On the n-dimensional Dirichlet problem for isometric maps

B. Dacorognaa, P. Marcellinib, E. Paolinib

a Section de Mathématiques, EPFL, 1015 Lausanne, Switzerland
b Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy

Received 24 January 2008; accepted 2 October 2008
Available online 28 October 2008
Communicated by H. Brezis

Abstract

We exhibit explicit Lipschitz maps from \mathbb{R}^n to \mathbb{R}^n which have almost everywhere orthogonal gradient and are equal to zero on the boundary of a cube. We solve the problem by induction on the dimension n.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Dirichlet problem; Orthogonal gradients

1. Introduction

We consider in the general n-dimensional case ($n > 1$) the nonlinear system of PDE’s

$$Du^t Du = I,$$

where Du^t denotes the transpose matrix of the gradient Du of a map $u: \mathbb{R}^n \to \mathbb{R}^n$, while I is the identity matrix. A map u satisfying (1) is said to be an isometric map or rigid map and its gradient is an orthogonal matrix; briefly as usual we write $Du \in O(n)$.

To the system (1) we associate the homogeneous boundary condition $u = 0$ on the boundary of a bounded open set of \mathbb{R}^n. The Dirichlet problem that we obtain is critical; i.e., it is incompatible with classical solutions. In fact any isometric map $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ of class C^1 on an open
connected set \(\Omega \) of \(\mathbb{R}^n \) is affine by the classical Liouville theorem, and it therefore cannot be equal to zero on its boundary \(\partial \Omega \). We can then consider Lipschitz continuous maps \(u : \mathbb{R}^n \to \mathbb{R}^n \), satisfying the system (1) almost everywhere; then, if \(u \) is equal to zero on the boundary \(\partial \Omega \) it must be not differentiable on any neighbourhood of any boundary point, thus presenting a fractal behaviour at the boundary.

In this paper we find an explicit Lipschitz solution to the differential problem

\[
\begin{cases}
Du(x) \in O(n) & \text{a.e. } x \in Q, \\
u(x) = 0 & x \in \partial Q,
\end{cases}
\]

where \(Q = (0, 1)^n \) is the unit cube and \(O(n) \) stands, as said above, for the set of orthogonal matrices in \(\mathbb{R}^{n \times n} \).

The study of differential inclusions of the form

\[
\begin{cases}
Du(x) \in E & \text{a.e. } x \in \Omega, \\
u(x) = u_0(x) & x \in \partial \Omega,
\end{cases}
\]

where \(E \subset \mathbb{R}^{N \times n} \), \(u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N \) and \(u_0 \) is a given map, has received considerable attention. In the vectorial case \(n, N \geq 2 \), general theories of existence have been developed either via the Baire category method (see Dacorogna–Marcellini [3–5]) or via the convex integration method by Gromov (see Müller–Sverak [9]). These methods are purely existential and do not give a way of constructing explicit solutions. In parallel, for some special problems mostly related to the case when \(E \) is the set of orthogonal matrices, some solutions were provided in a constructive way. This started with the work of Cellina–Perrotta [1] when \(n = N = 3 \) and \(u_0 = 0 \), Dacorogna–Marcellini–Paolini [6,7] when \(n = N = 2 \) or \(n = N = 3 \) and Iwaniec–Verchota–Vogel [8] for \(n = N = 2 \), for related results see [2]. In this context there are also some related unpublished arguments by R.D. James for \(n = N = 2 \). In [7] the connection between this problem with isometric immersions and origami has been made. Moreover in [7] we also dealt with inhomogeneous linear boundary data.

In the present article we give a self contained and purely analytical construction in any dimension. Despite its generality our proof is shorter than the existing ones which were, however, restricted to the cases \(n = 2, 3 \). We first solve the problem by induction on the dimension in the half-space \((0, \infty) \times \mathbb{R}^{n-1} \). We then get the solution to our problem by composing the solution in the half-space with a map that sends the whole boundary of the unit cube in \(\mathbb{R}^n \) to one of its faces. We should point out that our construction in fact solves the problem in a more precise way: instead of considering matrices in the whole of \(O(n) \), we use only a finite number of them, namely permutation matrices whose non zero entries are \(\pm 1 \).

