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1. INTRODUCTION

Consider the Dirichlet problem for the equation of prescribed mean
curvature,

div((1 + [Dul®) =2 Du) + h(x)=0  in Q, (1.1a)
u=d(x)  on dQ, (1.1b)

where Q is a bounded open set in R" with a C? boundary, /(x) is a given
Lipschitz continuous function in Q, and @(x) is a given smooth function
on 02 (for many of our results a Lipschitz boundary would be sufficient).
The expression

A(u) =div(g(Du)), (1.2)
where
g(Du)=(1+|Du|?) ~ V2 Du, (1.3)

is the curvature (sum of the principal curvatures) of the graph of the func-
tion u. However, for physical intuition it is worthwhile to think of u(x) as
the “temperature” in the region Q and of g(Du) as the “flux” (the negative
of the “heat flux”) in the region. The /(x) is then the given “heat source
function”.

It is well known that if i(x) is “too big” on Q then there exists no solu-
tion on all 2 of the partial differential Eq. (1.1a). This is because the flux
g(Du) saturates with norm 1 as |Du| — oo. Integrating by parts, one has

j h(x) dx = —LG o(Du)-v dH, | (1.4)

G

for every subset G of 2, where dH, _, denotes the surface measure on 0Q2
and v is the outward unit normal vector. Thus the flux g can remove at
most P(G) (the perimeter of G, i.e. the measure of 0G) in heat from any
subset, and, since —1<g-v<1, a necessary condition for existence of a
classical solution of (1.1a) on all Q is that both

f h(x) dx < P(G), (1.5a)
and

— P(G) <L,~ h(x) dx, (1.5b)

for all proper subsets G of Q.
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In fact, Giaquinta [5] proved that (1.5ab) (with the strict < there
holding also for the set Q itself) is a sufficient condition for existence of a
pseudosolution of (1.1). This pseudosolution is a solution of the Dirichlet
problem (1.1) in the sense of BV(R), and it is a classical C**() solution
of the PDE (1.1a) in the interior. However, it may “detach from the desired
boundary values” on some portions of 0Q.

Moreover, Giusti [ 7] showed that if Q is an extremal set for h(x) (i.e.
(1.5) holds with strict < for proper subsets, but with = in (1.5a) for Q
itself) then there exists an extremal solution U(x) on Q for the PDE (1.1a).
It has the following properties:

(i) it is a classical C*>* solution in £,
(i) g(DU(x)) > —v(x,) as x = x, €02,

(ii1) it is unique to within an additive constant.

Here Giusti requires that A(x) be Lipschitz and that 0Q2 be C2.

But what happens when A(x) is “too large” on  (that is, if either (1.5a)
or (1.5b) fail for some subsets G)? Why don’t the usual parabolic (adding
a time derivative u, to the equation) or elliptic (adding an ¢ Au term)
regularizations yield a solution for (1.1) in the limit as z —» oo or as ¢ > 0?

Merely by way of illustration, let us consider the 1-D case with A(x) =
a constant on the interval Q =(—1, 1), with zero boundary values. Thus
we hope for a solution u(x) of the original mean curvature problem (1.1),
Le.

A(u)+h=0 in Q. (1.6)
We have the solution u(x, t) of the parabolic regularization
u,=A(u)+h in Qx(0, 00), (1.7)

with zero initial and boundary values. We also have the solution u*(x) of
the elliptic regularization

A(u)+edu+h=0 in Q, (1.8)

again with zero boundary values.

If the constant 4 is sufficiently small for (1.5) to hold (that is, if |4 < 1)
one can show that both u(x, ¢) and u°(x) converge to the solution u(x) of
(1.6) as t > oo or ¢ —» 0. However, if 2> 1 we can show that the asymptotic
behavior of u(x, t) as t - oo, or of u®(x) as ¢ > 0, are as illustrated (for the
case 1=2) in the moving finite element computations of Figures 1a and 1b
respectively.
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Fic. 1. (a) 80 node GWMFE solution u(x, t) of u,=A(u)+2 on Q=(—1,1) with zero
initial and boundary data, at times ¢=0, 1...,4. Solution forms a rising elliptic cap on
Q*=(—1,1). (b) 80 node GWMFE solution u*(x) of A(u) +edu+2=0o0n Q=(—1,1) with

zero boundary data, with ¢=1, L, .., k. Solution forms a rising elliptic cap on @ =(—1,1).

Notice in Fig. la that u(x, ¢) rises fastest as t > oo on a certain subset
Q* (Here Q* = all of Q, but that need not be the case in general.) On Q%*,
u(x, t) is very quickly taking on the shape of a “rising elliptic cap” which
in this case is a semicircle of curvature A(u)= —1, while on Q% the
asymptotic speed with which this cap rises is u, = A(u) + 2~ 1. Thus u(x, ¢)
grows without bound, but nevertheless with an asymptotic speed v(x)
(which is =1 on all Q in this case).

Notice in Fig. 1b that u®(x) rises fastest as ¢ — 0 on a certain compactly
contained subset Q, which in this case is the interval ( — 1, 1). (Notice that,
contrary to the parabolic case, @ is compactly contained in , which is a
general fact for the elliptic case.) On @, u*(x) is taking on the shape of a
“rising elliptic cap” which in this case is a semicircle of curvature
A(u)= —h= —2. We shall show that u*(x) grows without bound, but that
nevertheless eu®(x) has a limit w(x) which will be not identically zero.
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We shall characterize these “parabolic and elliptic growth functions” v
and w. In fact we will prove in Sections 4 and 6, in the general n-dimen-
sional case, that u(x,?)/t—v(x) in L*Q) and that eu®(x)— w(x) in
W,' (). Here v is characterized as the unique minimizer in BV(Q) N
L*(Q) of the functional

F(u):f_ |Dul + | f w? dx—f hu dbx. (1.9)

Q Q Q

Instead, w is characterized as the unique minimizer in W %(2) of the
functional

G(u):f |Du|+%f |Du|2dx—f hu dx. (1.10)
Q Q Q

We point out that these expressions involving |Du| on  and Q must be
made precise in the BV sense, see Section 2.

The solutions of these two variational problems are quite different in
nature because the change from #” in (1.9) to |Du|? in (1.10) yields mini-
mizers of greater smoothness.

In Sections 2-6 we establish the existence and variational characteriza-
tion of the parabolic and elliptic growth functions v(x) and w(x) described
above. In Sections 7-9 we establish the properties of the parabolic and
elliptic maximum sets * and & (the sets on which v(x) and w(x) assume
their maximums), based upon the variational formulations of (1.9) and
(1.10). In Section 10, using the variational formulation, we establish the
explicit formula for v(x) in the case that /(x) is a constant on a 2-D rec-
tangle Q. In Section 11 we show some numerical computations in 2-D by
Carlson and Miller using their gradient-weighted Moving Finite Element
codes (GWMFE) [2], [16]. In Section 12 we loosely consider the many
possible phenomenae arising when /A(x) is replaced by A(x, u) in the
parabolic and elliptic equations (1.6)—(1.8).

The parabolic phenomenae established in this paper were first described
in the authors’ previous paper [ 14]. There we presented the general conjec-
tures of Section 7 concerning the geometrically identificable set Q2* on
which u(x, t) grows fastest and the probable shape of the “rising elliptic
cap” on that set. However, we were able to give proofs only in certain
radially symmetric situations. The results of the present paper were presented
without proof in the proceedings of the 1994 Levico conference on curvature
flows [15]. Similar results to those of Section 10, the parabolic case on a
2-D square with constant /, have recently been established by Kawohl and
Kutev [11] using completely different methods based on comparison
functions and the maximum principle (somewhat as used in [14]).
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2. NOTATION AND DEFINITIONS

In all cases when given an L'(Q) function u we consider it extended to
be =0 in R"— Q. We define the total variation of u in Q by

j |Du|zsup{j u div g dx:gecg(Q,R"),|g|<1}. (2.1)
Q Q

Then, taking into account that u (extended to zero) may have jumps at the
boundary, we define the total variation of u on Q2 by

j |Dul = sup {f udiv g dv: ge CY(Q, R"), |g|<l}. (2.2)
Q Q

DEFINITION.  BV(2) is the space of L'(Q) functions such that jQ | Du| is
finite. BV(Q) is the space of L'(R") functions extended =0 outside £, such
that {5 [Du| is finite.

It is easily seen (since u =0 outside 2, 0Q is smooth, and our test fields
g in (2.2) can be extended rather arbitrarily outside ) that

L} | Du| :Ln | Dul. (2.3)

Note that if ue W' '(Q) ~n BV(R") then u has an internal boundary trace
u~ in L'(08), and that

|Dul=| |Duldx+| |u=—0|dH,_,, (2.4)
Q Q oQ

where dH, , denotes the (n— 1)-dimensional Hausdorff measure on 0Q
(see Giusti [8], Remark 2.14).

We now define similar expressions for the area of the graph of a BV(R")
function which is =0 outside Q. First we define the area of the graph on Q by

" de.
j 1+ [Dul? = sup “ gotu Y Sl dvige ClQ, R, |g|<1}. (2.5)
Q @ i=1 0x;

Then we define the area of the graph on Q, which includes the surface
area of the possible vertical sides of the graph as it makes its transition to
zero boundary values on 02,

" Og. _
J1/1+|Du|zzsup{f gotu Y 2idvgeCYQ R™Y), |gl<1}. (26)
a 2 ;

=1 axi
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Note that the only difference between the two definitions is that the test
vector fields g are in Cy(£2, R"*') in the first case and in C'(2, R"™") in
the second case. The analog of (2.4) then becomes, for ue W' 4(Q)n
BV(R"), that

L./1+|Du|2=j,/1+|Du|2dx+j = —O0|dH, ,. (27)
Q Q o2

We next recall the definition of the perimeter in the sense of De Giorgi
of a measurable set in R”. Let G be a measurable set in R”; then its
perimeter is

P(G)EJR” |Dg| = sup {L div g dx: ge CL(R", R"), |g|<1}, (2.8)

where ¢ of course denotes the characteristic function of G. A Caccioppoli
set is then defined to be a Borel set for which the above perimeter is finite.

We refer to the book of Giusti [8] for details and properties concerning
the Definitions (2.1)—(2.8) above.

3. THE PARABOLIC PSEUDOSOLUTION

We want to consider the solution of the parabolic initial-boundary value
problem

. Du .
H,:dlv ((l-|—|Du|2)l/2>+h(X) m QX((),OO),
u(x, 1) = B(x) on 02 x (0,0), 3.1)
u(x, 0) =uyx) on 0,

where u, and @ are smooth functions on Q and 0Q giving the desired
initial and fixed boundary values, and /4 is a given Lipschitz continuous
function on the open bounded set Q.

