concave) in [a,b], it assumes the boundary
- values uc(a)=A, u.(b)=B and pointwise converges to u, in (a,b). Then U,
assumes at least one of the boundary values (as in the statement of theorem 5.4)

according to the next lemma 5.8.

This completes the proof of theorem 5.4 under the further assumption that
o(x,5,£) in (5.11) has a strict definite sign. We obtain the proof in the general case

by approximation through, for example, the integrand
(5.27) Fx,58) = 188 + e e TS,

where €€(0,1] and the sign 4 is chosen in dependence on the sign of ¢ (sign <+

if ¢>0). Then



+s +s

(5.28) Pixsg) = 3% — I — e L ee™ —oxsf) L ee
has a strict definite sign. By the previous part of the proof, for every ¢, there
exists u. that minimizes the functional (5.8), with f replaced by f°. The
minimizer u. either is convex in [a,b), if >0, or is concave if ¢@<0.
Moreover A<u®(x)<B, for all x€labl. According to the next lemma 5.9, we can
extract a subsequence, that we still denote by u., that converges to a function ug
in the norm topology of W:;Z(a,b). The functional (5.8) to minimize is lower
semicontinuous with respect to the strong topology of W;;i(a,b) (and it is even
continuous in W'%a,b) for q>p, where p is the exponent in (5.9)). Similarly to
the first part of the proof, we can go to the limit as ¢—0 and we obtain that u,

is a solution to our variational problem.

Proof of lemma 5.7 - By the assumptions (5.7a), (5.9b), for Isl<r we have
—K < Mx5,8 < (x5 < ales)1+EF) + blxs) < MOf1+KF),

where M(r)=max{a(x,s) + Ib(x.s)l: x€la,b], s€l-r,r]}; then we deduce (see formula

(2.11) in [104]) that, for some constant c,,

(5.29) fE*xs8| < o ME[1+16F7), Y (x,5,€): Isl<r.
1t follows that ge’k in (5.15) satisfies natural growth conditions on the derivatives
gg’k and gi”k (by taking into account the assumption (5.9a) too). Then, since

g™ €C% by a classical argument (see Morrey [119], theorem 1.10.1) u;,k€C2 and it

solves Euler’s equation (5.17).

For €>0 fixed, wu.x is bounded in Wl’q(a,b) uniformly with respect to k;
to prove this fact, we consider the function v =v(x) with constant slope

v/=(B—A)/(b—a). Since [v/]-=0 and e<l, by (5.7), (5.9), (5.15) there are



-33 -
constants ¢, ¢; such that

(5.30) fute ey + X |

[ute] oy — Kb—2) < G™uew) <
b

< GVIS o J {t + v ax = ¢ <+ .
a

By the embedding theorem, for every ¢>0, u., is bounded also in L(a,b).
Now we can get a bound for the Cl-norm of Uz, uniform with respect to k. By
integrating both sides of (5.17) and by using the growth condition (5.9a), there are

constants c¢4, cg= cgl€), cg= cgl€) such that

X
C4 + ‘I‘ gg’k(xﬁue,k(t)’ué,k(t)) dt
a

(5.31) les* (xue i) =
b

< Csj- {1 + e + i F }dt < e
a

By the term e(14+¢2)%% since q>2, we have ggi >eq. Then, for every £, €

e,k
{

gx,8:6, ) — g (%882 )| > eq |t — &

Therefore, for ¢,=ul, , £,=0 and s=u.,, by (5.31) and (5.29), there exists

a constant c¢,;= c,;(¢) such that

eqfule| < Jei*ucpute)| + |etxucnd)| < e 4V k>0
The following lemmas 5.8 and 5.9 have been used in the proof of theorem 5.4.

LEMMA 5.8 - Let u.x) be a net of real functions defined in [a,b] that,
as ¢—0, converges to uy(x) for every x€(ab). If, for every e, ucx) is

increasing and convex (respectively concave) in [a,bl, then ue converges at
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x=a (respectively at x=b) too and

eli_r.n0 ue{a)= ugya) S inf {ug(x): x€E(a,b)}

( respectively eli_r'no u(b)= uyb) aef sup{uy(x): x€(a,b)} )

Proof - We consider only the convex case. First we extend u, at x==2 by
definig ug(a) = inf{uy(x): x€{a,b)}. By its monotoniticy, wu, turns out to be

continuous at x=a. For every x€(a,b), the convexity of u. gives:

w2 < L fude) + ux)]

We deduce that

L, _ b'e
hgn_‘lg]f Ue(a) > lnen_}gxf [2 ue(a ;—x} — ue(x)] == D uo[a;_ ] — up(x)
and, as x—a", lim__’ionf uc(a) > ugla) . Since ue(x) is increasing, for x€&(a,b) we

have

lim sup uc(a) < lim sup ue(x) = ugx)
€ —0 €0

and, as x—at, we get the conclusion lim sup ue(a) < ugfa) .

