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1. INTRODUCTION

To give an idea of the elliptic problems (involving partial differential
equations and integral functionals) we study in this paper, as well as of the
notations and the nomenclature we use, we consider a list of integrals of
the calculus of variations with non-standard growth conditions. We begin
with an example of an integral with anisotropic growth conditions

Fiw)=| {(1 +1Do) 4+ 3 |uxf|q'} dx, (1.1)

i=1

where Q is an open set of R", n=2, and p,q,>1 for i=1,2,..,n The
following

Fz(u)=jg(1+|Du|2)“<x)/2dx, with 1<p<a(x)<q,  (12)

is an example of a functional which satisfies the p, g-growth condition. Also
F, has a growth of type p, ¢, with g=max{p;q,;¢-; ..; q,}. The functional

F3(v)=Lf(x, v, Dv)dx, with f(x,s, &)~ &7 log(l + |£]) as |€] = +o0,
(1.3)
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GENERAL GROWTH CONDITIONS 297

satisfies the p, g-growth condition with ¢ arbitrarily close to p. When in
similar situations we have p=g¢, then we use the classical well known
terminology of natural growth conditions.

Finally, if the growth with respect to the gradient Du is not bounded by
a power and, for example, is an expopnential growth, like in

F4(v)=J.Qf(x, v, Dv) dx, with f(x, s, &) ~exp |€|*as [E] - +o0, (1.4)

for some a >0, then we have a problem with general growth conditions.

In this paper we consider a class of elliptic partial differential equations
in divergence form, including Euler’s equations of the integral-functionals
described previously, of the type

3 a_ﬁ_ a‘(x, u, Du) = b(x, u, Du), xeQ, (1.5)

i=1 i

where the vector field (a‘(x,s, &)) is locally Lipschitz-continuous in
2 xR x R"” and satisfies the general growth (or ellipticity) conditions

mg (IED) 122 <Y ap (x5, 8) Aidys lag (x5, O < Mgy(IEN), Vi j,  (1.6)
i

for some positive constants m, M and functions g, g,: [0, +oc) — (0, +00)
related by

t 2*
gz(\/;t)-(l +t2)<const{J’ (g, (sNH'? ds} s Vi1, (1.7)
0

where 2* is the Sobolev exponent (2* =2n/(n—2) if n>2 and 2* is any
real number greater than 2 if n = 2). Of course, we could scale the functions
g, and g, and take m=M =1; in the previous form we have a simpler
notation later, for example, when we consider in particular g, = g,. The
factor \/; in the argument of g, is unnecessary if g, satisfies the so called
A, condition (g,(2t) <const - g,(2), V£ =0; see [19]), but it is relevant for
variational problems with exponential growth, like in (1.4); in this paper
we do not assume the 4, condition.

It is easy to see that the functional F, in (1.2) satisfies (1.6) and (1.7),
with g,()=(1+)”" and g,(t)=(1+¢>)Y"22 if and only if
g/p <2*/2. Note that this restriction on the ratio ¢/p is satisfied in any
dimension in the case of the functional F; in (1.3); note also that ¢/p <2*/2
is not a restriction if n = 2. Of course, integrals of the calculus of variations
with natural growth conditions (ie., g= p) satisfy (1.6), (1.7) in any
dimension.
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In this paper we show that (1.6), (1.7) is sufficient (roughly speaking;
precise statements can be found in the next sections) for local regularity
(local Lipschitz continuity and then, as a consequence, C\* and C*
regularity) of weak solutions to the differential equation (1.5).

In particular, we succeed in proving local Lipschitz continuity and
Cl® regularity of minimizers of integral-functionals with exponential
“slow” growth; precisely, we obtain regularity of minimizers of integrals
of the type F, in (14), of growth exp|&]®, by assuming that
o < 2log[n/(n—2)]/log n (in particular, no restrictions on « if n=2).

Isotropic and p, g-growth with g/p <2*/2 are covered by the regularity
results of this paper. A class of uniformly elliptic equations satisfying (1.6),
with

g(0=g:(0 () and o<g'(z)<const5(t’—),w>o, (18)

enters in our regularity theory (in fact a more general class of problems is
considered in Section 7); a non-trivial example of this type is (see [ 11, 36];
see also the example in the same spirit in [25])

Fs(v)=fg¢(wv1)dx, where (1) = ¢+Psinloglosn) >0 (19)

Ifaq, beR* and a>1+b \/5, then the function @(¢) is convex (for 1=
and, of course, it can be extended to the interval [0, e] with the desired
properties), F satisfies the ellipticity conditions (1.6), (1.8) and thus the
regularity results of Section 7 apply to the minimizers of this integral. Note
that Fs satisfies a p, g-growth condition with ratio g/p arbitrarily large in
dependence of @ and 6. More general situations can also be treated by our
method (see the functionals F and F, in (7.4)).

The regularity theory for elliptic equations and for integrals of the
calculus of variations with non-standard growth conditions was first con-
sidered and studied in [29, 30]. Examples of singular weak solutions were
given in 13, 28] (see also [ 16, 301); of course, the non-standard growth
in these examples violates (1.6), (1.7). A condition, sharper than (1.6),
(1.7), was introduced in [4] to study the special anisotropic case of the
type of F,; further results for anisotropic functionals and equations were
given in [12, 16, 18, 35] and in [1], where, for the first time, partial
regularity for elliptic anisotropic systems was considered. A number of
other papers deal with non-standard growth conditions; for example (2, 3,
7, 22-24, 32, 371].

Regularity of weak solutions under natural growth conditions has an
older story; a main reference is the book [20]. More recent Lipschitz
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continuity results can be found in [6, 9, 10, 27, 38]. The uniformly elliptic
case (1.6), (1.8) was considered in Section 4 of [34] and recently in [25].

Gradient estimates for classical solutions of non-uniformly elliptic equa-
tions were given in [17, 21, 33, 34], with particular interest in the mean
curvature equation and in its generalizations. The paper [34], by Simon,
especially contains some results that can be compared with ours, with two
main differences: first, Simon assumes that the solutions are smooth and
then he proves gradient bounds, while here we prove that the weak solu-
tions are smooth in the process of proving the gradients bounds. Secondly,
Simon’s assumptions are more general when the modulus of ellipticity
g.(/&]) in (1.6) goes to zero as |&| - +oo (like in the mean curvature equa-
tion), while we assume that g,(|£|) is an increasing function of |£|; on the
contrary, our assumptions are more general when g (|¢])— +oo as
] = +oc, to allow us to consider, for example, exponential growth or
behavior of the type of Fy or F, in (7.4), which do not enter in Simon’s
theory.

Finally let us mention a recent regularity result in [26], that is related
to a particular functional with exponential growth, precisely to the integral
over £ of exp(|Du|?). To obtain the regularity of the minimizers, the
author used this nice trick: due to the peculiar properties of the considered
integral, the Euler’s equation in classical from simply reduced to Adu+
23 u uu, =0 without exponential factors. Then he applied to the
classical solutions of this equation the a priori uniform local bound for the
gradient, as given in Part 2 of Section 5 of {33], or in [34].

This paper is a first approach to the regularity of weak solutions of
P.D.E. and of minimizers of integrals of the C.0.V. under conditions general
enough to include, for example, the uniformly elliptic case, the case of
p, g-growth, and the exponential growth. We emphasize that we give a first
approach; in fact, many interesting problems still remain to be solved; for
example: (a) find a sharp condition on the relation between the maximum
and the minimum eigenvalue of the matrix (agj); in particular, is the
presence of the term \/;1 in the main assumption (1.7) really necessary for
Lipschitz regularity? (b) The L* bound of the gradient Du is obtained in
Section 2 in dependence of the L'-norm of g,(|Du|)- (1 + |Du|?); can we
obtain similar results under weaker summability conditions, for example,
with g,(|Du})-(1+ |Du|?)e L}..? Note that in Section 4 we propose a first
answer to this question. (¢) The examples of singular minimers in [13, 16,
28, 307, are related to equations and integrals independent of x and u; the
solutions are discontinuous on a line, so that they are discontinuous at the
boundary too. By introducing in the equations the dependence on x and «
too, is it possible to find examples of solutions that are singular only on
isolated interior points?
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The Introduction and the references were revised after the referee’s
report, mainly as to what concerns the studies on gradient estimates for
non-uniformly elliptic equations done in the 1970s. The author thanks the
referee for his useful advice.