Classical solutions of (3.1), which assume the boundary values con-
tinuously, etc., may fail to exist. Instead we consider the pseudosolutions
introduced by Lichnewsky and Temam [13]. These proceed by the
regularized problem

u,=div <(1+|ll);;|2)1/2+6Du>+/1(x) in 2x(0,00)
u(x, t)=d(x) on 092 x(0,00) (3.2)

u(x, 0) =uy(x) on Q.
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Because of the added & Du flux term in (3.2), this problem is uniformly
elliptic and thus it has a unique classical (C** on 2 x [0, o0)) solution,
which we will denote u“(x, t). Lichnewsky and Temam proved (among
other things) that for each #>0, u*(x, t) converges weakly in L*Q) to a
limit function u(x, ¢), which they call the pseudosolution for problem (3.1).

This function u is characterized as the unique solution of a certain weak
form of problem (3.1). Before giving the precise formulation, let us proceed
heuristically to motivate that weak form. For a fixed 7> 0, let Q denote
the open cylinder 2 x (0, T'). Suppose that u(x, t) were a C*(Q) solution of
(3.1) and let ¢(x, t) be any test function in C*(Q) with the same boundary
values on 0Q x (0, T'). Multiplying the equation (3.1) by (¢ —u)(x, ) and
integrating by parts with respect to x, then integrating with respect to 7
(0<t<1t), one has

Du-(Dp — Du)

fo[(u,—h,ga—u)u d‘c+££2 m

By the convexity of the function & — (1 + |£|?)"?, we have for every ¢ and
n in R" that

xde=0.  (3.3)

1

VI+1E?

(L+n%)"2=(1+ ¢ + ¢-(n=9), (34)

and thus

t t
[ =h o —w)de+ [ [ [(1+1Dp|*)" = (1+|Dul>)'?] dx de >0,
0 0 v

(3.5)

Now we get rid of the u, derivative by essentially integrating by parts,
adding to (3.5) the equality

J;) ((P,—u,, L2 2~[ »—u, (p_u)L2 dr
1 2 1 2
=3 ol —u(t) 32— 5 p(0) = u(0)| 32 (36)
Then the u, is removed from (3.5) and replaced by a ¢,,

| (@no—u)pde+ | | [(1+1Dgl?) 2 = (14 |Dul)?] dx dr
0 0vQ

=3llo(t) —u(t) || 22— 3 [9(0) — u(0)] 2. (3.7)
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The above derivation assumed that both u and ¢ smoothly assume the
boundary values @(x) on 0Q x (0, T'). In fact the regularized solution
u(x, t) may build up thin boundary layers on portions of 0Q2 x (0, T') and
the limiting pseudosolution will “detach from the desired boundary values
&(x)” at places. It is for that reason that we included the area of the verti-
cal portions of the graph in our definition (2.6) which replaces the integrals
involving Du and D¢ in (3.7).

In fact, to make our notation and definitions simpler, we have assumed
a zero boundary function @(x)=0 on 02 in our definition of (2.6). Thus
henceforth we simplify the formulation of (3.1) by assuming the boundary
function @(x) is =0. The precise formulation then yields the following.

THEOREM 3.1 (Lichnewsky and Temam [13]). Suppose @(x)=0,
h(x)e Wh4(Q) and

uge LA(Q) n WEXQ) A WhY(Q). (3.8)

loc

Then there exists a unique function u(x,t) having the following properties:
For each positive number T,

ue L'(0, T, W 1(2))nL™(0, T;WL2(RQ)), (3.9)
we C([0, T]; LAQ)), (3.10)
u(0) =u,, (3.11)

and for every te[0, T] and for every test function @€ L*(Q) such that
@, € L*(Q) and Dp e L'(Q, R"), we have

[((@—hp—wyzdet | [ [Q+1DpI?)"—(1+|Dul>)'?] dx de
0 0'Q
> L)~ (D)1 3~ 1 19(0) o 13 (3.12)

Furthermore, if he L*(Q) and u,e L*(Q2) then ue L*(Q).

In the proof of this theorem u was constructed as the limit as ¢ - 0 of
the regularized solution u* of (3.2). Among other things, it was established
that for each  in [0, T'], u®( -, t) converges to u( -, t) weakly in L*(Q). In
fact, although it was not explicitly stated, one easily establishes that
“weakly” here can be replaced by “strongly”, i.e.

foreach tin [0, T], u®(-, t) converges to

3.13
u( -, t) strongly in L*(Q). (3.13)



10 MARCELLINI AND MILLER

This is because it was established (Lemma 2.2 of [13]) that Du® remains
bounded in L*(Q') as ¢ — 0 for every Q' c= Q. Thus by Rellich and the
weak convergence of u° to u one obtains that u® — u strongly in L*(’), for
every Q' << Q. Moreover, it was established that the u° (and thus their
limit ) are bounded in L*(£2) (Lemma 2.3). Hence we have

" =l 3oy < 16" = 2oy + (2 + ] 3.) mis(Q — ') (3.14)

which can be made arbitrarily small.

Moreover, in a second theorem it was established that u(x, ) is a solu-
tion of the original PDE in (3.1) in the sense of distributions, and that also
the boundary condition of (3.1) is satisfied in the sense that

g(Du)-v e Sign(u—0) ae. on 0Qx(0,T). (3.15)

In a more recent terminology, the function u(x, ¢), the limit as ¢ > 0 of
the regularized solution u®(x, t) of (3.2), is a “viscosity solution” of (3.1) (see
the approach of Kawohl and Kutev in [11]).

4. THE PARABOLIC GROWTH FUNCTION v

Let u%(x, t) and u(x, t) denote the regularized solutions and the pseud-
solution of the previous section. It is probable that u,(x, ¢) tends to a limit
as ¢t — oo; instead we can show only that u(x, #)/t tends to a limit v(x),
which we shall call the parabolic rate function. We shall then characterize
v as the unique solution of a certain variational problem. From this varia-
tional formulation will then follow many of the properties of this v; in
particular we shall discover necessary and sufficient conditions for v to be
not identically zero.

THEOREM 4.1. As t— o0, u(x, t)/t converges in L*(Q) to a certain func-
tion v(x). This function is independent of the particular initial function uy(x).

Proof. We will use a result on contraction semigroups due to Crandall,
as reported by Brezis [ 1, p. 166] and by Pazy [ 17, p. 305, Theorem 3.97.
The result (slightly simplified for our purposes) is the following: Let S(7)
be a strongly continuous contraction semigroup on a Hilbert space .
Then there exists an element v in # such that for every element u, in #,
we have

S(t) ug

. - in # as t— oo. (4.1)
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Thus it suffices for us now to show that the evolution operator S(¢) for
the L& T pseudosolutions can be extended to give a strongly continuous
semigroup on all L*(Q).

For sufficiently smooth initial functions u,, let S°(¢) and S(¢) be the
evolution operators defined by

Se(1) ug = u'(t), (4.2)
S(1) g =u(?), (4.3)

where u®(x,t) and wu(x,t) are the regularized solutions and limiting
pseudosolutions corresponding to the initial function uy(x) on 2 and zero
boundary values @(x)=0 on 02 x (0, c0). Then L& T (see Theorem 3.1
and also (3.8)) showed that for all u, in the dense subset

D=LX Q)N WL Q) Wh(Q), (4.4)
we have, as seen in (3.13), that

S¥t)ug— S(t)u, in L%  forall ¢t>0 (4.5)
and that moreover

S(t) u, stays in 2, for almost every ¢ = 0. (4.6)

Now the regularized parabolic evolution S%¢) is clearly a contraction
on ¥. That is, for u, and w,e 2 we have that the regularized solutions
u’(t)=S*(t) uy, and W4(t)=S*t)w, satisfy

() = WD) 2 < [u'(s) = wi(s) [ 2, for O<s<t (47)

This follows from integration by parts and convexity of the function
Eo (148272 E4 ¢ on R™ Then, from the strong convergence in (4.5)
we get that this contraction property on & holds also in the limit as ¢ —» 0;
ie. for u, and w, in 2,

lu(t) —w(t)| 2 < lu(s) —w(s)| > for 0<s<t. (4.8)

Moreover, the regularized evolution S°(¢) clearly has the semigroup
property for u, in 2, i.e.

St+s) uy=S%1)(S(s) uy) fort, s=0 and UyEY. (4.9)

Now let ¢ —» 0. The left-hand side in (4.9) tends to S(z+s) u, by (4.5) since
uy€ 2. Consider the right-hand side in (4.9). Letting ¢ — 0, since u,€ 2,

S¥(s) ug— S(s) uy. (4.10)
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Thus, by the fact that the S*(¢) are contractions

IS5(0)(S*(5) 1g) — S(£)(S(s) o) |
S [SH(S(s) ug) — SUO)(S(5) uo)[| + [SH2)(S(s) ug) — S(2)(S(s) uo) |
< [8%(s) uo = S(s) uo | + [S(2)(S(s) uo) — S(2)(S(s) uo) . (4.11)

The first term — 0 by (4.10), the second term — 0 since by (4.6) S(s) u,€ 2.
Thus in the limit as ¢ —» 0, (4.9) yields

S(t+5) ug=S(t)(S(s) uy) for u,e9. (4.12)

Thus both S(#) and S%(¢) are contraction semigroups for u, in Z. Hence
by continuity we can extend them uniquely to be contraction semigroups
for all u,e L*(Q).

Finally, we note that this extended S(¢) is strongly continuous with
respect to . It suffices to show that

S(t) ug — u, as t—07, for arbitrary wu,e L*(Q). (4.13)

This was shown by [13], see (3.5), for u, in the dense set &. Thus for
arbitrary u, in L% given J >0 choose w, in Z such that |u,—w,| <J, then
we have

I1S(2) ug —ull < [1S(2) o — S(2) wo || + [1S(2) wo —wy |

<llug —wo [ + [1S(2) wo —wo . (4.14)

The first term is <, the second is arbitrarily small for small #, as noted in
(4.13), since wy€ 2.

This completes the proof that S(¢) is a strongly continuous contraction
semigroup on L*(2), and hence of Theorem 4.1.

THEOREM 4.2. The parabolic growth function v(x) discovered in Theorem
4.1 (ie. the limit in L*(2) of u(x, 1)/t as t — o0) is the unique minimizer in
BV(Q) n L*(Q) of the functional

Fuy=[ |Dul+} [

u? dx — j hu dx. (4.15)
Q Q Q

Note. The variational problem just stated in (4.15) can be shown to
have a unique minimizer using standard methods of lower semicontinuity
and compactness with respect to L!() convergence. See the book of
Giusti [8]. The boundedness of |u*|,> for a minimizing sequence {u*}
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comes from the dominance of the u* term over the /u term in the integral.
The uniqueness of the minimizer comes from the strict convexity of the u?
term.