€ 0

LEMMA 5.9 - Let uc be a net of convex functions in an open convex set
QCR™ let ue. be bounded in L=(2) uniformly with respect to €. Then there
exists a subnet of ue that converges in the strong topology of W:;%(Q), for
every q € [l,4). The same conclusion holds if Ue=Uc(X};XpseeesXn) 1S
separately convex or concave with respect to each compoment x,, for

i=1,2,...n.

Proof - The proof is similar if n>1 or if n=1, the only difference being
that, if n>1, than it is convenient to work separately with each partial derivative

du. /3%; . Only to simplify the notations, we consider the case n=1 and 2=(a,b):
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since the difference quotient of u. is increasing , for a<x;<x<X,<b we have

(5.32) ue(xjéz — }L::_(X) < ulx) < ue(x;z - gg(x)

Thus, like in (5.20), for every § E(O,?—‘zﬁ) we get a bound for "uéuL“(a—}—ti,b——&) s
uniform with respect to e. By the Ascoli-Arzela’s theorem we have the relative
compactness in C%@a,b). Let us denote by u, the limit function. As €—0, we deduce
from (5.32) that

(5.33) w < lim_inf uix) < lim sup udx) < w

The function wu, being convex, is differentiable a.e in (a,b). At every x€(a,b)
where ujx) exists, letting in (5.33) x,—x", x2~x+, we get ugx)=li€m uéx) .
Since the sequence udx) is locally bounded, by the Lebesgue dominated

. 1,
convergence theorem we deduce the convergence of ue in W2l , for every

q < 4o,

COROLLARY 5.10 - Newton’s functional

b N3
(5.34) Fu) = = [u@P + 2« J u )
[ ] a 1+(u/)2
has a minimizer u, in the set {uEWl'l(a,b): u{a)>0, u{b)=B, u’'>0 a.e} (B>0);

it is concave in [a,b] and satisfies the condition: 0< ufx) <1 a.e.in [abl.

kP'roof‘ - We obtain the proof as a consequence of the general theorem 5.4.
We recall however that the result of this application is classical (see for example
Tonelli {147], section 140). The function f(s,f) = 27st®/(1+¢%) satisfies (5.7) with
a(x,s)=27s, h(¢)=g**(f) being the greathest function convex with respect to ¢£>0

and less than or equal to ge) = £3/(1+¢%; it is easy to see that h{f) =
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€/(14€") for 0<€<l and h(f) = ¢ — 1 for ¢>1 . Moreover [**(s¢)

=(27s)h(¢) (see the graph of f{™** in figure 2) and (5.9) holds with p=1. Since

47 ¢3

Py = fs — Efss = - [1+82]2 <0, vex>o,
then, for £>0, ¢ = ¥* _ Sf?;* < 0 too (see remark 5.6; however, by a direct
computation we can see that > _ £f?;* = —7% for any £>1).

Then, by theorem 5.4, there is a function g EW;glc(a,b) (and also
uo €W (a,b), since ug(a)>0, wugb)<B, ut>0 a.e) that minimizes F in (5.8).
That wug is also a minimizer of F in (5.34) follows from the fact that uy(b)=B
(by theorem 5.4, since ©<0), a(x,s)=2%s and h=1. Finally, ugx) <1 a.e. in
[a,b]l, since u, satisfies (5.25) and f(s,8) = I**(s,6) if and only if either s=0

or O0<E<l.

In view of the application to Newton’s problem, previously we have
considered the constrained problem u’>0. Let us mention that, with essentially
the same proof (we refer also to [29] for the convex case), we have an existence

theorem in the unconstrained case, under the assumptions:

(5.35) there exist p>1, L>0, K >0, a=a(x,s), b=b(x,s) continuous, M:R* XR* = R*
and h(§) convex such that, for every 4&,r>0:
(@) alx9)h(f)—K < f(x,56) < ax,9)h(E)+bx,s), Vx€I0,1], s€R and ¢€R
® K < hE < L[1+KP) , V €€R
(c) either a=a(x,s) is bounded from below by a positive constant, or
a=a(s) is independent of x and it is positive a.e. in R

@ 11588 1 < MED[L+EF] |, ¥ (xs,8)€la+8,b—61XI-r,r] XR

In general, for functions u€ W;éi(a,b) we define the values u(a) and u(b)

as the infimum of 1’i<n_1_'_iknf u(xg) , as X, converges respectively to a+ and b~.
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In the unconstrained case, the functional to be minimized is the following:

b N u(a) B
(5.36) Fu) = I f(x,u,u’) dx <+ h { J a(a,s)ds | + J a(b,s)ds }
a A u(b)
where h = El_i*m hig)/¢ (only for the sake of simplicity we assume that the

limit as £— +o¢ is equal to the limit as §— —oc; see [29] for the case of distinct

limits).