2. LocaL LipscHiTz CONTINUITY

In this section we consider the equation

"9
Y F a‘(x, u, Du) = b(x, u, Du), xe, 2.1)

i=1 i

and we assume that a'(x, s, &), for i=1, 2, ..., n, are locally Lipschitz con-
tinuous functions in 2 x R x R” (£ is an open subset of R”, for some n = 2).

We consider functions g,, g,: [0, +o0) — (0, +00) sastisfying, for some
constants ¢ > 0, the conditions:

(1) gi(1), g,(2) are increasing, strictly positive and g, < g, in [0, +o0);

(i1) the function G(t) = g,(£) - (1 + £?) is convex in [0, +®);
' 2*

(i) e /m0-(+<e{ [ @ural vz, (22)
0

where 2* =2n/(n—2) if n>2, while, if n=2, then 2* is any fixed real
number greater than 2.

Remark 2.1. Property (2.2)(i) can be related to the fact that in the spe-
cial case where, for example, g,(2) is the second derivative of the function
t = (1 + %) then it corresponds to the condition p> 2. The convexity
(and, as a consequence of (i), the monotonicity) of the function G(¢) in (ii)
is related to the functional sets defined in (2.8), (2.9); the regularity theory
we propose does not change if we assume that G(¢) is convex only for
t 2 t,, for some t,. Finally, property (iii} was discussed in the Introduction
(see also Section 7).

Remark 2.2. Since g,: [0, +00)— (0, +0oc) is positive and increasing,
then g,(¢) = g,(0) >0, for all te [0, +0), and thus

£:(0)+1

1 <
+8,(1)< 2,(0)

- g,(1), Vte [0, + o). (2.3)

Similarly 1 + g,(¢) <const- g,(t), Ve [0, + ).



GENERAL GROWTH CONDITIONS 301

About the derivatives of the coefficients a’ with respect to &, we assume
that, for every s, > 0, there are positive constants m, M such that, for every
&, 1eR" for a.e. xeQ and for every se [ —sq, 5o],

Y af, (65, A4y = mg (180 1A% (24)

lay, (x, 5, £) < Mg»(1¢]),
lag,(x, 5, &) —aj (x5, E) < M g,(1ED) (1€, Vi, .

About the derivatives of the coefficients @’ with respect to x and s we
assume that, for every & e R”, for |s| <s,, and for ae. xe£2,

@l (x, 5, O < M(1+ D[ g1 (1¢]) £201E1)112,
lay(x, 5, ) < MLg,(12]) £2(1EDT"2, Vi, k.

About the right hand side b(x, s, ) we assume that there exist a bounded
Carathéodory function a« and a locally Lipschitz continuous function
such that, for every EeR”, for |s| <s, and for ae. xeQ,

(2.5)

(2.6)

b(x, s E)Y=ua(x,s, &)+ B(x, s, &) with |a(x, s, &) <M
and
[Bo(x, 5, &) < M(1+[&]) g2(I¢]), Vk; [Bs(x, 5, &) < Mg,(I¢]);
1B, (x5, &) < M[g(I&]) g201ENT1Y%, V.

Related to the function G(t) = g,(¢) - (1 + 1) we define the functional sets

2.7)

W(')'G(.Q)={ve W(‘,'Z(Q):J‘n G(|Dv|)dx < +oo}; (2.8)

WLé(Q2)= {ue wi(Q): J G(|Dv|)dx < +0,¥Q' c= Q}. (2.9)
o
Under the previous assumptions, by a weak solution of class W ,5(2) to
the equation (2.1) we mean a function ue W .6(€22) such that, for every
Q' cc 2,

Jﬂ {Z a'(x, u, Du) ¢, + b(x, u, Du)¢} dx=0, Vpe WLo(@). (2.10)

The heuristic reason of such a definition relies on the fact that Euler’s equa-
tion of integral-functionals of the calculus of variations has this form when
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a minimizer u belongs to W .97(Q) for some o> 1 (see Section 5). Here,
for the regularity theory, we will utilize only the weaker assumption
ue Wil(Q).

In this section we will prove the following:

THEOREM 2.3. Let the previous assumptions (2.2)-(2.7) hold. Let
ue W.5(Q) be a weak locally bounded solution to Eq. (2.1), with the
property that there exists >0 such that the integral on the right hand side
of the following estimate (2.11) is finite. Then u is of class W ;>(2) and, for

every p, R(0<p<R<p+ 1), there is a constant ¢ such that
“ 1/
sup{|Du(x)| : xe B,} <c {fa g1 Dul)(1 + [ Du|?)' + P2 dx} , (2.11)
R

where B, B, are balls compactly contained in Q, of radii respectively p, R
and with the same center.

THEOREM 2.4. Let the previous assumptions (2.2)-(2.7) hold, with
(2.2)(111} replaced by the strongest condition

2%

a/mn-arey s [geral . wen e

for some B>0. Then every weak locally bounded solution ue W' %(Q) to

loc

Eg. (2.1) is of class W ). *(2) and, for every p, R (0<p <R<p+1), there

loc

is a constant ¢ such that
2%/(28)
sup{|Du(x)| : xe B,} <c {J 2,(|Du})(1 + | Duj?) dx} . (2.13)
Bz

In a standard way, for example, as in [20, Sect. 6 of Chap. 4] or as in
15, Sect. 8 of Chap. V] (see also Theorem D of [29]), by the positivity
of g, (see Remark 22), from Theorems 2.3 and 2.4 we deduce the
following:

COROLLARY 2.5. Let either the assumptions of Theorem 2.3 or the
assumptions of Theorem 2.4 hold. Let us assume also that for i=1,2, ., n,
adeCEX(Q2xRxR") and beCH " *(QxRxR") for some k=1 If

ue WL8(Q) is a weak locally bounded solution to Egq. (2.1}, then

loc

ue Ck+13(0).

loc

Remark 2.6. In the previous results 2.3, 2.4, 2.5 we have considered
weak Jocally bounded solutions. The a priori boundedness is used in the
proofs only to consider the coefficients a‘(x, s, &) and b(x, s, £) in the
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assumptions (2.4), (2.5), (2.6), (2.7) for |s]| < s,. If these coefficients do not
depend explicitly on s (or, more generally, if the constants m, M in
the assumptions are independent of seR), then the conclusions of
Theorems 2.3, 2.4, and 2.5 hold regardless of the a priori boundedness of
the weak solutions.

The rest of this section is devoted to the proof of Theorems 2.3 and 2.4.
To this aim we consider a real function @ = @(r), defined for re R, satisfy-
ing the properties

®eC'(R); @ nonnegative and bounded in R; .14

@ convex in [0, + ¢ ); D(—t)y= —P(),VteR.

Since &(0) =0, by its convexity (D(s)>= P(t)+ D'(t)(s —t), with s=0 and
t=0) it follows that @ satisfies also the property

() <P'() |tl, VieR (2.15)

Fixed ke {1,2,..,n} we denote by ¢, the unit coordinate vector in the
x, direction and we define the difference quotient 4, in the direction e, (we
do not denote explicitly the dependence on k) by Ad,v(x)=[v(x + he,) —
v(x))/h. If v is defined a.e. in 2, then the function 4,v is defined ae. in
Q,={xeQ:dist{x, 32)<h}. Most of the properties of the difference
quotient that we will use in this paper are well known; the interested reader
can see, for example, [5] (see also Lemma 2.7 of [30]) and Section 3 of
this paper.

Let Q' == Q. Let  be a function of class C () such that 0<n < 1. If
h is sufficiently small it is well defined in 2 the function

p=cd_,(n°P(4,u)), (2.16)

for ee R. Let us prove that, for every fixed A, there exists ¢ >0 such that
peW!S(2); to this aim we use the notations and the results of

loc

Lemma 3.3: if ue W\.%(Q) then 4,u, that is a linear combination of the

loc
two functions x — u(x), x — u(x + he, ), belongs to W ;&"(Q) for some t,,
by property (i) of Lemma 3.3. Then &(4,u)e W572(Q), by (iii),
n*P(d,u)e WiE2(Q) by (i), and 4 _,(n°P(4,u))e W ;3™(Q) by (i).

Thus ¢e W|.%(Q2) for e<1/z,. Finally ge W ;¢(2") for some open set
Q"= Q, if h is sufficiently small.