Proof of Theorem 4.2. We need to show that
Flv) < F(w) (4.16)

for every w in BV(Q)n L*Q). Note that such F(w) can be approached
arbitrarily closely by F(w*) where {w*} is a sequence of C'(Q) functions.
See Giusti [8]. Thus it suffices to prove (4.16) where w is henceforth a
given and fixed C'(Q) function.

Step 1. We use the test function
@(x, t)=tw(x) (4.17)

in the variational inequality (3.12) for u(x, ¢) of Lichnewsky and Temam.
We obtain

IZI (w(x) —h(x))(zw(x) —u(x, 7)) dx dt

Q

+L)t {L; (1+ |D(TW)|2)1/2—L§ (1+ |Du|2)1/2} dr

Z%J(m&w—uuﬁnﬂk—%LJO—uJMde (4.18)

Q

Let us denote by 4, B, C, D, E the five terms above, thus (4.18) can be
written as

A+B—C>D—E. (4.19)

Now we divide each side by #* and compute separately the limit (or lim
inf) of each term as ¢ — oo.
We use L’Hbpital’s rule in the form

i SO S0
m = lim

t— o (l) t— 0 g,([)

: (4.20)

provided that f and g are differentiable, g'(z) #0, g(¢) > + oo, and the
second limit exists. Here g(¢) =t of course.
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Step 2.

lim —2— lim 2j w(x) —h(x)) < (x)_u(x, l)> dx

t—ow t t— o t

=%f (w—"h)(w—rv)dx, (4.21)

since u/t — v.

Step 3. Since w is C'(Q), the formal integral over Q in (4.18) can by
(2.7) be written as an integral over 2 plus a boundary integral, i.e.,

B=j {f (1+|Drw|2)1/2dx+j |rw|dHn1}dr. (4.22)
0 Q o

Thus

. B 1 1
lim —= lim EL)(zfu- | Dw|?)2 dx+§j lw| dH,, _,

t—ow t— 0

%L | D dx+%J

o2

1
\w| dH, :Ejg |Dw|. (4.23)
Here we have used the uniform convergence of the continuous integrand

and also (2.7) again.

Step 4. For the C term we use the definitions (2.2) and (2.6) and note
that the “integral” of (2.6) is certainly > the “integral” of (2.2). Thus

t 1
—j <j u(x, 7) div g(x) dx> dr=— C,, (4.24)
0o\’ t
for every ge CY(Q; R") with |g| <1
Then for fixed g(x) we go to the limit as ¢t — oo, using L’Hopital’s rule

lim < = lim ! f ”(%’) div g(x) dx =+ f o(x) div g(x) dx.  (4.25)
Q

t—>o [ (> 2J0 2

This means that

lim inf

t— o0

C
?2

%j o(x) div g(x) dx (4.26)
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for every ge C1(Q, R") with |g| < 1. Taking the supremum with respect to
such g in (4.26) and using again the definition (2.2), we have

. C1
lim glfF>§f§ Du. (427)

Step 5. We now take the limits of the D — E terms in (4.19). We have
easily

lim :fj (w— )2 d, (4.28)

since u/t — v in L*(Q).

Step 6. We combine (4.21), (4.23), (4.27), (4.28) to obtain

J (w—h)(w—ro) dx+fﬁ |Dw| *I, |Dv| > J (w—v)*dx. (4.29)

Q Q Q Q

Note that
ww—v)—(w—0)><I(w?—v?). (4.30)

Thus (4.29) plus (4.30) yields (4.16) as desired.

5. THE RADIALLY SYMMETRIC ELLIPTIC CASE

In the radially symmetric case, with #=/h(r) and zero boundary values
on the ball of radius R, we can easily discover everything about the ellipti-
cally regularized solution u*(r) and its limiting behavior. This is because the
total flux issuing out of the ball of radius r merely equals the total heat
being produced in the ball by the heat source function /(r), and hence can
be obtained by integrating /2 and is independent of e.

Our regularized solution u“(r) has “flux” (the negative of the “heat flux”)
in the outward radial direction of magnitude g,(u%(r)) where g, is the
function

g (&) =(14+E) 124 g, for all real ¢&, and all e=0. (5.1)

Balancing the heat flux and the heat produced, we have for each ball B(r)
of radius r that

o, g () = [ ,5" ) ds. (52)
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where w,, is the surface area of the unit ball in R”, or that

1 r
g, (u¥(r)) = H(r) = n_lf "~ h(s) ds. (5.3)

r 0

Thus the flux is determined by the integral H(r) above, and is completely
independent of ¢. The derivative of u® is then given by the inverse function

wi(r) =g, '(—H(r)). (54)

Thus it suffices to study the limiting behavior as ¢ —» 0 of the function
g, ', or of the function &g, '. One observes that

g (&)—g (&) as -0, if [¢<], (5.5)

and that this convergence is uniform on compact subsets of (—1, +1). On
the other hand, g, '(¢) is unbounded as ¢ — 0 if |¢| > 1. For those values
one has to consider gg, '(¢) instead. One sees that

eg (&) > Y(E) as e—0, uniformly for e R', (5.6)
where  is the function

0 for [£]<1
Y(&)=<¢E—1 for &>1 (5.7)
E+1 for &< —1.

In fact, since the error function &g, '(y)—/(y) is increasing for 0 <y <1
and decreasing for 1 <y < oo, the error is largest at the value y = 1. At that
point analysis shows that

g (1) &P =23 as £-0, (5.8)

and that hence (g, ' —0) is O(¢'?) there.
We can thus consider the function

w’ = eu’® (5.9)
instead. Its derivative v%(r) converges uniformly, because of (5.6). We have

wi(r)— “w,” (r) uniformly on 0<r<R, (5.10)

where “w,” is the following function:
(a) “w.(r)=0 at any r where |H(r)| <1,

(b) “w,”(r)=—H(r)+1 at any r where H(r) > 1, (5.11)
(c) “w(r)=—H(r)—1 at any r where H(r) < — 1.
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Then, because of the zero boundary condition, the w® also converge
uniformly to a limiting function w, where

wi(r) =J “(r) dr —>f ‘w,”(7) dv =w(r). (5.12)

R

Since / is Lipschitz, the integral H(r) is C*' on [0, R]. But then the “w,”
of (5.11) is C"' in open intervals where H(r)# +1, but is perhaps only
Lipschitz near transition points where H(r)= + 1. Hence its integral w is
C?* 1! except near the transition points, where it is perhaps only C! 1

Thus, from the integral H(r) one can easily determine the limiting
behavior of the u® and of the w®=e&u®. Consider for example an H(r)
behaving as shown in Figure 2a. By (5.11) and (5.12) the derivative “w
of wis =0 in the intervals [0, r,], [75, rs], [7s, 7s], = — H(r)+1(<0) in
(ry,r3), = —H(r)—1(>0) in (rs,rs) and in (rg, R]. Hence w(r) looks
somewhat like Fig. 2b.

Let’s examine instead the behavior of the u° in those intervals [0, r,),
(r5,rs), (rg, rg) where |H(r)| remains < 1. On those intervals, according to
(5.5),

ui(r)—>go "(—H(r))=“u,”(r) as &—0, (5.13)

the convergence being uniform on compact subsets. We normalize by sub-
tracting off the value at some point r* inside each interval, say r* =0, or
r4, or r, as shown. Then on each of these open intervals let u(r) denote that
function which equals zero at r* and has “u,” as its derivative.

Thus

us(r)—us(r*)zjr “(5) ds—»f syds=u(r),  (5.14)

P

the convergence being uniform on compact subsets of these intervals.

Because of (5.2) and (5.3) with ¢=0, this u is a solution of the equation
of the unregularized prescribed mean curvature equation (1.1) on the disc
or annulus corresponding to those intervals. Moreover, u has outward nor-
mal derivative = — oo on the boundary of the disc [0, ;) and = + o0 on
the boundary of the annulus (r5, r5). Thus u is the (unique to within an
additive constant) Giusti extremal solution for h(r) in each of those two
regions. Hence our result (5.14) might be phrased more loosely as “u®(x)
takes on the shape of the Giusti extremal solution u(x) (for A4(x))” on each
of these two regions.

The solution u on the annulus (rg, ) is a different type of extremal solu-
tion, however; it has instead outward derivative = — oo on the inner
boundary and = + oo on the outer boundary.
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FiG. 2. (a) The integral function H(r) of (5.3) giving the flux at radius r. (b) The corre-
sponding elliptic growth function w(r). (¢) The limiting shapes of the solution u“(r) in the
three plateau regions of the growth function w(r).
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We have indicated on Figure 2c¢ that these extremal solutions u are
bounded as r - rS", or rg, or r, or ry, but unbounded as r — r, . This is
because H(r) approaches + 1 with nonzero slope in the former cases, and
with zero slope in the latter case. In fact, since / is Lipschitz and thus H
is C!, we have 1 — |H(r)| =const. |r —r,|? in the latter tangent case. Since

i

the u,=“u,” =g, '(— H(r)) from (5.13) satisfies
lu, | = [200=|H(r))]~"? as [H(r)| -1, (5.15)

we have that the integral of u, converges in the former cases as r — r;, and
diverges in the latter case.
Incidentally, since

H'(r)=h(r)— (n— 1)% (5.16)

at any r where H(r)= + 1, we see that at the point r, above, H'(r,)is >0
if and only if “A(r,) is greater than (n— 1) times the mean curvature of the
boundary at that point”. Thus our condition on H' (as stated in the
previous paragraph) for the boundedness or unbounded of the extremal
solution u as one approaches the boundary of the extremal set agrees with
that discovered by Giusti [ 7] for the general (nonradial) situation.

Finally, in the interval (r,,r,) we have what we shall call a “mush
region” where H(r)=1. In that case the derivative u? has the constant
value g, '(— 1) on this interval, which according to (5.8) is asymptotic to
—2B3g =23 as e — 0.

6. THE ELLIPTIC GROWTH FUNCTION w.

Consider the regularized solutions u®(x, t) of (3.2) (where we added
both the u, term and the & Au term to the equation). For our parabolic
regularization we let ¢ — 0 first, to get u(x, t); we then studied the behavior
of u(x, t) as t > oo. For our elliptic regularization we will instead let 1 —> o0
first, to get u®(x); we will then study the behavior of u“(x) as ¢ - 0.