2. The fundamental brick

Define \(f : \mathbb{R} \to \mathbb{R} \) by

\[
f(t) = \min\{t, 1 - t\}.
\]

Then define \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) by

\[
h(x, y) = \begin{cases} (h^1(x, y), h^2(x, y)) & \text{if } x \leq y, \\
(y, f(x)) & \text{if } x \geq y.
\end{cases}
\]
Finally we define a map \(\phi_n : \mathbb{R}^n \to \mathbb{R}^n \), for \(n = 2, 3, \ldots \), by induction on \(n \):

\[
\begin{align*}
\phi_2(x_1, x_2) &= h(x_1, x_2), \\
\phi_{n+1}(x_1, x_2, \ldots, x_{n+1}) &= (\phi_n(h^1(x_1 - n + 1, x_{n+1}) + n - 1, x_2, \ldots, x_n), h^2(x_1 - n + 1, x_{n+1})).
\end{align*}
\]

More in details, \(\phi_{n+1} \) can be written as a composition of the following maps:

\[
\begin{align*}
(x_1, \ldots, x_{n+1}) &\mapsto (x_1 - n + 1, x_2, \ldots, x_{n+1}), \\
(y_1, \ldots, y_{n+1}) &\mapsto (h^1(y_1, y_{n+1}), y_2, \ldots, y_n, h^2(y_1, y_{n+1})), \\
(z_1, \ldots, z_{n+1}) &\mapsto (z_1 + n - 1, z_2, \ldots, z_{n+1}), \\
(w_1, \ldots, w_{n+1}) &\mapsto (\phi_n(w_1, \ldots, w_n), w_{n+1}).
\end{align*}
\]

We recall that \(u : \mathbb{R}^n \to \mathbb{R}^n \) is called a rigid map, or an isometric map, if it is Lipschitz continuous and \(Du(x) \in O(n) \) for almost every \(x \in \mathbb{R}^n \); i.e., if \(u \) satisfies (1) for almost every \(x \in \mathbb{R}^n \).

Theorem 1 (Properties of \(\phi_n \)). The map \(\phi_n : \mathbb{R}^n \to \mathbb{R}^n \), for every \(n = 2, 3, \ldots \), satisfies the following properties:

(i) \(\phi_n \) is a piecewise affine rigid map;

(ii) if \(x_2, \ldots, x_{n+1} \in [0, 1] \) then

\[
\phi_n(0, x_2, \ldots, x_n) = (0, f(x_2), \ldots, f(x_n));
\]

(iii) on the cube \([n - 1, n] \times [0, 1]^{n-1}\) the map \(\phi_n \) is affine.

Proof. We will use the following properties of the map \(h \) defined in (2):

(1) \(h \) is a piecewise affine rigid map;

(2) if \(y \geq 0 \) and \(x \leq 0 \) then \(h(x, y) = (x, f(y)) \);

(3) if \(x \geq 1 \) and \(y \in [0, 1] \) then \(h(x, y) = (y, 1 - x) \).

We prove the theorem by induction on \(n \). In the case \(n = 2 \) the claims are direct consequences of the properties of \(h \). We assume now that the theorem holds true for \(n \), and we prove it for \(n + 1 \).

Claim (i) is a consequence of the fact that the composition of piecewise affine rigid maps is again a piecewise affine rigid map.

To prove (ii) we compute, for any \(x_2, \ldots, x_{n+1} \in [0, 1] \),

\[
\phi_{n+1}(0, x_2, \ldots, x_{n+1}) = (\phi_n(h^1(1 - n, x_{n+1}) + n - 1, x_2, \ldots, x_n), h^2(1 - n, x_{n+1}));
\]

since \(1 - n \leq 0 \leq x_{n+1} \), by property (2) of the function \(h \) we have \(h(1 - n, x_{n+1}) = (1 - n, f(x_{n+1})) \), hence we continue

\[
= (\phi_n(0, x_2, \ldots, x_n), f(x_{n+1})).
\]
and by the induction hypothesis
\[= (0, f(x_2), \ldots, f(x_n), f(x_{n+1})) \]
which is the claim.

Let us conclude by proving (iii). Let \(x_1 \in [n, n+1] \) and \(x_2, \ldots, x_{n+1} \in [0, 1] \). We have
\[
\phi_{n+1}(x_1, x_2, \ldots, x_{n+1}) = (\phi_n(h^1(x_1 - n + 1, x_{n+1}) + n - 1, x_2, \ldots, x_n), h^2(x_1 - n + 1, x_{n+1}));
\]
since \(x_1 - n + 1 \geq 1 \) and \(x_{n+1} \in [0, 1] \), by the property (3) of \(h \) we find that
\[
h(x_1 - n + 1, x_{n+1}) = (x_{n+1} + n - x_1, n - x_1);
\]
since now \(x_{n+1} + n - 1 \in [n - 1, n] \), by the induction hypothesis we conclude that \(\phi_{n+1} \) is affine on this region. \(\square \)