We note here that we will use the conditions (2.4), (2.5), (2.6), (2.7) on
the derivatives of a'(x, s, &) and on b(x, s, &), with s, equal to the essential
supremum of ¥ on 2",

By using ¢ as a test function in the weak form (2.10) of our equation,
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with simple computations we obtain (note that we have simplified both
sides of the equation by the factor &)

j S A,a(x, 1, Du)if*® Ay, + 2y B) dx = j b(x, u, Du) 4 _,(n*®) dx.

Q2=

(2.17)
Let us compute 4,a'(x, u, Du):

A,a'(x, u, Du) = j ——a ‘(x +the,, u+ th 4,u, Du+ th A, Du) dt

_I (a +al du+ Z at, A,,uxl>dt (2.18)

Jj=1

From (2.17) we deduce that

1
j j @'Y a. Agu, Ayu, dx di (2.19)
oo o

1 n
= —j j @' Y (a',+a’ A,u) dyu, dx dt (2.20)
220

i=1

—J. J 2nd Z (a +al A,u+ Z a¢ A,,uxj)r],(ldxdt (2.21)

j=1

+J b(x, u, Du) 4 _,(1*®) dx. (2.22)

Let us estimate separately the terms in the right hand side. Let us start
with (2.20); by the assumption (2.6) and by the inequality |ab|<
ea® + b*/(4¢), valid for every a, b€ R and every ¢ >0, we have

n

1
j j e’y (a\, +d. 4,u)d,u, dxdt

20 i=1

1
<M J/n{ [ (g, g:)" (1+|Du+ thd, Dul +|4,u))
20
x |4, Du| dx dt

<aij j W@ . g, |4, Du|? dx dt

M 1
+ \/;J j n*®" - g, - (1 + |Du+ thd, Dul + |4,u|)> dxdr. (2.23)
4e QYo
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About the term (2.21), we have the following estimates (2.24) and (2.25),
the first of them being a consequence of the assumption (2.6) and of the
property of @ in (2.15) (|®(¢)| < ®'(2) - |1]):

1 n

“ f n® Y (a', +a,Au)n, dxdt

QY0 i=1
1

<nM [ [ n1Dnl 9] (g,-22)"2 (1 + |Du+thd, Dul + |4,ul) dx de
290

1
< nMj J 71Dy @'g,- (1 + | Du+ thd, Dul + |4,u])? dx di. (2.24)
0270

By using again the property of @ in (2.15) and by Lemma 3.5 we have also

J Jl NPy ay d,ugn., dx dt’

240 ij

dx dt

l .
<[ [ 0014, |3 at dun,,
240 ij

1 . 12
SC]J J (,«’2¢'Za':]dhuxidhuxj>
QY0 i
(P'gy - [4,u® - | D)2 dx dt

t
Sec,_[ j n*®'y a, Ayu,, A,u, dxdt
2o T
1
+C-'j [ 1Dn1? g, - 14,01 dx dt. (2.25)
4e Qv

To estimate the term (2.22) we recall that b=« + . We obtain the
following inequalities (2.26) and (2.27), the first being a consequence of
(2.7) and of Lemma 3.1, with Q' =supp(4 _,(n°®))
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f alx, u, Du) 4 _,(n°®) dx
0

0
<M_[Q |4 _,(n’®)| dngjQ ‘g(nqu) dx
Sk

<M [ Qning 191+ 0°0 1 4,u,]) dx
<M {[ 01D, & (1 + 14,007
2
+af N’ |A,,u.|2dx+if nzcb’dx}, (2.26)
o * 4e Jo

the second, derived similarly to (2.24), (2.25), being a consequence of (2.7)
and (2.15)

U Blx,u, Duy 4 _,(n*®)dx

1 n
[ [ wo (ﬂxk+/3SA,,u+ 5 ﬁéld,,uxj> dx dt
QY0

i=1

1
<[ [ w11 18,1+ 18- 14,ul) dx di
2270
1 n
[ 1o (2 a1, ) v
oo 2
1
<Mf f n°®'g, - (1 + | Du+ thA, Du| + |4,u|)? dx dt
220
! 2 2
+nM [ [ 20 |4l (g0 2)" 14, Dul dx di
20

1
<ML2L @ - g, (14 |Du+ thd, Du| + |A4,ul)? dx dt

+eﬁMf jlnzdf-gl-ld,,Dulzdxdt
270

M 1
+\/; f f NP’ - gy |4,ul® dx dt. (227)
4¢ QY0
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Finally, to estimate the left hand side of (2.19) we use the ellipiticity
assumption (2.4):

I
J J‘ nch'Zag,A,,ux,A,,uxjdxdt
270 e

1
;mj j 2@ - g,-|4, Du| dx d1. (2.28)

240
By the relations from (2.19) to (2.28), by choosing ¢ sufficiently small, we
deduce that there is a positive constant ¢, such that the following estimate

holds (note in particular that the last integral in (2.26) goes on the right
hand side of (2.29), since g, is strictly positive):

1
Jjnzrp'g,-m,,puv dx dt
Q-0

! 2 2
<o [P+ D)o g,
QY0
(14 |Du+ thd, Dul> + |4,u)?) dx dt. (2.29)

We recall that, originated by (2.18), the argument of the functions g, and
g, 18 |Du+ thA, Dul, ie., g, = g,(1Du + thd, Du)), g, = g,(|1Du + thA4, Dul),
while (see (2.16}) the argument of @' is 4,u, i.e., @' =D (4,u)=D'(|4,u|)
(in fact @’ is even).

Since g,: [0, +o0) — (0, +20) is strictly positive and increasing, there is
a positive constant ¢ such that g,(¢) = c;, Ve € [0, +oc) (in fact ¢; = g,(0)).
Now, let us first consider the case @(t) = ¢; if in the previous estimate (2.29)
we take y =1 on an open subset Q' cc 2. with supp(n) cc 2" cc Q, we
deduce that

1
j |A,,Du|2dxdx<c4f f 2.(1Du + thd, Dul)
Q' supp(n) Y0

(14 |Du+thd, Dul* + |4,u|*) dx dr.  (2.30)

By Lemma 3.4(i) and by Lemma 3.1 we obtain

1
f |A,,Du|2dx<2c4j J g:(|1Du+ thd, Dul)
N

supp(n) ¥0O

(1 + |Du + thd, Du|?) dx dt

+ca Ly gallug ) - (14 jugl) dx. (2.31)
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Since, for te [0, 1], we have

|Du+ thd, Du| = |(1 —t) Du(x)+ t Du(x + he, )|
< (1 —1) |Du(x)| + t | Du(x + he,)|, (2.32)

then, by the convexity of G(t) = g,(¢)- (1 + ¢*), with the change of variable
x'=Xx+ he,, we obtain

J. (4, Dulzdx<3c4f g.(1Dul) - (1 + |Dul?) dx. (2.33)
o o

By assumption, since ue W ;¢(£2), then the right hand side is finite; thus
the left hand side is bounded by a constant independent of 4. By a well
known property of the difference quotient we obtain that Du has first
partial derivatives in L%(€2’), ie., ue W*3(Q’).

Now we go to the limit as #— 0 in (2.29) (we recall that @ =&(|4,u|)
and that g = g(|Du + th4, Du|)). First we observe that since & is Lipschitz
continuous, the right hand side can be estimated, similarly to (2.33) for
the case @(¢)=1¢, by a quantity independent of 4. Thus we can go to the
limit as 4 — 0 in the right hand side by Lebesgue’s Theorem, since 4,u
converges almost everywhere to ¢u/dx, and u is continuous a.e.; we go to
the limit in the left hand side too, since the integral is lower semicon-
tinuous. We obtain

[ 779l )- £1(1Dul) - 1Du, | d
<26, | (0 +1D01") @' (Juy)) - £21Dul) - (14 1Dul?) dx. (234)

Now we rewrite (2.34) with &’ identically equal to 1 and we sum up with
(2.34):

J 70+ @) g11Du) - 1Dy dx
<263 |7+ 1)1+ @ () - £:(1Du) - (14 1Dul?) dx. (235)

We recall that, like in (2.14), @ is an odd function of class C!(R), convex
for positive values of its argument, whose derivative @’ is nonnegative and
bounded in R. If we consider a more general @, with derivative &’ not
bounded, we can approximate @ by a sequence of functions @,, each of
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them being equal to @ in the interval [ —r, r], and then extended linearly
in R as a function of class C'(R). We insert @, in (2.35) and we go the
limit as r— +oo by the monotone convergence theorem. We obtain the
validity of (2.35) for every @ not necessarily with bounded derivative, i.e.,
deCY[0,+00)), #(0)=0, and

@’ nonnegative an increasing in [0, +co). (2.36)
Let us define
G(1) _1+f [(1+@'(s)) - g4(s)} 172 ds; (237)

then we have

ID(nG(lu, )N <20°(1 + @'(Juy,|)) g1llug|) 1 Duy > +21Dn)? [G(lug, )]
(2.38)

Since g, and @’ are increasing and since g, {=>g,) is positive, there exists
a constant ¢ such that

(GOTP<I+{(1+D(1)-g,(0)}? 1P <Ses(1+D'(1)) - g2(1) - (1 4 1)
(2.39)

We combine (2.38) and (2.39) with (2.35); thus, by Sobolev’s inequality,
there exist constants ¢, and ¢, such that

2/2*
{ | [rlG(luku)]z'dx}
o]
<o | 1DOG(ug ) dx
Q2
<er [+ 1001+ @ (Juy ) - £21Dul)(1+ [Dul’) dx,  (240)

where 2* =2n/(n—2) if n>2, while 2* is any fixed real number greater
than 2, if n=2.