Here u° is the solution of the regularized elliptic problem

. Du* .
div <(1+|DL;£|2)1/2+ & Du8> +h(x)=0 n Q,

u’=d(x) on 09Q.

(6.1)

The solution u° to this uniformly elliptic problem exists and is a classical
solution which is C** in the interior and assumes the desired boundary
values continuously, etc.
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If i(x) is “sufficiently small” then as ¢ — 0, u*(x) will converge to an ellip-
tic pseudosolution u(x) of the original Dirichlet problem (1.1). See
Giaquinta [5]. In more recent terminology (see Kawohl and Kutev [11]),
this pseudosolution u(x), the limit as ¢ — 0 of the regularized solution u*(x)
of (6.1), is called a “viscosity solution” of the Dirichlet problem (1.1). This
pseudosolution u(x) may detach from its desired boundary values. This
pseudosolution is a classical C** solution in the interior, thanks to the
given Lipschitz continuity of /(x). However, we point out that simple 1-D
examples show that (even when /A(x) is “sufficiently small”) u(x) may have
internal discontinuities if /A(x) is discontinuous. Consider for example
Q=(—1,1) with i(x)=—b on (—1,0), = +b on (0, 1) with b slightly
less than 2, and with the boundary values u( F 1) = F 10. These however,
are not the pathologies which interest us.

We are interested instead in the behavior of u* when “A(x) is too large
on Q7, i.e. when the inequalities (1.5) on subsets G fail to be satisfied. We
study then the behavior of the function

we=eu’ . (6.2)

Because the boundary values ¢®(x) of w® tend to zero, the terms in the
following considerations involving these boundary values would vanish in
the limit as ¢ — 0. Thus we simplify our arguments and our notation greatly
by assuming henceforth that @(x) is =0. Then w* is the solution of

Dw?
div < + Dw“'> Fh(x)=0 inQ,
(&2 + [Dw?)'2 (6.2)

w=0 on 0Q.
Thus w* is the unique minimizer in W, *(Q) of the functional

G.(u) = L (62 + | Dul?) " dx + L LZ |Dul? dx — jg hudx.  (6.3)

Note that as ¢ — 0 this functional G,(u) tends to a limiting form G(u) with
a |Du| in the first integrand. We show now that w® tends to the minimizer
w of that limiting functional.

THEOREM 6.1. As ¢ — 0, w'=eu’— w in Wy *(Q), where w is the unique
minimizer in Wy *(Q) of the functional

G(u)zjg |Dul dx + 1 L |Du|2dx—fg hut dx. (6.4)
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Proof. Note first that existence and uniqueness of the minimizer w is
standard.

Step 1. We show that G, (w®)— G(w) as ¢—0. Since /&’ + |&]>°<
e+ |&|, one has, by integrating with &= Dw,

G,.(w)<e|Q] +G(w). (6.5)

Moreover, since w is a minimizer of G, G, is monotone with respect to ¢
and w® is a minimizer of G,, we have

G(w) < GwW*) < G, (W*) <G, (w). (6.6)
From (6.5) and (6.6) we then obtain
Gw) <G (W) <e |2+ G(w). (6.7)

Step 2. We show that w* converges weakly to w in W, *(Q). First note
that G, is coercive on W, *(Q). That is, there exist positive constants ¢,
and ¢, such that

G,(0)=c, j \Dul?>dx—c, forall ueWi¥Q). (6.8)
Q
This is because, using the Poincaré inequality,
G,(u)=1 j |Dul? dx — j hu dx
Q Q

>3 1Dl 72— Al 2 ] 2

>3 | Dul| 72— cs Al 2 | Dull 2= 5 | Dull 72— ¢ (6.9)

This combined with (6.7), which establishes that G,(w?) is bounded with
respect to ¢, yields that w* is bounded in W, (). Thus, by weak compact-
ness, there exists a subsequence w® that converges weakly to a function v
in W, *(Q). By the lower semicontinuity of G, by the fact that G < G,,, and
by Step 1 we obtain

G(v) <lim inf G(w*)

g —0

<lim inf G, (w* )—hm G, (w’)=G(w)=min G. (6.10)

g -0 e—0

Thus v is a minimizer of G and, by uniqueness, v =w. This also implies by
a standard argument that the whole sequence w® weakly converges to w.
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Step 3. We claim that, with the notation

L O=E+EP+31E1% LeRy, (6.11)
we have
lmz)J (Df,(Dw), Dw®— Dw) dx =0. (6.12)

To this end let us define the vector valued function

g8 =

fona it ceo o13)

0 if ¢£=0.

Then, for almost every x in 2, Dw(x) exists and hence we have

lim Df,(Dw(x)) = lim

e—>0 e—0

{ Dw(x) .
Ve + [ Dw(x)|?

Then, since |Df,(Dw)| <1+ |Dw|, by the Lebesgue dominated convergence
theorem we obtain that

Dw(x)} =gi(Dw(x)), (6.14)

lim | Df.(Dw)—g(Dw)],2=0. (6.15)

e—>0

Therefore,

< [1Df(Dw) — g5(Dw) | 2+ | DW= Dw] 12

J (Df.(Dw), Dw* — Dw) dx
Q

+U (g:(Dw), Dw*—Dw) dx|.  (6.16)

Now by the weak convergence of w® to w in W} %(Q), by the fact that
|g5(Dw)| <1+ |Dw| is in L*(Q), by (6.15) and the boundedness of w* in
W, 2, we see that the right-hand side of (6.16) tends to zero as ¢— 0,
thereby yielding (6.12) as claimed.

Step 4. We show that w’ converges strongly to w in W, *(Q). By the
convexity of the function ,/&* + |£|* and the uniform convexity of 3 |£|* on
R” we obtain

Jo(&) 2 fo(E0) + (Df.(&o), € —&o) + 3 1€ =& | (6.17)
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Using this with &= Dw*(x) and &,= Dw(x) we have

Gg(wg)—Gs(w)zj {fg(Dwg)—fg(Dw)}dx—f h(w® —w) dx

Q Q

> J (Df.(Dw), Dw® — Dw) dx
Q

+1 L? |Dw* — Dw|? dx—fg h(w'—w)dx.  (6.18)

By the monotone convergence theorem G,(w) tends to G(w) as ¢ —> 0. By
Step 1, G,(w,) — G(w). Thus the left-hand side in (6.18) tends to zero.

By Step 3 the first integral on the right-hand side of (6.18) tends to zero.
The final term on the right side also tends to zero, by Step 2. Thus we can
conclude that the second integral on the right-hand side converges to zero,
as desired.

7. CONJECTURE ABOUT THE PARABOLIC MAXIMUM SET

We repeat from [ 14] our longstanding conjecture about the behavior of
u(x, t) on the set where it is growing fastest. Integrating (2.1a) by parts on
any subset G = Q we have

ju,dx=L g-vdHﬂ,lJrf h(x)dx>—P(G)+j h(x)dx, (7.1)

with equality if and only if the outward normal derivative du/0v is equal
—oo on all 0G. Thus, dividing by the measure of G,

L u,dx/|G| = —I](GCT)HIGJG h(x) dx = MR(G). (7.2)

Here MR(G) is the minimum rate at which this mean value of # on G could
be increasing, with equality if and only if du/0v= — oo on all 0G.

We believe that there exists a subset 2* on which u asymptotically grows
fastest, all at the same asymptotic rate A*. Hence, du/0v should be tending
to —oo on all 0Q2% Thus A* should equal the minimum rate function
MR(Q%). But for any other subset G, on which the mean value of u is
growing at a slower rate, we would have

MR(G) <mean value u, on G <1* = MR(Q%*). (7.3)
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Hence Q* should be a set which maximizes MR(G) over all subsets G, and
A* should be the value c* of this maximum; this result we have proved, for
the maximum value A* and maximum set Q* of the parabolic growth func-
tion v(x), as described in Section 8. Note that when /4(x)= constant, this
means that Q%* is a set which minimizes the ratio P(G)/|G| over all subsets
Gc Q.

A further part of our longstanding conjecture concerns the detailed
asymptotic shape of u(x, t) in Q*. We believe that 2* contains an open
subset Q** such that du/0v is tending to — oo on dQ** but Du is staying
bounded on compact subsets of 2**. (This subset might be the whole inte-
rior of Q%*, but radial examples involving a “mush” phenomenon in a band
surrounding Q** show that it may at times be a proper subset of the inte-
rior of the maximum set 2*.) Assume also that u, —» A* in Q**; then u(x, t)
in Q** should asymptotically satisfy the conditions

A(u) + (h(x)—A*)=~0 in Q**,

Du stays bounded on compact subsets of Q**, (7.4)
0

My~ o0 on 0Q**,

ov

Thus Q** should be an extremal set for the function 4(x) — A*, and in the
limit u(x, ¢) should take on the shape of the unique (to within an additive
constant) Giusti extremal solution V(x) (for h(x)— A*). This part of the
conjecture we have not been able to establish in the general (nonradial)
situation.

8. PROPERTIES OF THE PARABOLIC MAXIMUM SET

Now we use the variational formulation of Theorem 4.2 to study the
properties of the parabolic growth function v(x)=Ilim u(x, t)/t as t - oo.
There it was shown that v is the unique minimizer in BV(Q) n L*(Q) of the
functional

F(u)zjg |Dul + 1 L W dx — L hu dx. (8.1)

Let A* and Q%* denote the essential supremum and “maximum set” for the
function v on £, that is

A* =ess sup v, Q*= () Q, (8.2)

A<A*
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where 2, is the level set
Q,={xeQ:v(x)>1}. (8.3)
Notice that it is easy to see that
o]l o < 1Al (8.4)

because of the maximum principle applied to the regularized parabolic
solution wu®(x, t). That is, (¢ ||h| . +const.) and —(¢ |k ., +const.) are
supersolutions and subsolutions for the parabolic problem (3.2). As a
consequence, A* is finite; however this will also follow from the following
Lemma 8.2.