THEOREM 5.11 - Let {**x,s,t) be the greathest function convex with
respect to ¢ and less than or equal to f(x,5¢). Let us assume that **
admits continuous partial derivatives fo¥, feas frer and that (5.35) is sati-
sfied. Let us assume also that the function @(x,sf) in (5.11) has a definite
sign (either >0 or ©<0) for every (x,s,£)E(a,b)XR% Then the functional

F in (5.36) has a minimizer u, in W;Z(ab), it belongs to Wi (a,b)NL=(a,b)

and it satisfies the estimate

2 -a

6. A non convex problem arising from nonlinear elasticity

It seems to be a general principle in Calculus of Variations that, if some
singularities of the minimizers form (either in the interior or at the boundary), then
these singularities should give contribution to the functional to be minimized. This
happens, for example, in classical problems of differential geometry and minimal
surfaces (since Lebesgue [96], then De Giorgi, Giusti, Miranda (see [83], [117]), Serrin
[136] and many others) and in some recent applications of methods of the Calculus
of Variations, for example, in the approach by [107] to cawvitation in nonlinear
elasticity, in the theory of liquid crystals (Bethuel-Brezis-Coron [24]) and in optimal

foraging models of behavioural ecology [29]. We notice that, in all these ceses, the
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energy-integral is extended by lower semicontinuity”, like in (5.6).

By taking the phenomenon of cavitation as a starting point, we conclude
these notes by proposing a non convex integral, relevant for applications, for which
the existence of minimizers is still an open problem (although we think that the
existence theorem 5.4, proved in the previous section, should give a contribution to

the solution).

It has been observed sperimentally that some elastic bodies, under linear
(homogeneous) deformations of large slope applied at the boundary, brake inside,
forming holes (cavities) with a certain symmetry. This phenomenon, called

cavitation, mathematically has been first studied by Ball [16].

According to Ball, the body is schematized by the unit ball Q={lxI<1} of
R®, with n>2. The body is expanded by a deformation u that, at the boundary
30 ={Ixl=1} assumes the value u(x)=Ax (that is, the deformed surface of the
body is a sphere of radius \). For some materials it is expected that, if M\ is

sufficiently large, then a cavity forms inside the body.

Let us consider radial deformations u: R®"—R™ of the type u(x)= xv(r)/r,
where r=Ix| and with v>0, v’>0. It is clear that u maps the unit ball Q in
the ball of R" of radius v(l); more precisely, for every r&(0,1}, u maps
{x€Q: Ixl=r} into {y€R™: lyl=v(r)}. The condition that u(x)=Mx on 3Q
corresponds to v(l)=A. If +v{0)>0 (like in the previous secfion, by definition
v(0) is the infimum of v(r) for r>0), then u(x) is discontinuous at x=0 and

a ball of center the origin and radius v(0) (a cavity) forms inside the image u(2).

The energy integral to be minimized, being in general a functional of u,
limitedly to radial deformations caen be written as an integral functional of v and,
by using polar coordinates, it can be reduced to a simple integral. If u is smooth
(in particular, if v(0)=0) then the energy integral takes the form (see [16]):

1

(6.1) F(v) = Wn I o X, v dr
0
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where - is the (n—1)-measure of the surface of the unit ball in R®. To study
the phenomenon of cavitation it is necessary to extend the energy F to functions
v such that v(0)>0. As we already said at the beginning of this section, F can
be extended by lower semicontinuity”, like in (5.6). Following [107], one is led to

minimize the functional

1

(6.2) F(v) = wa J Tt of ¥,v)dr + B [vo],
0

on the set

(6.3) Wo = {VE W;",’;(O,l): v>0, v(l)=\, v/>0 a.e} ;

here ®=®(s,t) satisfies assumptions of the type of (5.7), (5.9) and h is defined
in a similar way as in the previous section (see more precisely [107]; see also h
below in the particular case). Notice that ®&(s,) is not necessarily convex with

respect to €.

A simplified model, relevant because it is related to the so called "Blatz-Ko
materials” (see [25], [88], [94], where in particular the values 28 =0.13, 8=0.07,

=—0.19 are considered), is the f ollowing

1
6.4) Fv) = wn j 1-”-1{[v"°4~ a—0(¥f] + g[v’[-‘r’-)"'*]}dr + B4 vol,
0
where p<n, h = t}_i.r_r#m g¥*(t)/t = 20 —B) and
(6.5) g(t) = 3% + a-g)2t + {15] Vv t>0, with I8I<1 .

We emphasize that, if 8 is negative, then g(t) is not convex in (0,4o0).

Up to now, no existence result seems applicable to the minimization, in the
class (6.3), of the functional (6.2) in the general case, neither to the minimization of

the simplified version in (6.4), (6.5).
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