Now we sum up with respect to k=1, 2, .., n; we use the inequality
SP<(X 1) with p=2%/2 and Minkowski’s inequality, again with
exponent 2*/2:
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{2 o6ty asf

k=1

n 2%/2 2/2*
< {j [ Y (nG(lu| ))2] dx}
£2

k=1

7

2/2%
<y {fﬂ [nG(lu,,1)]* dx}

k=1

<e, Z j (2 + 1 Dn|2)(1 + D' (Ju,,]))

k=1

-&2(1Dul )(1 + | Du|?) dx. (2.41)

Let us consider &(¢t)=1'*# for =0, where >0 is like in the statement
of Theorem 2.3; by using the inequality \/2(a +b)=/a+ \/B it is easy to
see that there is a constant ¢y (independent of f) such that

1 , 1 f , /
7jo(1+qb(s))”arszt——zjo {1+ (@'(s))"2) ds

(1 + 152y, V> 0. (2.42)
\/ 1 +8
We recall the definition of G in (2.37) with this particular &, we use
Lemma 3.4(v), assumption (2.2) (iii), and (2.42). For some constant c, we
obtain

2

ey {1 +lfr (1+&'(s)"? dS-fI (g.(s))"? ds}

B(2%/2)
>c9(1+’ S ANCOUERY (2.43)
for every ¢ = 1; moreover, if 0 <¢< 1, then the right hand side is bounded
(with the constants ¢, independent of ), while the left hand side is greater
than or equal to 1. Thus (2.43) holds for every 1= 0.

Let us denote by B, and B, balls compactly contained in 2, of radii
respectively R, p (R— p < 1), with the same center. Let  be a test function
equal to 1 in B,, whose support is contained in By, such that |Dy| <
2/(R — p). From (2.41), (2.43), since ®'(¢) = (1 + ) t”, we deduce that there
exists a constant ¢, such that

22+

{j ) (1+|uxk|f“2‘2')gz(f|uw|)(1+|uw|2)dx}
By p=1

(1 2 n

S0 CEL 3 | (k) D)1+ (D) d (244
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We first consider Lemma 3.4(iv) for the function ¢ — g,(¢}- (1 + ¢#?); then
we consider Lemma 3.4(ii) for the functions t — 1+ ¢ and ¢ — gz(\/; t)-
(1 + n?); we obtain

[Z (1 +|un|ﬁ)]-g2(wun(1+|Du|2)
k=1

n

< (Tlugl®- S gal S ug X1 +n]uy?)
k=1

n

ne Y (L)) go(/n g D+ Ju, |?). (2.45)

By (2.44), (2.45) we can say that there exists a constant ¢,; (=nr°-¢,,) such
that

r‘z‘
{j T (1 g P2 g (L, )dx}

By k=1
Cu (1+8)° “
< (14 u,)®
SRy, L (1 1e?)
82/7 | ug D+l |?) dx. (2.46)
We rewrite the previous estimate with § replaced by B.(2*/2) !, for
i=1,2,.., and with R=R,_,, p=R,, where, for some R,> p,,
R, —
R,.=p0+—°—2,.—p9, vieN; (2.47)

thus R—p=R,_,—R,=(Ry—p,)-2 " We iterate (2.46) and we use at
the first step (2.44); for every i > 1 we obtain

2/2*y
{f S (1 g P (g )1+l )dx}

Br k=1

Senf T (tlugl)) g0Dul)1+\Dul)dx,  (248)

BRry k=1

505,105,2-7
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where, since 2/2* < 1,
: [Cu (14 B (2*%2) 12 '4‘](2/2""
Ca= H 2
(Ro—p0)
' (i)"logcn-(l+ﬁ-(2*/2)"~‘)2~4">
(Ro—po)?

<exp (c13 i i<%>l>< + 0. (2.49)

i=1

We go to the limit as i —» +o0 in (2.48); since g, = ¢,, > 0 (see Remark 2.2),
for every k=1, 2, .., n, we obtain

sup{lu,|’: xe B, }

(2/20y
. LIS i
= lim j lu, | P22 dx
I— o0 Bﬂo

1 ‘ (/2%
< lim {— [t 122 (Sl D+ L, 1) dx}

i~ (Crg ¥ By

n

<c15f 2 (L+]ug®) - g:(|Dul)(1 + | Du)?) dx. (2.50)

Bryk=1

We sum up for k=1,2,..,n; we obtain the estimate (2.11) and the
conclusion of the proof of Theorem 2.3.

To prove Theorem 2.4 we consider again (2.41) with @(¢)=1. Similarly
to (2.44) (with the parameter § there considered equal to zero), by using
the new assumption (2.12), we obtain

n 2/2‘
{L Y, ol D1+ [u g, |2) 42 dx}

p k=1
H-Cp
T (R-p)

L 2,(1Dul)(1 + | Dul?) dx. (2.51)

Then, by Theorem 2.3 and by the fact that g,(|1Dul) S 37, g2(</n luy,|)
(Lemma 3.4(iv)} we have the conclusion (2.13) with p< R’ < R:

118
sup{|Du(x)|: xeB,} <c {J g,(1Dul}(1 + | Duj?)! + #72 dx}
Bp

2%/(283)
<c,6{f gzuuumwwumdx} L@
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3. SoMe TECHNICAL LEMMAS
In this section we prove some lemmas used in the paper, mainly in the
previous section. We begin with some properties of the difference quotient;
to this aim we recall that, fixed ke {1, 2, .., n}, we denote by e, the unit
coordinate vector in the x, direction and we define the difference quotient
4, in the direction e, (we do not denote explicitly the dependence on k) by

A, v(x)=[v(x+ he,) —v(x)]/h If v is a measurable function in €2, then the
function 4,v is defined and measurable in 2, = {xe Q: dist(x, Q)< h}.

LEMMA 3.1. Let G: [0, +oc)— [0, +00) be a convex increasing function.
Let v be a measurable function in 2 such that v, (its distributional partial
derivative with respect to x,) is a function of class L*(8) with the property

J, Glos) dr < +oc; (3.1)
then, for every Q' cc Q, we have
L}y G(14,p(x)]) dx < L} G(lv.(x)) dx,  Vh<dist(2,8Q). (3.2)
Proof. We start from the identity

e B =o', (ot thee) de (33)
h 0

A v(x)=
and then we use Jensen’s inequality for the convex function te R — G(|1]):

G([A,,v(x)l)=G<'£: v (x+ thek)dt')<I; G(|lv,(x+the,)|) dr. (3.4)

By integrating over £2'cc 2, since (Q2'+the,)=, we obtain the
conclusion

[ G ax<| '[]G(vak(x+the,()|)dxdt
2 20

—[Ca| G de <] Gy d (35)
0 2" + they 2

LemMMa 3.2, Let G:[0,4+0)— [0, +00) be a convex increasing function.
Let v be a measurable function in Q, with compact support in 2, whose
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partial derivative v, satisfies (3.1). If Q is bounded and we denote by d its
diameter, then we have the estimate

f G<3|v(x)|>dx<j G(|v,,(x)]) dx < +o0. (3.6)
2 d @

Proof. To simplify the notations we assume that Q< {(x,,.., x,):
0 < x, <d}. Since v has compact support in Q, then we have