We first introduce some machinery. Let ¢, denote the “Ath cap function
of v”; that is

®,(x)=max{v(x)— 4,0} . (8.3)

LemMA 8.1. For every real number o with —1 <o < oo we have, since
ve BV(Q),

| 1pw+agi=] Del+a [ g, (8.6)

Proof. This follows from the coarea formula (see [8, p. 20]). We have
that

vtoap,=Yov (8.7)

where V is the increasing function

t for <A
‘“’)z{w(lm)(z—z) for ¢> . (88)

The coarea formula states that for any ue BV(Q)={ve BV(R") with
v(x) =0 outside 2}, we have

J, 1 =" ma)a. (8.9)

Thus, since the functions v and Y ov (where s is any piecewise smooth
increasing function with bounded derivative) have “shared level sets”, one
can see by a change of the 7 variable in the integral above that

[ipweor=[" v pe,)d. (8.10)

Q —
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This, in our case, gives the desired formula (8.6), because the above
becomes

Crp@ydi+ | 4w P@)di=[" 1-P@)di+a| P, dt
J . J J . J
:j | Du| +an 1Dy, |. (8.11)

We now prove that the maximum set 2* has positive measure. In fact

LeMMA 8.2. Suppose A* > 0. There exists an absolute constant C, depending
only on the dimension n, such that

1% = C(lhll..) . (8.12)

Remark. Before proceeding with the formal proof, we explain more
intuitively our reasoning. The derivative u, on Q* should be asymptotically
approaching A* and thus the total flux flowing out of Q* should be
approximately equal to the integral there of 4(x) — A*. However because u,
is smaller outside Q%* the outward normal derivative Ou/Ov should be
approaching — oo, and hence this total flux should be approaching the
perimeter P(Q2*). Thus we should have

P(Q¥) =j (h(x) — %) dx, (8.13)

Q*

see (8.19) for the formal proof. Hence, since 1* > 0 and by the isoperimetric
inequality (see Corollary 1.29 in [8]),

|Q*' 1" < ey P(Q%) <y 1], 127 (8.14)

Assuming that |Q*| >0 and cancelling, we would get the desired estimate
(8.12).

Proof. We will derive a uniform lower bound for the measure of each
of the level sets 2, with 0 <4 < A*, and hence for Q*. We now perturb our
minimizer v by the test function —¢, of (8.5). Because of (8.6) with
o« = —1, one has

02 Flo)—=Fv—p,)=| Do, +4 | (2~ (0—9,)") dx—| ho, dx

> [ IDg;l = e | 1ol dx. (8.15)
Q Q;
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Now we use the Holder inequality, followed by Sobolev inequality for
BV(R") functions with compact support (see Theorem 1.28 in [8]) (which
is equivalent to an isoperimetric inequality)

(n—1)/n
[ toda<iann ([ o)
Q; Q;
<1@,1""C [ Dg,I=12,1"C|[ Dp,|.  (816)
R” Q
Combining (8.15), (8.16) we get
J 12051 (1= 1l e 12,1 ©) <0 (8.17)

Since 0 < A < A*, the integral in (8.17) is positive. Cancelling, we get (8.12)
as desired.

THEOREM 8.3. (a) For every measurable subset G of 2 we have

J (h(x) — %) dx < P(G). (8.18)

G

(b) However, if 1* >0, then for the set Q* itself we have
f (h(x) —A*) dx = P(Q¥%). (8.19)
Q*

Proof of (a). We perturb the minimizer v by the test function agp where
@ is the characteristic function of G and where « is a tiny positive constant.
Then, by the subadditivity of the total variation on £,

fg |D(v+ap)| <L§ | Do +aj§ |Do|. (8.20)

Hence, since v is the minimizer,
Fv) < F(v+ x¢)

<[ 1Dl +a| Dol 41| (wrapyde— [ hv+ap)dx  (821)
Q Q Q Q
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Cancelling, dividing by the positive «, and letting « — 0 we obtain
osf D — j (h—1v) @ dx. (8.22)
a 2

Hence, since v(x) < A*, one obtains (8.18).

Proof of (b). Here one needs the usual inequality in (8.20) to hold
also for tiny negative a in order to reverse the inequality in (8.18). Let us
choose our ¢ to be ¢,, the “Ath top cap of v” as defined in (8.5) with 2 >0
chosen slightly smaller than A*. For this test function, thanks to (8.6), we
have equality in (8.20) for all a > — 1.

Thus (8.21) becomes

Fo)<Flv+oap,)

= [ 1Dol+o[ 1Dg, 141 [ (v+0p)?dx—| ho+ap,)dx
Q Q Q Q

(8.23)

Cancelling, dividing by negative o (which reverses the usual inequality) or
by a positive a (which leaves the inequality alone), and taking the limit as
a— 0~ or 0", one obtains the equality

ozjg 1D, | —jg (h—v) @, dx. (8.24)

Now one normalizes ¢, so that its maximum value is 1, i.e. (8.24) holds
with ¢, replaced by

_ P
A¥— A

v, (8.25)

As A— 1*, , converges pointwise by (8.2), and hence, by the dominated
convergence theorem, in L! to ¢,., the characteristic function of Q*.
Thus by the lower semicontinuity of total variation with respect to L!
convergence, plus (8.24),

P(2,)=] |Dpo-|<liminf | |Dy,|

— lim j (h—v)lhdxsz (h—v) dx. (8.26)

A— A* *
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This inequality, together with the opposite inequality of (8.18) for G = Q*,

gives the desired equality of (8.19).
Note that if 1* <0 then (8.18) gives that

j h(x) < P(G), (8.27)

G

for all measurable subsets G = Q. However, if 1* >0 then (8.19) reveals
that the subset G=Q%* (of positive measure by Lemma 8.2) satisfies the
opposite strict inequality

j h(x) = P(Q%) + A* |Q*| > P(Q*). (8.28)

Thus we have part (a) of the following Lemma. Part (b) of course follows
by considering instead A** =essinfv, Q** =the “minimum set” of v,
bottom caps of v, etc.

COROLLARY 8.4. (a) A*=esssup v is <0 if and only if
Lh dx<P(G) forall Gc@, (8.29)
(b) A**=essinfv is =0 if and only if
— P(G) <th dx  forall Ge@. (8.30)
(c) Thus vis =0 on Q if and only if
— P(G) <th<P(G) forall Ge@. (8.31)

Note that if A* >0 then (8.18) combined with (8.19) reveal that A* is the
smallest constant ¢ such that

f (h(x) —¢) dx < P(G), (8.32)

G

for all subsets G = Q of positive measure. Thus dividing by |G| one obtains
the geometrically identifiable value for A* which was conjectured in
Section 7.
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COROLLARY 8.5. If A* >0, then 1* =c*, where
c* =sup{ MR(G): G is a subset of Q of positive measure}, (8.33)

and where MR is the “minimum rate” of (7.2), i.e.

__PG) 1
MR(G)= == o8+ 1a | ) d (8.34)

In fact, the set Q* assumes this supremum.

Remark. 1In particular, when A(x) is a constant, 2* minimizes the ratio
P(G)/|G| over all subsets G of Q2 of positive measure. This is a variational
problem which has been studied previously, for example, see Keller [12]
and Gonzales, Massari and Tamanini [10].

Remark. Note that (8.18) and (8.19) establish that, if 1* >0, then the
maximum set Q* is almost a Giusti extremal set for the function /(x) — A*.
We have the desired equality in (8.19) for the set Q* itself; and all that is
lacking is a strict inequality in (8.18) for all proper subsets G of Q%*.

We point out however that strict inequality in (8.18) is not necessarily
true, even for proper subsets of Q* See for example the “mush” region
r, <r<r, surrounding the Giusti extremal region 0 <r<r,; discussed in
the final paragraph of Section 5.

9. PROPERTIES OF THE ELLIPTIC MAXIMUM SET

We use the variational formulation of Theorem 6.1 to study the proper-
ties of the elliptic growth function w(x)=lim eu®(x) as ¢ — 0. It was shown
that w is the unique minimizer in W, *(Q) of the functional

Guy= | 1Duldv+3 [ 1Dufdx— | hudw. (9.1)

Let 1, @, and Q, denote the essential supremum, “maximum set”, and
Ath level set of w, in analogy with (8.2) and (8.3). We will also use the
“cap function” ¢, for w analogous to (8.5) and its properties given in
Lemma 8.1. That is, ¢,(x) =max{w(x)—4, 0} and, for every real number
o with —1 <a < oo, we have

j |D(w+a%)|dx=j |Du|dx+af 1D, | dx. (9.2)
Q Q Q
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Notice that it is easy to get bounds on the L* norm of w in terms of the
L* norm of & because of maximum principle arguments applied to the
regularized solutions u“(x) of (6.1). Let 2 be contained in the ball B of
radius R about the origin. Then let z(x) be the solution of the simple
radially symmetric Dirichlet problem

edz+||h|,=0 inB

z=0 on 0B. (9-3)

The solution is z(x)=(R*—|x|?) || .. /(2ne). By the maximum principle
applied in Q one has u®(x) <z(x) in Q. Thus eu® and its L? limit W are L~
bounded as follows

lewll,. and [wll., are <(R*2n)|h]... (94)

However an L® bound on w(x) will also follow directly from the varia-
tional formulation (9.1) as a consequence of the following lemma.

We point out here that there are regularity theorems for variational
problems of the form (9.1). Let w be a minimizer in Wy #(2) of a func-
tional of the form

F(u) =j F(x, u, Du) dx (9.5)

Q
where there exist positive constants ¢, ¢,, ¢5, ¢4, and p; > 1 such that
cEl7 =, <F(x,5,8)<cs [E]7 +cy (9.6)

for every x in Q, every s in R with |s| < ||w]| .., and every & in R". (For our
purposes p =2.) Then it is established in Theorem 7.6 and Theorem 7.8 of
Giusti [9] that there exists a Holder coefficient, 0 <a < 1, such that w is
in C**(Q). Here F is continuous with respect to (s, &) but it is not required
that F be differentiable with respect to its arguments (or even that F be
convex with respect to &!).

This result applies to our case (9.1) and hence our w is C** Q) and
assumes its zero boundary values continuously.

LEMMA 9.1.  Suppose > 0. There exists an absolute constant C, depending
only on the dimension n, such that

1] = C(lIh] ) " (9.7)

Proof.  Our proof is similar to that of the parabolic case in Lemma 8.2.
We will actually establish (9.7) for each of the Q,, with 0 <A< 4, and
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hence for @ which is the intersection of these level sets. Because of the con-
tinuity of w on Q, these level sets Q, are open, 2, c= Q for each A >0, and
Q, ccQ, for 0<i, <, </

We now perturb our w by the test function —¢,. Because of (9.2) with
o= —1, one has

02 F(w)—Fw—0,)=| [Dg,ldx+}[ |Dp,Pdx—| hp, dx

Q, Q Q)
> [ 1Dg,ldx—hl.. [ lp.ldx. (9.8)
Q; Q)

Note that ¢, e Wy *(2,). Hence by the Holder inequality, followed by a
standard Sobolev inequality in W, '(£2,), see [6], one has

(n—1)/n
[ tedav<io(] orena)” <l ipplds 99
Q; Q; Q)

where C is an absolute constant. Combining (9.8) and (9.9) and using the
important fact that Dg, #0, one has the inequality (9.7) for each |Q,], as
claimed.