3. The pyramid construction

Let us start with some notations. Let \(f \) be as in the previous section. For every \(x = (x_1, \ldots, x_n) \) we order the real numbers \(f(x_1), \ldots, f(x_n) \) so that
\[
f(x_{i_1}) \leq f(x_{i_2}) \leq \cdots \leq f(x_{i_n}).
\]
We then define \(v : [0, 1]^n \to \mathbb{R}^n \) as
\[
v(x) = (f(x_{i_1}), f(x_{i_2}), \ldots, f(x_{i_n})).
\]
Note that for \(v(x) = (v^1(x), \ldots, v^n(x)) \) we have
\[
v^1(x) = \min_{i=1,\ldots,n} \{ f(x_i) \}, \quad v^n(x) = \max_{i=1,\ldots,n} \{ f(x_i) \},
\]
\[
v^k(x) = \max_{i_1,\ldots,i_{k-1}} \left[\min_{i \neq i_1,\ldots,i_{k-1}} \{ f(x_i) \} \right], \quad k = 2, \ldots, n - 1,
\]
in particular, when \(n = 3 \),
\[
v^2(x) = \max\{\min\{f(x_1), f(x_2)\}, \min\{f(x_1), f(x_3)\}, \min\{f(x_2), f(x_3)\}\}.
\]

Theorem 2 (Pyramid construction). Let \(Q = (0, 1)^n \subset \mathbb{R}^n \). The map \(v : \overline{Q} \to \mathbb{R}^n \) defined above, has the following properties:

(i) \(v \) is a piecewise affine rigid map;
(ii) \(v(Q) \subset (0, 1/2]^n \subset \{ x \in \mathbb{R}^n : x_1 > 0 \} \);
(iii) \(v(\partial Q) \subset \{ x \in \mathbb{R}^n : x_1 = 0 \} \), meaning that \(v^1 = 0 \) on \(\partial Q \).
Proof. The map \(v \) is constructed as the composition of piecewise affine rigid maps, so it is piecewise affine rigid. The second property is a consequence of the fact that if \(x_1, \ldots, x_n \in (0, 1) \) then \(f(x_1), \ldots, f(x_n) \in (0, 1/2] \). If we take \(x \in \partial Q \) we know that at least one component \(x_k \) of \(x \) is equal to either 0 or 1. So \(f(x_k) = 0 \). Since \(f(x_j) \geq 0 \) for every \(x_j \in [0, 1] \) we conclude that \(f(x_k) = 0 \) is the first component of \(v(x) \).

4. The solutions to the Dirichlet problem

Now we are going to construct a locally piecewise rigid map \(w : [0, +\infty) \times \mathbb{R}^{n-1} \to \mathbb{R}^n \) with zero boundary condition.

First we consider the zigzag function \(F : \mathbb{R} \to \mathbb{R} \) which is defined by the conditions

\[
\begin{cases}
F(t) = 2 f(t/2) = \min\{t, 2 - t\}, & \text{when } t \in [0, 2], \\
F(t) = F(t + 2), & \text{for every } t \in \mathbb{R}.
\end{cases}
\]

We also consider the affine map \(x \mapsto Jx + a \), with \(J \in O(n) \), \(a \in \mathbb{R}^n \), such that (as mentioned in Theorem 1)

\[
\phi_n(x) = Jx + a \quad \text{when } x_1 \in [n - 1, n] \text{ and } x_2, \ldots, x_n \in [0, 1].
\]

Define, for \(k \in \mathbb{Z} \), the vector \(b_k \in \mathbb{R}^n \) as

\[
b_k = \sum_{j=k}^{+\infty} \frac{J^{-j}}{2^{j+1}} a',
\]

where \(a' = (n - 1, 0, \ldots, 0) + J^{-1}a \).

Let \(H = (0, +\infty) \times \mathbb{R}^{n-1} \). Given \(x \in H \) there exists \(k \in \mathbb{Z} \) such that

\[
(n - 1)2^{-k} \leq x_1 < (n - 1)2^{1-k}.
\]

Then, for such a point \(x \), we define

\[
w(x_1, \ldots, x_n) = 2^{-k} J^{-k} \phi_n(2^k x_1 - n + 1, F(2^k x_2), \ldots, F(2^k x_n)) + b_k,
\]

where \(\phi_n \) is the map considered in Theorem 1, while for \(x_1 = 0 \) we define

\[
w(0, x_2, \ldots, x_n) = 0 \quad \text{for all } x_2, \ldots, x_n \in \mathbb{R}.
\]

Theorem 3 (Solution in the half-space). Let \(H = (0, +\infty) \times \mathbb{R}^{n-1} \). The map \(w : \overline{H} \to \mathbb{R}^n \) is locally piecewise affine in \(H \) and it is rigid on \(\overline{H} \). Moreover \(w(\partial H) = 0 \).