Xk

o(x) = j 0 (X1 o £y o X)) dt = f 0o (X1 o by on X}, (3.7)
0 d
and thus

d
2 lu(x)| < fo 10 (X1s oo £y o X,)| . (3.8)

By Jensen’s inequality we obtain the conclusion

IGG'M”)"KJ G(lfdiv (X151 X)Idt)dx
(Gl )ax<[ 6 ([ 1oais et x,

1 rd
sc—ifo dx, jn G103 (X 1s s £y o X)) Xy -+ dlt -+ - dix,
=] Gllog ) dx. (39)

LEMMA 3.3. Let G:[0,40)— [0, +00) be a convex increasing function,
let 6 >0, and let us consider the functional set

Wi69(Q)= {ve WU(Q);J G(o |Dv|)dx < +oo}. (3.10)
Q

Then there exist a positive constant T such that we W' () under any one
of the following notations and assumptions:

(i) v,,v,e W'CQ) and w is a linear combination of v,, vy;

(i) v, e W"9(R), v,e WI=(R2), and w is the product function
W=v]'vz;

(iti) ve W"%9(Q), @ is a Lipschitz continuous function in R, and w is
the composite function w = ®(v).
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Proof. (i) If w=av, + fv,, with a, B € R, then by the convexity of the
function t — G(z(|«| + | Bl)}t) we have

G(|D(zw)[) < G(z(lo | Do, | + | Bl |Dv,|))

IaiG(t(\a|+|ﬂI)IDv1|)+|ﬁ| G(z(la] +1B1) |Dv,y|)
lo| + 1B

(3.11)

and the conclusion for t=a/(|a| +}f]).

(ii) Let L=llv,ll.«+|Dv,ll,=. Then [|Dw|<|Dvyl-|v,| + [vy]-
|Dv,| < L(|Dv,| + |v,|) and the conclusion can be obtained similarly to the
previous part (i), by using Lemma 3.2.

(iii) The fact that the composite function w=@(v) belongs to
W' 4£2) and that the chain rule holds is well known; it is Stampacchia’s
result and it can be found in [14, Lemma 7.5]. The chain rule establishes
that D(®(v))=®d -Dv ae in 2, thus |Dw|=|®’'|-|Dv|<L-|Dv| if
|@'| < L. The conclusion follows with T=a/L.

LeMMA 34. Let g(t), h(t) be two nonnegative, increasing functions on
[0, +o0); then:

(1) glty)-h(ty) < g(ty)-h(t) + g(t3) - h(1),
Vt,,1,€[0,+00);

() Y gt)- Y Ar)<n 'S glt)-hit,),
i=1

i=1 i=1

VneN, Ve, t5, .., t,€[0,+0);

(iii) glt, + 1)< gloty) + gl(o/(6 — 1)) 1),
Yo>1,Vt,,1,e[0,+0);

n 1/p n
(iv) g((Zt{’) ) Z g(n't)),

YneN,Vp>0,Vt,t,,..,1,€[0,+00);

(v) fb g(t)dt-J.b h(t) dt < (b—a) fb 2(1) - h(2) dt

a

VYa,be [0, +o0).

Proof. (i) If <1, then g(1,)-h(t;) < g(t,) h(ry) < g(t) A1)+
g(t,)-h(t,); similarly if £, > ¢,.
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(i1) By symmetry (with respect to i and j) we have
2 Le(r)-h(r) +g(t)) -h(2)];  (3.12)

=%Z Y [gt)-h(r)+g(t)-h(1)].  (3.13)

S Le(t)— g(6,)]- [h(t) — h(1,)] (3.14)

and the right hand side is positive, since g(¢), h(t) are both increasing (we
have not used here their positivity).

(i) If r,<(e—1)¢, then g(r,+1,)<glt;+(o—1)1))<glot;) +
g((a/(6—1)) 1,); while, if (6—1) £, <1,, then g(z, +1,) < g((1/(a —1)) 1, +15)
< gloty) + gl{a/(a — 1)) 13).

n 1/p n
(iv) g (( 2 tf’) )S gn'? -max{t;:i=1,2,..,n})< Y g(n'?r).
i=1 i=1

(v) This is well known and can be proved with the same method of
(ii), by using double integrals.

LeEMMA 3.5. Under the assumptions (2.4) and (2.5) we have
) ) 172
S a (x, 5 5)2,-:1,\ <c(Tayns0id) oty (15
i) i

for some constant c, for every &, A, neR", for |s| <s, and for ae. xe Q2.
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Proof. Let us define bu—(a¢ +a})/2, c;=(a} —al)/2. Since (b,) is a
positive definite symmetric matrlx by the Cauchy—Schwarz mequahty, by
the fact that 3" b 4,4, =3 a:j,t ;and by (2.5) we obtain

gty

172 12
Zbij'{jr’l‘\<z bu i 1) (zbijr’ir//)
iJ

L

1/2
(ZGMA> [Mg,(1¢]) Inl21"2. (3.16)

Moreover, by (2.4) and (2.5) we have also

2

nM -
i J ‘ T(glgz)llb [A] In]

172
\/‘(Z ag A, l) Lgx(1E)) 1?12 (3.17)

Our result follows from (3.16), (3.17), since af; =b;+cy.

4. HIGHER INTEGRABILITY OF THE GRADIENT

We consider again Eq. (2.1) under the assumptions (2.2)-(2.7), with
(2.2)(iii) replaced by the condition

2%y

gz(t)-(l+12)<c{f,(g1(s))”2ds} , Vex1, (4.1)

where y > 1 and ¢ >0 and where, as usual, 2* =2n/(n—2) if n> 2, while 2*
is any fixed real number greater than 2, if n=2. In the next theorem we
prove the summability of g,(|Du|)(1 + |{Du|?) to a power greater than 1
(where « is a weak solution) in terms of the summability of the same
quantity to a power less than 1. An application of this higher summability
result is given in Section 6.

THEOREM 4.1. Let the previous assumptions (2.2)-(2.7) hold, with
(2.2)(iii) replaced by (4.1). Let ue W[;S(Q) be a weak locally bounded
solution to Eq. (2.1). Let o be a positive real number smaller than 2/2*. Then,
for every p, R (0<p<R<p+1), there is a constant ¢ such that

| Lea1Dul)(1 +1Dul) d

(1— a)(2/2* — )
} (4.2)

SC{J‘ [g2(|Du|)(l+|Du|2)]“—‘iu)/(1‘a)dx
Br
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Remark 4.2. In the estimate (4.2) we are not allowed to consider
a=1/y. This depends on the limitations a < 2/2* and

2/2* < 1/y. (4.3)

To prove (43) we start from (4.1) and we observe that since g, is
increasing

1 I 2%y
~&(1)- (1 +t2)<{f (g1(s)"” ds}
C 4]
<{(g ()P} < {g(1) - (1 + £2)} 25D, (4.4)
Moreover, since g, < g,, we obtain

I }
S< {0 L+ AP e, (4.5)

that forces the exponent 2*/(2y) — 1 to be greater than or equal to zero.

Proof of Theorem 4.1. We consider again the estimate (2.29) of
Section 2, with @{t)=1 (ie, ®'(¢) =1, which disappear in the estimate):

3
ffnzg,-uhpuﬁdxdz
240
1
<c2j j (0> + |Dnl?) g, (1 + |Du + thd, Dul? + |4,u|?) dx di.  (4.6)
2290

Let us denote by G(r) the primitive of (g,())"? in [0, +00) such that
G(0)=1 and let us compute

4,G(|Dul) = j di G(|Du + thd, Dul) dt

h
" U, +thA d 47
—_— t; .
j P 1|Du+thA D1 (4.7)

therefore, since G'(t) = (g,(t))"", by Jensen’s (or, equivalently, by Holder’s)
inequality, we obtain

1 2 1
4,600 < ( [ (27 14, Duldi) <[ g1-14, Dul?ds (43)

about the derivability of G(]Du + thd, Du|) with respect to ¢, we note that
either A, Du is equal to zero or not (note that x is fixed in Q); if 4, Du=0,
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then Du(x + h)= Du(x) and 4,G(|Du|) =0, thus (4.8) holds. If 4, Du#0,
then (4.7) and its consequence (4.8) hold, since the derivative with respect
to 1 of G(|Du+ thd, Dul) is defined and bounded for a.e. re [0, 1].