We now prove a theorem for the elliptic case similar to the Theorem 8.3
of the parabolic case. However we have to qualify our hypotheses for part
(a) a bit by assuming that @ has a nonempty interior (which seems very
probable because of Lemma 9.1, but which we are as yet unable to prove).

THEOREM 9.2. (a) If 2> 0, then for the set @ we have
j h(x) dx = P(3). (9.10)
o]

(b)  Assume that Q has a nonempty interior Q™. If G is any compactly
contained measurable subset of Q™, then

j h(x) dx < P(G). (9.11)

G

Proof of (a). As in the proof of Theorem 8.4b we perturb w by the top
cap ¢, of w, with 4> 0 chosen slightly smaller than 4. By (9.2) with tiny
positive or negative « we have

0=G(w)—G(w+ap)

=<xj |D¢A|dx+%j (|Dw|2—|Dw+aD¢|2)dx—aj h,dx.  (9.12)
Q Q Q
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Cancelling, dividing by a negative or positive a, and taking the limit as
o — 0, one obtains

0= j 1D, dx+j |D¢;~|2dx—j he , dx. (9.13)
Q Q Q
Thus, since the second term is positive,

j |D(pi|dx<f h , dx. (9.14)
Q Q

Once again, one normalizes ¢, to y, with maximum value 1 as in (8.25).
Then as 4 — 4, Y, tends to the characteristic function of Q in L', hence by
lower semicontinuity, one has (9.10) as in (8.26).

Proof of (b). Let ¢ be any test function in C;(Q™). Then, for
positive a,

Gw)<G(w+ap)
<G(u)+oc<jg | Do dx+L2Dw-d(p dx—jgh(p dx)—l—oczj |Do|? dx.
(9.15)

Dividing by « and letting « - 0* one has
0< j \Dg| dx + j Dw- Do dx—j h dx. (9.16)
Q Q Q

However, since w is constant a.e. in &, Dvis =0 a.e. in Q, a standard result
about functions in Sobolev space. Thus

j h(p<j |Dp|  for every ¢e CE(Q™). (9.17)
Q Q

However, for any Caccioppoli subset G in R” one has that

e—>0

P(G) = lim jR” ID(Y o), | dx (9.18)

where (), denotes the standard e-mollification of the characeristic func-
tion Y, of G. See Giusti [8, Remark 1.16]. Thus for G compactly con-
tained in @™, this (), is a valid test function in (9.16). As ¢ — 0, we
find (9.11). Furthermore if G is measurable but not Caccioppoli (i.e.
P(G)= 4+ o0) then (9.11) is trivially satisfied. This completes the proof.
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The flux in the elliptically regularized equation of (6.1) is

D(ew?)

W-ﬁ-l)((‘:us). (9.19)

We proved in Theorem 6.1 that as ¢ — 0, D(eu®) —» Dw in L*(Q, R"). Thus
at almost every point where Dw # 0 we have the limiting flux

D
<|D‘;| +Dw>, (9.20)

We suspect that for most 4, 0 </ <7, we should have Dw # 0 everywhere
on 012 ,, moreover this should be in the direction of —v, where v is the unit
outward normal vector. Thus for these 4 we would have

Dw
hdx= Dw |- vdH
JQ/: ~ LQ/: <|DW| * W> ' nt

=j 1+|Dw|dHn,1=P(Qi)+j \Dw| dH,_,. (921)
902,

082,

Thus we suspect that for many of these sets 2, we have a strict inequality
j hdx> P(Q,). (9.22)
Q;

However, because it is difficult to say a priori for which A one has Dv#0
everywhere on 0Q,, we instead will find an integral version of (9.22).

THEOREM 9.3.  Suppose 7>0. Then for every pair Ay, A, with 0 <), <
Ay < A, let @ be the “horizontal slice” of w, ie.

P(x) = @;,(x) = @,(X). (9.23)
Then one has the equality
22
j {P(.QA) —j h(x) dx} dj = —f |Do|? dx. (9.24)
A1 Q; Q

Since the right-hand side of (9.24) is strictly negative, one must have that the
strict inequality (9.22) is satisfied on a dense subset of 1’s of positive measure.

Proof. Once again we have, analogous to (8.6) and (9.2), that

j |D(w+ocgo)|=f |Dw|+<x[ |Do| for —1<a<oo. (9.25)
Q Q Q
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The proof is as in Lemma 8.1, except that now we use the Lipschitz com-
posite function ow where the piecewise linear y(A) has y'(4)=1 for
A<iy, =1+4a for 1y<l<4i,, =1 for 1> 4,. Rather than the coarea
formula (8.10), we use that D(yyow) =1/'(w)Dw in Sobolev space.

Thus we perturb w by ag with a tiny positive or negative a. We have

Gw)<Gw+agp)

=G(w)+a J |Do| + f Dw - Do dx—f he dx +a2j |Do|? dx.
e ) ) o
(9.26)

Dividing by the positive or negative «, letting o — 0, one finds

ozjg |D¢|f£2h¢ arx+L2 Do) dx. (9.27)

Now as in (8.9) one has the coarea formula for ¢ (= the “slice” of the
function we W *(Q))

L Do) = j” P(Q,) di. (9.28)

A2

Moreover, one easily gets a similar formula in terms of level sets for the
second integral in (9.27). One finds that

he dx = h(x) dx ) dA. (9.29)
[ oas=]"(] noas)

A

The proof involves working with the subgraph of the function ¢(x) in
R"*!'. That is, for xe Q and 1€ R' let

1 if 0<i—4,<e¢(x)
(% 4)= {0 otherwise. (9-30)
Then, using Fubini,
j h(x) @ dxzf <h < )d/1>> dx
- j <f h(x) 7(x, 2) dx> d.
21
- f <f h(x > (9.31)

From (9.27)—(9.29) one obtains (9.24) as desired.
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10. THE PARABOLIC CASE ON A 2-D RECTANGLE
WITH CONSTANT #h

In this case, 2 = a rectangle in 2-D with a positive constant /4, one can
actually guess the formula for the parabolic growth function and then
prove that our guessed function v(x) is the unique minimizer of the varia-
tional problem given in Theorem 4.2.

Recall that the problem was to find the unique minimizer in BV(Q2) n L*(Q)
of the functional

Flu)= L} |Dul| + % L) u? a’x—fQ hu dx. (10.1)

Our guessed function v will be piecewise C*(Q) and it will be sufficient
to show that

Fu)<Flv+9) for all C*(Q) test functions ¢. (10.2)

Also, for such functions our total variation on Q becomes, by (2.4),

| 1D+ =] D@+ dx+| Jo+eldH, . (103)
Q Q 00

Note that by convexity one has
|D(v+e@)| = |Dv| +eg(Dv) - Do, (10.4)

for all real ¢, where g(&) denotes any “subderivative” of the function || on
R”, ie.

¢/1<l ift ¢#0
g(&)= . . (10.5)
any vector g with |g| <1 if ¢£=0.
Likewise,
|v+ep| = |v| + ¢ “sign v” @, (10.6)

for all real &, where “sign #” dentoes any subderivative of the function ||
on R!, ie.

sign 7 if n#0

10.7
any number § with |f] <1 if n=0. ( )

“Sign ]7” — {
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Thus, integrating (10.4) and (10.6) over £, one sees that for (10.2) to occur
it suffices that v satisfy the variational condition

1stvarzj g(Dv)- D¢ dx+J “sign v” @ dH, _,
Q

o2

+L(v—h)¢dx=o forall @eCQ),  (10.8)

where g(&) and “sign v” are as in (10.5) and (10.7).
Therefore, in any open subset of  where Dv # 0 and where v is C?, after
integration by parts, one sees that v must satisfy the equation

Dv
div( — h—v)=0. 10.9
1V<|DU|>+( v) (10.9)
Likewise in any open subset of £ where v is = a constant, and hence

Dv=0, it would be sufficient to find a C' vector field g(x), with |g| <1,
satisfying the equation

div(g(x)) + (h—v) =0, (10.10)

where g(x) also satisfies certain “matching conditions” at the boundary of
this open set.

From (10.9), since the div(Dv/|Dv|) term is known to be the negative of
the curvature of the level set 2, of v through each point (see (10.16) later),
one sees that the “free part” of the boundary of each level set 2, must have
constant curvature =4 — A, and thus in 2-D must be arcs of circles of this
curvature. Further considerations involving the integral over 0Q term in
(10.8) will show that these free arcs should also meet the boundary 0Q
tangentially.

Thus we guess that our desired v(x) will have level curves as shown in
Figure 5b; here because of symmetry we show only the lower left quarter
of the rectangle €. In region A we have v=0. In region B we have Dv #0
and the J-th level curve is the tangent circle of curvature c¢(A)=h— A
Finally, at a certain value A*, = the maximum of v, these level curves
cease and we have a plateau with v= 4% in the region C. Clearly this func-
tion v is piecewise C*(Q) and patches together continuously (but not in C'
fashion) at the interfaces between the open sets 4, B, and C.

Finally, we need to discover what is the curvature y of the free boundary
of the maximum set C(=Q%*). According to Section 7 and Corollary 8.5,
Q* should be a set which minimizes the ratio P(G)/|G| over all subsets of
Q of positive measure. This is a classical problem, studied for example by
[10] and [12]. The solution exists and must be a set of the form C shown
in Figure 5b, that is, its free boundary is a tangential circle of a certain cur-
vature p. Thus, writing P(C)/|C| in terms of p, one has an elementary
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minimum problem for a function of the single variable y. Solving this mini-
mum problem, see formula (10.17) below for the solution, one has our
desired curvature y for the free boundary of the region C = Q*. Notice that
y, and hence the region C, was determined geometrically, completely inde-
pendently of the particular constant /.

Thus, if 4 is sufficiently large that & —y is strictly positive, our guessed
v(x) will have the positive maximum value 4* =/ — y, and the region B will
be nonempty. Otherwise our guessed v will be =0 on all Q.

In the region B we already have the flux g(Dv) = Dv/|Dv| constructed so
as to satisfy (10.9). Now we need to find a suitable “flux” vector field g(x)
satisfying (10.10) in the regions 4 and C.