Proof. We first want to check the continuity of \(w \) on the planes \(x_1 = (n - 1)2^{-k} \), for every \(k \in \mathbb{Z} \). So let \(x \) be a point on such a plane and let us check that

\[
w(x_1, x_2, \ldots, x_n) = 2^{-k-1} J^{-k-1} \phi_n(2^{k+1} x_1 - n + 1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_{k+1}.
\]
With the substitution $x_1 = (n - 1)2^{-k}$ in the definition of w, the left-hand side of (3) becomes

$$2^{-k} J^{-k} \phi_n(0, F(2^k x_2), \ldots, F(2^k x_n)) + b_k;$$

by Theorem 1, since $F(t) \in [0, 1]$ for all t,

$$= 2^{-k} J^{-k} (0, f(F(2^k x_2)), \ldots, f(F(2^k x_n))) + b_k$$

and by the identity $f(F(t)) = F(2t)/2$,

$$= 2^{-k-1} J^{-k} (0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_k.$$

While the right-hand side of (3) is, for $x_1 = (n - 1)2^{-k}$, equal to

$$2^{-k-1} J^{-k-1} \phi_n(n - 1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_{k+1};$$

since $F(t) \in [0, 1]$ for every $t \in \mathbb{R}$, by Theorem 1 we can replace ϕ_n with the affine map $Jx + a$, and get

$$= 2^{-k-1} J^{-k-1} \left[J(n - 1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + a \right] + b_{k+1}$$

$$= 2^{-k-1} J^{-k} (n - 1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + 2^{-k-1} J^{-k-1} a + b_{k+1}$$

$$= 2^{-k-1} J^{-k} (0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n))$$

$$+ 2^{-k-1} J^{-k} (n - 1, 0, \ldots, 0) + 2^{-k-1} J^{-k-1} a + b_{k+1}$$

$$= 2^{-k-1} J^{-k} (0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + 2^{-k-1} J^{-k} a' + b_{k+1};$$

by recalling the definition of b_k, we obtain, as desired

$$= 2^{-k-1} J^{-k} (0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_k.$$

So the map w on $H = (0, +\infty) \times \mathbb{R}^{n-1}$ is locally piecewise affine and rigid. We now inspect the boundary values of w. Take any $k \in \mathbb{Z}$, and $i_2, \ldots, i_n \in \mathbb{Z}$. We have

$$w(2^{-k}(n - 1), 2^{-k} i_1, \ldots, 2^{-k} i_n) = 2^{-k} J^{-k} \phi_n(0, F(i_1), \ldots, F(i_n)) + b_k;$$

by Theorem 1 we get

$$= 2^{-k} J^{-k} (0, f(F(i_1)), \ldots, f(F(i_n))) + b_k;$$

now notice that $F(i_k)$ is either 0 or 1 hence $f(F(i_k)) = 0$, so we find

$$= b_k.$$

Now since $b_k \to 0$ as $k \to +\infty$ and w is Lipschitz continuous, we conclude that $w \to 0$ at every point of ∂H and hence is continuous on the whole set \overline{H}. □
Theorem 4 (Solution in the cube). Let $Q = (0, 1)^n$, w be as above and v as in Section 3. The map $u = w \circ v : \overline{Q} \to \mathbb{R}^n$ is locally piecewise affine in Q and it is rigid on \overline{Q}. Moreover $u(\partial Q) = 0$.

Proof. The map w of Theorem 3 is a Lipschitz solution to the Dirichlet problem

$$\begin{cases}
 Dw \in O(n) & \text{a.e. in } H, \\
 w = 0 & \text{on } \partial H
\end{cases}$$

where H is the half-space of \mathbb{R}^n. Since $u = w \circ v$, we clearly have that u is rigid and so $Du \in O(n)$ a.e. Moreover since $v(\partial Q) \subset \partial H$ and $w(\partial H) = 0$, we get the condition $u(\partial Q) = 0$. \qed

Notice that we have solved a more precise problem, namely

$$Du(x) \in \Pi(n) \subset O(n)$$

where $\Pi(n)$ is the set of permutation matrices whose non-zero entries are ± 1. In particular we have used at most $n!2^n$ different matrices in the construction of w and v.

References