Then, (4.8) together with (4.6) gives

1
| n1anGDun? dx<e [ [ (2 +1Dn1%) g
2 QY0

(1 + |Du+ thd, Du|*+ |4,ul?) dx dr. (4.9)

Now in (4.9) we take =1 on an open subset Q' c= Q, with supp(n) cc
Q" cc< Q2. With the same method used to obtain (2.33) we deduce the
estimate

j sA,,G(‘Du|)12dx<3c4j gIDul)- (1 + | Duf?ydx.  (4.10)
(924 Q"

Since the right hand side is bounded by a constant independent of 4, then
G(|Dul) has first partial derivative 0G(|Du|)/dx, in L*(R2'). In (4.9) we pass
to the limit as # — 0, we sum up for k=1, 2, ..., n, and we obtain

| w*1DGUDu) dx<2nc, | (n*+1Dn1?) go(1Dul) - (1 + | Dul?) d.
2 Q

(4.11)

Then, similarly to (2.40), for some constant ¢, we have

2/2*
{1, tr6Du " axf ™ <o [ 7+ 1001 ga1Dul)(1 + 1D d.

(4.12)

By recalling the definition of G and assumption (4.1), for some constant ¢,
we have

' 2
(607 =[ 1+ [ (a0 s | >elen-a+07  @13)

for every >0, since it holds by assumption if 1> 1 and it is satisfied for
0<r<1 too, because the right hand side is bounded, while the left hand
side is greater than or equal to 1.

Like in Section 2, we denote by B, and B, balls compactly contained in
Q, of radii respectively R, p (R— p < 1), with the same center and we con-
sider a test function # equal to 1 in B,, with compact support contained
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in Bg, such that |Dn| <2/(R— p). Then, by (4.12) and (4.13), there exists
a constant ¢, such that

. 2/2% ¢o

{J-Bp [v(x)] dx} <m LR v(x) dx,
where v(x)= g,(|Du|) - (1 + |Du|?). (4.14)
Like in the statement of the theorem (see also Remark 4.2), let « be a real

number such that O0<a<min{1/y;2/2*}; by Holder’s inequality with
exponents 1/x and 1/(1 —a) we have

{J‘ v d»c}m‘ < '[ v -p! T d
" ds <——— . X
B, (R— P)Z Bg

o 1—a
Co _ ~
L — Y d . (1 —yay/(1 - 2) . 15
(R—p)2{LRv x} {Lkv dx} 419

For R,> p, we define the sequence p,=R,—2 (R, — po); then in the
previous estimate we consider p=R;_; and R=R;. Since R—p=
27 Ry — py), wWe obtain

2/2% .4 «
v’ dx} L— { v’ dx} A,
{Lp,l (Ro— po)’ fﬂp,

where = {J

pl1 - 71 ) dx}l_a. (4.16)
Bro

By iterating in (4.16) we have

fx2*1231 Co 4 ai—l.p2%27
Jo v dxg“ v dx} 11 {~——— 1}
Brg By, i=1 (RO )
<cgo {f

Bg,

eo]

Bry

221 ey § [a2e21
. X
p? dx} T i=0

[22%/2]"
oY dx} [YERE e (4.17)

where, since a2*/2 <1,
C9 4[ }mll,tzt/z]l

N U {(Ro Po)

20BNy
= — log ———— . 1
exp(2 Z( 2) og(R —p0)2>< +0o0 {(4.18)

i=0 [4]
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We go to the limit as i — +o0 in (4.17); again, since 22*/2 < 1, we obtain
the conclusion

J

By,

(1 —a)/(2/2% — a)
} (4.19)

v dx < e IV 0 = ¢y “ 1= ral=2) g
Bpy
Remark 4.3. The exponents of formula (4.2) in Theorem 4.1 have been
obtained by an iteration procedure; we can have a quick formal control of
which exponents should appear in the formula, by posing formally B, = B,
in (4.15) (of course, without the term 1/(R — p)?),

2/2% — o 11—
“ v"dx} <const{f U“W“““’dx} , (4.20)
Br Br

that corresponds (by replacing B, in the left hand side by B,) to the
correct conclusion (4.2).

5. ON THE DEFINITION OF THE FUNCTIONAL SET AND OF THE
NoTION OF WEAK SOLUTION: EULER’S EQUATION

Similarly to Section 3, we introduce the following functional sets (we call
them functional sets, instead of functional spaces, since, in this paper, we
do not introduce on them any structure of topological type; about this
point see [19] and the forthcoming paper [8]), related to the function
G(t)= g,(t)-{1 +¢*) and to a constant ¢ >0:

Wl.a.a(m:{ve Wm(g);j G(o |Dv|) dx < +oo}; (5.1)

WlooQ)= {ue W,‘(;ﬁ(Q):f G(o |Dv]) dx < +o0, V' cc Q}. (5.2)
o

Finally we define W}%°(Q)=W"%(Q)n W1*(2); when ¢ =1, like in

Section 2 we use the simpler notations W'1(Q)=W"%(Q), W5 (Q)=

WLi(Q), Wiel(R2)=Wyo(Q).

loc

Remark 5.1. If the function g, (and then G) satisfies the 4, condition
(g,(2t) < const - g,(1), ¥t 20), then the sets defined previously are inde-
pendent of ¢ >0; in this case these sets are linear vector spaces. On the
contrary, if G does not satisfy the A4, condition, in general the previous sets
are not linear vector spaces, but (by the convexity of G) are only convex
sets.

Remark 5.2. The functional sets in (5.1), (5.2) can be defined equiv-
alently through the function ¢— (1 + g,())-(1+1¢%), or through the
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function ¢ — g,(¢) - #%, instead of G(¢) = g,(t)-(1 + ¢*). This depends on the
fact that, like in (2.3), g,(t) =const (1 + g,(¢)). For the same reason we
can define equivalently the previous functional sets as in (3.10), with the
condition ve W 1!() instead of ve W :2(Q).

loc

To motivate our definition of the functional set where we look for
solutions, we use an heuristic approach. We consider as the model problem
the variational problem

minimize, on a functional set ¥, the functional v —»J f(x, Dv)dx, (5.3)
2

where f = f(x, £) is a real function defined for xe 2 and {=(&;)e R". We
assume that « is a minimizer on V and we study Euler’s first variation

e=0

[ij fix, Du+sD¢)dx] ~0, VgeV, (5.4)
de fo)

with the condition that u+epeV for every ¢ (positive and negative)
sufficiently small. By the mean value theorem for functions of several real
variables we have the well known computation

[gdg Lf(x, Du+5D¢)dx] y
=1irr:)% [ f(x, Du+e¢ D¢)— f(x, Du)] dx
= }in})'{ i Selx, Du+0e D) - ¢ dx, (5.5)

i=1

where 0 =08(x)e [0, 1] for almost every xe Q.
We estimate the integrand with the aim to go to the limit as ¢ » 0. We
start with some of the assumptions in (2.5) and (2.6), precisely,

feg, (6 NS Mgy (1C1), 1 fealx, 0) S M, Vi, j k (5.6)

(we recall that, under the notations of Section 2, in the variational problem
of this section we have a’'= f;) and we obtain

td
fe (%, &)= fulx,0) + jo = fulx, 16) de

=z (x, 0)+I Z Seig, (%, 18) &, dt; (5.7)
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thus, by (5.6), (5.7), and since g, is increasing and strictly positive, there is
a constant ¢, such that
lff,(x’ é)lscl gZ(Ié')(l_'_lil)’ Vl:l, 2’ ws AL (58)

Again since g, is increasing, by Lemma 3.4(i) we obtain

(x, 5)-'7,-’<\/chgz(lél)(1 +1E0) - Inl

ne {g:(1EN +1E1%) + gx(In)(1 + n1?) }. (59)

Thus, if |¢| <1, since |f¢| <1, from Lemma 3.4(iii) with g(t)= g,(?)-
(1 + %) we deduce that, for every ¢ > 1

i=1

,(x,§+9£n)~m‘

i=1

<y/ne{ gl +0enl) - (1+ &+ Oenl?) + go(Inl) - (1 + [n]%)}

2
<vne {eo e+ o i+ e (Z )1+ (755 )

+ galn)(1 + mm}. (5.10)