In the region C we get the desired flux vector field from the Giusti
extremal solution V(x) for #— A* in this region. Notice that because C is
the unique subset which minimizes P(G)/|G| over all subsets, we have

j (h— %) dx < P(G) (10.11)

for all proper subsets G = C, with equality for G= C itself. Thus C is an
extremal set for the function 72— A* and hence there exists the (unique
to within an additive constant) Giusti extremal solution U(x) for the
(constant) function 2 — A*. Thus in the region C let g(x) be the flux from
that extremal solution, i.e.

g(x)=(1+DU(x))~ " DU(x). (10.12)
Thus, as desired in (10.10), one has
divg+(h—A4*)=0 in C. (10.13)
Moreover

g-v=—1 on 0C. (10.14)

This will be seen to be necessary since the “sign v” in (10.7) is =1 on
0CN0Q.

Now consider the region A where v(x)=0. Here we have greater
freedom in choosing a subderivative g(x). We need |g(x)] <1 and by
(10.10) we need the equation

div g+ (h—0) =0. (10.15)

However, because v=0 on 04 we will not require a condition such as
(10.14) on 04 n 0R2. Here we apply the useful fact that for a smooth unit
vector field g(x) its divergence is given by

—div g(x) =k(x), (10.16)
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where k(x) denotes the curvature of the orthogonal curve (in 2-D, or sur-
face in n-D) to the vector field through the point x. Thus here let us draw
the family of circular arcs obtained by translating the interface arc between
regions A and B (of curvature 27 —0) in the —135° direction. Then let g(x)
be the field of unit normals to these circular arcs. Since each of these arcs
is orthogonal to g(x) and is of curvature k(x)=h, we have from (10.16)
that (10.15) is satisfied in the region A.

We conclude by multiplying the equations (10.9) in B, (10.13) in C, and
(10.15) in A by our C*(Q) test function ¢, integrating by parts on 4, B,
and C separately and adding. The result is that the first variation of (10.8)
equals an integral of zero on Q, plus an integral involving the fluxes g(Dv)
on the interfaces between 4 and B and between B and C, plus an integral
on 0 of (g-v+ “sign v”)p. Now, the interface integrals are zero because
the fluxes g(Dv) patch together continuously there. The integral on 0Q2
is zero because on 0CNdQR and 00BN 0L we have v>0, hence sign
v=+1 but g-v=—1, and because on 04 N0 our v=0 and hence our
“sign v” is allowed to be any number <1 in magnitude, which is true for
our g -v since g is a unit vector field there. Thus the first variation in (10.8)
is zero, which was seen to be sufficient for v to be the desired (unique)
minimizer.

The above proof was for the case that sz — y is strictly positive, and then
A*=h—y If h—y=0 then we guess v=0 and a similar proof holds, but
with the set B collapsed to the empty set. If 7 —y <0 however, then the
strict inequalities (1.5a) and (1.5b) hold, hence there exists by the results of
Giaquinta [5], as mentioned following (1.5), a pseudosolution u to the
stationary problem (1.1). The corresponding flux g(x)=(1+ |Du|?) "> Du
can then be used to show that the function v =0 satisfies the variational
equation (10.8). Thus we can conclude that A* is positive if and only if
h— v is positive.

Alternatively, the result of the previous paragraph, that v=0if 27—y <0,
follows directly from Corollary 8.4(c), since y is the minimum of P(G)/|G]|.

A straightforward 1-D minimization shows that the desired value of y
(that curvature for the circular arcs of C for which the minimum value of
P(G)/|G| occurs) is given by

a+b+./(a—b)*+mab
y:

10.17
2ab ( )

where 2a and 2b are the side lengths of our rectangle.
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Recall that we showed that 1*, the maximum value of our parabolic
growth function v(x) for this case of constant s on the rectangle, is given
by

A* =max{h—y, 0} (10.18)

where y is given by (10.17).

Note that the radius of curvature 1/y in (10.17) is strictly less than both
a and b, and thus the minimizing set C for the ratio P(G)/|G| always has
nontrivial flat boundary portions on each end of the rectangle. Moreover,
let a=1 and let b vary from 1 to oo; the resulting y then satisfies

2
y:izl.8862269, when a=1 and b=1,

(10.19)
y—1 when a=1 and b— oo.

This critical value y for & thus tends to the 1-D critical value (i.e. 1) as
b— 0.

We refer to the next section for numerical computations and graphs of
this v(x) function on the rectangle.

The results above, establishing the specific formula for the asymptotic
behavior of u(x, t)/t in the case of a constant » on the square 2, were
recently established by Kawohl and Kutev [11] by using the maximum
principle with lower and upper comparison functions.

11. NUMERICAL EXAMPLES IN 2-D

We show the results of some numerical computations in 2-D by Carlson
and Miller using a slight modification of their general purpose gradient-
weighted moving finite element code GWMFE2DS, see [2], [16].

For our parabolic results we solve the regularized problem (3.2), i.c.

u,=A(u)+h(x)+e¢ Adu inQ for >0
u(x,t)=0 on 02 for >0 (11.1)
u(x,0)=0 on Q,

with an extremely tiny &, where 2 is a 2-D rectangle. For our elliptic results
we solve the same problem with a considerably larger (but still quite small)
&, but we solve out to steady state and for numerical reasons we use a quite
large “internodal viscosity” in our GWMFE computations.
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Figures 3-6 show the solution u(x, ), at the time ¢ = 30, of the parabolic
problem (11.1) with the exceedingly tiny ¢=10 "7 on the rectangle Q=
(—=2,2)x(—1,1). By symmetry only the quarter of the solution on
(—2,0)x(—1,0) is computed and displayed. Here % is constant with the
value h=7y+ 1.0, where

3+ /1+2
y =¥= 1.42468443 (11.2)

is that critical value of 4 above which there exists no steady state, as given
in (10.17).

)

Fi1G. 3. 40 slices of the GWMFE solution at ¢ =30 of u, = A(u) + 2.42468 on the rectangle
(—2,2)x(—1, 1) with zero initial and boundary data. Solution greatly shortened vertically by
the graphics; height at center is 30.76. This graph essentially shows the shape of the parabolic
growth function v(x)=1im ,_,  u(x, t)/t. Evident are the cap region C = Q*, the corner region
A, the transition region B between them, and the vertical sides of the graph over much of 0Q.
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FiG. 4. The 32 %32 GWMFE grid corresponding to Fig. 3.

Figure 3 shows 40 slices, sheared by (—50%,+50%) in (x,, x,), of the
solution u(x, t), which has a height of 30.76 at the center (0, 0). Clearly
visible are the cap region C=Q%* on which the solution rises fastest, the
corner region 4 on which the solution reaches a bounded steady-state, the
transition region B joining the two, and the vertical sides on much of 0Q
where the solution has “detached” from its zero boundary values. Figure 4
shows the corresponding 32 x 32 GWMFE grid for this solution. Notice
that the grid points have concentrated at the edge of the region C where
the “elliptic cap” of the solution goes vertical. Figures 5a and 5b show the
contours of the solution with contour intervals of 0.2 and 2 respectively,
adjusted vertically so that one contour passes through the maximum value
at the center. Figure 5a thus shows the shape of the “elliptic cap” in region
C=Q%*. Comparison of the solution contours at =10, 20, 30 shows that
the shape of this cap remains unchanged. Figure 6 shows the grid of the



REGULARIZATION FOR MEAN CURVATURE 43
a & —L

° l

F1G. 5. (a) The contours corresponding to Fig. 3, with contour interval 2. These contours,
adjusted vertically to hit the center value at (0, 0), show the shape of the “elliptic cap” which
quickly stabilizes on Q*. Evident are the cap region C=Q%*. The corner region 4 and the
transition region B between them. (b) The same with contour interval 2.

solution at the much earlier time ¢ =2. The height of solution at the center
is 2.713. Clearly visible are the “cap” (in fact the shape of this cap had
nearly stabilized by this early time) and the vertical sides on much of 0Q.
These computations confirm that the asymptotic speed at which this cap

is rising is given by
c*=h—y=1, (11.3)

as proved in Section 10. Here the height at the center at times ¢=2,
10, 20, 30 is 2.713, 10.80, 20.78, 30.76. Hence the average speeds on these
time intervals are 1.011, 0.998, 0.998, in close agreement with (11.3).
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Fi1G. 6. Grid of the solution at #=2. Height at the center is 2.713. This shows the shape
of the “elliptic cap” which has already nearly stabilized on Q* at this early time.

Since the vertical scale in Figures 3—4 is normalized such that the graph
in the cap and corner regions are essentially “flat”, these figures show the
shape of the parabolic growth function v(x)=1im,_,  u(x, t)/t.

Figure 7 instead shows the elliptic solution u°(x) (at steady-state at
t=5000) on the same rectangle Q=(—2,2)x(—1,1) with h=2 and
£=10.0005. Again, because of the normalization of the vertical scale, this
figure essentially shows the shape of the elliptic growth function w(x)=
lim, _, , eu’(x). The height of the solution at the center is 162.1. The height
of the solution with ¢ =0.001 was 81.60; thus we see that the value of w(x)
at the center is approximately 0.081. Clearly visible is the cap region Q on
which w(x) assumes its maximum. Note that & (contrary to Q%) is com-
pactly contained in € and that the solution never detaches from its zero
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FiG. 7. 40 slices of the elliptic solution of A(u)+eé&du+2=0 with ¢=0.0005 on the
rectangle (—2,2)x(—1, 1) with zero boundary values. Height at center is 162.1. This graph
essentially shows the shape of the elliptic growth function w(x)=Ilim, _, , eu’(x). Evident are
the cap region @ (compactly contained in ), the fact that w(x) does not detach from its
boundary values, and the fact that w(x) (unlike v(x)) seems to merge into its maximum
plateau in C' fashion.

boundary values on 0. Note also that w(x) seems to be identically zero
in a small region near the corner (—1,1).

Finally in Figures 8 and 9 we consider the parabolic problem on the
square Q =(—1,1)x(—1, 1) with a noncontstant /(x) and with ¢ =10"".
We choose h(x) of the radial form

h(x)=he

f—2 X1 (11.4)

X

Note that this function is nonnegative on . With s, =10 or 20 the struc-
ture of u(x, )/t as t — oo is largely uninteresting. It seems to have only
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FI1G. 8. 40 slices of the solution at £ =10 of u, = A(u) + h(x), with i(x) =30(|x|*— 0.5 |x|°),
with zero initial and boundary data. Maximum height is 80.49. This essentially shows the
shape of the parabolic growth function v(x). Evident are four plateaus.

7%/5%

a single central plateau corresponding to the maximum set Q*, plus a zero
valued plateau near the corner (—1,—1). For A, =30 however the solution
develops far more interesting structure.

Shown in Figures 8 and 9 is the solution at time ¢ = 10 with A, = 30. The
“slices” of the solution in Figure 8, sheared by (30%, —50%) in (x,, x,),
clearly show that the u(x, t)/t has developed four plateau regions. The
maximum plateau on Q* has the maximum height of u = 80.49 at this time,
the minimum plateau has the height 43.8 at the center, the intermediate
plateau has a height of =69, and there is also a ~ 0 value plateau near the
corner (—1,1). The contours of Figure 9, with contour interval =1, also
clearly reveal these four plateaus plus the transition regions between

them.
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F1G. 9. The contours corresponding to Fig. 8, with contour interval 1.

12. STUDIES WITH h(x, u)

In all our results of the previous sections the function # has depended on
x only. In this section we present some numerical examples, using a slightly
modified version of the 1D GWMFE code of Carlson and Miller [2],
[16], which indicate that some interesting new phenomenae occur when /
is allowed to depend also on u. Some results on this case have been given
by Chen [3]. See also Ural’tseva [ 18] for & depending on Du.

We consider h(u) in the three forms Au, Atanhu, and Au(1— (u/B))?),
where 4 and f are positive constants. In all cases we consider the parabolic
problem (3.1) on a 1-D interval with zero boundary values but nonzero
initial values. Note that u(x) =0 is a steady state solution in all three cases
since /7(0)=0.
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One general observation for the first two cases is that for sufficiently
large 4 and u, the solution does not collapse to zero as t — oo but instead
develops plateaus and caps similar to those seen in previous sections.
Moreover the asymptotic width of these caps seems to depend heavily on
the initial data u,. This is in contrast to the previous sections where the
maximum set 2% depends only on the function /(x).

Case 1. Let h(u)=Au, with A>0, on the interval Q=(—1,1). Note
that if 42 were a constant then the critical value of 4 would be 4* =1. For
smaller / the solution would collapse to zero as ¢ — oo; for larger & the
solution would continue to grow. Here, with 4 = Au, we seem to find that
no matter how small the A, we can get solutions which continue to grow
by making the initial values sufficiently large.

t=3

FiG. 10. The parabolic solution at t=0, .5, 1, ..., 3 of u,= A(u) + u on (—1, 1). Evident are
the three caps joined by steep transition zones.
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In Figure 10 we show the solution u(x, ¢) with A=1 and with piecewise
linear uy(x) which has plateaus of height 200, 100, 150 on the intervals
(—0.5, —0.1), (0,0.2), (0.69,0.7). Because these initial values are suf-
ficiently large this solution continues to grow. The solution forms three
“caps”, whose asymptotic shape is shown in Figure 11. These are joined by
extremely steep transition zones on which the curvature A(u) is nearly zero
and which therefore evolve essentially according to the ODE u, =u. Once
these steep transitions have been established they seem to limit the outward
expansion of the caps; the first two caps expand hardly at all; the third
cap (being initially so narrow) expands rapidly at first but soon also
approaches an asymptotic width. Were our initial plateaus even higher (say
ten times higher) then the third cap would expand even less. Thus the final
“shape” of the growing solution u(x, ¢), and the asymptotic widths of its
“caps”, depends heavily upon the initial function u,(x). It might seem that

To24.90

—_3923.90 h
392290 ' ' } 4 1 ) ! : )
-1.00 “Tooo | ! ' T

F1G. 11. The shape of the three caps of Fig. 10 at the final time 7= 3. The cap on the left
has maximum value 3923.9. The other two caps, of heights 2166.2 and 2669.1 have been
adjusted vertically in the figure.
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the second cap, since the A(u) term is positive, might eventually overtake
the first and third caps, but this is not the case at all since the transition
zones are stretching vertically at such an exponential rate.

Note that the caps in Figure 11 are nearly circular since Au (with A=1)
does not vary greatly across each cap. With much larger A, however, (say
A=100) the caps forming from these initial values u,(x) develop decidedly
noncircular shapes.

Case 2. Let h(u)=Atanh u, with >0 on the interval (0,1). For small
|u| this resembles the previous case, but for large |u| this /i(u) saturates at
the two constant values + /.

Shown in Figure 12 is the solution u(x, ¢) with 2 =10 and with piecewise
linear uy(x) which has two plateaus of heights —2,4 on the intervals
(0.1,0.3), (0.5,0.9). In this case, for |u| >>1 the h(u) saturates with values

t=2
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FiG. 12. The parabolic solution at t=0, 0.5, 1, 1.5, 2 of u,= A(u) + 10 tanh u on (0, 1).
Evident are the two caps which expand to fill the whole interval (0, 1).
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~ + / and hence the transition zones between the developing caps do not
stretch vertically at a huge rate. Thus the caps are able to expand in width
and, asymptotically as ¢ — oo, they fill the entire interval (0,1). Note that
the respective widths of these two caps depend strongly on the initial values
uy(x). Because h(u) is nearly F 4 in these two caps, each cap asymptotically
evolves with a circular shape, separately in each subinterval as in the case
of constant /.

Case 3. Let h(u)=/4-u(l—(u/f)*) with A, f>0, on the interval
(—1, 1). Here A(u) changes sign for |u| > f; hence the solution will not con-
tinue growing without bound. Note that the linearization of this equation
about the trivial solution u(x, t)=0 is the equation u,=u, + lu. Hence
the trivial solution can be expected to be unstable if 1> 4,, where 1, =
(7/2)*~2.47 is the first eigenvalue of the Laplacian on this interval.

Figure 13 shows the evolving solution with f=1, A=6, and piecewise
linear uy(x) with plateaus of height F1 on the slightly nonsymmetric inter-
vals (—0.6, —0.3) and (0.35, 0.65). Shown is the output at times #=0,
0.1661, 2.569, 1936.9, 2049.8, 2050.73, 2051.05, 2051.47, 2 x 10°. The solu-
tion very quickly, certainly by ¢ =2.569, forms two caps of slightly differing
widths. These caps are extremely near to steady state, with a nearly vertical
interface between the two. We believe that in this 1-D situation the exact
solution would evolve to a steady state consisting of two caps with vertical
sides, much as shown at = 2.569.

However, in these calculations the interface between the caps very slowly
migrates to the right as shown at the times ¢ = 1936, 2049, 2050. Finally at
the time 7~ 2051 the positive cap becomes too narrow to sustain itself and
collapses suddenly, as shown at times # =2051.05 and 2051.47. The solution
then very quickly develops a stable steady state negative cap spanning the
whole (—1,1) interval, as shown at t =2 x 10°. It is our belief that this slow
migration of the interface is an artifact of the nonzero diffusion coefficient
which we are forced to use in our computations. We actually compute the
solution u“(x, t) of the slightly regularized equation (3.2) with a very tiny
e (6=10"8 here and in Case 2, but ¢=0 in Case 1). We believe that the
actual pseudosolution of (3.1), the limit of u*(x, t) as ¢ » 0, would exhibit
no migration of the interface. This is because the computed migration gets
slower and slower as ¢ is decreased. For example the collapse times for the
positive cap occur at ¢~ 699 with e=10 "7, at 1 ~2051 with ¢=10"8, and
at 1~ 6488 with ¢=10 ",

Note that a larger 4, say A=10, leads to positive and negative caps
which show an even slower migration.

If one changes to antisymmetric initial values uy(x) (i.e. change the
(0.35, 0.65) to (0.3,0.6)) then with A =6 the solution stays antisymmetric
and forms two steady-state caps of equal widths. However, with 1=35 two
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Troo
—1-000
‘ t=.166! ’
4 N\ — 1
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F1G. 13. The parabolic solution of u, = A(u) + eu,, + 6u(1 —u*) with a very tiny =105,
Output at times =0, 0.1661, 2.569, 1936.9, 2049.8, 2050.73, 2051.05, 2051.47, 2 x 10°. Solu-
tion quickly forms a near steady state with two caps and nearly vertical sides, as at  =2.569.
Gradual migration of the interface, leading to collapse of the positive cap and formation of
a single negative gap, is believed to be due to the nonzero e.

equal-width caps quickly form but then collapse to approximately zero
amplitude. This solution then, over a long time, becomes unstable and
grows into a single stable cap (of positive or negative amplitude depending
on details of the numerics) spanning the whole (—1,1) interval.

REFERENCES

1. H. Brézis, “Operateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert,” North-Holland Mathematics Studies, No. 5, North-Holland,
Amsterdam/London; American Elsevier, New York, 1973.



REGULARIZATION FOR MEAN CURVATURE 53

. N. Carlson and K. Miller, Design and application of a gradient weighted moving finite
element code, Part I, in 1-D, and Part II, in 2-D, SIAM J. Sci. Comput., to appear.

. C. N. Chen, Infinite time blow-up of solutions to a nonlinear parabolic problem, preprint,
Oct. 1993, Department of Math., Indiana Univ.

. C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differential Equations
36 (1980), 139-172.

. M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature,
Manuscripta Math. 12 (1974), 73-86.

. D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order,”
(Grund. Math. Wis.) No. 224, Springer-Verlag, New York/Berlin, 1977.

. E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and
uniqueness without boundary conditions, Invent. Math. 46 (1978), 111-137.

. E. Giusti, “Minimal surfaces and functions of bounded variation,” Monographs in Math.,
Vol. 80, Birkhéduser, Boston/Basel/Stuttgart, 1984.

. E. Giusti, Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana,
Bologna 1994.

. E. Gonzales, U. Massari, and I. Tamanini, On the regularity of boundaries of sets
minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25-37.

. B. Kawohl and N. Kutev, Global behaviour of solutions to a parabolic mean curvature
equation, Differential Integral Equations 8 (1995), 1923-1946.

. J. B. Keller, Plate failure under pressure, SIAM Rev. 22 (1980), 227-228.

. A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface
problem, J. Differential Equations 30 (1978), 340-364.

. P. Marcellini and K. Miller, Asymptotic growth for the parabolic equation of prescribed
mean curvature, J. Differential Equations 51 (1984), 326-358.

. P. Marcellini and K. Miller, Regularization for prescribed mean curvature and for motion
by mean curvature, Curvature flows and related topics (Levico, 1994), Gakuto Internat.
Ser. Math. Sci. Appl. 5, Gakkotosho, Tokyo, 1995, 145-158.

. K. Miller, A geometrical-mechanical interpretation of gradient-weighted Moving Finite
Elements, SIAM J. Numer. Anal. 34 (1997), 67-90.

. A. Pazy, On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert
space, J. Functional Analysis 27 (1978), 292-307.

. N. Ural'tseva, Surfaces with inclination-dependent mean curvature, Algebra i Analiz 6
(1994), 231-241. English translation in Stz. Petersburg Math. J. 6 (1995), 665-674.