The right hand side is independent of €. Thus, if we assume that there exist
o> 1 such that ue W;5°(Q) and ¢ Wy~ 1(Q") for some Q' cc Q,

then by (5.10) we can go to the limit as ¢ — 0 in the integral in the right
hand side of (5.5) and we obtain the usual Euler’s equation

f S fo(x, Du)-d.de=0, Ve WLeoo-(Q). Q' ce Q. (5.11)
i=1
Let us observe that, again by Lemma 3.4(iii), if we W;%°(2) and
pe Wiyeoe=1Q"), then u+egpe W 9(Q) for |¢/<1. Finally, we can
multiply both sides of the previous equation by the constant (¢ — 1)/c and
change the test function x — ¢(x) by x — (6 — 1)/0 - ¢(x) that is a generic func-
tion of W% 1(Q')= Wy “(Q2'). Thus we have proved the following result:

THEOREM 5.3. Let [ = f(x, &) be a measurable function with respect to x
and locally Lipschitz continuous function with respect to £ € R”, satisfying (5.6)
with g, as in (2.2)(1), (2.2)(ii). Let u be a minimizer of the integral (5.3) in the
functional set W"S(Q), with some fixed boundary conditions. If ue W ;&°(Q)
for some ¢ > 1, then it satisfies the weak form of Euler’s equation

f ifél(x, Du)-¢.dx=0, VeeWLi¥Q)Q ccQ (512)
o Xy
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More generally we can consider integrals of the calculus of variations of the
type

ve W""(Q)—»f f(x, v, Dv) dx, (5.13)
2

where the function f = f{x, s, £) depends explicitly on x and s too and it
satisfies the growth conditions

|fe x5, ) = Mg, (IE))- (1 +1¢]), Vi=12,..,n,

(5.14)
| fi(x, 5, &) = Mg,(IE1) - (1 + [£)2),

for every &, AeR”, for ae. xe €2, for every se [ —s,, 5o], and for some
constant M = M(s,), with s, generic in R™.

THEOREM 5.4. Let f= f(x,s, &) be a measurable function with respect
to x and locally Lipschitz continuous function with respect to
(s, £)e Q x Rx R”, satisfying (5.14) with g, as in (2.2)(i), (2.2)(ii). Let u
be a minimizer of the integral (5.13) in the functional set W"S(Q), with some
fixed boundary conditions. If ue WL9°(2) for some ¢ > 1 and it is locally

loc

bounded in Q, then it satisfies the weak form of Euler's equation

[ { S 6w Du) g+ fil% Du)-¢} dx =0,

i=1

Ve WLE(Q)AL™(Q'): Q' cc Q. (5.15)

Proof. We can proceed as in the proof of Theorem 5.3. First we can
replace the assumption (5.6) by the weaker condition (5.8) (more precisely,
by the first condition in (5.14)). Then, we use the growth condition on f, in
(5.14), together with Lemma 3.4(iii) and the fact that ¢ is locally bounded,
to obtain

| f.(x, u+ 6ed, Du+ 0c D§) - 4|
<c,- go(|Du+0¢ DB|) - (1 + |Du+ 0 Dg|?)

<ca {eato 1Dul) -1+ 1Duf?) (-2 1wl

.<1 +(£’Y>2 |D¢|2>}, (5.16)

for |¢[ < 1. Then we can go to the limit as ¢ — 0 like in the previous proof.
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6. INTEGRALS OF THE CALCULUS OF YARIATIONS,
PossiBLY WiITH EXPONENTIAL GROWTH

In this section we prove two regularity results for minimizers of some
integrals-functionals of the calculus of variations with non-standard growth
conditions, in particular with exponential growth. One of the peculiarities of
functionals with exponential growth is that they do not give rise to uniformly
elliptic problems. Let us explain this fact by an example; let us consider
integrals of the type

Lf(Dv) dx,  with f(&)=®(|Z)), (6.1)

where @: [0, +00)— R is a convex function of class C*([0,+oc)), with
@'(0)=0. By a computation we can see that

145 14 li!

and thus

o
min {ab"(m); I(é||§|)} U2 <, fe &) Aidy

< max {qb"ufu 'pl(é'f' }w (63)

Therefore the problem is uniformly elliptic if and only if there are positive
constants ¢,, ¢, such that

(1)

o @(1) < p

<e, d"(1). (6.4)

It is easy to be convinced that the behavior in (6.4) is typical of functions
&(t) of power growth, or, for example, of the type @(¢) =¢? -log(1 + ¢), while
it does not hold for functions @(z) of exponential growth. In fact, if

f&)=@(i£]),  with D(r)=exp(r%), Vi 2 1o, (6.5)

for some x>0 (and for ¢, sufficiently large in dependence of « when
a€ (0, 1)), then f satisfies the ellipticity (but not uniformly ellipticity)
conditions

aexp(|€]*) - [&1* 2 liIzSZf:,:,(f)iJ/

M exp(IE]7)- 117 21417 Vg = 1. (6.6)
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Thus the ratio between the maximum g,(|¢|) and the minimum g, (|£|) eigen-
value of the matrix D?f, of the second derivatives of f, is not bounded. On the
contrary, due to the exponential growth, for our function fin (6.5) we have
that

Ve>03c,>0,  (g(IE)-(1+1&1%) " <e.- f; (6.7)

we adopt (6.7) as an assumption in the regularity results of this section.
We note that (6.7) is a coercivity condition.
We consider integrals of the calculus of variations of the type

[ v, Do) dx, (6.8)

2

where f=f(x,s, &) is a function of class C*(£2 x R x R") whose partial
derivatives satisfy the following general growth conditions: for every sy >0,
there are positive constants m, M such that, for every ¢, Ae R", for a.e. xe Q
and for every se [ —$,, 5o 1

mg (1ED) 1417 <X feg (. 5, &) Aidy < Mea(lE]) |A1%;

|feslx, s, ) < Mg (1)) 201175
e, 5 O S ML+ 1EDL& L)) 82(1ENT2, Vi ks
ISl s, OIS Mgo(1E1) (ol s DI S M1+ 1ED) £,(18D), Vk;

(6.9)

the functions g,, g, that appear in (6.9) are increasing and strictly positive in
[0, +c0), the product function G(t) = g,(¢)- (1 + ¢’} is convex, and they are
related by the condition

F 2"""‘
gz(\/ZzJ-(Hﬂ)sc{j (gl(s))”ds}, Viz1,  (6.10)
[

for some y > 1 and ¢ > 0, where 2* =2n/(n— 2) if n> 2 (while 2* can be any
fixed number greater than 2 if n=2).

Remark 6.1. The vector field a'(x,s, &)= f(x,s, &) satisfies all the
assumptions of Section 2; in particular (2.7) holds with «(x, s, £)=0 and

Blx, s, &)= filx, 5 &)
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Remark 6.2. For the function f in (6.5), (6.6) we have g,(t)=
exp(t*)-t*~ % and g,(t) =exp(t*)- >* 2. Then, for every ¢> 0 there exists a
constant ¢, such that

(g:(1))'? 2 c exp((1—¢) 3 1°);

(6.11)
ga(s/n 1) - (1 + 7)< exp((1 +2) n*2r%);
now it is easy to see that, in the present case, (6.10) holds for some y > 1 if
J has slow exponential growth, ie., if a is small; more precisely if

L, 2% log(2*/2)

n* <~2—, thatisif «a<?2 fog (6.12)

In particular (6.10) is satisfied by the function f in (6.5), (6.6) with any
positive a if n=2, with a <2 if n=3, and witha <1 ifn=4.

THEOREM 6.3. Let f=f(x,s, &) be a function of class C2(£2x R x R")
satisfying (6.7), (6.9), (6.10). Let u be a minimizer of the integral (6.8) in
the functional set W'“9(Q), with some fixed boundary conditions. If
ue WLea(Q) for some o> 1 and it is locally bounded in Q, then it is of class

loc

W () and there exists a positive exponent & with the property that for every

loc

p, R(0<p<R<Kp+1) there is a constant ¢ such that
)
sup{|Du(x)|: xe B, } gc{f f(x, 4, Du)dx} : (6.13)
Bg

Moreover, if f € CE*(2 x R x R") for some k > 2, then u is of class CEX(R).

loc

Remark 64. If f= f(x, &) is independent of s, then in the previous
theorem it is not necessary to assume a priori the local boundedness of the
minimizer u (see Remark 2.6).

Proof of Theorem 6.3. Since the minimizer u belongs to W [;%-?(Q), then,
by the results of Section 5, it is a weak solution to Euler’s equation (5.15). Let
us now make use of Theorem 4.1: since the (positive) exponent
(1 —ya)/(1 —a), that appears in the right hand side of (4.2), is smaller
than 1, then by (4.2) and (6.7) we have

>

(1 —x}/(2/2% — %)
J, Cest1u)(1-+1Du)Y ds <, { ] 705w i}
B, Bgr

(6.14)

505-105.2-8
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for 0 <a <2/2* for every p, R (0 < p < R< p+ 1) and for some constant ¢,.
Then, by Theorem 2.3 with 1 + /2 = v, for every p’ < p there exists a constant
¢, such that

sup{|{Du(x)|: xe B, }

(1 —a)/2(y — 1)(2/2* — )
} (6.15)

<c, {JB f(x, u, Du) dx

R

We conclude this section with a consequence of the a priori regularity
result of Theorem 6.3; it applies to integrals of the type

&, u)=j f(Dv) dx, (6.16)
2
with f of class C*(R") such that

mg (1) AP Y frg () A4, < Mg,(1€)) 1412, (6.17)

i, ju

with g, and g, satisfying (6.7), (6.10).

THEOREM 6.5. Let f = f(£) be a nonnegative function of class C*(R"),
satisfying (6.17), (6.7), (6.10). Let uge W''() be a boundary datum with the
property that f(Duy(x)) € L'(82). Then there exists a minimizer of the integral
(6.16) in the class ug+ W' (). The minimizer is of class W ,Z(2), it is

loc

unique, and, if f € CSX(R") for some k =2, then it is of class Ck2(R2).

loc

Proof. The existence and uniqueness of a minimizer u € uy + W' (82), or
equivalently in the class uo + W }3(R2), follows from the strict convexity and
coercivity of the integral F (in fact, by the ellipticity condition in the left hand
side of (6.17), with the same method of Section 5, we can prove the existence
of two constants ¢,, ¢, such that /(&)= ¢, |£]1% —¢,).

Let a, be a smooth mollifier with compact support and let us define in
Q cc 2

vlx)=] aly)elx—y)dy  Vxe® (6.18)

where ve W"%(Q) is any function such that f(Dv(x))e L'(Bg) on a ball
B cc Q and such that v =u on the boundary 8By of Bg. Then v, is a net of
smooth functions that converges, as ¢ =0, to v in W'2(Q2). Moreover

lim | f(Dv,)dx =j f(Dv) dx; (6.19)
R By

e—»0vYp
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in fact, we can use the argument of [ 31, Corollary 4.2]: by Jensen’s inequality
we have

10N = ([ () Dutx=y) )

sj 2,(3)- f(Do(x— y)) dy,  VxeBpg; (6.20)
.

by integrating over By and by considering another ball B, with radius
R’ > R and with the same center as By, for ¢ sufficiently small we obtain

ff(pu(x))dmf y)dyj (Do x—y)dx<j f(Do)dx;  (621)

first we take the maximum limit as ¢ — 0 of both sides, then the limit as
R’ — R in the right hand side and we obtain an inequality that, together with
the lower semicontinuity of the integral, concludes the proof of (6.19).

Let us denote by u, the minimizer of F(Bg, -) in the class of function with
prescribed boundary value equal to v, on 0B. Then, by the “Bounded Slope
Condition Theorem,” u, is Lipschitz continuous in B, and

(F27R FRIPRES] 28 FRITFRY (6.22)

To go on we need, for the L¥-norm of Du,, a bound independent of &. To
this aim we observe that, by (6.22), u, € W' %°(By) for every g; therefore, by
Theorem 6.3, for p<R <R there exists a constant (independent
of ¢} such that

é
1Du, | (5, < € { L F(Dw) dx} . (6.23)

Then the u, converge (up to a subsequence) to a function i e W ;= (B) and,
by the lower semicontinuity of the integral F, we have

j f(Di(x)) dx < lim inf j f(Du,) dx
By e—~+0 YBp

e—0

<lim [ /(Do) dv= j f(Dv) dx. (6.24)
Bp

Since v is a generic function, by the uniqueness of the minimizer, #=u in B
and thus u is locally Lipschitz continuous (and satisfies (6.23) with u,
replaced by u).
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Remark 6.6. 1tisclear from the argument used in the previous proof that
no Lavrentiev phenomenon can occur for the integral (6.16), under the con-
vexity of f(£) (even in the vectorial case). Thus the integral in (6.16) can be
defined equivalently by the “naive” method of composition of f with the
measurable vector Dv, or by extension by “lower semicontinuity,” starting
from the definition of the integral for smooth functions v.

7. A GENERALIZATION OF THE UNIFORMLY ELLIPTIC CASE

With the notations of Section 2 let us consider again Eq. (2.1) and let
(a'(x, s, £)) be a locally Lipschitz continuous vector field in 2 x R x R"
satisfying the ellipticity conditions

mg,(1£]) 1412 SZ ay(x,5,8) ik, lag (x5, O < Mgy(I€)), Vi, j, (7.1)

and the other growth conditions (2.5), (2.6), (2.7), with g,, g, related by
(2.2)(i), (2.2)(ii), and by

git)y<c, ‘g'it—), Yt>0,

! (7.2)

g /n1)- < (g ()2, Wiz,

for some constants ¢, >0 and y > 1 (since g, is increasing, then its derivative
exists a.e. in [0, 4+00)). In particular (7.2} becomes a uniformly ellipticity con-
dition if

g1(t)=g,(1) = g(t)  and g’(t)Sclgitt—), Vi>0; (7.3)

note that if a function g(¢) satisfies (7.3) then it satisfies also the 4,-condition
and thus the factor \/»n in (7.2) becomes unnecessary.

Examples of variational problems which give rise to the uniformly ellip-
ticity condition (7.3) are, for example, integral functionals with natural
growth conditions and the integral functionals F; in (1.3) and Fs in (1.9).
Examples of integrals of the calculus of variations which can be treated with
the more general condition (7.2) (for o« smooth and 1 < <2*/2) and which
do not satisfy (7.3) are

Fo(w)= | T®(1D0))] dx (74)
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or

Fyv)= | {@(1Du)) +[#(Iv,,)]°} dx,

where, for example, the function @ is defined like in (1.9).

A relevant class to refer is the integral-functional class of the type (6.1), for
which the condition of uniformly ellipticity is expressed by (6.4). We can
easily verify that the conditions (6.4) and (7.3) are related to each other by
the position g(r) = @'(r)/f and that

g'(t)zcg—(tt—), Vi>0<= @"(1)2(1 +c)£;(ﬁ, Vi>0. (7.5)

Simon (see the second part of Section 4 of [34]) and more recently Lieber-
man [25] proved the local Lipschitz continuity of the gradient Du of weak
solutions to Eq. (2.1) under the assumption (7.3) (in the notations of
[34, 35], g(¢) is replaced by g(r)/¢; but, similarly to the equivalence (7.5), we
can easily see that the two cases are related to each other). Therefore, the next
theorem is an extension of the quoted Simon and Lieberman results to the
more general ellipticity condition (7.2).

THEOREM 7.1. Let us assume that (2.2)}-(2.7) hold, with (2.2)(iii) replaced
either by the uniformly ellipticity condition (1.3), or by its generalization (7.2)
with y > 1. Then every weak locally bounded solution ue W;8(Q) to Eq. (2.1)
is of class W L-*(). More regularity, like in Corollary 2.5, and higher sum-

loc

mability of the gradient, like in Theorem 4.1, hold.
Proof. By the first condition in (7.2) we have
l 1/2
(g}"‘z)'-‘:igfm'glﬁ‘i—iﬂ Vi>0; (7.6)

from which we obtain

! , 2 gt ,
[ (elsnds> = [ stigi())' ) ds

0 Cy
2 Lo _
=f{t(g1(f))”—j (glfs))"'ds}; (1.7)
3 0

therefore

a2 <(G+1) [ e (78)
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This estimate, together with the second condition in (7.2), gives
! 2*fy
s/ eze [ el (19)

Then, if y =1, the assumption {2.2)(ii1) of Theorem 2.3 is satisfied; while, if
y> 1, then the condition (2.12) of Theorem 2.4 with y=1+ /2 (for local
Lipschitz continuity) and assumption (4.1) (for higher summability of the
gradient) are satisfied. This proves our theorem under assumption (7.2). It
remains to observe that (7.3) is a particular case of (7.2), with y =2*/2 and
with g = g, = g, satisfying the 4, property g(2r) < 2g(t}, as a consequence
of the fact that the function t — g(¢)/t! is decreasing.
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